RU2309169C2 - Ударопрочные полиолефиновые композиции - Google Patents

Ударопрочные полиолефиновые композиции Download PDF

Info

Publication number
RU2309169C2
RU2309169C2 RU2004121988/04A RU2004121988A RU2309169C2 RU 2309169 C2 RU2309169 C2 RU 2309169C2 RU 2004121988/04 A RU2004121988/04 A RU 2004121988/04A RU 2004121988 A RU2004121988 A RU 2004121988A RU 2309169 C2 RU2309169 C2 RU 2309169C2
Authority
RU
Russia
Prior art keywords
copolymer
ethylene
propylene
olefin
compositions
Prior art date
Application number
RU2004121988/04A
Other languages
English (en)
Other versions
RU2004121988A (ru
Inventor
Антео ПЕЛЛИКОНИ (IT)
Антео ПЕЛЛИКОНИ
Камилло КАНЬЯНИ (IT)
Камилло КАНЬЯНИ
Original Assignee
Базелль Полиолефин Италия С.П.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8179597&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2309169(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Базелль Полиолефин Италия С.П.А. filed Critical Базелль Полиолефин Италия С.П.А.
Publication of RU2004121988A publication Critical patent/RU2004121988A/ru
Application granted granted Critical
Publication of RU2309169C2 publication Critical patent/RU2309169C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • C08F297/083Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins the monomers being ethylene or propylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2308/00Chemical blending or stepwise polymerisation process with the same catalyst
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/02Ziegler natta catalyst

Abstract

Изобретение относится к полиолефиновым композициям, содержащим компонент кристаллического пропиленового полимера, выбранного из гомополимеров пропилена и статистических сополимеров пропилен-этилена и/или других α-олефинов, сополимера пропилена с 40% этилена по весу и сополимера этилена с С410 α-олефинами, способу их получения и изделиям, получаемых из них. Такие композиции легко перерабатывать путем литья под давлением, и их можно использовать для производства посуды, игрушек. Композиции обладают низким помутнением, пониженным выцветанием и низким содержанием фракции, экстрагируемой в органических растворителях. Уникальный баланс технологичности, механических и оптических свойств достигают за счет того, что композиция имеет скорость течения расплава, равную или выше 4 г/10 мин (230°С, 2, 16 кг) и содержание полимера, растворимого в ксилоле при комнатной температуре менее чем 25% мас., и содержит, % мас.: 55-90% гомополимера кристаллического пропилена, или сополимера, содержащего до 15% этилена и/или С410 α-олефина(-ов); 10-45% смеси сополимера пропилена с более чем 15% до 40% этилена (сополимер(а)) и сополимера этилена с одним или более С410 α-олефином(-ов), содержащего от 10 до 40% указанного С410 α-олефина(-ов) (сополимер(в)), где весовое соотношение (а)/(в) равно от 1/4 до 4/1. 3 н. и 4 з.п. ф-лы, 4 табл.

