RU2317947C1 - Способ получения фотокаталитического диоксида титана - Google Patents

Способ получения фотокаталитического диоксида титана Download PDF

Info

Publication number
RU2317947C1
RU2317947C1 RU2006121871/15A RU2006121871A RU2317947C1 RU 2317947 C1 RU2317947 C1 RU 2317947C1 RU 2006121871/15 A RU2006121871/15 A RU 2006121871/15A RU 2006121871 A RU2006121871 A RU 2006121871A RU 2317947 C1 RU2317947 C1 RU 2317947C1
Authority
RU
Russia
Prior art keywords
titanium
tio
titanium dioxide
precipitate
concentration
Prior art date
Application number
RU2006121871/15A
Other languages
English (en)
Inventor
Эфроим Пинхусович Локшин (RU)
Эфроим Пинхусович Локшин
Тать на Андреевна Седнева (RU)
Татьяна Андреевна Седнева
Владимир Трофимович Калинников (RU)
Владимир Трофимович Калинников
Original Assignee
Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук filed Critical Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук
Priority to RU2006121871/15A priority Critical patent/RU2317947C1/ru
Application granted granted Critical
Publication of RU2317947C1 publication Critical patent/RU2317947C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Catalysts (AREA)

Abstract

Изобретение может быть использовано при получении катализаторов на основе диоксида титана для фотокаталитической очистки воды и воздуха от органических соединений, патогенных флор. Способ получения фотокаталитического диоксида титана включает формирование реакционного раствора, содержащего минеральную соль титана, фторид-ион и активизирующую добавку, гидролиз минеральной соли титана с образованием осадка, промывку осадка и его прокаливание. В качестве активизирующей добавки используют гидроксид аммония, который берут с 5-10% избытком по отношению к стехиометрически необходимому его количеству. Гидролиз минеральной соли титана ведут в течение 0,25-0,5 ч при рН 10-13, а концентрацию фторид-иона в реакционном растворе поддерживают не менее 5 мас.% к TiO2. В качестве минеральной соли титана используют тетрахлорид титана, сульфат титанила или фторид титана и аммония. Изобретение позволяет повысить степень извлечения диоксида титана в целевой продукт, термостойкость и удельную поверхность фотокаталитического титана анатазной модификации, а также сократить продолжительность процесса. 5 з.п. ф-лы, 1 табл.

