RU2263198C2 - Расширяемое приспособление (варианты), устройство (варианты) и способ их использования в буровой скважине (варианты) - Google Patents

Расширяемое приспособление (варианты), устройство (варианты) и способ их использования в буровой скважине (варианты) Download PDF

Info

Publication number
RU2263198C2
RU2263198C2 RU2003134377/03A RU2003134377A RU2263198C2 RU 2263198 C2 RU2263198 C2 RU 2263198C2 RU 2003134377/03 A RU2003134377/03 A RU 2003134377/03A RU 2003134377 A RU2003134377 A RU 2003134377A RU 2263198 C2 RU2263198 C2 RU 2263198C2
Authority
RU
Russia
Prior art keywords
expandable
pipe
compressed
borehole
cells
Prior art date
Application number
RU2003134377/03A
Other languages
English (en)
Other versions
RU2003134377A (ru
Inventor
Л. МкД ЩЕТКИ (US)
Л. МкД ЩЕТКИ
Крейг Д. ДЖОНСОН (US)
Крейг Д. ДЖОНСОН
Мэтью Р. ХАКУОРТ (US)
Мэтью Р. ХАКУОРТ
Патрик В. БИКСЕНМАН (US)
Патрик В. Биксенман
Original Assignee
Шлюмбергер Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмбергер Текнолоджи Б.В. filed Critical Шлюмбергер Текнолоджи Б.В.
Publication of RU2003134377A publication Critical patent/RU2003134377A/ru
Application granted granted Critical
Publication of RU2263198C2 publication Critical patent/RU2263198C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/108Expandable screens or perforated liners
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/08Screens or liners
    • E21B43/084Screens comprising woven materials, e.g. mesh or cloth
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/08Screens or liners
    • E21B43/086Screens with preformed openings, e.g. slotted liners
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/105Expanding tools specially adapted therefor
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C3/00Flexible luggage; Handbags

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Earth Drilling (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)
  • External Artificial Organs (AREA)
  • Pipe Accessories (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

Группа изобретений может быть использована при бурении и завершении скважины. Устройство содержит расширяемую трубу. Труба имеет стенку с множеством проходящих через нее прорезей. Часть прорезей образована из изогнутых сжатых элементов и способна расширяться в радиальном направлении. Вариант приспособления имеет множество бистабильных ячеек, сформированных в трубчатую конфигурацию. Каждая раширяемая ячейка имеет толстый сжатый элемент и изогнутое податливое звено, способное трансформироваться в расширенное состояние. Осевая длина трубы поддерживается постоянной во время ее расширения. Расширяемая система содержит приспособление, подсоединенное к линии связи для получения информации. Уменьшаются усилия, требуемые для расширения трубы из радиально сжатого состояния. 9 н. и 40 з.п. ф-лы, 45 ил.