Description

Настоящее изобретение относится к полиолефиновым композициям, содержащим компонент кристаллического пропиленового полимера, выбранного из гомополимеров пропилена и статистических сополимеров пропилен-этилена и/или других α-олефинов, сополимера пропилена с 40% этилена по весу и сополимера этилена с С410 α-олефинами.
Композиции данного изобретения обладают уникальным балансом технологичности, механических и оптических свойств. Кроме того, они обладают низким/очень низким помутнением, пониженным выцветанием и низким содержанием фракции, экстрагируемой в органических растворителях.
Упомянутые композиции можно легко перерабатывать путем литья под давлением, и их можно использовать для некоторых применений, таких как посуда и игрушки и в особенности для пищевых продуктов.
Композиции, содержащие полипропилен и каучуковую фазу, полученную из эластомерного сополимера этилена и α-олефинов, уже известны из уровня техники и описаны в частности в Европейских патентах 170 255 и 373 660 и WO 01/19915. Упомянутые композиции обладают ударопрочностью, и, в случае Европейского патента 373 660 и WO 01/19915, прозрачностью, которая является ценным свойством для многих применений, однако полный баланс свойств все еще не является удовлетворительным в целом ряде возможных применений ввиду высоких стандартов, требуемых на рынке. Новый и ценный баланс свойств теперь достигается за счет полиолефиновых композиций настоящего изобретения, содержащих (мас.%)
1) 55-90%, предпочтительно 62-85%, кристаллического гомополимера пропилена или сополимера, содержащего до 15%, предпочтительно до 10%, этилена и/или С410 α-олефина(-ов);
2) 10-45%, предпочтительно 15-40%, смеси сополимера пропилена с более чем 15% до 40% этилена, предпочтительно от 18 до 35% этилена (сополимер (а)) и сополимера этилена с одним или более С410 α-олефином(-ами), содержащим от 10 до 40%, предпочтительно от 10 до 35%, упомянутого С410 α-олефина(-ов) (сополимер(в)), где весовое соотношение (а)/(в) составляет от 1/4 до 4/1, предпочтительно от 1/2,5 до 2,5/1, более предпочтительно от 1/2 до 2/1.
Из упомянутых определений очевидно, что термин ″полимер″лючает полимеры, содержащие более чем один вид сомономеров.
Как указано выше, композиции настоящего изобретения можно легко преобразовать в различного рода изделия или полуфабрикаты, в частности используя технологии литья под давлением, так как они обладают сравнительно высокими значениями MFR, связанные с упомянутым высоким балансом свойств (в частности, модулем упругости при изгибе, ударопрочностью, температурой перехода от вязкого состояния к хрупкому разрушению и помутнением). Композиции настоящего изобретения, имеющие значение MFR (230°С, 2,16 кг) всей композиции, равной или выше 4 г/10 мин, в особенности равной или выше, чем 5 г/10 мин, являются предпочтительными.
Другими предпочтительными признаками композиций настоящего изобретения являются:
- содержание полимера, нерастворимого в ксилоле при комнатной температуре (23°С) (в основном эквивалентный показатель стереорегулярности) для компонента 1): не менее чем 90%, в частности, не менее чем 93% для сополимеров пропилена и не менее чем 96% для гомополимеров пропилена, указанные проценты берутся по весу компонента 1);
- характеристическая вязкость [η] фракции (всей композиции), растворимой в ксилоле при комнатной температуре: 0,8 до 2,5 децилитр/грамм, более предпочтительно, когда требуется высокая прозрачность, 0,8 до 1,6, особенно предпочтительно 0,8 до 1,5 децилитр/грамм.
Композиции настоящего изобретения предпочтительно имеют по меньшей мере один пик плавления, определяемого по способу DSC (дифференциальной сканирующей колориметрии) при температуре выше 145-150°С.
Кроме того, композиции настоящего изобретения предпочтительно имеют:
- общее содержание этилена от 10 до 30 мас.%;
- общее содержание С410 α-олефина(-ов) 8 мас.% или менее, более предпочтительно 5 мас.% или менее;
- модуль упругости при изгибе от 600 до 1300 МПа;
- значения по Изоду при 23°С по крайней мере 4 кДж/м2;
- предел текучести при растяжении 15-30 МПа;
- относительное удлинение при разрыве выше, чем 40%, более предпочтительно выше, чем 100%;
- в основном отсутствует белесоватость при изгибе пластины толщиной 1 мм;
- фракция растворима в ксилоле при комнатной температуре менее 25%, более предпочтительно менее чем 23 мас.%.
Температура перехода от вязкого состояния к хрупкому разрушению обычно равна или ниже -25°С, причем нижний предел установлен около -60°С.
Упомянутые С410 α-олефины, которые являются или могут быть сомономерами в компонентах или фракциях композиций настоящего изобретения, представлены формулой СН2=CHR, где R - алкильный радикал, линейный или разветвленный, с 2-8 атомами углерода или арильный радикал (в частности фенил). Примеры упомянутых С410 α-олефинов являются 1-бутен, 1-пентен, 1-гексен, 4-метил-1-пентен и 1-октен. В частности предпочтительным является 1-бутен.
