RU2371458C2 - Ударопрочные полиолефиновые композиции - Google Patents

Ударопрочные полиолефиновые композиции Download PDF

Info

Publication number
RU2371458C2
RU2371458C2 RU2006145445/04A RU2006145445A RU2371458C2 RU 2371458 C2 RU2371458 C2 RU 2371458C2 RU 2006145445/04 A RU2006145445/04 A RU 2006145445/04A RU 2006145445 A RU2006145445 A RU 2006145445A RU 2371458 C2 RU2371458 C2 RU 2371458C2
Authority
RU
Russia
Prior art keywords
xylene
ethylene
fraction
xif
propylene
Prior art date
Application number
RU2006145445/04A
Other languages
English (en)
Other versions
RU2006145445A (ru
Inventor
Паола МАССАРИ (IT)
Паола МАССАРИ
Джин НЬЮС (IT)
Джин НЬЮС
Марко ЧЬЯРАФОНИ (IT)
Марко ЧЬЯРАФОНИ
Original Assignee
Базелль Полиолефин Италия С.Р.Л.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Базелль Полиолефин Италия С.Р.Л. filed Critical Базелль Полиолефин Италия С.Р.Л.
Publication of RU2006145445A publication Critical patent/RU2006145445A/ru
Application granted granted Critical
Publication of RU2371458C2 publication Critical patent/RU2371458C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/02Ziegler natta catalyst

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Изобретение относится к полиолефиновым композициям с хорошим балансом жесткости и ударной прочности и высокой степени удлинения. Описана гетерофазная полиолефиновая композиция, содержащая (% мас.): (А) от 50 до 80% кристаллического полимера пропилена, имеющего значение показателя полидисперсности от 5,2 до 10 и содержание изотактических пентад (mmmm), определенное методом 13С-ЯМР на фракции, нерастворимой в ксилоле при 25°С, выше 97,5% мол.; причем указанный полимер выбран из гомополимера пропилена и сополимера пропилена и, по меньшей мере, сомономера, выбранного из этилена и альфа-олефина формулы H2C=CHR, где R представляет собой линейный или разветвленный С2-6-алкильный радикал, содержащий не менее 95% повторяющихся звеньев, производных от пропилена; (В) от 5 до 20% первого эластомерного сополимера этилена с, по меньшей мере, сомономером, выбранным из пропилена и другого α-олефина формулы H2C=CHR, где R представляет собой линейный или разветвленный С2-6-алкильный радикал; причем указанный первый эластомерный сополимер содержит от 25 до менее 40% этилена и является растворимым в ксилоле при комнатной температуре в количестве от выше 85% мас. до 95% мас., причем характеристическая вязкость [η] фракции, растворимой в ксилоле, составляет от 2,5 до 4,5 дл/г; и (С) от 10 до 40% второго эластомерного сополимера этилена с, по меньшей мере, сомономером, выбранным из пропилена и другого α-олефина формулы H2C=CHR, где R представляет собой линейный или разветвленный С2-6-алкильный радикал; причем указанный второй эластомерный сополимер содержит от 50 до 75% этилена и является растворимым в ксилоле при комнатной температуре в количестве от 50% мас. до 85% мас., причем характ