Description

Изобретение относится к способам получения катализаторов на основе диоксида титана, которые могут быть использованы для фотокаталитической очистки воды и воздуха от органических соединений, патогенных флор и т.п. Получаемые катализаторы обладают повышенной термостойкостью (500-700°С), что обеспечивает их многократное использование.
Известен способ получения фотокаталитического диоксида титана (см. патент РФ 2243033, МПК7 B01J 21/06, B01J 37/02, C02F 11/14, C02F 1/32, 2004), включающий обработку суспензии диоксида титана рутильной или анатазной модификации растворами минеральных кислот для модифицирования поверхности диоксида титана анионами, что разрыхляет структуру диоксида титана и увеличивает его удельную поверхность. Обработку суспензии ведут кислотами с концентрацией 0,00001-15 моль/л при соотношении объема кислоты к массе катализатора 1-100 и температуре от 25 до 100°С в течение 0,5-20 ч с последующей выдержкой суспензии при комнатной температуре в течение 0,1-100 ч и отделением осадка диоксида титана. Минеральными кислотами могут быть фтористоводородная, хлористоводородная, серная, хлорная, азотная и фосфорная кислоты. После многократной промывки осадка в его водную суспензию вводят водный раствор неорганических соединений одного или нескольких металлов: Pd, Pt, Au, Ag, которые восстанавливают до металлического состояния формальдегидом, гипофосфитом или борогидратом натрия, или гидразином в течение 0,01-10 ч при температуре 20-100°С. Полученный катализатор отделяют от раствора и высушивают на воздухе при 50-200°С. Массовое содержание металлических частиц в катализаторе должно находиться в пределах 0,01-10,0 мас.%.
К недостаткам данного способа относится то, что при температурах сушки 100-200°С сорбированные поверхностью анионы, в том числе фтор, улетучиваются с парами воды, что снижает удельную поверхность получаемых катализаторов. Кроме того, способ включает большое количество продолжительных операций и значительное число используемых реагентов, что усложняет его. Низкая термостойкость получаемых катализаторов исключает возможность их повторного использования после термической регенерации.
Известен также способ приготовления фотокаталитического диоксида титана (см. патент США №5811192, Н. кл. 428/432, 1998), включающий формирование реакционного раствора с концентрацией 0,1-0,2 моль/л TiO2, содержащего фторид титана и аммония (NH4)2TiF6, воду и активизирующую добавку в виде борной кислоты, гидролиз фторида титана и аммония в течение 48-72 ч при температуре 20-50°С с образованием осадка. Активизирующую добавку используют для сдвига равновесия реакции
(NH4)2TiF6+2Н2О→TiO2+4HF+2NH4F
в сторону образования оксида титана. Осадок в виде пленки диоксида титана осаждают на подложке из стекла или металла под слоем несмешивающейся с реакционным раствором жидкой фазы в виде хлорбензола, этанола и т.п. Полученную пленку диоксида титана отмывают водой от водорастворимых соединений, сушат и прокаливают при температуре 300-500°С.
Недостатком известного способа является связывание фтора активизирующей добавкой в виде борной кислоты, что минимизирует его содержание в диоксиде титана. При этом ограничивается разрыхление структуры диоксида титана, снижается величина его удельной поверхности и соответственно фотокаталитическая активность. Содержание фтора в диоксиде титана дополнительно сокращается в процессе сушки и прокаливания, что еще более снижает его удельную поверхность и термостойкость. Кроме того, диоксид титана синтезируется на носителе в виде пленки и не может быть использован в свободной форме. Недостатками способа являются также использование органических соединений, ограничивающих сорбцию фторид-иона из реакционного раствора в целевой продукт и в то же время загрязняющих его, и относительная продолжительность способа.
Настоящее изобретение направлено на решение технической задачи повышения удельной поверхности и термостойкости получаемого порошка фотокаталитического диоксида титана анатазной модификации за счет увеличения содержания фтора в диоксиде титана путем введения фтора в структуру диоксида при обеспечении высокой степени извлечения титана в целевой продукт и сокращении продолжительности процесса.
Технический результат достигается тем, что в способе получения фотокаталитического диоксида титана, включающем формирование реакционного раствора, содержащего минеральную соль титана, фторид-ион и активизирующую добавку, гидролиз минеральной соли титана с образованием осадка, промывку осадка и его прокаливание, согласно изобретению в качестве активизирующей добавки используют гидроксид аммония, который берут с 5-10%-ным избытком по отношению к стехиометрически необходимому его количеству, гидролиз минеральной соли титана ведут в течение 0,25-0,5 ч при рН 10-13, а концентрацию фторид-иона в реакционном растворе поддерживают не менее 5 мас.% к TiO2.
Технический результат достигается также тем, что используют реакционный раствор с концентрацией 0,1-0,3 моль/л TiO2.
Технический результат достигается также и тем, что в качестве минеральной соли титана используют тетрахлорид титана или сульфат титанила.
Технический результат достигается и тем, что в качестве минеральной соли титана используют фторид титана и аммония.
На достижение технического результата направлено то, что используют реакционный раствор с концентрацией фторид-иона 5-10 мас.% по отношению к TiO2.
На достижение технического результата направлено также то, что гидролиз проводят при температуре 15-25°С.
Сущность изобретения заключается в том, что гидролиз минеральной соли титана протекает с образованием метатитановой кислоты. Формирование метатитановой кислоты в присутствии гидроксида аммония, взятого с избытком, и фторид-иона протекает следующим образом:
TiOSO4+2NH4OH+xHF→TiO(OH)2-xFx+xH2O+(NH4)2SO4,
TiCl4+4NH4OH+xHF→TiO(OH)2-xFx+(1+x)H2O+4NH4Cl,