Композиции данного изобретения можно получить последовательной полимеризацией, включающей по крайней мере три последовательных стадии, когда компоненты 1) и 2) получают на отдельных последовательных стадиях, проводя каждую стадию, кроме первой, в присутствии образованного полимера и катализатора, используемого на предыдущей стадии. Катализатор добавляют только на первой стадии, однако его активность такова, что он все еще активен на всех последующих стадиях.
В частности, компонент 2) требует двух последовательных стадий: одна для получения сополимера (а) и другая для изготовления сополимера (в).
Предпочтительно, чтобы компонент 1) был получен раньше компонента 2).
Порядок, при котором сополимеры (а) и (в), составляющие компонент 2), получают, не является критическим.
Полимеризацию, которая может быть непрерывной или периодической, осуществляют, следуя известным технологиям в жидкой фазе в присутствии или без инертного растворителя, или в газовой фазе, или по смешанной газо-жидкостной технологии. Предпочтительно, компонент 1) получают в жидкой фазе и компонент 2) - в газовой фазе.
Время реакции, давление и температура по отношению к двум стадиям не являются критическими, однако лучше, если температура равна от 20 до 100°С. Давление может быть атмосферным или выше.
Регулирование молекулярного веса проводится при использовании известных регуляторов, в частности водорода.
Такую полимеризацию предпочтительно проводить в присутствии стереоспецифических катализаторов Циглера-Натта. Основным компонентом упомянутых катализаторов является твердый каталитический компонент, содержащий соединение титана, имеющее по крайней мере одну титан-галогеновую связь и электрон-донорное соединение, причем оба нанесены на галогенид магния в активной форме. Другим важным сокатализатором является алюминийорганическое соединение, такое как соединение алюминийалкила.
Внешний донор добавляют по выбору.
Катализаторы, обычно используемые в способе по изобретению, способны давать полипропилен с индексом изотактичности выше 90%, предпочтительно выше 95%. Катализаторы, имеющие упомянутые выше характеристики, хорошо известны в патентной литературе; в особенности эффективными являются катализаторы, описанные в патенте США 4,399,054 и Европейском патенте 45977.
Твердые каталитические компоненты, используемые в упомянутых катализаторах, содержат в качестве электрон-донорных соединений (внешних доноров), соединения выбранные из группы, состоящей из эфиров, кетонов, лактонов, соединений, содержащих N, P и/или S-атомы, и сложных эфиров моно- и дикарбоновых кислот.
Особенно подходящими электрон-донорными соединениями являются сложные эфиры фталевой кислоты, такие как дииизобутил, диоктил, дифенил и бензилбутилфталат.
Другими особо подходящими электрон-донорами являются 1,3-диэфиры общей формулой
Figure 00000001
где RI и RII одинаковые или разные и означают С118 алкильные, С318 циклоалкильные или С718 арильные радикалы; RIII и RIV одинаковые или разные и являются С14 алкильными радикалами; или являются 1,3-диэфирами, где атом углерода в положении 2 принадлежит к циклической или полициклической структуре, состоящей из 5, 6 или 7 атомов углерода и содержащей 2 или 3 ненасыщенности.
Эфиры этого типа описаны в опубликованных Европейских патентах 361493 и 728769.
Представителями упомянутых диэфиров являются 2-метил-2-изопропил-1,3-диметоксипропан, 2,2-диизобутил-1,3-диметоксипропан, 2-изопропил-2-циклопентил-1,3-диметоксипропан, 2-изопропил-2-изоамил-1,3-диметоксипропан, 9,9-бис(метоксиметил)флуорен.
Получение вышеупомянутых каталитических компонентов проводят в соответствии с различными методами.
Например, аддукт MgCl2·nROH (в особенности в форме сфероидальных частиц), где n равно обычно от 1 до 3 и ROH - этанол, бутанол или изобутанол, взаимодействует с избытком TiCl4, содержащим соединение донора электронов. Температура реакции обычно от 80 до 120°С. Затем выделяют твердое вещество и подвергают еще раз взаимодействию с TiCl4 в присутствии или отсутствии соединения донора электронов, после чего его выделяют и промывают аликвотной пробой углеводорода до тех пор, пока не исчезнут все ионы хлора.
В твердом каталитическом компоненте соединение титана, выраженное как Ti, обычно присутствует в количестве от 0,5 до 10 мас.%. Количество соединения донора электронов, которое остается на твердом катализаторе, обычно составляет от5 до 20% молей по отношению к дигалогениду магния.
Соединения титана, которые можно использовать для приготовления твердого катализатора, - это галогениды и галогенсодержащие спирты титана. Предпочтительнее тетрахлорид титана.
Реакции, описанные выше, приводят к образованию галогенида магния в активной форме. В литературе известны другие реакции, которые приводят к образованию галогенида магния в активной форме, начиная от соединений магния, отличных от галогенидов, таких как карбоксилаты магния.
Al-алкильные соединения, используемые как сокатализаторы, содержат Al-триалкилы, такие как Al-триэтил, Al-триизобутил, Al-три-н-бутил и линейные или циклические Al-алкилсоединения, содержащие 2 или более атомов Al, присоединенных друг к другу с помощью атомов кислорода или азота или SO4 или SO3-групп.