Description

Настоящее изобретение относится к полиолефиновым композициям с хорошим балансом жесткости и ударной прочности и высокой степени удлинения и к способу получения указанных композиций.
Как известно, изотактический полипропилен наделен хорошей жесткостью, но имеет плохие значения ударной прочности и удлинения. Ударопрочные характеристики могут быть улучшены введением в изотактический полипропилен каучука. Недостаток заключается в том, что полученные таким образом полимерные композиции имеют сильное снижение жесткости по сравнению с самим изотактическим полипропиленом.
Публикация выложенной Японской заявки № 162621/1983 описывает олефиновый блок-сополимер, выполненный из 20-70 мас.ч. высококристаллического полимера пропилена, 5-30 мас.ч. статистического сополимера пропилен-этилен, содержащего от 8 до менее 30 мас.% этилена, и 10-75 мас.ч. статистического сополимера пропилен-этилен, имеющего содержание этилена 30-85 мас.%. Сополимерная композиция обладает хорошей ударной прочностью при низких температурах и очень высокой эластичностью.
Поэтому имеется потребность в более жестких полиолефиновых композициях, которые, однако, сохраняют высокую жесткость и хорошие ударопрочные характеристики как при температуре окружающей среды, так и при низких температурах, а также высокие значения удлинения.
Заявителем теперь найдены гетерофазные полиолефиновые композиции, обладающие особенно благоприятным балансом свойств, в частности высокой жесткостью, без снижения ударной прочности, особенно ударной прочности при низких температурах, и упругих свойств.
Композиции настоящего изобретения также имеют высокие разрывную прочность и удлинение при разрыве.
В композициях настоящего изобретения фракция кристаллического полимера обычно обладает широким распределением молекулярных масс.
Композиции с указанными свойствами получаются при осуществлении, по меньшей мере, трех стадий полимеризации. На первой стадии пропилен полимеризуется или сополимеризуется с незначительными количествами сомономера (сомономеров), и на второй и третьей стадии смеси этилен/α-олефин (α-олефины) сополимеризуются в присутствии полимера пропилена, полученного на предыдущей стадии (стадиях).
Таким образом, настоящее изобретение относится к гетерофазной полиолефиновой композиции и содержит (в мас.%):
(А) от 50 до 80% кристаллического полимера пропилена, имеющего значение показателя полидисперсности от 5,2 до 10 и содержание изотактических пентад (mmmm), определенное методом 13С-ЯМР на фракции, растворимой в ксилоле при 25°C, выше 97,5% мол.; причем указанный полимер выбран из гомополимера пропилена и сополимера пропилена и, по меньшей мере, сомономера, выбранного из этилена и альфа-олефина формулы H2C=CHR, где R представляет собой линейный или разветвленный С2-6-алкильный радикал, содержащий не менее 95% повторяющихся звеньев, производных от пропилена;
(В) от 5 до 20% первого эластомерного сополимера этилена с, по меньшей мере, сомономером, выбранным из пропилена и другого α-олефина формулы H2C=CHR, где R представляет собой линейный или разветвленный С2-6-алкильный радикал; причем указанный первый эластомерный сополимер содержит от 25 до менее 40%, предпочтительно от 25 до 35%, этилена и является растворимым в ксилоле при комнатной температуре в количестве от выше 85 мас.% до 95 мас.%, причем характеристическая вязкость [η] фракции, растворимой в ксилоле, составляет от 2,5 до 4,5 дл/г; и
(С) от 10 до 40% второго эластомерного сополимера этилена с, по меньшей мере, сомономером, выбранным из пропилена и другого α-олефина формулы H2C=CHR, где R представляет собой линейный или разветвленный С2-6-алкильный радикал; причем указанный второй эластомерный сополимер содержит от 50 до 75%, предпочтительно от 55 до 70%, этилена и является растворимым в ксилоле при комнатной температуре в количестве от 50 мас.% до 85 мас.%, предпочтительно, 55-85%, причем характеристическая вязкость [η] фракции, растворимой в ксилоле, составляет от 1,8 до 4,0 дл/г.
В указанной гетерофазной полиолефиновой композиции сумма количеств сополимера (В) и сополимера (С) составляет от 20 до 45%, предпочтительно от 22 до 45%, по отношению к общему количеству компонентов (А)-(С), причем общее количество этилена по отношению к общему количеству компонентов (А)-(С) составляет до 23 мас.%, и соотношение между содержанием этилена во фракции, нерастворимой в ксилоле при комнатной температуре, (C2хif), умноженным на процентное содержание фракции, нерастворимой в ксилоле при комнатной температуре (%XIF), и содержанием этилена во фракции, растворимой в ксилоле при комнатной температуре (C2хsf), умноженным на массовое процентное содержание фракции, растворимой в ксилоле при комнатной температуре (%SXF), т.е. (C2xif × % XIF)/(C2xsf × % SXF), удовлетворяет следующей зависимости (I):
(C2xif × % XIF)/(C2xsf × % SXF)>0,01 х + 0,261,
где х представляет собой общее количество этилена.
Обычно композиция настоящего изобретения имеет молекулярно-массовое распределение в компоненте (А), выраженное соотношением между средневесовой молекулярной массой и среднечисленной молекулярной массой, т.е. Mw/Mn, определенное методом ГПХ, равное или выше 9, в частности от 9,5 до 20.
Обычно композиция настоящего изобретения имеет значение отношения средней по z молекулярной массы к средневесовой молекулярной массе, т.е. Мz/Mw, в компоненте (А), определенное методом ГПХ, не менее 4,5, предпочтительно 5, например от 5 до 10.
Обычно композиция настоящего изобретения имеет значение скорости течения расплава (MFR) 2-30 г/10 мин.
Предпочтительно указанные сополимеры могут содержать повторяющиеся звенья, производные от этилена и/или одного или нескольких С48-α-олефина(ов), таких как, например, бутен-1, пентен-1, 4-метилпентен-1, гексен-1 и октен-1, или их комбинации. Предпочтительным сомономером является этилен.
Характеристическая вязкость [η] эластомерного сополимера (В) может быть равной или отличающейся от характеристической вязкости [η] эластомерного сополимера (С).
Кристаллический полимер (А) обычно имеет значение MFR в интервале от 10 до 200 г/10 мин.
Эластомерные сополимеры (В) и (С) могут, необязательно, содержать повторяющиеся звенья, производные от диена, сопряженного или несопряженного, такого как бутадиен, 1,4-гексадиен, 1,5-гексадиен и этилиденнорборнен-1. Диен, когда он присутствует, обычно содержится в количестве от 0,5 до 10 мас.% по отношению к массе сополимера.
Обычно композиция настоящего изобретения имеет значение модуля упругости при изгибе не менее 600 МПа, например от 600 до 1400 МПа, предпочтительно от 700 до 1300 МПа, и значение ударной прочности, определенное при 23°C, обычно выше 11 кДж/м2, предпочтительно выше 19 кДж/м2. Значение ударной прочности, определенное при -20°C, составляет обычно не менее 6 кДж/м2, предпочтительно не менее 7 кДж/м2. Удлинение при разрыве составляет обычно не менее 100%, предпочтительно не менее 150%. Значение энергии составляет обычно выше 10 Дж, предпочтительно выше 12. Температура хрупкости обычно составляет ниже -50°C.
Поэтому настоящее изобретение дополнительно относится к способу получения полимерных композиций, как описано выше, причем указанный способ содержит, по меньшей мере, три последовательные стадии полимеризации, из которых каждая последующая стадия полимеризации проводится в присутствии полимерного материала, образованного непосредственно предшествующей реакцией полимеризации, где фракция кристаллического полимера (А) получается, по меньшей мере, на одной первой стадии, а эластомерные фракции (В) и (С) получаются на последующих стадиях. Стадии полимеризации могут проводиться в присутствии катализатора Циглера-Натта.
В соответствии с предпочтительным вариантом все стадии полимеризации осуществляются в присутствии катализатора, содержащего соединение триалкилалюминия, необязательно электронодонора и твердого каталитического компонента, содержащего галогенид или галоген-алкоголят Ti и электронодонорное соединение, нанесенное на безводный хлорид магния. Катализаторы, имеющие вышеуказанные характеристики, хорошо известны в патентной литературе; особенно предпочтительными являются катализаторы, описанные в USP 4399054 и ЕР-А-45977. Другие примеры могут быть найдены в USP 4472524.
Предпочтительно катализатором полимеризации является катализатор Циглера-Натта, который содержит твердый каталитический компонент, содержащий:
а) Mg, Ti и галоген и электронодонор, выбранный из сукцинатов, предпочтительно из сукцинатов формулы (I), приведенной ниже:
Figure 00000001
в которой радикалы R1 и R2, одинаковые или отличающиеся друг от друга, представляют собой С120 линейную или разветвленную алкил-, алкенил-, циклоалкил-, арил-, арилалкил- или алкиларил-группу, необязательно содержащую гетероатомы; радикалы R3-R6, одинаковые или отличающиеся друг от друга, представляют собой водород или С120 линейную или разветвленную алкил-, алкенил-, циклоалкил-, арил-, арилалкил- или алкиларил-группу, необязательно содержащую гетероатомы; и радикалы R3-R6, которые связаны с одним и тем же углеродным атомом, могут быть соединены вместе с образованием цикла; при условии, что когда радикалы R3-R5 представляют собой одновременно водород, R6 представляет собой радикал, выбранный из первичных разветвленных, вторичных или третичных алкил-групп, циклоалкил-, арил-, арилалкил- или алкиларил-групп, имеющих от 3 до 20 углеродных атомов;
или формулы (II), приведенной ниже:
Figure 00000002
в которой радикалы R1 и R2, одинаковые или отличающиеся друг от друга, представляют собой С120 линейную или разветвленную алкил-, алкенил-, циклоалкил-, арил-, арилалкил- или алкиларил-группу, необязательно содержащую гетероатомы; и радикал R3 представляет собой линейную алкил-группу, имеющую, по меньшей мере, четыре углеродных атомов, необязательно содержащую гетероатомы;
b) соединение алкилалюминия; и необязательно (но предпочтительно)
с) одно или несколько электронодонорных соединений (внешний донор).
Al-алкильные соединения, используемые в качестве катализатора, включают Al-триалкилы, такие как Al-триэтил, Al-триизобутил, Al-три-н-бутил, и линейные или циклические Al-алкильные соединения, содержащие два или более атомов Al, связанных друг с другом через атомы О или N или группы SO4 или SO3. Al-алкильные соединения обычно используются в таком количестве, что отношение Al/Ti составляет от 1 до 1000.
Внешний донор (с) может быть такого же типа, или он может отличаться от сукцинатов формул (I) или (II). Подходящие внешние электронодонорные соединения включают соединения кремния, простые эфиры, сложные эфиры, такие как фталаты, бензоаты, сукцинаты, также имеющие структуру, отличающуюся от сукцинатов формул (I) или (II), амины, гетероциклические соединения и, в частности, 2,2,6,6-тетраметилпиперидин, кетоны и простые 1,3-диэфиры общей формулы (III):
Figure 00000003
в которой радикалы RI и RII являются одинаковыми или различными и представляют собой С118-алкил-, С318-циклоалкил- или С718-арил-радикалы; радикалы RIII и RIV являются одинаковыми или различными и представляют собой С14-алкильные радикалы;
или простые 1,3-диэфиры, в которых углеродный атом в положении 2 принадлежит к циклической или полициклической структуре, составленной из 5, 6 или 7 углеродных атомов и содержащей две или три ненасыщенности.
Простые эфиры данного типа описаны в опубликованных заявках на Европейский патент 361493 и 728769.
Электронодонорные соединения, которые могут быть использованы в качестве внешних доноров, также включают эфиры ароматических кислот, такие как алкилбензоаты, и, в частности, соединения кремния, содержащие, по меньшей мере, одну Si-OR-связь, где R представляет собой углеводородный радикал. Особенно предпочтительный класс внешних донорных соединений представляет собой соединения кремния формулы Ra7Rb8Si(OR9)c, где a и b представляют собой целое число от 0 до 2, с представляет собой целое число от 1 до 3 и сумма (a+b+c)=4; R7, R8 и R9 представляют собой С118-углеводородные группы, необязательно содержащие гетероатомы. Особенно предпочтительными являются соединения кремния, в которых a=1, b=1, c=2 и, по меньшей мере, один из R7 и R8 выбран из разветвленных алкил-, алкенил-, алкилен-, циклоалкил- или арил-групп с 3-10 углеродными атомами, необязательно содержащих гетероатомы; и R9 представляет собой С110-алкил-группу, в частности метил. Примерами таких особенно предпочтительных соединений кремния являются циклогексилтриметоксисилан, трет-бутилтриметоксисилан, трет-гексилтриметоксисилан, циклогексилметилдиметоксисилан, 3,3,3-трифторпропил-2-этил-пиперидилдиметоксисилан, дифенилдиметоксисилан, метил-трет-бутилдиметоксисилан, дициклопентилдиметоксисилан, 2-этил-пиперидил-2-трет-бутилдиметоксисилан, (1,1,1-три-фтор-2-пропил)метилдиметоксисилан и (1,1,1-трифтор-2-пропил)-2-этилпиперидинилдиметоксисилан. Кроме того, также предпочтительными являются соединения кремния, в которых а=0, с=3, R8 представляет собой разветвленную алкил- или циклоалкил-группу, необязательно содержащую гетероатомы и R9 представляет собой метил. Особенно предпочтительными отдельными примерами соединений кремния являются (трет-бутил)2Si(OCH3)2, (циклогексил)(метил)Si(OCH3)2, (фенил)2Si(OCH3)2 и (циклопентил)2Si(OCH3)2.
Предпочтительно электронодонорное соединение (с) используется в таком количестве, которое дает мольное соотношение между алюмоорганическим соединением и указанным электронодонорным соединением (с) от 0,1 до 500, более предпочтительно от 1 до 300, и, в частности от 3 до 100.
Как описано выше, помимо вышеуказанных электронодоноров твердый каталитический компонент содержит Ti, Mg и галоген. В частности, каталитический компонент содержит соединение титана, имеющее, по меньшей мере, связь Ti-галоген, и вышеуказанные электронодонорные соединения, нанесенные на галогенид Mg. Галогенидом магния является предпочтительно MgCl2 в активной форме, который хорошо известен из патентной литературы в качестве носителя катализаторов Циглера-Натта. Патенты USP 4298718 и USP 4495338 были первыми патентами, которые описали использование указанных соединений в катализе Циглера-Натта. Из указанных патентов известно, что дигалогениды магния в активной форме, используемые в качестве носителя или соносителя в компонентах катализаторов для полимеризации олефинов, характеризуются рентгеновским спектром, в котором наиболее интенсивная дифракционная линия, которая появляется в спектре неактивного галогенида, уменьшается по интенсивности и замещается гало, чья максимальная интенсивность смещается к меньшим углам по сравнению с более интенсивной линией.
Предпочтительными соединениями титана являются TiCl4 и TiCl3; кроме того, могут использоваться также Ti-галоид-алкоголяты формулы Ti(OR)n-yXy, где n представляет собой валентность титана, у представляет собой число между 1 и n, Х представляет собой галоген и R представляет собой углеводородный радикал, имеющий от 1 до 10 углеродных атомов.
Получение твердого каталитического компонента может быть осуществлено несколькими способами, хорошо известными и описанными в технике.
В соответствии с предпочтительным способом твердый каталитический компонент может быть получен взаимодействием соединения титана формулы Ti(OR)n-yXy, где n представляет собой валентность титана, у представляет собой число от 1 до n, предпочтительно TiCl4, с хлоридом магния, производимым из аддукта формулы MgCl2·pROH, где р представляет собой число между 0,1 и 6, предпочтительно от 2 до 3,5, и R представляет собой углеводородный радикал, имеющий 1-18 углеродных атомов. Аддукт может быть подходящим образом получен в сферической форме смешением спирта и хлорида магния в присутствии инертного углеводорода, несмешиваемого с аддуктом, при работе в условиях перемешивания при температуре плавления аддукта (100-130°C). Затем эмульсия быстро охлаждается, вызывая в результате затвердевание аддукта в форме сферических частиц.
Примеры сферических аддуктов, полученных в соответствии с указанной методикой, описаны в USP 4399054 и USP 4469648. Полученный таким образом аддукт может непосредственно взаимодействовать с Ti-соединением, или он может быть предварительно подвергнут термическому регулируемому деалкоголированию (80-130°C), с тем чтобы получить аддукт, в котором число молей спирта обычно составляет менее 3, предпочтительно от 0,1 до 2,5. Взаимодействие с Ti-соединением может быть осуществлено при суспендировании аддукта (деалкоголированного или как такового) в холодном TiCl4 (обычно 0°C); смесь нагревается до 80-130°C и выдерживается при данной температуре в течение 0,5-2 ч. Обработка с помощью TiCl4 может быть выполнена один или несколько раз. Электронодонорное соединение (соединения) может быть введено в процессе обработки TiCl4.