где x<1.
В случае использования фторсодержащей соли титана, в частности фторида титана и аммония, гидролиз протекает согласно реакции:
(NH4)2TiF6+(4-x)NH4OH→TiO(OH)2-xFx+хН2O+(6-x)NH4F.
Фторид-ион, присутствующий в реакционном растворе, является модифицирующей добавкой. При прокаливании осадка метатитановой кислоты, модифицированной фторид-ионом TiO(OH)2-xFx, при температуре 300-400°С кристаллизуется диоксид титана анатазной модификации, содержащий в своей структуре фторид-ион:
TiO(OH)2-xFx→TiO2-xFx2O.
Вследствие того, что энергия связи фтора с титаном (IV) выше, чем хлора, сульфат-иона или кислорода, а ионные кристаллические радиусы фтора и кислорода достаточно близки (1,40 и 1,39 Å), фтор образует достаточно прочные комплексы с титаном. При этом заряд катиона титана при замещении О2- на F- оказывается не полностью скомпенсированным, что приводит к «разрыхлению» кристаллической решетки TiO2, проявляющемуся в образовании мелкодисперсной анатазной структуры с высокой фотохимической активностью. Известно, что наибольшей фотокаталитической активностью обладают высокодисперсные (10-200 нм, что соответствует свободной удельной поверхности 150-10 м2/г) порошки TiO2 с кристаллической модификацией анатаза, не содержащие большого числа примесей. Содержащееся в составе метатитановой кислоты некоторое количество фторидных комплексов титана при прокаливании осадка попадает на дислокационные ступени роста и блокирует перекристаллизацию анатаза в наиболее термодинамически устойчивый рутил. Фтор остается в диоксиде титана и при прогреве до 700°С, что определяет высокую термостойкость и сохраняющуюся большую величину свободной удельной поверхности, с которой связывается и высокая фотокаталитическая активность диоксида титана. По вышеописанному механизму протекает образование модифицированной фтором метатитановой кислоты и в растворах других минеральных солей титана, поскольку способность к комплексообразованию титана (IV) возрастает в ряду NO3<Cl-<SO42-<F-.
Использование в качестве активизирующей добавки гидроксида аммония позволяет модифицировать диоксид титана фторид-ионом в количестве, достаточном для обеспечения высокой удельной поверхности осадка, а также сократить продолжительность гидролиза и увеличить извлечение титана в осадок.
Использование гидроксида аммония с 5-10%-ным избытком по отношению к стехиометрически необходимому его количеству позволяет обеспечить необходимую величину рН реакционного раствора для достижения требуемой полноты извлечения титана в осадок. При избытке гидроксида аммония менее 5% и рН менее 10 снижается полнота извлечения титана, а превышение избытка более 10% и рН более 13 является технологически нецелесообразным.
Проведение гидролиза минеральной соли титана в течение 0,25-0,5 ч обеспечивает высокую степень извлечения титана в целевой продукт. Продолжительность гидролиза менее 0,25 ч не обеспечивает необходимое структурное формирование осадка и полноту извлечения в него титана. Продолжительность гидролиза более 0,5 ч приводит к укрупнению гидролизуемых частиц, что ведет к снижению свободной удельной поверхности диоксида титана.
Снижение концентрации фторид-иона в реакционном растворе менее 5 мас.% к TiO2 сопровождается понижением содержания фтора в модифицируемом осадке и появлению кристаллической фазы рутила, что вызывает резкое уменьшение свободной удельной поверхности, а следовательно, и каталитической активности диоксида титана.
Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в повышении удельной поверхности и термостойкости получаемого порошка фотокаталитического диоксида титана анатазной модификации за счет увеличения содержания фтора в диоксиде титана путем введения фтора в структуру диоксида при обеспечении высокой степени извлечения титана в целевой продукт и сокращении продолжительности процесса.
Использование реакционного раствора с концентрацией 0,1-0,3 моль/л TiO2 обеспечивает необходимую дисперсность осадка метатитановой кислоты. При концентрации титановой соли в растворе менее 0,1 моль/л TiO2 получающийся мелкодисперсный осадок склонен к пептизации, что снижает его извлечение в готовый продукт. Повышение концентрации титановой соли выше 0,3 моль/л TiO2 способствует избыточному укрупнению частиц метатитановой кислоты, что в итоге снижает величину свободной удельной поверхности диоксида титана.
Использование в качестве минеральной соли титана тетрахлорида титана или сульфата титанила обусловлено тем, что эти реагенты относятся к легкогидролизуемым соединениям и являются доступными полупродуктами сернокислотной и хлорной переработки титансодержащих руд.
Использование в качестве минеральной соли титана фторида титана и аммония обусловлено наличием фтора в составе этой соли, что позволяет исключить введение в реакционный раствор фторид-иона в составе самостоятельного реагента.
Использование реакционного раствора с концентрацией фторид-иона 5-10 мас.% по отношению к TiO2 обеспечивает анатазную структуру диоксида титана и необходимую величину его удельной поверхности при использовании минеральных солей, не содержащих в своем составе фтор. Увеличение концентрации фторид-иона в реакционном растворе более 10 мас.% к TiO2 не приводит к существенному увеличению удельной поверхности диоксида титана.
Проведение гидролиза при температуре 15-25°С обеспечивает получение необходимой структуры осадка метатитановой кислоты. Проведение гидролиза при температуре менее 15°С приводит к образованию более мелких частиц, склонных к пептизации, снижению скорости гидролиза и увеличению продолжительности процесса. Гидролиз при температуре более 25°С сопровождается укрупнением осаждаемых частиц и не приводит к существенному увеличению извлечения титана в целевой продукт.
Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с точки зрения повышения удельной поверхности и термостойкости получаемого порошка фотокаталитического диоксида титана анатазной модификации за счет увеличения содержания фтора в структуре диоксида титана. При этом возрастает степень извлечения титана в целевой продукт и сокращается продолжительность процесса.
Сущность и преимущества заявляемого изобретения могут быть проиллюстрированы следующими Примерами.
Пример 1. В 200 мл раствора минеральной соли TiCl4 с концентрацией 0,5 моль/л в пересчете на TiO2 вводят при перемешивании фторид-ионы в виде HF в количестве 10 мас.% F к TiO2, 33 мл активизирующей добавки в виде гидроксида аммония с концентрацией 220 г/л NH4OH (избыток 5 мас.% к стехиометрически необходимому количеству) и 100 мл воды. Концентрация диоксида титана в реакционном растворе - 0,3 моль/л TiO2. Осуществляют гидролиз соли при рН 12 и температуре 15°С в течение 0,5 ч с образованием осадка модифицированной фтором метатитановой кислоты TiO(OH)2-xFx. Осадок отделяют от раствора фильтрацией, промывают водой при Ж:Т=20, высушивают на воздухе и прокаливают при температуре 300°С в течение 2 ч. Степень извлечения титана в осадок составляет 95,2%. Полученный целевой продукт представляет собой порошок диоксида титана анатазной модификации с удельной площадью поверхности Sуд=140 м2 /г, содержащий 2 мас.% фтора. После прокаливания полученного диоксида титана при температуре 700°С он содержит 0,32 мас.% F, сохраняет анатазную модификацию и имеет Sуд=49 м2/г.
Основные технологические параметры способа и полученные результаты по Примерам 1-8 согласно заявляемому способу, а также по Примерам 9-13 с запредельными значениями параметров и Примеру 14 по прототипу представлены в Таблице.
Пример 2. В 100 мл раствора минеральной соли TiCl4 с концентрацией 0,5 моль/л в пересчете на TiO2 вводят при перемешивании фторид-ионы в виде HF в количестве 7,5 мас.% F к TiO2, 17 мл активизирующей добавки в виде гидроксида аммония с концентрацией 220 г/л NH4OH (избыток 7,5 мас.% к стехиометрически необходимому количеству) и 83 мл воды. Концентрация диоксида титана в реакционном растворе - 0,25 моль/л TiO2. Осуществляют гидролиз соли при рН 12,5 и температуре 20°С в течение 0,5 ч с образованием осадка модифицированной фтором метатитановой кислоты TiO(OH)2-xFx. Осадок отделяют от раствора фильтрацией, промывают водой при Ж:Т=20, высушивают на воздухе и прокаливают при температуре 300°С в течение 2 ч. Степень извлечения титана в осадок составляет 95,6%. Полученный целевой продукт представляет собой порошок диоксида титана анатазной модификации с удельной площадью поверхности Sуд=139 м2/г, содержащий 2,2 мас.% фтора. После прокаливания полученного диоксида титана при температуре 700°С он содержит 0,3 мас.% F, сохраняет анатазную модификацию и имеет Sуд=47 м2/г.
Пример 3. В 80 мл раствора минеральной соли TiCl4 с концентрацией 0,5 моль/л в пересчете на TiO2 вводят при перемешивании фторид-ионы в виде HF в количестве 5 мас.% F к TiO2, 14 мл активизирующей добавки в виде гидроксида аммония с концентрацией 220 г/л NH4OH (избыток 10 мас.% к стехиометрически необходимому количеству) и 406 мл воды. Концентрация диоксида титана в реакционном растворе - 0,1 моль/л TiO2. Осуществляют гидролиз соли при рН 11,7 и температуре 25°С в течение 0,5 ч с образованием осадка модифицированной фтором метатитановой кислоты TiO(OH)2-xFx. Осадок отделяют от раствора фильтрацией, промывают водой при Ж:Т=20, высушивают на воздухе и прокаливают при температуре 400°С в течение 2 ч. Степень извлечения титана в осадок составляет 96%. Полученный целевой продукт представляет собой порошок диоксида титана анатазной модификации с удельной площадью поверхности Sуд=127 м2/г, содержащий 1,8 мас.% фтора. После прокаливания полученного диоксида титана при температуре 700°С он содержит 0,28 мас.% F, сохраняет анатазную модификацию и имеет Sуд=44 м2/г.
Пример 4. В 200 мл раствора минеральной соли TiOSO4 с концентрацией 0,5 моль/л в пересчете на TiO2 вводят при перемешивании фторид-ионы в виде HF в количестве 5 мас.% F к TiO2, 34 мл активизирующей добавки в виде гидроксида аммония с концентрацией 220 г/л NH4OH (избыток 7,5 мас.% к стехиометрически необходимому количеству) и 100 мл воды. Концентрация диоксида титана в реакционном растворе - 0,3 моль/л TiO2. Осуществляют гидролиз соли при рН 12,5 и температуре 25°С в течение 0,5 ч с образованием осадка модифицированной фтором метатитановой кислоты TiO(OH)2-xFx. Осадок отделяют от раствора фильтрацией, промывают водой при Ж:Т=20, высушивают на воздухе и прокаливают при температуре 300°С в течение 2 ч. Степень извлечения титана в осадок составляет 96,0%. Полученный целевой продукт представляет собой порошок диоксида титана анатазной модификации с удельной площадью поверхности Sуд=160 м2/г, содержащий 2,2 мас.% фтора. После прокаливания полученного диоксида титана при температуре 700°С он содержит 0,35 мас.% F, сохраняет анатазную модификацию и имеет Sуд=64 м2/г.
Пример 5. В 200 мл раствора минеральной соли TiOSO4 с концентрацией 0,4 моль/л в пересчете на TiO2 вводят при перемешивании фторид-ионы в виде HF в количестве 8 мас.% F к TiO2, 27 мл активизирующей добавки в виде гидроксида аммония с концентрацией 220 г/л NH4ОН (избыток 5 мас.% к стехиометрически необходимому количеству) и 170 мл воды. Концентрация диоксида титана в реакционном растворе - 0,2 моль/л TiO2. Осуществляют гидролиз соли при рН 10 и температуре 15°С в течение 0,5 ч с образованием осадка модифицированной фтором метатитановой кислоты TiO(OH)2-xFx. Осадок отделяют от раствора фильтрацией, промывают водой при Ж:Т=20, высушивают на воздухе и прокаливают при температуре 300°С в течение 2 ч. Степень извлечения титана в осадок составляет 95,0%. Полученный целевой продукт представляет собой порошок диоксида титана анатазной модификации с удельной площадью поверхности Sуд=168 м2/г, содержащий 2,4 мас.% фтора. После прокаливания полученного диоксида титана при температуре 700°С он содержит 0,41 мас.% F, сохраняет анатазную модификацию и имеет Sуд=70 м2/г.