Al-алкильное соединение обычно используется в таком количестве, чтобы соотношение Al/Ti было от 1 до 1000.
Электрондонорные соединения можно использовать в качестве внешних доноров, включая сложные эфиры ароматических кислот, таких как алкилбензоаты, и в особенности соединения силикона, содержащих по меньшей мере одну Si-OR связь, где R - радикал углеводорода.
Примерами соединений силикона являются (трет-бутил)2Si(OCH3)2, (циклогексил)(метил)Si(OCH3)2 и (циклопентил)2Si(OCH3)2. Также можно с успехом использовать 1,3-диэфиры, имеющие описанные выше формулы. Если внутренним донором является один из этих диэфиров, внешний донор можно не использовать.
Катализаторы можно предварительно контактировать с небольшим количеством олефинов (предварительная полимеризация).
Другими катализаторами, которые можно использовать в процессе в соответствии с настоящим изобретением, являются катализаторы металлоценового типа, как описано в USP 5,324,800 и EP-A-O 129 368; особенно успешными являются бис-индениловые металлоцены с мостиковыми связями, например как описано в USP 5,145,819 и EP-A-O 485 823. Другим классом пригодных катализаторов являются так называемые геометрически затрудненные катализаторы, как описано в EP-A-O 416 815 (Dow), EP-A-O 420 436 (Exxon), EP-A-O 671 404, EP-A-O 643 066 и WO 91/04257. Эти металлоценовые соединения можно использовать, в частности, для получения сополимеров (а) и (в).
Композиции настоящего изобретения можно также получить, подготавливая отдельно упомянутые компоненты 1) и 2) или даже сополимеры (а), (в) и компонент 1), используя те же самые катализаторы и существенно при тех же условиях полимеризации, как объяснялось выше (кроме того факта, что процесс полной последовательной полимеризации не будет проведен, но упомянутые компоненты и фракции будут приготовлены на отдельных стадиях полимеризации), и затем механически смешанные компоненты и фракции в жидкой или пластичной форме. Можно использовать стандартные смешивающие аппараты, как червячный экструдер.
Композиции настоящего изобретения также могут содержать добавки, обычно используемые в технологии, такие как антиоксиданты, светостабилизаторы, противостарители, зародыши кристаллизации, красители и наполнители.
В частности, добавление зародышей кристаллизации приводит к значительному улучшению важных физико-механических свойств, таких как модуль упругости при изгибе, деформация при нагревании (HDT), прочность при растяжении и прозрачность.
Типичными примерами зародышей кристаллизации являются п-трет-бутилбензоат и 1,3- и 2,4-дибензилиденсорбитолы.
Зародыши кристаллизации предпочтительно добавлять в композиции настоящего изобретения в количествах в пределах от 0,05 до 2 мас.%, более предпочтительно от 0,1 до 1 мас.% по отношению к общему весу.
Добавление неорганических наполнителей, таких как тальк, мел и минеральные волокна, также приводят к улучшению некоторых механических свойств, таких как модуль упругости при изгибе и HDT. Тальк также может образовывать зародыш.
В следующих примерах приведены подробности, которые иллюстрируют без ограничения настоящее изобретение.
ПРИМЕРЫ 1-13
В следующих примерах полиолефиновые композиции согласно настоящему изобретению получают последовательной полимеризацией.
Компонент твердого катализатора, используемый при полимеризации, является высоко стереоспецифическим катализатором Циглера-Натта, нанесенным на хлорид магния, содержащим около 2,5 мас.% титана и диизобутилфосфат в качестве внутреннего донора, приготовленный по аналогии с методом, описанном в Примере 1 опубликованной Европейской патентной заявки 395083.
КАТАЛИТИЧЕСКАЯ СИСТЕМА И ФОРПОЛИМЕРИЗАЦИОННАЯ ОБРАБОТКА
Перед введением компонента твердого катализатора, описанного выше, в реакторы полимеризации катализатор контактирует при 13°С в течение 20 минут с триэтилалюминием (TEAL) и дициклопентилдиметоксисиланом (DCPMS), при весовом соотношении TEAL/DCPMS, равном примерно 3, и в таком количестве, чтобы весовое соотношение TEAL и компонента твердого катализатора примерно было равно 14.
Затем каталитическую систему подвергают форполимеризации, помещая ее в суспензию в жидком пропилене при 20°С в течение примерно 5 минут до введения ее в первый реактор полимеризации.
ПОЛИМЕРИЗАЦИЯ
Полимеризацию проводят непрерывно в серии из четырех реакторов, оснащенных приборами для передачи из одного реактора в непосредственно другой, расположенный за ним. Первый и второй реакторы являются жидкофазными, а третий и четвертый - газофазными.
Водород используется как регулятор молекулярного веса.
Газовую фазу (пропилен, этилен, бутен и водород) постоянно анализируют путем газохроматографии.
В конце процесса порошок выгружают, стабилизируют, следуя известным технологиям, и осушают в печи при 60°С в потоке азота.
Затем частицы полимера вводят во вращающийся барабан, где их смешивают с 0,01 мас.% Иргафосом 168 три(2,4-ди-трет-бутилфенил)фосфитом, 0,05 мас.% Ирганоксом 1010 пентаерититил-тетракис[3-(3,5-ди-трет-бутил-4-гидрокси-фенил)]пропионатом и 0,18 мас.% Милладом 3988 3,4-диметилбензилиденсорбитолом.