Независимо от используемого способа получения конечное количество электронодонорного соединения (соединений) является предпочтительно таким, что мольное соотношение по отношению к MgCl2 составляет от 0,01 до 1, более предпочтительно от 0,05 до 5.
Указанные каталитические компоненты и катализаторы описаны в WO 00/63261, WO 01/57099 и WO 02/30998.
Другие катализаторы, которые могут использоваться в способе согласно настоящему изобретению, представляют собой катализаторы металлоценового типа, как описано в USP 5324800 и ЕР-А-0129368; особенно предпочтительными являются мостиковые бис-инденильные металлоцены, например, как описано в USP 5145819 и ЕР-А-0485823. Другим классом подходящих катализаторов являются так называемые катализаторы стесненной конфигурации, как описано в ЕР-А-0416815 (Dow), EP-A-0420436 (Exxon), ЕР-А-0671404, ЕР-А-0643066 и WO 91/04257.
Катализаторы могут быть подвергнуты предварительному взаимодействию с небольшими количествами олефина (форполимеризация) при выдерживании катализатора в суспензии в углеводородном растворителе и полимеризации при температурах от окружающей до 60°C с получением в результате количества полимера в 0,5-3 раз больше массы катализатора. Данная операция также может иметь место в жидком мономере с получением в данном случае количества полимера в 1000 раз больше массы катализатора.
При использовании вышеуказанных катализаторов полиолефиновые композиции получаются в форме сфероидальных частиц, причем частицы имеют средний диаметр от примерно 250 до 7000 мкм, сыпучесть менее 30 с и насыпной объем (уплотненный) более 0,4 г/мл.
Стадии полимеризации могут иметь место в жидкой фазе, в газожидкостной фазе или в газо-жидкостной фазе. Предпочтительно полимеризация фракции кристаллического полимера (А) осуществляется в жидком мономере (например, при использовании жидкого пропилена в качестве разбавителя), тогда как стадии сополимеризации эластомерных сополимеров (В) и (С) осуществляются в газовой фазе без промежуточных стадий, за исключением частичной дегазации пропилена. В соответствии с наиболее предпочтительным вариантом все три последовательные стадии полимеризации осуществляются в газовой фазе.
Температура реакции на стадии полимеризации для получения фракции кристаллического полимера (А) и при получении эластомерных сополимеров (В) и (С) может быть одинаковой или различной и составляет предпочтительно от 40 до 100°C; более предпочтительно температура реакции находится в интервале от 50 до 80°C при получении фракции (А) и в интервале от 50 до 90°C при получении компонентов (В) и (С).
Давление стадии полимеризации для получения фракции (А), если она осуществляется в жидком мономере, является таким, что оно конкурирует с давлением пара жидкого пропилена при используемой рабочей температуре, и оно может быть модифицировано за счет давления пара небольшого количества инертного разбавителя, используемого для подачи каталитической смеси, избыточного давления необязательных мономеров и водорода, используемого в качестве регулятора молекулярной массы.
Давление полимеризации предпочтительно находится в интервале от 33 до 43 бар, если полимеризация осуществляется в жидкой фазе, и в интервале от 5 до 30 бар, если полимеризация осуществляется в газовой фазе. Время пребывания относится к двум стадиям в зависимости от желаемого соотношения между фракциями (А) и (В) и (С) и может обычно составлять от 15 мин до 8 ч. Могут использоваться традиционные регуляторы молекулярной массы, известные в технике, такие как регуляторы степени полимеризации (например, водород или ZnEt2).
Могут вводиться традиционные добавки, наполнители и пигменты, обычно используемые в олефиновых полимерах, такие как зародышеобразователи, масла для наполнения, минеральные наполнители и другие органические и неорганические пигменты. В частности, введение неорганических наполнителей, таких как тальк, карбонат кальция и минеральные волокна, также дает улучшение некоторых механических свойств, таких как модуль упругости при изгибе и теплостойкость. Тальк также имеет зародышеобразующий эффект.
Зародышеобразователи предпочтительно вводятся в композиции настоящего изобретения в количествах в интервале от 0,05 до 2 мас.%, более предпочтительно от 0,1 до 1 мас.%, по отношению к общей массе.
Подробности даются в следующих примерах, которые приводятся для иллюстрации без ограничения настоящего изобретения.
Для определения свойств, описанных в подробном описании и в примерах, были использованы следующие аналитические методы.
Этилен: определяется методом ИК-спектроскопии.
- Фракции, растворимые и нерастворимые в ксилоле при 25°C: 2,5 г полимера растворяют в 250 мл ксилола при 135°C при перемешивании. Через 20 мин раствору дают охладиться до 25°C, все еще при перемешивании, и затем дают отстояться в течение 30 мин. Осадок фильтруют через фильтровальную бумагу, раствор выпаривают в токе азота и остаток сушат в вакууме при 80°C до достижения постоянной массы. Таким образом рассчитывают мас.% полимера, растворимого и нерастворимого при комнатной температуре (25°C).
- Характеристическая вязкость [η]: определяется в тетрагидронафталине при 135°C.
- Молекулярная масса (Mn, Mw, Mz): определяется методом гельпроникающей хроматографии (ГПХ) в 1,2,4-трихлорбензоле.
- Определение содержания изотактических пентад: 50 мг каждой фракции, нерастворимой в ксилоле, растворяют в 0,5 мл C2D2Cl4.
Спектры 13С-ЯМР снимают на приборе Bruker DPX-400 (100,61 МГц, 90° импульс, 12 с запаздывание между импульсами). Для каждого спектра сохраняется около 3000 переходов; пик mmmm-пентад (21,8 ч/млн) используется в качестве сравнения.
Микроструктурный анализ был использован, как описано в литературе (Polymer, 1984, 25, 1640, by Inoue Y. et al. and Polymer, 1994, 35, 339, by Chujo R. et al.).
- Показатель полидисперсности (PI): определяется при температуре 200°C с использованием реометра с параллельными пластинами модели RMS-800, поставляемого фирмой RHEOMETRICS (США), при работе с частотой развертки, которая увеличивается от 0,1 рад/с до 100 рад/с. Из модуля пересечения можно вывести PI с помощью уравнения
PI=105/Gc,
в котором Gc представляет собой модуль пересечения, который определяется как значение (выраженное в Па), при котором G'=G", где G' представляет собой динамический модуль упругости, и G" представляет собой модуль потерь.
Данный метод используется для полимеров, имеющих значение MFR 20 г/10 мин или менее.
- Показатель полидисперсности (PI): Определение молекулярно-массового распределения полимера. Для определения значения PI определяют модульное разделение при значении модуля потерь, например, 500 Па при температуре 200°C с использованием реометра с параллельными пластинами модели RMS-800, поставляемого фирмой RHEOMETRICS (США), при работе с частотой развертки, которая увеличивается от 0,1 рад/с до 100 рад/с. Из значения модульного разделения можно вывести PI с использованием следующего уравнения:
PI = 54,6 x (модульное разделение)-1,76,
в котором модульное разделение (MS) определяется как:
MS = (частота при G'=500 Па)/(частота при G"=500 Па),
где G' представляет собой динамический модуль упругости и G" представляет собой модуль потерь.
Данный метод используется для полимеров, имеющих значение MFR выше 20 г/10 мин.
- Скорость течения расплава (MFR): определяется в соответствии с методом ISO 1133 (230°C и 2,16 кг).
- Модуль упругости при изгибе: определяется в соответствии с методом ISO 178.
- Ударная прочность по Изоду: определяется в соответствии с методом ISO 180/1A.
- Энергия разрушения: определяется в соответствии с международным методом МА 17324. Используются такие же образцы для испытаний и методика испытаний, как для определения температуры хрупкости (описано далее), но в настоящем случае определяется энергия, требуемая для разрушения образца при -20°C.
- Температура хрупкости: определяется в соответствии с международным методом МА 17324, доступным по требованию.
В соответствии с данным методом определяется двухосная ударная прочность при ударе автоматическим компьютеризованным ударным молотом.
Круглые образцы для испытаний получают нарезкой круглым ручным штампом (диаметром 38 мм). Их кондиционируют не менее 12 ч при 23°C и 50% относительной влажности и затем помещают на 1 ч в термостатированную ванну при температуре испытания.