Пример 6. В 200 мл раствора минеральной соли TiOSO4 с концентрацией 0,4 моль/л в пересчете на TiO2 вводят при перемешивании фторид-ионы в виде HF в количестве 10 мас.% F к TiO2, 28 мл активизирующей добавки в виде гидроксида аммония с концентрацией 220 г/л NH4OH (избыток 10 мас.% к стехиометрически необходимому количеству) и 170 мл воды. Концентрация диоксида титана в реакционном растворе - 0,2 моль/л TiO2. Осуществляют гидролиз соли при рН 12,2 и температуре 15°С в течение 0,5 ч с образованием осадка модифицированной фтором метатитановой кислоты TiO(ОН)2-xFx. Осадок отделяют от раствора фильтрацией, промывают водой при Ж:Т=20, высушивают на воздухе и прокаливают при температуре 300°С в течение 2 ч. Степень извлечения титана в осадок составляет 96,1%. Полученный целевой продукт представляет собой порошок диоксида титана анатазной модификации с удельной площадью поверхности Sуд=170 м2/г, содержащий 2,6 мас.% фтора. После прокаливания полученного диоксида титана при температуре 700°С он содержит 0,45 мас.% F, сохраняет анатазную модификацию и имеет Sуд=73 м2/г.
Пример 7. В 500 мл раствора минеральной соли (NH4)2TiF6 с содержанием фторид-ионов в ее составе 142,5 мас.% F к TiO2 и с концентрацией соли в растворе 0,5 моль/л в пересчете на TiO2 вводят при перемешивании 87 мл активизирующей добавки в виде гидроксида аммония с концентрацией 220 г/л NH4OH (избыток 10 мас.% к стехиометрически необходимому количеству) и 246 мл воды. Концентрация диоксида титана в реакционном растворе - 0,3 моль/л TiO2. Осуществляют гидролиз соли при рН 13 и температуре 15°С в течение 0,25 ч с образованием осадка модифицированной фтором метатитановой кислоты TiO(OH)2-xFx. Осадок отделяют от раствора фильтрацией, промывают водой при Ж:Т=20, высушивают на воздухе и прокаливают при температуре 300°С в течение 2 ч. Степень извлечения титана в осадок составляет 91,5%. Полученный целевой продукт представляет собой порошок диоксида титана анатазной модификации с удельной площадью поверхности Sуд=172 м2/г, содержащий 4,8 мас.% фтора. После прокаливания полученного диоксида титана при температуре 700°С он содержит 0,48 мас.% F, сохраняет анатазную модификацию и имеет Sуд=66 м2/г.
Пример 8. В 200 мл раствора минеральной соли (NH4)2TiF6 с содержанием фторид-ионов в ее составе 142,5 мас.% F к TiO2 и с концентрацией соли в растворе 0,4 моль/л в пересчете на TiO2 вводят при перемешивании 27 мл активизирующей добавки в виде гидроксида аммония с концентрацией 220 г/л NH4OH (избыток 5 мас.% к стехиометрически необходимому количеству) и 500 мл воды. Концентрация диоксида титана в реакционном растворе - 0,11 моль/л TiO2. Осуществляют гидролиз соли при рН 11 и температуре 25°С в течение 0,25 ч с образованием осадка модифицированной фтором метатитановой кислоты TiO(OH)2-xFx. Осадок отделяют от раствора фильтрацией, промывают водой при Ж:Т=20, высушивают на воздухе и прокаливают при температуре 300°С в течение 2 ч. Степень извлечения титана в осадок составляет 89,6%. Полученный целевой продукт представляет собой порошок диоксида титана анатазной модификации с удельной площадью поверхности Sуд=167 м2/г, содержащий 4,6 мас.% фтора. После прокаливания полученного диоксида титана при температуре 700°С он содержит 0,44 мас.% F, сохраняет анатазную модификацию и имеет Sуд=68 м2/г.
Примеры с запредельными значениями параметров.
Пример 9. В 100 мл раствора минеральной соли TiCl4 с концентрацией 0,5 моль/л в пересчете на TiO2 вводят при перемешивании фторид-ионы в виде HF в количестве 12 мас.% F к TiO2, 18 мл активизирующей добавки в виде гидроксида аммония с концентрацией 220 г/л NH4OH (избыток 12 мас.% к стехиометрически необходимому количеству) и 22 мл воды. Концентрация диоксида титана в реакционном растворе - 0,35 моль/л TiO2. Осуществляют гидролиз соли при рН 13,2 и температуре 25°С в течение 0,5 ч с образованием осадка модифицированной фтором метатитановой кислоты TiO(ОН)2-хFх. Осадок отделяют от раствора фильтрацией, промывают водой при Ж:Т=20, высушивают на воздухе и прокаливают при температуре 300°С в течение 2 ч. Степень извлечения титана в осадок составляет 98,8%. Полученный целевой продукт представляет собой порошок диоксида титана анатазной модификации с удельной площадью поверхности Sуд=89 м2/г (в 1,6 раз ниже, чем в Примере 1), содержащий 2,6 мас.% фтора. После прокаливания полученного диоксида титана при температуре 700°С он содержит 0,26 мас.% F, сохраняет анатазную модификацию и имеет Sуд=29 м2/г.
Пример 10. В 200 мл раствора минеральной соли TiCl4 с концентрацией 0,5 моль/л в пересчете на TiO2 вводят при перемешивании 33 мл активизирующей добавки в виде гидроксида аммония с концентрацией 220 г/л NH4OH (избыток 5 мас.% к стехиометрически необходимому количеству) и 267 мл воды. Концентрация диоксида титана в реакционном растворе - 0,2 моль/л TiO2. Осуществляют гидролиз соли при рН 11 и температуре 25°С в течение 0,2 ч с образованием осадка метатитановой кислоты TiO(ОН)2. Осадок отделяют от раствора фильтрацией, промывают водой при Ж:Т=20, высушивают на воздухе и прокаливают при температуре 300°С в течение 2 ч. Степень извлечения титана в осадок составляет 88,7%. Полученный целевой продукт в отсутствие фторид-иона в реакционном растворе представляет собой порошок диоксида титана рутильной модификации с удельной площадью поверхности Sуд=39 м2/г. После прокаливания полученного диоксида титана при температуре 700°С он имеет Sуд=8 м2/г.