Затем частицы полимера вводят в двухшнековый экструдер Berstorff ZE 25 (соотношение длины к диаметру шнеков: 33) и шприцуют в атмосфере азота при следующих условиях:
скорость вращения 250 об/мин;
выход экструдера 6-20 кг/час;
температура плавления 200-250°С.
Данные, относящиеся к конечному полимеру, представлены в таблицах и получены при измерениях, проводимых на экструдируемых таким образом полимерах.
Данные, показанные в таблицах, получены при использовании следующих методов исследования:
- молярные соотношения подающихся газов
определены газовой хроматографией
- дозировка этилена и 1-бутена
определена инфракрасной спектроскопией
- скорость течения расплава MFR
определена в соответствии с ASTM D 1238, состояние L
- растворимые и нерастворимые фракции ксилола
определены следующим образом:
2,5 г полимера и 250 см3 ксилола вводили в стеклянную колбу, оснащенную холодильником и магнитной мешалкой. Температуру поднимали в течение 30 мин до точки кипения растворителя. Полученный таким образом чистый раствор выдерживали с обратным холодильником и помешивали в течение еще 30 мин. Затем закрытую колбу выдерживали в течение 30 мин в бане льда и воды и в термостатированной водяной бане при 25°С в течение 30 мин. Полученный таким образом осадок фильтровали на быстрофильтровальной бумаге. 100 см3 отфильтрованной жидкости наливали в предварительно взвешенный алюминиевый контейнер, который нагревали на обогревающей плите в потоке азота, чтобы удалить растворитель выпариванием. Контейнер затем выдерживали в печи при 80°С при вакууме до тех пор, пока не был получен постоянный вес. Процент по весу полимера, нерастворимого в ксилоле при комнатной температуре, считают Индексом стереорегулярности полимера. Это значение соответствует реальному индексу стереорегулярности, определенному экстракцией с кипящим н-гептаном, который по определению составляет индекс стереорегулярности полипропилена:
- внутренняя вязкость (I.V.)
определяется в тетрагидронафталине при 135°С
- температура плавления (Tm)
определяется с помощью DSC (дифференциальной сканирующей калориметрии)
- модуль упругости при изгибе
определяется в соответствии с ISO 170
- предел текучести при растяжении
определяется в соответствии с ISO R 527
- удлинение при пределе текучести
определяется в соответствии с ISO R 527
- прочность на разрыв
определяется в соответствии с ISO R 527
- удлинение при разрыве
определяется в соответствии с ISO R 527
- ударная вязкость по Изоду (с надрезом)
определяется в соответствии с ISO 180/1А
- температура перехода от вязкого состояния к хрупкому разрушению
определяется в соответствии с внутренним методом МА 17324, доступном при запросе.
В соответствии с этим методом определяется двухосевая ударопрочность посредством удара автоматическим ударным молотком, подключенным к компьютеру.
Круглые примеры для испытаний получены путем вырубки круглым ручным пуансоном (диаметром 38 мм). Они выдерживаются по крайней мере 12 часов при 23°С и 50 RH и затем помещаются в термостатированную баню при температуре теста на 1 час.
Кривая зависимости сила/время определяется в течение действия удара ударного молотка (5,3 кг, полусферический пуансон с 1/2" диаметром) на круглый образец, расположенный на кольцевой стойке. Использованная машина - CEAST 6758/000 модель 2.
Температура D/B перехода означает температуру, при которой 50% примеров подвергается хрупкому излому, когда подвергается упомянутому тесту на ударопрочность.
- Изготовление
Пластины для D/B измерений, имеющие размеры 127×127×1,5 мм, подготавливаются в соответствии с внутренним методом МА 17283; пластины для определения помутнения, 1мм или 1,5 мм толщиной, подготавливают при помощи литья под давлением в соответствии с внутренним методом МА 17335 при времени впрыска 1 сек, температуре 230°С, температура формы 40°. Описание всех указанных методов доступно при запросе.
Метод МА 17283
Инжекционный пресс - тип Negri Bossi (NB 90) с силой смыкания 90 тонн.
Форма - прямоугольная пластина (127×127×1,5 мм).
Основные параметры процесса приведены ниже:
Обратное давление (бар): 20
Время впрыска (с): 3
Максимальное давление впрыска (МПа): 14
Гидравлическое давление впрыска (МПа): 6-3
Первое время удерживания (с): 3
Второе гидравлическое давление удерживания (МПа): 3±2
Второе время удерживания (с): 7
Время охлаждения (с): 20
Температура прессования (°С) 60
Температура плавления в пределах от 220 до 280°С.
Метод МА 17335
Инжекционный пресс - тип Battenfeld BA 500CD с силой смыкания 50 тонн.
Из вкладыша формы получают формованием две пластины (55×60×1 или 1,5 мм каждая).
Помутнение на пластине
Определяется в соответствии с внутренним методом МА 17270, доступном при запросе.
Пластины выдерживают в течение от 12 до 18 часов при относительной влажности 50±5% и 23±1°С.
Используемый прибор - колориметр Hunter D25P-9. Измерение и принцип расчета даны в нормах ASTM-D1003.
Прибор калиброван без примера, калибровка проверяется по стандарту помутнения. Измерения помутнения проводится на пяти пластинах.
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008