В процессе удара ударным молотом (5,3 кг, полусферический пуансон диаметром 1,27 мм) по круглому образцу, находящемуся на кольцевой основе, определяют кривую усилие-время. Используют установку типа CTAST 6758/800, модель № 2.
Температура хрупкости означает температуру, при которой 50% образцов подвергается хрупкому разрушению при испытании на указанный удар.
Пластины для определения температуры хрупкости, имеющие размеры 127×127×1,5 мм, получают в соответствии со следующей методикой.
Используют инжекционную машину типа Negri Bossi (NB 90) c усилием смыкания 90 т. Форма содержит прямоугольную пластину (127×127×1,5 мм).
Главные параметры способа представлены ниже:
Противодавление (бар): 20
Время впрыска (с): 3
Максимальное давление впрыска (МПа): 14
Гидравлическое давление впрыска (МПа): 6-3
Гидравлическое давление первой выдержки (МПа): 4±2
Время первой выдержки (с): 3
Гидравлическое давление второй выдержки (МПа): 3±2
Время второй выдержки (с): 7
Время охлаждения (с): 20
Температура формы (°C): 60
Температура плавления в интервале от 220 до 280°C.
Растягивающее напряжение при пределе текучести и при разрушении: определяется в соответствии с методом ISO 527.
Удлинение при пределе текучести и при разрушении: определяется в соответствии с методом ISO 527.
Температура размягчения по Вика: определяется в соответствии со стандартом ASTM D, метод 1525.
Пример 1
Получение твердого каталитического компонента
В 500 мл четырехгорлую круглую колбу, продутую азотом, вводят при 0°C 250 мл TiCl4. При перемешивании добавляют 10,0 г микросфероидального MgCl2·1,9 С2Н5ОН (полученного в соответствии со способом, описанным в примере 2 USP 4399054, но при работе при 3000 об/мин вместо 10000 об/мин) и 9,1 ммоль диэтил-2,3-(диизопропил)сукцината. Температуру повышают до 100°C и поддерживают в течение 120 мин. Затем перемешивание прекращают, твердому продукту позволяют осадиться и сифонируют надосадочную жидкость. Затем добавляют 250 мл свежего TiCl4. Смесь взаимодействует в течение 60 мин при 120°C, и затем сифонируют надосадочную жидкость. Твердое вещество промывают шесть раз безводным гексаном (6×100 мл) при 60°C.
Каталитическая система и форполимеризационная обработка
Перед введением его в реакторы полимеризации твердый каталитический компонент, описанный выше, взаимодействует в течение 24 мин при 12°C с триэтилалюминием (AlEt3) и дициклопентилдиметоксисиланом ((DCPMS)(ДЦПМС)) в таком количестве, что массовое отношение AlEt3 к твердому каталитическому компоненту равно 11 и массовое отношение AlEt3/DCPMS равно 4,4.
Каталитическая система затем подвергается форполимеризации при поддержании ее в суспензии в жидком пропилене при 20°C в течение примерно 5 мин перед введением ее в первый полимеризационный реактор.
Полимеризация
Полимеризационный прогон проводят непрерывно в ряду из четырех реакторов, оборудованных устройствами для перегрузки продукта из одного реактора в другой реактор, непосредственно следующий за ним. Первые два реактора представляют собой жидкофазные реакторы, а третий и четвертый реакторы представляют собой газофазные реакторы с жидким слоем. Компонент (А) получается в первом и втором реакторе, тогда как компоненты (В) и (С) получаются в третьем и четвертом реакторе соответственно.
Температура и давление поддерживаются постоянными в ходе реакции. Водород используют в качестве регулятора молекулярной массы.
Газовую фазу (пропилен, этилен и водород) непрерывно анализируют с помощью газовой хроматографии.
В конце прогона порошок выгружают и сушат в токе азота.
Затем полимерные частицы вводят в экструдер, в котором они смешиваются с 8500 ч./млн талька, 150 ч./млн Irganox B215 (изготовленного из 1 ч. Irganox 1010 и 2 ч. Irgafos 168) и 500 ч./млн стеарата Са с получением композиции с зародышеобразователями. Ранее указанный Irganox 1010 представляет собой пентаэритритил-тетракис-3-(3,5-ди-трет-бутил-4-гидроксифенил)пропаноат, тогда как Irgafos 168 представляет собой трис-(2,4-ди-трет-бутилфенил)фосфит, причем оба поставляются фирмой Ciba-Geigy. Полимерные частицы экструдируются в атмосфере азота в двухшнековом экструдере при скорости вращения 250 об/мин и при температуре расплава 200-250°C.
Пример 2
Повторяют пример 1, за исключением того, что полимеризационный прогон осуществляют в ряду из трех реакторов, причем только первый реактор представляет собой жидкофазный реактор.
Главные условия полимеризации и аналитические данные, относящиеся к полимерам, полученным в реакторах, представлены в таблице 1.
В таблицах 2 и 3 представлены отдельные компоненты полиолефиновой композиции, их количества и свойства и свойства всей полиолефиновой композиции соответственно.
Сравнительный пример 1
Повторяют пример 1, за исключением того, что во втором газофазном реакторе получают эластомерный полиолефин такого же типа, как полученный в первом газофазном реакторе.
Сравнительные примеры 2 и 3 (2с и 3с)
Повторяют пример 1, за исключением того, что во втором газофазном реакторе получают эластомерный полиолефин такого же типа, как полученный в первом газофазном реакторе, и каталитический компонент заменяют каталитическим компонентом, равным описанному выше, за исключением того, что он содержит диизобутилфталат вместо диэтил-2,3-(диизопропил)сукцината.
Таблица 1
Способ полимеризации
Примеры и сравнительные примеры 1 2
1-й жидкофазный реактор Температура полимеризации, °С 67 67 70 68 70
Давление, бар 41 41 39,5 39,5 40
Время пребывания, мин 42 32 62 63 67
Объем Н2, мол. ч./млн 9000 10000 15000 11000 13000
2-й жидкофазный реактор Температура полимеризации, °С 67 67 - - -
Давление, бар 41 41 - - -
Время пребывания, мин 28 26 - - -
Объем Н2, мол. ч./млн 9900 10000 - - -
1-й газофазный реактор Температура полимеризации, °С 80 80 80 80 80
Давление, бар 16 16 15 17 15
Время пребывания, мин 17 13 15 22,5 10
С2-/(С2-3-), % 0,13 0,23 0,36 0,12 0,42
Н22-, % 0,046 0,055 0,053 0,019 0,060
2-й газофазный реактор Температура полимеризации, °С 84 80 80 80 80
Давление, бар 20 20 20,8 20 17
Время пребывания, мин 20 23 27 24,5 13
С2-/(С2-3-), % 0,41 0,23 0,36 0,47 0,42
Н22-, % 0,052 0,053 0,050 0,052 0,060
Примечания: объем Н2 - концентрация водорода в жидком мономере;
С2- - этилен; С3- - пропилен.
Таблица 2
Данные анализа композиции
Примеры и сравнительные примеры 1 2
Гомополимер пропилена
Содержание гомополимера, мас.% 71 70 68 58,5 64
MFR, г/10 мин 80 80 69 150 69
Показатель полидисперсности 5,7 5,7 5 7 5
Отношение Mw/Mn 10,9 10,9 8,9 10,9 8,9
Отношение Mz/Mw 7,7 7,7 4,4 8,5 4,4
Cодержание пентад, % 98 98 98,6 97,7 98,6
Содержание фракции, растворимой в ксилоле (ХS), мас.% 2,5 2,5 2,0 3,5 2,0
Первый эластомерный сополимер этилен-пропилен
Содержание сополимера, мас.% 12 30 32 13,5 36
Содержание этилена, мас.% 37 42 47 28 52
Характеристическая вязкость [η] XS, дл/г 2,86 2,96 2,98 3,8 2,95
Второй эластомерный сополимер этилен-пропилен
Содержание сополимера, мас.% 17 - - 28 -
Содержание этилена, мас.% 56 - - 61 -
Характеристическая вязкость [η] XS, дл/г (2-й каучук) 3,95 - - 3,16 -
Конечная композиция
Общее содержание этилена, мас.% 14 12,5 15,1 20,7 18,9
Общее содержание фракции эластомерного полимера, мас.% 29 30 32 41,5 36
Содержание фракции, растворимой в ксилоле (XSF), мас.% 25,9 28,1 28,7 34,7 31,1
Содержание этилена в XSF, мас.% 44,1 37,3 41,6 44,1 44,9
Содержание фракции, нерастворимой в ксилоле (XIF), мас.% 74,1 71,9 71,3 65,3 68,9
Содержание этилена в XIF, мас.% 6,7 4 6,4 11,5 9
Характеристическая вязкость [η] фракции, растворимой в ксилоле, дл/г 3,5 2,96 2,98 3,43 2,95
2xif × %IXF)/(C2xsf × %SXF) 0,435 0,274 0,382 0,491 0,444
0,01x + 0,261 0,401 0,386 0,412 0,468 0,450
Таблица 3
Свойства всей композиции
Примеры и сравнительные примеры 1 2
MFR “L”, г/10 мин 13,3 14,7 14,3 7,8 10
Модуль упругости при изгибе, МПа 1175 1150 988 823 887
Ударная прочность по Изоду, кДж/м2 «at»=при 23°С NB1) 13 17,2 56 49
«at»=при 0°C 10,6 9,3 11,5 56 12,5
«at»=при -20°C 7,6 7,5 9,2 16,2 8,9
Предел текучести при растяжении, МПа 20,3 19,4 18 15,9 16,2
Удлинение при пределе текучести, % 5,6 5,3 4,8 7,6 5
Предел прочности при разрыве, МПа 16,2 15,1 13,8 15,7 12,8
Удлинение при разрушении, % 190 82 74 423 74
Энергия разрушения при -20°С, Дж 13,5 11 11 - -
Температура хрупкости, °С <-50 <-50 <-50 - -
Температура размягчения по Вика при 5 кг, °С 56,3 56,2 52,1 - -
1)NB: нет разрушения