Description

Настоящее изобретение касается оборудования, которое можно использовать при бурении и завершении буровой скважины в подземной формации и при добыче текучих сред из таких скважин, и, в частности устройства, расширяемого трубчатого компонента и способа их использования в буровой скважине.
Из подземной геологической формации ("коллектора") добывают такие текучие среды, как нефть, природный газ и вода, посредством бурения скважины, проникающей сквозь несущую текучую среду формацию. После бурения скважины до определенной глубины стенку ствола скважины следует поддерживать с целью предотвращения разрушения. Обычные способы бурения скважин содержат установку колонны обсадных труб и цементирование между обсадной трубой и стволом скважины для обеспечения поддержания конструкции ствола скважины. После цементирования колонны обсадных труб на месте можно начинать бурение до больших глубин. После установки каждой последующей колонны обсадных труб через внутренний диаметр обсадных труб необходимо пропускать следующее буровое долото. Таким образом, каждая смена обсадной трубы требует уменьшения диаметра ствола скважины. Это повторяемое уменьшение диаметра ствола скважины создает необходимость выполнения очень больших начальных диаметров стволов скважин для обеспечения установки трубы с приемлемым диаметром на глубине, на которой буровая скважина проникает в добывающую формацию. Необходимость использования больших стволов скважин и множества колонн обсадных труб приводит к затратам большего количества времени, материала и ресурсов, чем при бурении ствола скважин с одинаковым размером от поверхности до добывающей формации.
Проблема, с которой иногда сталкиваются во время бурения скважины, состоит в потере бурового раствора в подземные зоны. Потеря бурового раствора обычно ведет к увеличенным финансовым расходам, но может приводить к разрушению буровой скважины и дорогостоящим "ловильным работам" с целью восстановления бурильной колонны или других инструментов, которые были в скважине. Обычно используют различные добавки в буровом растворе, чтобы помогать изолировать зоны циркулирования потерь типа кожицы хлопкового семени или синтетических волокон.
После ввода скважины в эксплуатацию приток песка из продуктивного пласта может привести к нежелательному заполнению внутри буровой скважины и может повредить клапаны и другое оборудование, связанное с производством. Предпринимали много способов для управления песком.
В патенте США №5348095, выданном 20.09.1994 Уоррэллу и др., раскрыт способ, содержащий радиальное расширение колонны обсадных труб в буровой скважине до конфигурации с большим диаметром. При этом способе требуются очень большие усилия для сообщения радиальной деформации.
С целью уменьшения усилий, необходимых для расширения колонн обсадных труб, предложены способы, включающие расширение вкладыша с выполненными в нем продольными прорезями (патенты США №№5366012, выданный 22.11.1994 на имя Лохбела, и 5667011, выданный 16.09.1997 на имя Джилле и др.). Эти способы включают радиальное деформирование вкладыша с прорезями в конфигурацию с увеличенным диаметром посредством продвижения расширительной оправки через вкладыш с прорезями. Эти способы все еще требуют приложения значительных величин усилий по всей длине вкладыша с прорезями.
В патенте США №5901789 от 11.05.1995, выданном на имя Донелли, описан деформируемый песчаный фильтр, объединяющий расширяемый скважинный фильтр с фильтрующим слоем. Расширяемый фильтр может быть выполнен с прорезями. Однако и в этом случае требуются значительные усилия для осуществления радиальной деформации фильтра.
Техническим результатом настоящего изобретения является уменьшение усилий, требуемых для расширения трубы из радиально сжатого состояния до радиально расширенного состояния.
Этот технический результат достигается тем, что в расширяемом приспособлении для использования в буровой скважине, содержащем расширяемую трубу, имеющую стенку с множеством проходящих через нее прорезей, согласно изобретению, по меньшей мере часть множества прорезей расширяемой трубы, имеющей стенку с множеством проходящих через нее прорезей, образована из изогнутых сжатых элементов.
Расширяемое приспособление может дополнительно содержать линию связи, проходящую по расширяемой трубе. Расширяемая труба может содержать канал, в котором проходит линия связи.
Расширяемое приспособление может дополнительно содержать приспособление, подсоединенное к линии связи и предназначенное для получения или передачи информации по линии связи.
Расширяемое приспособление может дополнительно содержать деформируемый материал, окружающий внешнюю поверхность расширяемого трубопровода. Деформируемым материалом может быть эластомер.
Расширяемый трубопровод может содержать песчаный экран.
Множество прорезей может быть образовано, по меньшей мере, частично посредством изогнутых сжатых элементов различной толщины.
Указанный результат достигается и тем, что в способе формирования расширяемой трубы, включающем вырезание узора из прорезей через стенку трубы, согласно изобретению, вырезание узора из прорезей через стенку трубопровода осуществляют для образования изогнутых сжатых элементов и ориентируют изогнутые сжатые элементы для образования расширяемых ячеек.
Можно образовывать изогнутые сжатые элементы с различной толщиной.
Указанное вырезание может содержать ориентирование узора из прорезей в по существу продольному направлении вдоль трубы, вырезание узора из прорезей в песчаном экране или формирование узора из прорезей для создания множества бистабильных ячеек.
Указанный технический результат достигается и тем, что в устройстве для использования в буровой скважине, имеющем расширяемую трубу, способную перемещаться в скважину в сжатом состоянии и затем радиально расширяться до расширенного состояния, средство перемещения, способное перемещать расширяемую трубу к требуемому месторасположению в буровой скважине, и приспособление развертывания, способное вызывать расширение расширяемой трубы из ее сжатой конфигурации в ее расширенную конфигурацию, согласно изобретению, расширяемая труба имеет множество расширяемых ячеек, способных трансформироваться между сжатым состоянием и расширенным состоянием при приложении усилия, направленного радиально наружу, при этом во время расширения каждая расширяемая ячейка приобретает определенную геометрическую форму при сохранении постоянной осевой длины трубы, что позволяет уменьшить усилие во время трансформирования трубы в расширенное состояние.
Расширяемая труба может содержать песчаный экран или вкладыш буровой скважины.
Каждая расширяемая ячейка может содержать продольный толстый сжатый элемент и гибкий тонкий сжатый элемент, при этом каждый гибкий тонкий сжатый элемент до расширения расширяемой трубы может быть изогнутым.
Указанный результат достигается и тем, что устройство для использования в буровой скважине содержит расширяемое приспособление, развертываемое в буровой скважине и имеющее множество расширяемых ячеек, каждая из которых содержит тонкий сжатый элемент, сгибаемый между сжатым состоянием и расширенным состоянием без пластической деформации, при этом расширяемое приспособление способно сохранять по существу постоянную осевую длину во время его трансформации из сжатого состояния в расширенное состояние.
Каждый тонкий сжатый элемент может быть соединен с, по меньшей мере, одним толстым сжатым элементом, который остается несгибаемым во время трансформации тонкого сжатого элемента из сжатого состояния в расширенное состояние.
Отношение толщины толстого сжатого элемента к толщине тонкого сжатого элемента может составлять, по меньшей мере, 2:1.
Расширяемая в радиальном направлении труба может представлять собой песчаный экран.
Одним из объектов настоящего изобретения является способ приложения радиального усилия к поверхности буровой скважины с помощью расширяемого приспособления, включающий формирование расширяемого приспособления в виде трубы множеством ячеек, расширяемых из сжатого состояния в расширенное состояние, и которых, согласно изобретению, содержит следующие операции:
выбор геометрической формы ячеек так, чтобы ячейки расширялись автономно после прохождения определенной геометрической формы,
расширение в радиальном направлении расширяемого приспособления после прохождения определенной геометрической формы и по отношению к поверхности суровой скважины, не достигая расширенного состояния,
формирование расширяемого приспособления, содержащего расширение множества ячеек без уменьшения осевой длины расширяемого приспособления,
формирование расширяемого приспособления может содержать его формирование в виде песчаного экрана или в виде вкладыша буровой скважины.
Выбор геометрической формы ячеек может содержать выбор такой формы, в которой используется комбинация толстых сжатых элементов, соединенных с тонкими сжатыми элементами.
Еще одним объектом настоящего изобретения является расширяемая система, содержащая трубчатый элемент с ячейками, предназначенный для использования в буровой скважине, который, согласно изобретению, имеет, по меньшей мере, один толстый сжатый элемент, проходящий по длине трубчатого элемента, и ячейки расположены вдоль двух сторон, по меньшей мере, одного толстого сжатого элемента так, что расширение трубчатого элемента расширяет ячейки без деформации, по меньшей мере, одного толстого сжатого элемента, при этом трубчатый элемент способен сохранять постоянную осевую длину при расширении.
Трубчатый элемент может содержать песчаный экран или вкладыш.
Трубчатый элемент может содержать бистабильные ячейки, подвергающиеся пластической деформации при расширении трубчатого элемента.