Пример 11. В 200 мл раствора минеральной соли TiOSO4 с концентрацией 0,4 моль/л в пересчете на TiO2 вводят при перемешивании фторид-ионы в виде HF в количестве 2,5 мас.% F к TiO2, 27 мл активизирующей добавки в виде гидроксида аммония с концентрацией 220 г/л NH4OH (избыток 7,5 мас.% к стехиометрически необходимому количеству) и 173 мл воды. Концентрация диоксида титана в реакционном растворе - 0,2 моль/л TiO2. Осуществляют гидролиз соли при рН 12 и температуре 30°С в течение 0,5 ч с образованием осадка метатитановой кислоты TiO(ОН)2. Осадок отделяют от раствора фильтрацией, промывают водой при Ж:Т=20, высушивают на воздухе и прокаливают при температуре 300°С в течение 2 ч. Степень извлечения титана в осадок составляет 96,1%. Полученный целевой продукт представляет собой порошок диоксида титана смеси рутильной (48 мас.%) и анатазной (52 мас.%) модификаций с удельной площадью поверхности Sуд=78 м2/г, содержащий 0,94 мас.% фтора. После прокаливания полученного диоксида титана при температуре 700°С он содержит 0,12 мас.% фтора и имеет Sуд=16 м2/г.
Пример 12. В 200 мл раствора минеральной соли TiOSO4 с концентрацией 0,5 моль/л в пересчете на TiO2 вводят при перемешивании фторид-ионы в виде HF в количестве 5 мас.% F к TiO2, 37 мл активизирующей добавки в виде гидроксида аммония с концентрацией 220 г/л NH4OH (избыток 15 мас.% к стехиометрически необходимому количеству) и 263 мл воды. Концентрация диоксида титана в реакционном растворе - 0,2 моль/л TiO2. Осуществляют гидролиз соли при рН 13,6 и температуре 25°С в течение 0,75 ч с образованием осадка модифицированной фтором метатитановой кислоты TiO(OH)2-xFx. Осадок отделяют от раствора фильтрацией, промывают водой при Ж:Т=20, высушивают на воздухе и прокаливают при температуре 300°С в течение 2 ч. Степень извлечения титана в осадок составляет 97%. Полученный целевой продукт представляет собой порошок диоксида титана анатазной модификации с удельной площадью поверхности Sуд=138 м2/г (в 1,23 раза ниже, чем в Примере 6), содержащий 2,3 мас.% фтора. После прокаливания полученного диоксида титана при температуре 700°С он содержит 0,44 мас.% F, сохраняет анатазную модификацию и имеет Sуд=47 м2/г.
Пример 13. В 200 мл раствора минеральной соли (NH4)2TiF6 с содержанием фторид-ионов в ее составе 142,5 мас.% F к TiO2 и с концентрацией 0,5 моль/л в пересчете на TiO2 вводят при перемешивании 33 мл активизирующей добавки в виде гидроксида аммония с концентрацией 220 г/л NH4OH (избыток 3 мас.% к стехиометрически необходимому количеству) и 400 мл воды. Концентрация диоксида титана в реакционном растворе - 0,08 моль/л TiO2. Осуществляют гидролиз соли при рН 9,8 и температуре 12°С в течение 0,2 ч с образованием осадка модифицированной фтором метатитановой кислоты TiO(OH)2-xFx. Осадок отделяют от раствора фильтрацией, промывают водой при Ж:Т=20, высушивают на воздухе и прокаливают при температуре 300°С в течение 2 ч. Степень извлечения титана в осадок составляет 65,4% вследствие формирования склонного к пептизации осадка. Полученный целевой продукт представляет собой порошок диоксида титана анатазной модификации с удельной площадью поверхности Sуд=165 м2/г, содержащий 4,5 мас.% фтора. После прокаливания полученного диоксида титана при температуре 700°С он содержит 0,46 мас.% F, сохраняет анатазную модификацию и имеет Sуд=72 м2/г.
Пример 14 (по прототипу). Стеклянную пластину площадью 25 см2 погружают в реакционный раствор, содержащий 62,5 мл (NH4)2TiF6 (0,4 моль/л TiO2), 100 мл борной кислоты, 100 мл хлорбензола и воду в количестве, доводящем реакционный раствор до объема 250 мл. Концентрация диоксида титана в реакционном растворе составляет 0,1 моль/л TiO2. Пластинку выдерживают в реакционном растворе 72 ч при температуре 30°С, в результате чего на ней формируется пленка диоксида титана. После обильной промывки пленки водой, сушки при комнатной температуре и прокаливания на воздухе в течение 2 ч при температуре 300°С получили пленку толщиной 1000 нм (1 мкм). Степень извлечения титана в целевой продукт составляет 1%. Полученная пленка представляет собой диоксид титана, содержащий 0,24 мас.% фтора, анатазной модификации с температурой перехода в рутил 642°С и удельной площадью поверхности Sуд=22 м2/г. После прокаливания полученного диоксида титана при температуре 700°С он содержит 0,08 мас.% F, сохраняет анатазную модификацию и имеет Sуд=12 м2/г.
Как видно из приведенных Примеров и Таблицы, предлагаемый способ обеспечивает получение порошка фотокаталитического диоксида титана анатазной модификации с удельной поверхностью до 172 м2/г и повышенной термостойкостью, выражающейся в сохранении после термической обработки катализатора при температуре 700°С удельной поверхности до величины 73 м2/г за счет модификации структуры диоксида титана фторид-ионом в процессе гидратообразования. Содержание фторид-иона в прокаленном при 300-400°С продукте составляет 1,8-4,8 мас.%. Степень извлечения диоксида титана в целевой продукт достигает 96% при длительности процесса не более 0,5 ч. Настоящий способ относительно прост, не использует органические добавки и может быть реализован с привлечением дешевых исходных титансодержащих соединений и промышленно выпускаемых реагентов.
Таблица
Пример № Соль Условия гидролиза Извлечение TiO2, % Характеристика TiO2
TiO2, моль/л F, мас.% к TiO2 Избыток NH4OH, мас.% Содержание F, мас.% при температуре, °C Sуд,, м2/г TiO2 при температуре, °C
300 700 300 700
1 TiCl4 0,30 10 5 95,2 2,0 0,32 140 49
2 TiCl4 0,25 7,5 7,5 95,6 2,2 0,30 139 47
3 TiCl4 0,10 5 10 96,0 1,8** 0,28 127** 44
4 TiOSO4 0,3 5 7,5 96,0 2,2 0,35 160 64
5 TiOSO4 0,2 8 5 95,0 2,4 0,41 168 70
6 TiOSO4 0,2 10 10 96,1 2,6 0,45 170 73
7 (NH4)2TiF6 0,30 142,5* 10 91,5 4,8 0,48 172 66
8 (NH4)2TiF6 0,11 142,5* 5 89,6 4,6 0,44 167 68
9 TiCl4 0,35 12 12 98,8 2,6 0,26 89 29
10 TiCl4 0,20 0 5 88,7 0 0 39 8
11 TiOSO4 0,2 2,5 7,5 96,1 0,94 0,12 78 16
12 TiOSO4 0,2 5 15 97,0 2,3 0,44 138 47
13 (NH4)2TiF6 0,08 142,5* 3 65,4 4,5 0,46 165 72
14 (NH4)2TiF6 0,1 142,5* - 1 0,24 0,08 22 12
прототип
* - содержание фтора в составе соли;
** - температура прокаливания 400°С