Claims (4)

1. Гетерофазная полиолефиновая композиция, содержащая, мас.%:
(A) от 50 до 80% кристаллического полимера пропилена, имеющего значение показателя полидисперсности от 5,2 до 10 и содержание изотактических пентад (mmmm), определенное методом 13С-ЯМР на фракции, нерастворимой в ксилоле при 25°С, выше 97,5 мол.%; причем указанный полимер выбран из гомополимера пропилена и сополимера пропилена и, по меньшей мере, сомономера, выбранного из этилена и альфа-олефина формулы H2C=CHR, где R представляет собой линейный или разветвленный С2-6-алкильный радикал, содержащий не менее 95% повторяющихся звеньев, производных от пропилена;
(B) от 5 до 20% первого эластомерного сополимера этилена с, по меньшей мере, сомономером, выбранным из пропилена и другого α-олефина формулы H2C=CHR, где R представляет собой линейный или разветвленный С2-6-алкильный радикал; причем указанный первый эластомерный сополимер содержит от 25 до менее 40% этилена и является растворимым в ксилоле при комнатной температуре в количестве от выше 85 мас.%, до 95 мас.%, причем характеристическая вязкость [η] фракции, растворимой в ксилоле, составляет от 2,5 до 4,5 дл/г; и
(C) от 10 до 40% второго эластомерного сополимера этилена с, по меньшей мере, сомономером, выбранным из пропилена и другого α-олефина формулы H2C=CHR, где R представляет собой линейный или разветвленный С2-6-алкильный радикал; причем указанный второй эластомерный сополимер содержит от 50 до 75% этилена и является растворимым в ксилоле при комнатной температуре в количестве от 50 мас.%, до 85 мас.%, причем характеристическая вязкость [η] фракции, растворимой в ксилоле, составляет от 1,8 до 4,0 дл/г;
в которой сумма количеств сополимера (В) и сополимера (С) составляет от 20 до 45% по отношению к общему количеству компонентов (А)-(С), общее количество этилена по отношению к общему количеству компонентов (А)-(С) составляет до 23 мас.%, и соотношение между содержанием этилена во фракции, нерастворимой в ксилоле при комнатной температуре, (C2xif), умноженным на массовое процентное содержание фракции, нерастворимой в ксилоле при комнатной температуре, (%XIF), и содержанием этилена во фракции, растворимой в ксилоле при комнатной температуре, (C2xsf), умноженным на массовое процентное содержание фракции, растворимой в ксилоле при комнатной температуре (%SXF), т.е. (C2xif · % XIF)/(C2xsf · % SXF), удовлетворяет следующей зависимости (I):
(C2xif · % XIF)/(C2xsf · % SXF)>0,01 х+0,261,
где x представляет собой общее количество этилена.
2. Композиция по п.1, в которой компонент (А) имеет молекулярно-массовое распределение в компоненте (А), выраженное соотношением между средневесовой молекулярной массой и среднечисленной молекулярной массой, т.е. Mw/Mn, определенное методом ГПХ, равное или больше чем 9, и значение отношения средней по z молекулярной массы к средневесовой молекулярной массе, т.е. Mz/Mw, определенное методом ГПХ, составляет не менее 4,5.
3. Способ полимеризации для получения полимерной олефиновой композиции по п.1, включающий, по меньшей мере, три последовательные стадии, где компоненты (А), (В) и (С) получаются на отдельных последовательных стадиях, где операции на каждой стадии, за исключением первой стадии, происходят в присутствии образованного на предыдущей стадии полимера и использованного на предыдущей стадии катализатора.
4. Способ полимеризации по п.3, в котором катализатор полимеризации представляет собой катализатор Циглера-Натта, включающий твердый каталитический компонент, содержащий
a) Mg, Ti и галоген и донор электронов, выбранный из сукцинатов, предпочтительно, из сукцинатов формулы (I), приведенной ниже:
Figure 00000004