Расширяемая система может дополнительно содержать линию связи, проходящую по трубчатому элементу. Трубчатый элемент может содержать канал, в котором проходит линия связи.
Расширяемая система может дополнительно содержать приспособление, подсоединенное к линии связи и предназначенное для получения или передачи информации по линии связи.
Расширяемая система может дополнительная содержать деформируемый материал, окружающий внешнюю поверхность трубчатого элемента. Деформируемым материалом может быть эластомер.
Трубчатый элемент может иметь множество различных диаметров в его расширенном состоянии.
Еще одним объектом настоящего изобретения является способ использования трубы в буровой скважине, включающий расширение в радиальном направлении внутри буровой скважины трубы с ячейками, образованными в стенке трубы, в котором, согласно изобретению, расширение в радиальном направлении трубы внутри буровой скважины осуществляют расширением ячеек, образованных и расположенных в стенке трубы так, что соевая длина трубы поддерживается по существу постоянной.
Поддержанием постоянной осевой длины трубы можно осуществить комбинацию множества толстых сжатых элементов и тонких сжатых элементов.
Расширение в радиальном направлении может содержать расширение песчаного экрана.
Еще одним объектом настоящего изобретения является расширяемое приспособление для использования в буровой скважине, содержащее трубопровод буровой скважины, имеющий множество расширяемых ячеек, в котором, согласно изобретению, каждая расширяемая ячейка имеет толстый сжатый элемент и изогнутое податливое звено, способное трансформироваться из сжатого состояния в расширенное состояние для расширения в радиальном направлении трубопровода буровой скважины, осевая длина которого поддерживается по существу постоянной во время его расширения.
Толстый сжатый элемент может иметь толщину, по меньшей мере, в два раза превышающую толщину податливого звена.
Трубопровод буровой скважины может содержать канал, в котором проходит линия связи.
Трубопровод буровой скважины может содержать песчаный экран.
Еще одним объектом настоящего изобретения является способ формирования расширяемого трубопровода, содержащий формирование стенки трубопровода с множеством расширяемых ячеек, в котором, согласно изобретению, выполняют каждую расширяемую ячейку с, по меньшей мере, одной недеформируемой продольной секцией и с, по меньшей мере, одним тонким сжатым элементом, способным трансформироваться для перемещения стенки трубопровода между сжатым состоянием и расширенным состоянием.
Способ может дополнительно содержать определение характеристики силы отклонения стенки трубопровода посредством выбора отношения толщины, по меньшей мере, одной недеформируемой продольной секции к толщине, по меньшей мере, одного тонкого сжатого элемента.
Выбор содержит выбор отношения толщин, составляющего, по меньшей мере, 2:1, предпочтительно 3:1, наиболее предпочтительно 6:1.
Способ может дополнительно содержать определение характеристики отклонения силы посредством выбора формы ячейки. Выбор может содержать выбор кривизны тонкого сжатого элемента при нахождении стенки трубопровода в сжатом состоянии.
Далее изобретение будет описано со ссылкой на чертежи, на которых показано следующее:
фиг.1А и 1В иллюстрируют усилия, прилагаемые для создания бистабильной структуры;
фиг.2А и 2В иллюстрируют кривые прогиба сил двух бистабильных структур;
фиг.3A-3F иллюстрируют расширенное и сжатое состояния трех бистабильных ячеек с различными соотношениями толщин;
фиг.4А и 4В иллюстрируют бистабильную расширяемую трубу в ее расширенном и сжатом состояниях;
фиг.4С и 4D иллюстрируют бистабильную расширяемую трубу в сжатом и расширенном состояниях внутри буровой скважины;
фиг.5А и 5В иллюстрируют расширяемый тип пакера приспособления развертывания;
фиг.6А и 6В иллюстрируют механический тип пакера приспособления развертывания;
фиг.7A-7D иллюстрируют расширяемый тип оправки приспособления развертывания;
фиг.8A-8D иллюстрируют поршневой тип приспособления развертывания;
фиг.9А и 9В иллюстрируют пробочный тип приспособления развертывания;
фиг.10А и 10В иллюстрируют шаровой тип приспособления развертывания;
фиг. 11 представляет схематический вид буровой скважины с использованием расширяемой бистабильной трубы;
фиг.12 иллюстрирует приводимое в действие двигателем приспособление развертывания радиальных роликов;
фиг.13 иллюстрирует приводимое в действие гидравлическим путем приспособление развертывания радиальных роликов;
фиг.14 иллюстрирует бистабильную расширяемую трубу, имеющую обертку;
фиг.14А представляет вид, подобный фиг 14, в котором обертка включает в себя экран;
фиг.14В представляет вид, подобный фиг.14, иллюстрирующий другой альтернативный вариант осуществления;
фиг.14С представляет вид, подобный фиг.14, иллюстрирующий еще один альтернативный вариант осуществления;
фиг.14D представляет вид, подобный фиг.14, иллюстрирующий еще один альтернативный вариант осуществления;
фиг.14Е представляет вид, подобный фиг.14, иллюстрирующий еще один альтернативный вариант осуществления;
фиг.15 представляет изображение в перспективе альтернативного варианта осуществления настоящего изобретения;
фиг.15А представляет вид в поперечном разрезе альтернативного варианта осуществления настоящего изобретения;
фиг.16 представляет частичное изображение в перспективе альтернативного варианта осуществления настоящего изобретения;
фиг.17А-В представляют частичное изображение в перспективе и частичный вид с торца в поперечном разрезе соответственно альтернативного варианта осуществления настоящего изобретения;
фиг.18 представляет частичный вид с торца в поперечном разрезе альтернативного варианта осуществления настоящего изобретения.
Хотя изобретение допускает различные изменения и альтернативные формы, на чертежах в качестве примера показаны и ниже подробно описаны его определенные варианты осуществления.
Однако следует понимать, что приведенное здесь описание определенных вариантов осуществления предназначено не для ограничения изобретения конкретными раскрытыми формами, а наоборот, целью его является охватить все модификации, эквиваленты и альтернативы, не выходящие за рамки сущности и объема изобретения, определяемые формулой изобретения.
Используемые в настоящем изобретении бистабильные приспособления могут иметь преимущество принципа, иллюстрируемого на фиг.1А и 1В. На фиг.1А показан стержень 10, каждый конец которого прикреплен к жестким опорам 12. Если стержень 10 подвергается воздействию осевого усилия, он начинает деформироваться, как показано на фиг. 1В. При увеличении осевого усилия стержень 10 в конечном счете достигает своего предела продольного изгиба Эйлера и отклоняется к одному из двух устойчивых положений, показанных позициями 14 и 15. Если имеющий продольный изгиб стержень теперь закрепить в изогнутом положении, сила под прямым углом к длинной оси может вызывать перемещение стержня в одно из устойчивых положений, но не в другое положение. Когда стержень подвергается воздействию боковой силы, он должен переместиться на угол β, прежде чем отклониться к его новому устойчивому положению.
Бистабильные системы характеризуются кривой отклонения под действие силы, как показано на фиг.2А и 2B. Приложенная с внешней сверены сила 16 вызывает перемещение стержня 10 фиг.1B в направлении оси Х и достигает максимума 18 в начале сдвига от одной устойчивой конфигурации к другой. Дальнейший прогиб требует меньшую силу, потому что система теперь имеет отрицательную пружинящую скорость и, когда сила становится нулевой, происходит самопроизвольный прогиб ко второму устойчивому положению.
Кривая прогиба под действием силы для этого варианта симметрична и иллюстрируется на фиг.2А. Посредством приложения любого предварительного изгиба к стержню или асимметричному поперечному сечению кривую силового прогиба можно делать асимметричной, как показано на фиг.2В. В этой системе сила 19, требуемая для того, чтобы стержень принял одно устойчивое положение, больше силы 20, требуемой для создания обратного прогиба. Сила 20 должна быть больше нуля, чтобы система имела бистабильные характеристики.
Бистабильные структуры, иногда называемые рычажными приспособлениями, использовали в промышленности для таких приспособлений, как гибкие диски, зажимы через центр, удерживающие приспособления и системы быстрого освобождения для натяжных тросов (например, в оттяжках оснастки парусных судов).
Вместо использования жестких опор, как показано на фиг.1А и 1В, можно сконструировать ячейку, где обеспечивается ограничение посредством изогнутых сжатых элементов, соединенных на каждом конце, как показано на фиг.3A-3F. Если оба сжатых элемента 21 и 22 имеют одинаковую толщину, как показано на фиг.3А и 3B, кривая прогиба под действием силы является линейной, и ячейка удлиняется при ее сжатии из разомкнутого положения (фиг.3В) в ее сомкнутое положение (фиг.3А). Если сжатые элементы ячейка имеют различные толщины, как показано на фиг.3C-3F, ячейка имеет характеристики прогиба под действием силы, показанные на фиг.2В, и не изменяет длину при перемещении между ее двумя устойчивыми положениями. Таким образом, расширяемую бистабильную трубу можно сконструировать так, чтобы при увеличении радиального размера осевая длина оставалась постоянной. В одном варианте, если отношение толщин составляет более приблизительно 2:1, более тяжелый сжатый элемент противостоит продольным изменениям. Изменяя соотношение размеров толстого и тонкого сжатых элементов, можно изменять силы их разведения и сведения. Например, фиг.3С и 3D иллюстрируют соотношение толщин приблизительно 3:1, а фиг.3Е и 3F иллюстрируют соотношение толщин приблизительно 6:1.