Claims (6)

1. Способ получения фотокаталитического диоксида титана, включающий формирование реакционного раствора, содержащего минеральную соль титана, фторид-ион и активизирующую добавку, гидролиз минеральной соли титана с образованием осадка, промывку осадка и его прокаливание, отличающийся тем, что в качестве активизирующей добавки используют гидроксид аммония, который берут с 5-10%-ным избытком по отношению к стехиометрически необходимому его количеству, гидролиз минеральной соли титана ведут в течение 0,25-0,5 ч при рН 10-13, а концентрацию фторид-иона в реакционном растворе поддерживают не менее 5 мас.% к TiO2.
2. Способ по п.1, отличающийся тем, что используют реакционный раствор с концентрацией 0,1-0,3 моль/л TiO2.
3. Способ по п.1, отличающийся тем, что в качестве минеральной соли титана используют тетрахлорид титана или сульфат титанила.
4. Способ по п.1, отличающийся тем, что в качестве минеральной соли титана используют фторид титана и аммония.
5. Способ по п.1 или 3, отличающийся тем, что используют реакционный раствор с концентрацией фторид-иона 5-10 мас.% по отношению к TiO2.
6. Способ по п.1, отличающийся тем, что гидролиз проводят при температуре 15-25°С.
RU2006121871/15A 2006-06-19 2006-06-19 Способ получения фотокаталитического диоксида титана RU2317947C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006121871/15A RU2317947C1 (ru) 2006-06-19 2006-06-19 Способ получения фотокаталитического диоксида титана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006121871/15A RU2317947C1 (ru) 2006-06-19 2006-06-19 Способ получения фотокаталитического диоксида титана