в которой радикалы R1 и R2, одинаковые или отличающиеся друг от друга, представляют собой C1-C20 линейную или разветвленную группу алкил, алкенил, циклоалкил, арил, арилалкил или алкиларил, необязательно содержащую гетероатомы; радикалы R3-R6, одинаковые или отличающиеся друг от друга, представляют собой водород или C1-C20 линейную или разветвленную группу алкил, алкенил, циклоалкил, арил, арилалкил или алкиларил, необязательно содержащую гетероатомы; и радикалы R3-R6, которые связаны с одним и тем же углеродным атомом, могут быть соединены вместе с образованием цикла; при условии, что когда радикалы R3-R5 представляют собой одновременно водород, R6 представляет собой радикал, выбранный из первичных разветвленных, вторичных или третичных алкильных, циклоалкильных, арильных, арилалкильных или алкиларильных групп, имеющих от 3 до 20 углеродных атомов; или линейную алкильную группу, имеющую не менее четырех углеродных атома, необязательно содержащую гетероатомы; или формулы (II), приведенной ниже:
Figure 00000005

в которой радикалы R1 и R2, одинаковые или отличающиеся друг от друга, представляют собой С120 линейную или разветвленную алкильную, алкенильную, циклоалкильную, арильную, арилалкильную или алкиларильную группу, необязательно содержащую гетероатомы; и радикал R3 представляет собой линейную алкильную группу, имеющую, по меньшей мере, четыре углеродных атома, необязательно содержащую гетероатомы;
b) соединение алкилалюминия; и, необязательно,
c) одно или несколько электронодонорных соединений (внешний донор).
RU2006145445/04A 2004-05-21 2005-05-04 Ударопрочные полиолефиновые композиции RU2371458C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP04012148 2004-05-21
EP04012148.5 2004-05-21
US57908704P 2004-06-10 2004-06-10
US60/579,087 2004-06-10

Publications (2)

Publication Number Publication Date
RU2006145445A RU2006145445A (ru) 2008-06-27
RU2371458C2 true RU2371458C2 (ru) 2009-10-27

Family

ID=38063705

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006145445/04A RU2371458C2 (ru) 2004-05-21 2005-05-04 Ударопрочные полиолефиновые композиции

Country Status (11)

Country Link
US (1) US7649052B2 (ru)
EP (1) EP1747249B1 (ru)
JP (1) JP2007538119A (ru)
CN (1) CN1957034B (ru)
AT (1) ATE459684T1 (ru)
AU (1) AU2005245551A1 (ru)
BR (1) BRPI0510824B1 (ru)
CA (1) CA2567646A1 (ru)
RU (1) RU2371458C2 (ru)
TW (1) TW200613413A (ru)
WO (1) WO2005113672A1 (ru)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005291326A1 (en) * 2004-10-04 2006-04-13 Basell Poliolefine Italia S.R.L. Elastomeric polyolefin compositions
EP1883677B1 (en) * 2005-05-27 2009-12-02 Basell Poliolefine Italia S.r.l. Polyolefinic compositions having good whitening resistance
PL1937770T3 (pl) * 2005-10-14 2009-10-30 Basell Poliolefine Italia Srl Elastoplastyczne kompozycje poliolefinowe o niskim połysku
EP1951806B1 (en) * 2005-11-22 2011-02-23 Basell Poliolefine Italia S.r.l. Impact resistant polyolefin compositions
US7872074B2 (en) * 2005-11-22 2011-01-18 Basell Poliolefine Italia S.R.L. Impact resistant polyolefin compositions
EP1963067B1 (en) 2005-12-21 2010-03-03 Basell Poliolefine Italia S.r.l. Compositions obtained from recycled polyolefins
CN101821303B (zh) * 2007-10-15 2013-10-30 巴塞尔聚烯烃意大利有限责任公司 用于制备高流动性丙烯聚合物的方法
WO2009050025A1 (en) * 2007-10-17 2009-04-23 Basell Poliolefine Italia S.R.L. Heterophasic polyolefin compositions having improved tensile properties
EP2077286A1 (en) * 2008-01-07 2009-07-08 Total Petrochemicals Research Feluy Heterophasic propylene copolymer with improved creep behavior
ES2447571T3 (es) * 2008-06-16 2014-03-12 Borealis Ag Poliolefinas termoplásticas con alta fluidez y excelente calidad superficial producidas mediante un proceso multietápico
EP2141200A1 (en) * 2008-07-03 2010-01-06 Total Petrochemicals Research Feluy Heterophasic propylene copolymer with improved properties for injection molding applications
KR100957310B1 (ko) * 2008-07-11 2010-05-12 현대모비스 주식회사 저수축 및 치수안정성 폴리프로필렌 복합 수지 조성물
ATE536390T1 (de) 2008-10-29 2011-12-15 Borealis Ag Feste zusammensetzung für lebensmittelanwendungen
KR101185710B1 (ko) * 2008-12-05 2012-09-24 주식회사 엘지화학 투명성 및 내충격 특성이 우수한 폴리프로필렌 수지 조성물
JP2012515239A (ja) * 2009-01-13 2012-07-05 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ ポリマー組成物
US8907035B2 (en) 2009-01-13 2014-12-09 Basell Polyolefine Gmbh Polyethylene Copolymers
WO2011036002A1 (en) * 2009-09-22 2011-03-31 Basell Poliolefine Italia S.R.L. Propylene polymer compositions
EP2338657A1 (en) * 2009-12-23 2011-06-29 Borealis AG Heterophasic polypropylene with improved balance between stiffness and transparency
EP2516546B1 (en) 2009-12-23 2014-01-15 Basell Poliolefine Italia S.r.l. Polyolefinic compositions for injection-moulded drainage systems
EP2338656A1 (en) * 2009-12-23 2011-06-29 Borealis AG Heterophasic polypropylene with improved balance between stiffness and transparency
EP2348058B1 (en) * 2010-01-22 2014-01-01 Borealis AG Heterophasic polypropylene resin and composition
CN102884123B (zh) * 2010-05-19 2015-03-25 巴塞尔聚烯烃意大利有限责任公司 用于洗涤机的聚丙烯桶
EP2426171A1 (en) 2010-08-30 2012-03-07 Borealis AG Heterophasic polypropylene with high flowability and enhanced mechanical properties
EP2452975A1 (en) * 2010-11-12 2012-05-16 Borealis AG Soft heterophasic propylene copolymers
PL2794756T3 (pl) * 2011-12-23 2016-01-29 Borealis Ag Sposób wytwarzania heterofazowego kopolimeru propylenu
CN104159965B (zh) * 2012-02-27 2016-05-11 博里利斯股份公司 具有改善的密封性能和热性能的聚丙烯组合物
BR112015022377B8 (pt) 2013-03-15 2020-07-28 Braskem America Inc resina de polímero de propileno, artigo e folha extrudada
WO2015108634A1 (en) 2014-01-15 2015-07-23 Exxonmobil Chemical Patents Inc. Propylene-based impact copolymers
WO2015138300A1 (en) 2014-03-14 2015-09-17 Milliken & Company Modified heterophasic polyolefin composition
JP6466474B2 (ja) * 2014-05-28 2019-02-06 バーゼル・ポリオレフィン・ゲーエムベーハー エチレン重合体組成物及びポリオレフィン組成物におけるその用途
EP3172272B1 (en) 2014-07-25 2020-11-25 Milliken & Company Modified heterophasic polyolefin composition
CN107207800B (zh) 2014-11-26 2020-06-30 美利肯公司 改性异相聚烯烃组合物
JP6553199B2 (ja) 2015-02-10 2019-07-31 ミリケン・アンド・カンパニーMilliken & Company 熱可塑性ポリマー組成物
BR112017017721B1 (pt) 2015-03-05 2021-10-26 Milliken & Company Composição de poliolefina heterofásica e processo de preparação da mesma
JP7334042B2 (ja) 2015-09-13 2023-08-28 ミリケン・アンド・カンパニー 異相ポリマー組成物を作製するための方法
BR112018009394B1 (pt) 2015-11-17 2022-05-03 Borealis Ag Copolímero de propileno heterofásico, composição de poliolefina, artigo automotivo, processo para preparação de uma composição de poliolefina, e, uso de um copolímero de propileno heterofásico
EP3170864B1 (en) * 2015-11-17 2018-10-17 Borealis AG High flow tpo composition with excellent balance in mechanical properties for automotive interior
ES2745705T3 (es) 2015-11-17 2020-03-03 Borealis Ag Composición de TPO de alto flujo con excelente impacto a baja temperatura
JP6670081B2 (ja) * 2015-11-24 2020-03-18 東邦チタニウム株式会社 オレフィン類重合用触媒の製造方法
EP3443035B1 (en) * 2016-04-14 2020-01-08 Basell Poliolefine Italia S.r.l. Propylene polymer compositions
WO2018156278A1 (en) 2017-02-21 2018-08-30 Milliken & Company Method for making heterophasic polymer compositions
WO2020038746A1 (en) * 2018-08-22 2020-02-27 Basell Poliolefine Italia S.R.L. Random propylene-ethylene copolymers
CN113518796B (zh) 2019-02-27 2023-06-23 美利肯公司 用于制备多相聚合物组合物的方法
JP2022549013A (ja) 2019-10-15 2022-11-22 ミリケン・アンド・カンパニー ポリマー組成物を作製するための方法およびそれに使用するのに適した組成物
WO2022017757A1 (en) * 2020-07-21 2022-01-27 Basell Poliolefine Italia S.R.L. High flow heterophasic polypropylene as appearance improver in polyolefin compositions
CN116390986A (zh) 2020-10-15 2023-07-04 美利肯公司 聚合物组合物及其制备方法
WO2023057054A1 (en) * 2021-10-06 2023-04-13 Basell Poliolefine Italia S.R.L. Polypropylene composition