Расширяемую бистабильную трубу типа обсадной трубы, ремонтной муфты или скважинной колонны труб можно конструировать с рядом окружающих бистабильных соединенных ячеек 23, как показано на фиг.4А, 4В, где каждой тонкий сжимаемый элемент 21 соединен с толстым сжимаемым элементом 22. Продольную гибкость такой трубы можно изменять посредством изменения длины ячеек и посредством соединения каждого ряда ячеек с податливым звеном. Далее, характеристики прогиба под действием силы и продельную гибкость можно также изменять посредством конструирования формы ячейки. Фиг.4А иллюстрирует расширяемую бистабильную трубу 24 в ее расширенной конфигураций, в то время как на фиг.4В показана расширяемая бистабильная труба 24 в ее сжатой или сложенной конфигурации. В этом применении термин "сжатый" используется для определения конфигураций бистабильного элемента или приспособления в стабильном состоянии с самым маленьким диаметром, и это не означает, что элемент или приспособление каким-то образом повреждены. В сжатом состоянии бистабильную трубу 24 легко устанавливать в буровую скважину 29, как показано на фиг.4С. После установки бистабильной трубы 24 в требуемом местоположении в буровой скважине ее расширяют, как показано на фиг.4D.
Геометрическая форма бистабильных ячеек такова, что поперечное сечение трубы можно расширять в радиальном направлении с целью увеличения полного диаметра трубы. При радиальном расширении трубы бистабильные ячейки эластично деформируются до достижения определенной геометрической формы. В этот момент бистабильные ячейки перемещаются, например обжимаются до конечной расширенной геометрической формы. При некоторых материалах и/или конструкциях бистабильных ячеек можно высвободить достаточно энергии во время упругой деформации ячейки, когда каждая бистабильная ячейка сжимается после определенных геометрических размеров, чтобы расширяющиеся ячейки были способны начать расширение смежных бистабильных ячеек после критической бистабильной геометрической нормы ячейки. В зависимости от кривых прогиба, часть или даже полную длину бистабильной расширяемой трубы можно расширять от одной точки.
Аналогичным образом, если радиальные сжимающие усилия приложить к расширенной бистабильной трубе, она снимается в радиальном направлении и бистабильные ячейки эластично деформируются до достижения критической геометрического формы. В этот момент бистабильные ячейки сжимаются до конечной сжатой структуры. Таким образом, расширение бистабильных труб является реверсным и повторимым. Следовательно, бистабильная труба может быть повторно используемым инструментом, который по выбору трансформируется между расширенным состоянием, как показано на фиг.4А, и сжатым состоянием, как показано на фиг.4В.
В сжатом состоянии, как показано на фиг.4В, бистабильную расширяемую трубу легко устанавливать в буровую скважину и перемещать в требуемое местоположение. Затем используют приспособление развертывания, чтобы изменить конфигурацию из сжатого состояния в расширенное состояние.
В расширенном состоянии, как показано на фиг.4А, структурное управление эластичными свойствами материала каждой бистабильной ячейки может быть таким, что стенкой трубы можно прилагать постоянное радиальное усилие для сдерживания поверхности буровой скважины. Свойства материала и геометрическую форму бистабильных ячеек можно конструировать так, чтобы получать определенные желательные результаты.
Одним вариантом конструкции для достижения желательных результатов является колонна расширяемых бистабильных труб больше чем с одним диаметром по всей длине колонны. Она может быть полезна в стволах буровых скважин с изменяющимися диаметрами, независимо от того, сконструированы ли они таким способом или получены в результате незапланированных событий типа размыва формации или уступов внутри ствола скважины. Это может быть также выгодно, когда желательно иметь часть бистабильного растяжимого приспособления, расположенную внутри укрепленной обсадной трубой секций скважины, в то время как другую часть располагают в неукрепленной обсадной трубой секции скважины. Фиг.11 иллюстрирует один вариант этого условия. Буровую скважину 40 бурят от поверхности 46, и она включает укрепленную обсадной трубой секцию 44 и не укрепленную обсадной трубой секцию 46. Расширяемое бистабильное приспособление 48, имеющее сегменты 50, 52 с различными диаметрами, размещают в скважине. Секция 50 с большим диаметром используется для стабилизирования неукрепленной обсадной трубой секции 46 скважины, в то время как секцию 52, имеющую уменьшенный диаметр, располагают внутри укрепленной обсадной трубой секции 44 скважины.
Бистабильные втулки или соединители 24А (фиг.4С) можно сконструировать так, чтобы обеспечить выполнение соединения между собой секций бистабильных расширяемых труб в колонну пригодных длин, используя такой принцип, как показано на фиг.4А и 4В. Этот бистабильный соединитель 24А также включает бистабильную конструкцию ячеек, которая позволяет расширять его в радиальном отношении, используя тот же механизм, как в случае расширяемой бистабильной трубы. Примерные бистабильные соединители имеют диаметр немного больше, чем у секций расширяемой трубы, которые подлежат соединению. Бистабильный соединитель в этом случае размещает поверх концов двух секций и механически крепят к секциям расширяемой трубы. Механические крепежные детали типа винтов, заклепок или лент можно использовать для соединения соединителя с секциями труб. Бистабильный соединитель обычно конструируют так, чтобы он имел скорость расширения, которая совместима со скоростью расширяемых секции труб, так, чтобы он продолжал соединять две секции после расширения двух сегментов и соединителя.
В качестве альтернативы бистабильный соединитель может иметь диаметр меньше, чем две соединяемые расширяемые секции труб. В этом случае соединитель вставляют внутрь концов труб и механически закрепляют, как описано выше. Другой вариант осуществления включает механическую обработку концов секций трубы либо на их внутренних, либо наружных поверхностях для образования кольцевых вырезов, в которых располагают соединитель. Соединитель, сконструированный для подгонки в вырезы, размещают в вырезах. Затем соединитель механически крепят к концам, как описано выше. Таким образом соединитель образует соединение относительно утопленного типа с секциями труб.
Средство 31 перемещения перемещает отрезки бистабильных расширяемых труб и бистабильные соединители в буровую скважину и к требуемому местоположению (фиг.4С и 4D). В средстве перемещения можно использовать один или несколько механизмов типа талевого троса, спирально свернутой трубы, спирально свернутой трубы с проволочной жилой, бурильной трубы, трубы для эксплуатации скважины или обсадной трубы.
Для расширения бистабильных расширяемых груб и соединителей скважины в нижний узел можно вводить приспособления 33 развертывания (фиг.4С, 4D). Приспособления развертывания могут быть различных типов: типа элемента надувного пакера, элемента механического пакера, расширяемой оправки, поршневого прибора, механического исполнительного механизма электрического соленоида, прибора пробочного типа, например, приспособления конической формы, протянутого или продвинутого через трубу, прибора шарового типа или расширителя вращательного типа, как дополнительно описано ниже.
Элемент надувного пакера показан на фиг.5А и 5В и является приспособлением с надувным вкладышем гидроциклона, элементом или сильфоном, включенным в нижний узел скважины системы бистабильной расширяемой трубы. Как показано на фиг.5А, надуваемый пакер 25 располагают внутри полной длины или части бистабильной трубы 24 начального сжатого состояния и любых бистабильных расширяемых соединителей (не показанных). После расположения бистабильной расширяемой трубы на надлежащей глубине развертывания надуваемый пакер 25 расширяют в радиальном отношении посредством нагнетания текучей среды в приспособление, как показано на фиг.5В. Надуваемую текучую среду можно нагнетать с поверхности через трубы или бурильную трубу механическим насосом или с помощью электрического насоса наклонной скважины, который питается электроэнергией по проворному кабелю. По мере расширения надуваемого пакера 25 он вызывает также расширение в радиальном направлении бистабильной расширяемой трубы 24. При определенном диаметре расширения надуваемый пакер 25 заставляет бистабильные ячейки в трубе достигать критической геометрической формы, когда начинается бистабильный эффект "защелкивания" и система бистабильных расширяемых труб расширяется до ее заключительного диаметра. В заключение из надуваемого пакера 25 выпускают воздух и его удаляют из бистабильной расширяемой трубы 24.
Механический пакер, изображенный на фиг.6А и 6B, представляет собой приспособление с деформируемым пластиковым элементом 26, который расширяется в радиальном направлении при сжатии в осевом направлении. Силу для сжатия элемента можно обеспечивать посредством механизма 27 сжатия типа винтового механизма, кулачка или гидравлического поршня. Механический пакер развертывает бистабильные расширяемые трубы и соединители таким же образом, как элемент надуваемого пакера. Деформируемый пластиковый элемент 26 прикладывает радиальное усилие, направленное наружу, к внутренней периферии бистабильных расширяемых труб и соединителей, позволяя им, в свою очередь, расшириться из сжатого положения (фиг.6А) до окончательного развернутого диаметра (фиг.6В).