Claims (7)

1. Полиолефиновая композиция для литья под давлением, имеющая скорость течения расплава, равную или выше 4 г/10 мин (230°С, 2, 16 кг) и содержание полимера, растворимого в ксилоле при комнатной температуре, менее чем 25 мас.%, содержащая мас.%:
1) 55-90% гомополимера кристаллического пропилена, или сополимера, содержащего до 15% этилена и/или С410 α-олефина(-ов);
2) 10-45% смеси сополимера пропилена с более чем 15 до 40% этилена (сополимер (а)) и сополимера этилена с одним или более С410 α-олефином(-ов), содержащего от 10 до 40% указанного С410 α-олефина(-ов) (сополимер (в)), где весовое соотношение (а):(в) равно от 1/4 до 4/1.
2. Полиолефиновая композиция по п.1, где внутренняя вязкость фракции, растворимой в ксилоле при комнатной температуре, находится в пределах от 0,8 до 2,5 дл/г.
3. Полиолефиновая композиция по п.1, имеющая температуру перехода вязкий/хрупкий, равную или ниже -25°С.
4. Способ получения полиолефиновой композиции по п.1, проводимый по крайней мере в три последовательных стадии, где по крайней мере за одну стадию полимеризации соответствующий мономер(ы) полимеризуют с получением компонента 1) и за другие две стадии соответствующие мономеры полимеризуют с получением сополимеров (а) и (в), проводя реакцию на каждой стадии, кроме первой, в присутствии образованного полимера и катализатора, используемого на предыдущей стадии.
5. Способ по п.4, по которому катализатором полимеризации является стереоспецифический катализатор Циглера-Натта, содержащий в качестве компонентов, образующих катализатор, твердый компонент, содержащий соединение титана, имеющего по крайней мере одну титангалогеновую связь и соединение донора электрона, причем оба нанесены на галогенид магния в активной форме, и алюминийорганическое соединение.
6. Способ по п.4, по которому компонент 1) получают в жидкой фазе, а компонент 2) - в газовой фазе.
7. Изделие, получаемое методом литья под давлением, выполненное из полиолефиновой композиции по п.1.
RU2004121988/04A 2001-12-19 2002-12-11 Ударопрочные полиолефиновые композиции RU2309169C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP01130179 2001-12-19
EP01130179.3 2001-12-19