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL162661B (nl) 1968-11-21 1980-01-15 Montedison Spa Werkwijze om een katalysator te bereiden voor de poly- merisatie van alkenen-1.
YU35844B (en) 1968-11-25 1981-08-31 Montedison Spa Process for obtaining catalysts for the polymerization of olefines
IT1096661B (it) 1978-06-13 1985-08-26 Montedison Spa Procedimento per la preparazione di prodotti in forma sferoidale solidi a temperatura ambiente
IT1098272B (it) 1978-08-22 1985-09-07 Montedison Spa Componenti,di catalizzatori e catalizzatori per la polimerizzazione delle alfa-olefine
IT1209255B (it) 1980-08-13 1989-07-16 Montedison Spa Catalizzatori per la polimerizzazione di olefine.
IT1190681B (it) 1982-02-12 1988-02-24 Montedison Spa Componenti e catalizzatori per la polimerizzazione di olefine
JPS58162621A (ja) 1982-03-23 1983-09-27 Mitsubishi Petrochem Co Ltd オレフィンブロック共重合体の製造法
ZA844157B (en) 1983-06-06 1986-01-29 Exxon Research Engineering Co Process and catalyst for polyolefin density and molecular weight control
US5324800A (en) 1983-06-06 1994-06-28 Exxon Chemical Patents Inc. Process and catalyst for polyolefin density and molecular weight control
US5055438A (en) 1989-09-13 1991-10-08 Exxon Chemical Patents, Inc. Olefin polymerization catalysts
IT1227260B (it) 1988-09-30 1991-03-28 Himont Inc Dieteri utilizzabili nella preparazione di catalizzatori ziegler-natta
NZ235032A (en) 1989-08-31 1993-04-28 Dow Chemical Co Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component
ES2071888T3 (es) 1990-11-12 1995-07-01 Hoechst Ag Bisindenilmetalocenos sustituidos en posicion 2, procedimiento para su preparacion y su utilizacion como catalizadores en la polimerizacion de olefinas.
IL117114A (en) 1995-02-21 2000-02-17 Montell North America Inc Components and catalysts for the polymerization ofolefins
JP4717219B2 (ja) * 1999-04-15 2011-07-06 バセル テクノロジー カンパニー ビー.ブイ. オレフィン重合用の成分および触媒
EP1165633B1 (en) 2000-02-02 2004-07-14 Basell Poliolefine Italia S.p.A. Components and catalysts for the polymerization of olefins
BR0107335B1 (pt) 2000-10-13 2011-09-06 componentes catalìticos para a polimerização de olefinas, catalisador para a polimerização de olefinas e processo para a preparação de polìmeros de propileno.
US20060047071A1 (en) 2001-12-19 2006-03-02 Anteo Pelliconi Impact-resistant polyolefin compositions
US7371806B2 (en) * 2002-06-13 2008-05-13 Basell Poliolefine Italia S.P.A. Process for the preparation of ethylene copolymers
KR100921364B1 (ko) * 2002-06-26 2009-10-14 바셀 폴리올레핀 이탈리아 에스.알.엘 내충격성 폴리올레핀 조성물
CN100343327C (zh) * 2002-06-26 2007-10-17 巴塞尔聚烯烃意大利有限公司 抗冲击聚烯烃组合物
ATE520737T1 (de) 2003-11-06 2011-09-15 Basell Poliolefine Srl Polypropylenzusammensetzung

Also Published As

Publication number Publication date
ATE459684T1 (de) 2010-03-15
US7649052B2 (en) 2010-01-19
TW200613413A (en) 2006-05-01
EP1747249B1 (en) 2010-03-03
RU2006145445A (ru) 2008-06-27
WO2005113672A1 (en) 2005-12-01
CN1957034B (zh) 2011-07-13
EP1747249A1 (en) 2007-01-31
CA2567646A1 (en) 2005-12-01
CN1957034A (zh) 2007-05-02
JP2007538119A (ja) 2007-12-27
AU2005245551A1 (en) 2005-12-01
BRPI0510824B1 (pt) 2016-01-19
US20070203298A1 (en) 2007-08-30
BRPI0510824A (pt) 2007-11-27

Similar Documents

Publication Publication Date Title
RU2371458C2 (ru) Ударопрочные полиолефиновые композиции
US7795352B2 (en) Polyolefinic compositions having good whitening resistance
EP1883677B1 (en) Polyolefinic compositions having good whitening resistance
EP1797138B2 (en) Elastomeric polyolefin compositions
KR101111935B1 (ko) 내충격성 폴리올레핀 조성물
EP2516546B1 (en) Polyolefinic compositions for injection-moulded drainage systems
US8722803B2 (en) Polyolefinic compositions
JP2008516025A (ja) エラストマーポリオレフィン組成物
EP2459642B1 (en) Polyolefinic compositions
KR20070029703A (ko) 충격 저항성 폴리올레핀 조성물
EP2463413A1 (en) Polyolefin fibres
KR20070098877A (ko) 양호한 백화 저항성을 갖는 폴리올레핀 조성물