Расширяемая оправка показана на фиг.7A-7D и содержит ряд пальцев 28, которые расположены радиального вокруг конической оправки 30. На фиг.7А, 7С показаны виды сбоку и сверху соответственно. При проталкивании или протягивании оправки 30 через пальцы 28 они расходятся радиально наружу, как показано на фиг.7B, 7D. Расширяемую оправку используют таким же способом, как элемент механического пакера для развертывания бистабильной расширяемой трубы и соединителя.
Приспособление поршневого типа показано на фиг.8A-8D и содержит ряд поршней 32, направленных радиально во внешние стороны и используемых в качестве механизма для расширения бистабильных расширяемых труб и соединителей. При подведении энергий поршни 32 прилагают радиально направленную силу, чтобы развернуть узел бистабильных расширяемых тру6, как в случае надувного пакера. Фиг.8А и 8С иллюстрируют втянутые поршни, в то время как на фиг.8В и 8D показаны выдвинутые поршни. Устройство поршневого типа можно приводить в действие гидравлическим, механическим или электрическим способом.
Исполнительный механизм пробочного типа иллюстрируется на фиг.9А и 9В и содержит пробку 34, которую проталкивают или протягивают через бистабильные расширяемые трубы 24 или соединители, как показано на фиг.9А. Пробку применяют такого размера, чтобы расширить бистабильные ячейки за пределы их критической точки, когда они защелкиваются в конечном расширенном диаметре, как показано на фиг.9В.
Исполнительный механизм шарового типа показан на фиг.10А и 10В и действует, когда шар 36 с увеличенные размером нагнетают через середину бистабильных расширяемых труб 24 и соединителей. Для предотвращения потери текучей среды через прорези ячеек основанный на расширяемом эластомере вкладыш 38 движется внутри системы бистабильных расширяемых труб. Вкладыш 33 действует как изолятор и позволяет шару 36 гидравлически нагнетаться через бистабильную трубу 24 и соединители. Действие нагнетания шара 36 через бистабильные расширяемые трубы 24 и соединители состоит в расширении геометрических форм ячейки за пределы критической бистабильной точки, позволяя осуществлять полное расширение, как показано на фиг.10В. После расширения бистабильных расширяемых труб и соединителей эластомерный вкладыш 38 и шар 36 извлекают.
Исполнительные механизмы типа радиальных роликов можно использовать для расширения секций бистабильных труб. Фиг.12 иллюстрирует приводимый двигателем инструмент расширяемого радиального ролика. Инструмент содержит один или несколько комплектов рычагов 58, которые расширяются до установленного диаметра посредством механизма и шарнира. На конце каждого комплекта рычагов находится ролик 60. Можно прикреплять к инструменту приспособления 62 для центровки с целью правильного его расположения внутри буровой скважины и бистабильной трубы 24. Двигатель 64 создает усилие для поворачивания всего узла, таким образом поворачивая ролик (ролики) по периферии внутри буровой скважины. Ось ролика (роликов) расположена так, чтобы позволять ролику (роликам) свободно поворачиваться при контакте с внутренней поверхностью трубы. Каждый ролик может иметь сечение конической формы для увеличения площади соприкосновения поверхности ролика с внутренней стенкой трубы. Вначале ролики втягивают и инструмент продвигают внутри сжатой бистабильной трубы. Затем инструмент вращают посредством двигателя 64, и ролики 60 перемещаются во внешнюю сторону, чтобы войти в соприкосновение с внутренней поверхностью бистабильной трубы. После вхождения в соприкосновение с трубой ролики поворачиваются во внешние стороны на большее расстояние для приложения направленного во внешние стороны радиального усилия к бистабильной трубе. Направленное наружу перемещение роликов можно выполнять посредством центробежной силы или соответствующего исполнительного механизма, подсоединенного между двигателем 64 и роликами 60.
Конечное положение поворота регулируют в точке, где бистабильная труба может быть расширена до конечного диаметра. Затем инструмент перемещают в продольном направлении по сжатой бистабильной трубе, в то время как двигатель продолжает вращать шарнир и ролики. Ролики следуют по неглубокому спиральному пути 66 внутри бистабильной трубы, расширяя бистабильные ячейки на своем пути. После развертывания бистабильной трубы вращение инструмента прекращается и ролики втягиваются. Затем инструмент извлекают из бистабильной трубы средством 68 перемещения, которое можно также использовать для вставления инструмента.
Фиг.13 иллюстрирует приводимое гидравлическим способом приспособление развертывания радиальными роликами. Инструмент содержит один или несколько роликов 60, которые приводятся в соприкосновение с внутренней поверхностью бистабильной трубы посредством гидравлического поршня 70. Внешнее радиальное усилие, прикладываемое роликами, можно увеличивать до точки, когда бистабильная труба расширяется до ее конечного диаметра. Приспособление 62 для центровки можно крепить к инструменту с целью правильного расположения его внутри буровой скважины и бистабильной трубы 24. Ролики 60 первоначально втягиваются, и инструмент продвигают в сжатую бистабильную трубу 24. Затем ролики 60 развертывают и проталкивают относительно внутренней стенки бистабильной трубы 24 с целью расширения части трубы до ее конечного диаметра. Затем весь инструмент проталкивают или протягивают в продольном направлении по бистабильной трубе 24, расширяя весь отрезок бистабильных ячеек 23. После развертывания бистабильной трубы 24 в ее расширенном состоянии ролики 60 втягиваются и инструмент извлекают из буровой скважины средством 68 перемещения, используемым для его вставления. Изменяя ось роликов 60, инструмент можно вращать посредством мотора при его следовании в продольном направлении по бистабильной трубе 24.
Энергию для работы устройства развертывания можно подвести от одного или комбинации источников типа электроэнергии, подаваемой или с поверхности, или накопленной в аккумуляторной батарее, расположенной вместе с приспособлением развертывания, гидравлической энергии, обеспечиваемой насосами на поверхности или в нисходящей скважине турбинами или накопителем текучей среды, и механической энергии, прикладываемой через соответствующее соединение, приводимое в действие движением, обеспечиваемым с поверхности или запасенным в нисходящей скважине, например в пружинном механизме.
Систему бистабильных расширяемых труб конструируют так, что внутренний диаметр развернутой трубы расширяется, чтобы сохранять максимальную площадь поперечного сечения вдоль расширяемой трубы. Эта особенность позволяет строить буровые моно-скважины и облегчает устранение проблем, связанных с традиционными системами обсадных труб буровых скважин, где наружный диаметр обсадной трубы должен многократно ступенчато уменьшаться, ограничивая доступ в длинных буровых скважинах.
Систему бистабильных расширяемых труб можно использовать в многочисленных применениях типа расширяемого вкладыша части буровой скважины, не закрепленной обсадными трубами (фиг.14), где бистабильная расширяемая труба 24 используется для поддержания формации части буровой скважины, не закрепленной обсадными трубами, посредством приложения внешнего радиального усилия на поверхности буровой скважины. Когда бистабильная труба 24 радиально расширяется в направлении стрелок 71, труба перемещается в соприкосновении с поверхностью, образующей ствол 29 скважины. Эти радиальные усилия помогают стабилизировать формации и позволяют бурить скважины с меньшим количеством обычных колонн обсадных труб. Вкладыш буровой скважины, не закрепленный обсадными трубами, также может содержать материал, например обертку 72, который уменьшает темп потерь текучей среды из буровой скважины в формации. Обертку 72 можно делать из ряда материалов, включая расширяемые материалы и/или эластомерные материалы. Благодаря уменьшению потерь текучей среды в формации можно снизить расход бурового раствора и можно минимизировать риск потери циркуляции и/или сжатия ствола скважины.
Вкладыши также можно использовать внутри труб буровой скважины для целей защиты от коррозии. Одним примером коррозионной окружающей среды является окружающая среда, которая появляется, когда диоксид углерода используется для увеличения извлечения нефти из продуктивного пласта. Диоксид углерода (СО2) легко реагирует с любой водой (Н2О), которая используется для образования угольной кислоты (Н2СО3). Могут также вырабатываться другие кислоты, особенно, если присутствуют серосодержащие компоненты. Трубы, используемые для введения диоксида углерода, а также трубы, используемые в добывающих скважинах, подвергаются значительно повышенным скоростям коррозии. Настоящее изобретение можно использовать для размещения защитных вкладышей бистабильных труб 24, внутри существующей трубы (например, трубы 73, показанной пунктирными линиями на фиг.14), чтобы минимизировать коррозионные действия и увеличить эксплуатационную долговечность буровой скважины.
Другое применение включает использование бистабильной трубы 24, показанной на фиг.14, в качестве расширяемого перфорированного вкладыша. Разомкнутые бистабильные ячейки в бистабильной расширяемой трубе допускают неограниченный поток из формации при обеспечении структуры для стабилизирования ствола скважины.
Еще одно применение бистабильной трубы 24 включает использование расширяемого песчаного экрана, где бистабильные ячейки располагают так, чтобы они действовали в качестве экрана управления песком, или расширяемый элемент 74 экрана можно прикреплять к бистабильной расширяемой трубе, как показано на фиг.14А, в его сжатом состоянии. Расширяемый элемент 74 экрана может быть образован в виде обертки вокруг бистабильной трубы 24. Обнаружено, что приложение сил растягивающего напряжения к стене ствола скважины само по себе помогает стабилизировать формацию и ослабляет или устраняет приток песка из продуктивных зон, даже если не используется элемент дополнительного экрана.