Publications (2)

Publication Number Publication Date
RU2004121988A RU2004121988A (ru) 2006-01-20
RU2309169C2 true RU2309169C2 (ru) 2007-10-27

Family

ID=8179597

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004121988/04A RU2309169C2 (ru) 2001-12-19 2002-12-11 Ударопрочные полиолефиновые композиции

Country Status (13)

Country Link
US (1) US20060047071A1 (ru)
EP (1) EP1456294B1 (ru)
JP (1) JP4315809B2 (ru)
KR (1) KR100879490B1 (ru)
CN (1) CN1282700C (ru)
AR (1) AR037866A1 (ru)
AT (1) ATE509984T1 (ru)
AU (1) AU2002358668B2 (ru)
BR (1) BR0207073B1 (ru)
CA (1) CA2470660A1 (ru)
PL (1) PL369404A1 (ru)
RU (1) RU2309169C2 (ru)
WO (1) WO2003051984A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2554352C2 (ru) * 2009-06-26 2015-06-27 Базелль Полиолефин Италия С.Р.Л. Полиолефиновые композиции

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1448622B1 (en) * 2001-11-27 2006-04-26 Basell Poliolefine Italia S.r.l. Clear and flexible propylene polymer compositions
RU2308470C2 (ru) * 2002-06-26 2007-10-20 Базелль Полиолефин Италия С.П.А. Ударопрочные полиолефиновые композиции
RU2315069C2 (ru) * 2002-06-26 2008-01-20 Базелль Полиолефин Италия С.П.А. Ударопрочная полиолефиновая композиция, способ ее получения и изделие, содержащее указанную композицию
JP2004217896A (ja) * 2002-12-26 2004-08-05 Sunallomer Ltd ポリプロピレン系樹脂組成物
KR20060126632A (ko) * 2003-11-06 2006-12-08 바셀 폴리올레핀 이탈리아 에스.알.엘 폴리프로필렌 조성물
RU2371458C2 (ru) * 2004-05-21 2009-10-27 Базелль Полиолефин Италия С.Р.Л. Ударопрочные полиолефиновые композиции
US8039540B2 (en) 2004-06-08 2011-10-18 Basell Poliolefine Italia S.R.L. Polyolefin composition having a high balance of stiffness, impact strength and elongation at break and low thermal shrinkage
DE602005011456D1 (de) * 2004-07-30 2009-01-15 Saudi Basic Ind Corp Hochtransparente propylencopolymerzusammensetzungen
AU2005291326A1 (en) 2004-10-04 2006-04-13 Basell Poliolefine Italia S.R.L. Elastomeric polyolefin compositions
DE602006010027D1 (de) * 2005-02-03 2009-12-10 Basell Poliolefine Srl Propylen-polymer-zusammensetzung zum spritzgiessen
CN101163727B (zh) * 2005-04-28 2012-11-28 巴塞尔聚烯烃意大利有限责任公司 热成形用的丙烯聚合物组合物
JP5236481B2 (ja) * 2005-11-22 2013-07-17 サンアロマー株式会社 耐衝撃性ポリオレフィン組成物
DE602006020323D1 (de) * 2005-11-22 2011-04-07 Basell Poliolefine Srl Schlagzähe polyolefinzusammensetzungen
US8343602B2 (en) * 2006-02-23 2013-01-01 Basell Poliolefine Italia, s.r.l. Propylene polymers for injection molding applications
ES2558869T3 (es) 2006-06-30 2016-02-09 Borealis Technology Oy Composición de poliolefinas adecuada para botellas con alta resistencia al impacto y transparencia
US9290630B2 (en) 2006-11-23 2016-03-22 Basell Poliolefine Italia S.R.L. Polyolefin compositions
DE602008005337D1 (de) * 2007-10-17 2011-04-14 Basell Poliolefine Srl Heterophasige polyolefinzusammensetzungen mit verbesserten zugeigenschaften
US8378028B2 (en) * 2008-02-29 2013-02-19 Basell Poliolefine Italia, s.r.l. Polyolefin compositions
CN102165004B (zh) * 2008-09-24 2013-12-25 巴塞尔聚烯烃意大利有限责任公司 具有良好的抗变白性的聚烯烃组合物
EP2264099A1 (en) * 2009-05-21 2010-12-22 Basell Poliolefine Italia S.R.L. Propylene polymer compositions
KR101538910B1 (ko) * 2009-05-21 2015-07-23 바셀 폴리올레핀 이탈리아 에스.알.엘 프로필렌 중합체 조성물
MX343542B (es) * 2011-03-18 2016-11-08 Ineos Mfg Belgium Nv Copolimero aleatorio de propileno-etileno.
US9290646B2 (en) * 2013-10-04 2016-03-22 Equistar Chemicals, Lp Molded articles (including automobile parts) and related filled thermoplastic polyolefin compositions
BR112016013169B1 (pt) 2013-12-20 2022-02-22 Saudi Basic Industries Corporation Copolímeros de propileno heterofásico, composições de propileno heterofásico, seus usos e artigos
BR112016013611B1 (pt) 2013-12-20 2021-01-05 Saudi Basic Industries Corporation composto, composição e artigo de poliolefina, copolímero de propileno heterofásico e seus usos
FR3024457B1 (fr) * 2014-07-30 2018-01-12 Essilor International Composition de vernis anti-abrasion pour substrat en polyacrylate thermoplastique
WO2018044414A1 (en) 2016-08-30 2018-03-08 Dow Global Technologies Llc Method for thermally insulating subsea structures
EP3538562A1 (en) * 2016-11-11 2019-09-18 Basell Poliolefine Italia S.r.l. Polypropylene compositions containing glass fiber fillers
CN110546199B (zh) * 2017-05-04 2020-11-06 巴塞尔聚烯烃意大利有限公司 丙烯基聚合物组合物
KR20210151864A (ko) * 2019-04-05 2021-12-14 더블유.알. 그레이스 앤드 캄파니-콘. 고강성 특성을 갖는 폴리프로필렌 중합체 조성물
WO2023072570A1 (en) 2021-10-28 2023-05-04 Basell Polyolefine Gmbh Reinforced polypropylene composition