Publications (1)

Publication Number Publication Date
RU2317947C1 true RU2317947C1 (ru) 2008-02-27

Family

ID=39278915

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006121871/15A RU2317947C1 (ru) 2006-06-19 2006-06-19 Способ получения фотокаталитического диоксида титана

Country Status (1)

Country Link
RU (1) RU2317947C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117770A1 (en) * 2008-03-25 2009-10-01 The University Of Queensland Crystalline inorganic species having optimised reactivity
RU2472707C1 (ru) * 2011-10-05 2013-01-20 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пермский национальный исследовательский политехнический университет" Способ получения диоксида титана
RU2486134C1 (ru) * 2011-10-25 2013-06-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ получения фотокаталитически активного диоксида титана
RU2520100C1 (ru) * 2012-11-28 2014-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет тонких химических технологий имени М.В. Ломоносова" (МИТХТ им. М.В. Ломоносова) Способ приготовления титаноксидного фотокатализатора, активного в видимой области спектра
RU2575026C1 (ru) * 2014-08-06 2016-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кемеровский государственный университет" (КемГУ) Способ получения кристаллического диоксида титана в структурной модификации анатаз

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117770A1 (en) * 2008-03-25 2009-10-01 The University Of Queensland Crystalline inorganic species having optimised reactivity
RU2472707C1 (ru) * 2011-10-05 2013-01-20 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пермский национальный исследовательский политехнический университет" Способ получения диоксида титана
RU2486134C1 (ru) * 2011-10-25 2013-06-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ получения фотокаталитически активного диоксида титана
RU2520100C1 (ru) * 2012-11-28 2014-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет тонких химических технологий имени М.В. Ломоносова" (МИТХТ им. М.В. Ломоносова) Способ приготовления титаноксидного фотокатализатора, активного в видимой области спектра
RU2575026C1 (ru) * 2014-08-06 2016-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кемеровский государственный университет" (КемГУ) Способ получения кристаллического диоксида титана в структурной модификации анатаз

Similar Documents

Publication Publication Date Title
US6548039B1 (en) Processing aqueous titanium solutions to titanium dioxide pigment
CN100357361C (zh) 钛白粉副产物硫酸亚铁制备氧化铁黄及氧化铁红的方法
JP2009521392A (ja) 酸化チタン粒子の製造方法、ならびにそれにより製造される粒子および調製物
RU2317947C1 (ru) Способ получения фотокаталитического диоксида титана
EP1492729B1 (en) Method for preparing a photocatalyst containing titanium dioxide
US8268203B2 (en) Method for producing microcrystalline titanium oxide
EP1194378B1 (en) Processing aqueous titanium solutions to titanium dioxide pigment
CN1197780C (zh) 光催化活性的锐钛矿相纳米晶二氧化钛的低温制备方法
JPH08208228A (ja) 無定形酸化チタンゾルの製造方法
JP4078479B2 (ja) 酸化チタンの製造方法
KR100404449B1 (ko) 침전제 적하법을 이용한 이산화티탄 분말의 제조방법
JP3537885B2 (ja) アナタース型酸化チタンの製造方法
RU2435733C1 (ru) Способ получения фотокаталитического нанокомпозита, содержащего диоксид титана
JP4737577B2 (ja) 針状酸化亜鉛の製法
JP2002154824A (ja) 微粒子酸化チタンの製造方法
RU2618879C1 (ru) Способ получения нанодисперсного порошка диоксида титана со структурой рутила
JPH07196323A (ja) ナトリウム含有量の少ない酸化コバルトの製造法
RU2281913C2 (ru) Способ получения диоксида титана
JP4829771B2 (ja) 球状ペルオキソチタン水和物及び球状酸化チタンの製造方法
KR100558337B1 (ko) 사염화티타늄 및 질산수용액을 사용한 실질적으로 브루카이트상인 이산화티타늄의 초미세 입자의 제조방법
JPH08333117A (ja) 多孔質球状酸化チタン粒子の製造方法
KR100545568B1 (ko) 간접중화법에 의해 큰 비표면적을 갖는 이산화티탄 분말제조방법
RU2102324C1 (ru) Способ получения диоксида титана
KR100385903B1 (ko) 이산화티탄 분말의 제조방법
JP4314908B2 (ja) Nox分解触媒の製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200620