Другое применение бистабильной трубы 24 включает использование укрепленного расширяемого вкладыша, где структура ячейки бистабильной расширяемой трубы укреплена цементом или смолой 75, как показано на фиг.14В. Цемент или смола 75 обеспечивают усиленную структурную поддержку или гидравлическую изоляцию от формации.
Бистабильную расширяемую трубу 24 также можно использовать как расширяемую систему связи для соединения традиционных отрезков обсадной трубы 76а или 76b различных диаметров, как показано на фиг.14С. Трубу 24 также можно использовать в качестве структурного восстановительного соединения для обеспечения увеличенной прочности для существующих секций обсадной трубы.
Другое применение включает в себя использование бистабильной расширяемой трубы 24 в качестве анкера внутри буровой скважины, к которому можно крепить другие инструментальные средства или обсадные трубы, или в качестве "ловильного" инструмента, в котором бистабильные характеристики используются для возврата предметов, потерянных или застрявших в буровой скважине. Бистабильную расширяемую трубу 24 в ее сжатой конфигурации вводят в потерянную деталь 77 и затем расширяют, как показано стрелками 78 на фиг.14D. В расширенной конфигурации бистабильная труба создает радиальные усилия, которые помогают возвращать потерянную деталь. Бистабильную трубу также можно вводить в скважину в ее расширенной конфигурации, располагать поверх и сжимать в направлении стрелок 79 вокруг потерянной детали 77 в попытке прикрепить и возвратить ее, как показано на фиг.14Е. После захвата потерянной детали 77 бистабильной трубой 24 ее можно возвращать через буровую скважину 29.
Описанные выше бистабильные расширяемые трубы можно изготавливать различными способами, например прорезая пути соответствующих форм через стенку цилиндрической трубы, создавая тем самым расширяемое бистабильное устройство в его сжатом состоянии; вырезая узоры в цилиндрической трубе, создавая тем самым расширяемое бистабильное устройство в его расширенном состоянии и затем сжимая устройство в его сжатое состояние; прорезая соответствующие пути через лист материала, скручивая материал в трубчатую форму и соединяя концы для образования расширяемого бистабильного устройства в его сжатом состоянии; или вырезая узоры в листе материала, скручивая материал в трубчатую форму, соединяя смежные концы для образования расширяемого бистабильного устройства в его расширенном состоянии и затем сжимая устройство в его сжатое состояние.
Материалы конструкции для бистабильных расширяемых труб могут включать в себя материалы, обычно используемые в нефтегазовой промышленности, типа углеродистой стали. Их можно также изготавливать из специальных сплавов (типа монеля, инконеля, хастеллоя или сплавов, основанных на вольфраме), если требуется их применение.
Конфигурации, показанные для бистабильной трубы 24, иллюстрирует работу основной бистабильной ячейки. Могут также подходить другие конфигурации, но представленная концепция также имеет силу для этих других конфигураций.
Фиг.15 иллюстрирует расширяемую трубу 80, образованную бистабильными ячейками 82. Труба 80 определяет прореженную часть 84 (лучше видимую на фиг.15А), которая может иметь форму прорези, как показано, уплощение или иное прореживание части трубы 80. Прореженная часть 84 расширяется обычно в продольном направлении и может быть линейной, спиральной или следовать по некоторому другому извилистому пути. В одном варианте осуществления прореженная часть 84 проходит от одного конца трубы к другому с целью обеспечения канала линии связи для трубы 80. В таком варианте осуществления линия 86 связи может проходить по каналу линии связи вдоль трубы 80. При таком способе линия 86 связи остается в обычном наружном диаметре трубы 80 или выходит только немного из наружной части этого диаметра. Хотя труба показана с одной прореживаемой частью 84, она может включать множество таких частей, которые рассредоточиваются по периферии трубы 80. Прореженная часть 84 может быть использована для размещения канала (не показанного), по которому проходят линии 86 связи, или который используется для пропускания текучих сред или других материалов типа смесей текучих сред и твердых веществ.
Используемый здесь термин "линия связи" откосится к любому типу линии связи, например электрической, гидравлической, волоконно-оптической, их комбинации и т.п.
Фиг.15А иллюстрирует вариант прореженной части 84, сконструированной для размещения приспособления 88. Как и в случае размещения кабеля, приспособление 88, по меньшей мере, частично размещено в прореженной части трубы 80, так что степень, до которой оно проходит за пределы наружного диаметра трубы 80, уменьшается. Примерами некоторых альтернативных вариантов осуществления приспособлений 88 являются электрические приспособления, измерительные приспособления, счетчики, манометры, датчики. Более конкретные приспособления содержат клапаны, приборы для отбора проб, средство, используемое в разумном завершении скважины, термочувствительные элементы, датчики давления, регуляторы потока, средства измерения скорости потока, средства для измерения соотношения нефть/вода/газ, указатели масштаба, датчики оборудования (например, датчики вибрации, датчики обнаружения песка, датчики, обнаружения воды, регистрации данных, датчики вязкости, датчики плотности, датчики появления первых пузырьков перед кипением, датчики состава, приспособления и датчики матрицы удельного сопротивления, акустические средства и датчики, другие телеметрические приспособления, датчики ближней инфракрасной области, детекторы гамма-излучений, детекторы H2S, детекторы СО2, блоки памяти наклонной скважины, контроллеры наклонной скважины. Примерами измерений, которые могут выполнять такие приспособления, являются скорость потока, давление, температура, разностное давление, плотность, относительные количества жидкости, газа и твердых веществ, водная выемка, отношение нефти и воды и другие измерения.
Как показано на фигуре, приспособление 88 может открываться для текучей среды внутри и снаружи трубы 80 через отверстия, образованные ячейками 82. Таким образом, прореженная часть 84 может соединять отверстия, а также соединения 21, 22 ячеек 82. Линия 86 связи и прореженная часть 84, образующая канал линии связи, в некоторых вариантах конструкции может проходить по части отрезка трубы 80. Например, если приспособление 88 размещено между концами трубы 80, канал линии связи может оказаться необходимым только для прохождения от конца трубы до местоположения устройства 80.
Фиг.16 иллюстрирует расширенную трубу 80, образованную из бистабильных ячеек 82, имеющих тонкие сжатые элементы 21 и толстые сжатые элементы 22. По меньшей мере, один из толстых сжатых элементов 90 оказывается относительно более широким, чем другие сжатые элементы трубы 80. Более широкий сжатый элемент 90 можно использовать для различных целей, например для направления линий связи, включая кабели или устройства типа матриц датчиков.
Фиг.17А и 17В иллюстрируют трубу 80, имеющую сжатый элемент 90, который относительно более широкий, чем другие толстые сжатые элементы 22. Канал 92, образованный в сжатом элементе 90, облегчает размещение линии связи в скважине и проходит по трубе 80 и может использоваться для других целей. Фиг.17В представляет собой вид в поперечном разрезе, показывающий канал 92. Канал 92 представляет альтернативный вариант осуществления вышеописанного канала линии связи. Канал 94 может быть образован для обычного следования кривизне сжатого элемента, например одного из толстых сжатых элементов 22, как далее показано на фиг.17А и 17 В.
Фиг.18 иллюстрирует прореживаемую часть 84, имеющую конструкцию в виде "ласточкина хвоста" с относительно более узким отверстием. Линия 86 связи проходит через относительно узкое отверстие в более широкую нижних часть, например, посредством введения одной боковой кромки, а затем - другой. Линия 86 связи удерживается на месте благодаря конструкции в виде "ласточкина хвоста", как очевидно из фигур. Ширина линии 86 связи больше ширины отверстия. Линия 86 связи может содержать пучок линий, которые могут иметь одинаковые или различные формы (например, гидравлическую, электрическую и волоконно-оптическую линию, связанные вместе). Кроме того, разъемы для соединения смежных труб могут включать в себя разъем для линий связи.
Вышеописанный канал линии связи можно использовать вместе с другими типами расширяемых труб, например с трубами типа расширяемого вкладыша с прорезями, раскрытого в патенте США №5366012, выданном 22 ноября 1994 г. Лобеку (Lohbeck), сложенными типами труб, раскрытыми в патенте США №3489220, выданном 13 января 1970 г. Кинли (Kinley), патенте США №5337823, выданном 16 августа 1994 г. Нобилю (Nobileau), патенте США №3203451, выданном 31 августа 1965 г. Винсенту (Vincent).
Раскрытые здесь конкретные варианты осуществления изобретения являются только иллюстративными, поскольку изобретение можно изменять и осуществлять на практике различными, но эквивалентными способами, очевидными для специалистов в данной области техники. Кроме того, никакие ограничения не предполагаются в отношении деталей конструкции или показанных здесь решений, кроме описанных в формуле изобретения. Следовательно, очевидно, что конкретные раскрытые выше варианты осуществления можно изменять или модифицировать, и все такие видоизменения рассматриваются не выходящими за рамки сущности и объема изобретения. В соответствии с этим найденная здесь защита такова, как изложено в формуле изобретения.