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US792814A (en) * 1905-04-03 1905-06-20 George Burkhart Window-sash.
JPS5847402B2 (ja) * 1976-02-13 1983-10-22 三井化学株式会社 成形用重合体組成物およびその製法
JPS5950246B2 (ja) * 1979-10-16 1984-12-07 三井化学株式会社 成形用オレフイン共重合体の製法
JPS6116943A (ja) * 1984-07-02 1986-01-24 Japan Synthetic Rubber Co Ltd 樹脂組成物
JP2637076B2 (ja) * 1986-07-21 1997-08-06 三井石油化学工業 株式会社 プロピレンブロツク共重合体の製法
JP2600829B2 (ja) * 1988-08-04 1997-04-16 三井石油化学工業株式会社 ポリプロピレン樹脂組成物
JP2847089B2 (ja) * 1989-04-21 1999-01-13 日東化学工業株式会社 光学活性(r)‐(‐)‐3‐ハロ‐1,2‐プロパンジオールの製造法
IL95567A (en) * 1989-10-18 1994-02-27 Himont Inc Multi-metal catalysts, their preparation and polymers produced with their help
ES2071888T3 (es) * 1990-11-12 1995-07-01 Hoechst Ag Bisindenilmetalocenos sustituidos en posicion 2, procedimiento para su preparacion y su utilizacion como catalizadores en la polimerizacion de olefinas.
JP3177709B2 (ja) * 1991-02-15 2001-06-18 住友化学工業株式会社 熱可塑性樹脂組成物およびその射出成形体
IT1271420B (it) * 1993-08-30 1997-05-28 Himont Inc Composizioni poliolefiniche aventi un elevato bilancio di rigidita' e resilienza
JP3210155B2 (ja) * 1993-10-15 2001-09-17 三菱化学株式会社 熱可塑性重合体の製造法
JP3570797B2 (ja) * 1995-05-24 2004-09-29 三井化学株式会社 プロピレン重合体組成物
JP3690767B2 (ja) * 1995-12-22 2005-08-31 三井化学株式会社 ポリプロピレン系樹脂組成物
DE19607541C1 (de) * 1996-02-28 1997-07-03 Lamb Ag Auspackmaschine für Rollen, insbesondere Druckpapierrollen
DE69727284T2 (de) * 1996-11-26 2004-11-25 Basell North America Inc. Polyolefinzusammensetzungen für die Herstellung von geprägten Folien mit verbesserter Erhaltung der Narbenstruktur
TW448209B (en) * 1996-11-26 2001-08-01 Mitsui Chemicals Inc Polypropylene resin compositions
JP3561156B2 (ja) * 1998-09-16 2004-09-02 三菱化学株式会社 プロピレン系ブロック共重合体の連続製造方法
US6441094B1 (en) * 1999-09-14 2002-08-27 Baselltech Usa Inc. Impact resistant polyolefin compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2554352C2 (ru) * 2009-06-26 2015-06-27 Базелль Полиолефин Италия С.Р.Л. Полиолефиновые композиции

Also Published As

Publication number Publication date
BR0207073A (pt) 2004-01-27
US20060047071A1 (en) 2006-03-02
AU2002358668B2 (en) 2008-02-21
RU2004121988A (ru) 2006-01-20
PL369404A1 (en) 2005-04-18
AR037866A1 (es) 2004-12-09
CN1282700C (zh) 2006-11-01
KR20040068955A (ko) 2004-08-02
CA2470660A1 (en) 2003-06-26
JP2005511884A (ja) 2005-04-28
BR0207073B1 (pt) 2012-06-12
AU2002358668A1 (en) 2003-06-30
JP4315809B2 (ja) 2009-08-19
KR100879490B1 (ko) 2009-01-20
EP1456294B1 (en) 2011-05-18
EP1456294A1 (en) 2004-09-15
CN1606594A (zh) 2005-04-13
ATE509984T1 (de) 2011-06-15
WO2003051984A1 (en) 2003-06-26

Similar Documents

Publication Publication Date Title
RU2309169C2 (ru) Ударопрочные полиолефиновые композиции
KR100635888B1 (ko) 내충격성 폴리올레핀 조성물
RU2315069C2 (ru) Ударопрочная полиолефиновая композиция, способ ее получения и изделие, содержащее указанную композицию
RU2308470C2 (ru) Ударопрочные полиолефиновые композиции
MXPA01004822A (en) Impact-resitant polyolefin compositions

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20121212