Claims (49)

1. Расширяемое приспособление для использования в буровой скважине, содержащее расширяемую трубу, имеющую стенку с множеством проходящих через нее прорезей, отличающееся тем, что, по меньшей мере, часть множества прорезей расширяемой трубы, имеющей стенку с множеством проходящих через нее прорезей, образована из изогнутых сжатых элементов и способна расширяться в радиальном направлении.
2. Расширяемое приспособление по п.1, отличающееся тем, что дополнительно содержит линию связи, проходящую по расширяемой трубе.
3. Расширяемое приспособление по п.2, отличающееся тем, что расширяемая труба содержит канал, в котором проходит линия связи.
4. Расширяемое приспособление по п.1, отличающееся тем, что дополнительно содержит приспособление, подсоединенное к линии связи и предназначенное для получения или передачи информации по линии связи.
5. Расширяемое приспособление по п.1, отличающееся тем, что дополнительно содержит деформируемый материал, окружающий внешнюю поверхность расширяемого трубопровода.
6. Расширяемое приспособление по п.5, отличающееся тем, что деформируемым материалом является эластомер.
7. Расширяемое приспособление по п.1, отличающееся тем, что расширяемый трубопровод содержит песчаный экран.
8. Расширяемое приспособление по п.1, отличающееся тем, что множество прорезей образовано, по меньшей мере, частично посредством изогнутых сжатых элементов различной толщины.
9. Способ формирования расширяемой трубы, включающий вырезание узора из прорезей через стенку трубы, отличающийся тем, что вырезание узора из прорезей через стенку трубы осуществляют для образования изогнутых сжатых элементов и ориентируют изогнутые сжатые элементы для образования расширяемых бистабильных ячеек.
10. Способ по п.9, отличающийся тем, что образуют изогнутые сжатые элементы с различной толщиной.
11. Способ по п.9, отличающийся тем, что вырезание узора из прорезей через стенку трубы включает ориентирование узора из прорезей по существу в продольном направлении вдоль трубы.
12. Способ по п.9, отличающийся тем, что вырезание узора из прорезей через стенку трубы включает вырезание узора из прорезей в песчаном экране.
13. Способ по п.9, отличающийся тем, что вырезание узора из прорезей через стенку трубы включает формирование узора из прорезей для создания множества бистабильных ячеек.
14. Устройство для использования в буровой скважине, имеющее расширяемую трубу, способную перемещаться в скважину в сжатом состоянии и затем радиально расширяться до расширенного состояния, средство перемещения, способное перемещать расширяемую трубу к требуемому месторасположению в буровой скважине, и приспособление развертывания, способное вызывать расширение расширяемой трубы из ее сжатой конфигурации в ее расширенную конфигурацию, отличающееся тем, что расширяемая труба имеет множество расширяемых ячеек, способных трансформироваться между сжатым состоянием и расширенным состоянием при приложении усилия, направленного радиально наружу, при этом во время расширения каждая расширяемая ячейка приобретает определенную геометрическую форму при сохранении по существу постоянной осевой длины трубы, что позволяет уменьшить усилие во время трансформирования трубы в расширенное состояние.
15. Устройство по п.14, отличающееся тем, что расширяемая труба содержит песчаный экран.
16. Устройство по п.14, отличающееся тем, что расширяемая труба содержит вкладыш буровой скважины.
17. Устройство по п.14, отличающееся тем, что каждая расширяемая ячейка содержит продольный толстый сжатый элемент и гибкий тонкий сжатый элемент, причем каждый гибкий тонкий сжатый элемент до расширения расширяемой трубы является изогнутым.
18. Устройство для использования в буровой скважине, содержащее расширяемое приспособление в виде расширяемой в радиальном направлении трубы, развертываемое в буровой скважине и имеющее множество расширяемых ячеек, каждая из которых содержит тонкий сжатый элемент, сгибаемый между сжатым состоянием и расширенным состоянием без пластической деформации, при этом расширяемое приспособление способно сохранять по существу постоянную осевую длину во время его трансформации из сжатого состояния в расширенное состояние.
19. Устройство по п.18, отличающееся тем, что каждый тонкий сжатый элемент соединен с, по меньшей мере, одним толстым сжатым элементом, который остается несгибаемым во время трансформации тонкого сжатого элемента из сжатого состояния в расширенное состояние.
20. Устройство по п.19, отличающееся тем, что отношение толщины толстого сжатого элемента к толщине тонкого сжатого элемента составляет, по меньшей мере, 2:1.
21. Устройство по п.18, отличающееся тем, что расширяемая в радиальном направлении труба представляет собой песчаный экран.
22. Способ приложения радиального усилия к поверхности буровой скважины с помощью расширяемого приспособления, включающий формирование расширяемого приспособления в виде трубы с множеством ячеек, расширяемых из сжатого состояния в расширенное состояние, отличающийся тем, что содержит следующие операции: выбор геометрической формы ячеек так, чтобы ячейки расширялись автономно после прохождения определенной геометрической формы; расширение в радиальном направлении расширяемого приспособления после прохождения определенной геометрической формы и по отношению к поверхности буровой скважины, не достигая расширенного состояния; формирование расширяемого приспособления, содержащее расширение множества ячеек без уменьшения осевой длины расширяемого приспособления.
23. Способ по п.22, отличающийся тем, что формирование расширяемого приспособления содержит его формирование в виде песчаного экрана.
24. Способ по п.22, отличающийся тем, что формирование расширяемого приспособления содержит его формирование в виде вкладыша буровой скважины.
25. Способ по п.22, отличающийся тем, что выбор геометрической формы ячеек содержит выбор такой формы, в которой используется комбинация толстых сжатых элементов, соединенных с тонкими сжатыми элементами.
26. Расширяемая система, содержащая трубчатый элемент с ячейками, предназначенный для использования в буровой скважине, отличающаяся тем, что трубчатый элемент имеет, по меньшей мере, один толстый сжатый элемент, проходящий по длине трубчатого элемента, а ячейки расположены вдоль двух сторон, по меньшей мере, одного толстого сжатого элемента так, что расширение трубчатого элемента расширяет ячейки без деформации, по меньшей мере, одного толстого сжатого элемента, при этом трубчатый элемент способен сохранять по существу постоянную осевую длину при расширении.
27. Расширяемая система по п.26, отличающаяся тем, что трубчатый элемент содержит песчаный экран.
28. Расширяемая система по п.26, отличающаяся тем, что трубчатый элемент содержит вкладыш.
29. Расширяемая система по п.26, отличающаяся тем, что трубчатый элемент содержит бистабильные ячейки, подвергающиеся пластической деформации при расширении трубчатого элемента.
30. Расширяемая система по п.26, отличающаяся тем, что дополнительно содержит линию связи, проходящую по трубчатому элементу.
31. Расширяемая система по п.30, отличающаяся тем, что трубчатый элемент содержит канал, в котором проходит линия связи.
32. Расширяемая система по п.30, отличающаяся тем, что дополнительно содержит приспособление, подсоединенное к линии связи и предназначенное для получения или передачи информации по линии связи.
33. Расширяемая система по п.26, отличающаяся тем, что дополнительно содержит деформируемый материал, окружающий внешнюю поверхность трубчатого элемента.
34. Расширяемая система по п.33, отличающаяся тем, что деформируемым материалом является эластомер.
35. Расширяемая система по п.26, отличающаяся тем, что трубчатый элемент имеет множество различных диаметров в его расширенном состоянии.
36. Способ использования трубы в буровой скважине, содержащий расширение в радиальном направлении внутри буровой скважины трубы с ячейками, образованными в стенке трубы, отличающийся тем, что расширение в радиальном направлении трубы внутри буровой скважины осуществляют расширением ячеек, образованных и расположенных в стенке трубы так, что осевая длина трубы поддерживается по существу постоянной.
37. Способ по п.36, отличающийся тем, что поддержание постоянной осевой длины трубы осуществляют комбинацией множества толстых сжатых элементов и тонких сжатых элементов расширяемых ячеек.
38. Способ по п.36, отличающийся тем, что расширение в радиальном направлении трубы содержит расширение песчаного экрана.
39. Расширяемое приспособление для использования в буровой скважине, содержащее трубопровод буровой скважины, имеющий множество расширяемых ячеек, отличающееся тем, что каждая расширяемая ячейка имеет толстый сжатый элемент и изогнутое податливое звено, способное трансформироваться из сжатого состояния в расширенное состояние для расширения в радиальном направлении трубопровода буровой скважины, осевая длина которого поддерживается по существу постоянной во время его расширения.
40. Расширяемое приспособление по п.39, отличающееся тем, что толстый сжатый элемент имеет толщину, по меньшей мере, в два раза превышающую толщину податливого звена.
41. Расширяемое приспособление по п.39, отличающееся тем, что трубопровод буровой скважины содержит канал, в котором проходит линия связи.
42. Расширяемое приспособление по п.39, отличающееся тем, что трубопровод буровой скважины содержит песчаный экран.
43. Способ формирования расширяемого трубопровода, включающий формирование стенки трубопровода с множеством расширяемых ячеек, отличающийся тем, что выполняют каждую расширяемую ячейку с, по меньшей мере, одной недеформируемой продольной секцией и с, по меньшей мере, одним тонким сжатым элементом, способным трансформироваться для перемещения стенки трубопровода между сжатым состоянием и расширенным состоянием.
44. Способ по п.43, отличающийся тем, что дополнительно определяют характеристику силы отклонения стенки трубопровода посредством выбора отношения толщины, по меньшей мере, одной недеформируемой предельной секции к толщине, по меньшей мере, одного тонкого сжатого элемента.
45. Способ по п.44, отличающийся тем, что выбирают отношение толщин, составляющее, по меньшей мере, 2:1.
46. Способ по п.44, отличающийся тем, что выбирают отношение толщин, составляющее, по меньшей мере, 3:1.
47. Способ по п.44, отличающийся тем, что выбирают отношение толщин, составляющее, по меньшей мере, 6:1.
48. Способ по п.43, отличающийся тем, что дополнительно определяют характеристику силы отклонения стенки трубопровода посредством выбора формы ячейки.
49. Способ по п.48, отличающийся тем, что выбирают кривизну тонкого элемента при нахождении стенки трубопровода в сжатом положении.
RU2003134377/03A 2000-10-20 2003-11-26 Расширяемое приспособление (варианты), устройство (варианты) и способ их использования в буровой скважине (варианты) RU2263198C2 (ru)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US24227600P 2000-10-20 2000-10-20
US60/242,276 2000-10-20
US26394101P 2001-01-24 2001-01-24
US60/263,941 2001-01-24
US09/973,442 2001-10-09
US09/973,442 US6799637B2 (en) 2000-10-20 2001-10-09 Expandable tubing and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2001128440/03A Division RU2225497C2 (ru) 2000-10-20 2001-10-19 Устройство, расширяемый трубчатый компонент (варианты) и способ их использования в буровой скважине (варианты)

Publications (2)

Publication Number Publication Date
RU2003134377A RU2003134377A (ru) 2005-05-27
RU2263198C2 true RU2263198C2 (ru) 2005-10-27

Family

ID=27399564

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003134377/03A RU2263198C2 (ru) 2000-10-20 2003-11-26 Расширяемое приспособление (варианты), устройство (варианты) и способ их использования в буровой скважине (варианты)

Country Status (8)

Country Link
US (9) US6799637B2 (ru)
CA (1) CA2359450C (ru)
GB (2) GB2404683B (ru)
NL (1) NL1019192C2 (ru)
NO (1) NO331429B1 (ru)
RU (1) RU2263198C2 (ru)
SA (1) SA02220629B1 (ru)
SG (1) SG91940A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8230913B2 (en) 2001-01-16 2012-07-31 Halliburton Energy Services, Inc. Expandable device for use in a well bore
RU2491409C2 (ru) * 2008-03-25 2013-08-27 Бэйкер Хьюз Инкорпорейтед Система анкерного крепления и изоляции в стволе скважины
USRE45011E1 (en) 2000-10-20 2014-07-15 Halliburton Energy Services, Inc. Expandable tubing and method

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8353948B2 (en) 1997-01-24 2013-01-15 Celonova Stent, Inc. Fracture-resistant helical stent incorporating bistable cells and methods of use
US8663311B2 (en) 1997-01-24 2014-03-04 Celonova Stent, Inc. Device comprising biodegradable bistable or multistable cells and methods of use
US6789621B2 (en) 2000-08-03 2004-09-14 Schlumberger Technology Corporation Intelligent well system and method
GB2389606B (en) 2000-12-22 2005-06-29 E2Tech Ltd Method and apparatus for downhole remedial or repair operations
US7168485B2 (en) 2001-01-16 2007-01-30 Schlumberger Technology Corporation Expandable systems that facilitate desired fluid flow
DE60226185D1 (de) * 2001-01-16 2008-06-05 Schlumberger Technology Bv Bistabile, ausdehnbare Vorrichtung und Verfahren zum Ausdehnen einer solchen Vorrichtung
US6648071B2 (en) * 2001-01-24 2003-11-18 Schlumberger Technology Corporation Apparatus comprising expandable bistable tubulars and methods for their use in wellbores
US6571871B2 (en) * 2001-06-20 2003-06-03 Weatherford/Lamb, Inc. Expandable sand screen and method for installing same in a wellbore
US6932161B2 (en) * 2001-09-26 2005-08-23 Weatherford/Lams, Inc. Profiled encapsulation for use with instrumented expandable tubular completions
CA2357883C (en) * 2001-09-28 2010-06-15 Noetic Engineering Inc. Slotting geometry for metal pipe and method of use of the same
US6722427B2 (en) 2001-10-23 2004-04-20 Halliburton Energy Services, Inc. Wear-resistant, variable diameter expansion tool and expansion methods
AU2002356764A1 (en) * 2001-11-28 2003-06-10 Shell Internationale Research Maatschappij B.V. Expandable tubes with overlapping end portions
GB0128667D0 (en) 2001-11-30 2002-01-23 Weatherford Lamb Tubing expansion
US7156182B2 (en) * 2002-03-07 2007-01-02 Baker Hughes Incorporated Method and apparatus for one trip tubular expansion
US7322422B2 (en) * 2002-04-17 2008-01-29 Schlumberger Technology Corporation Inflatable packer inside an expandable packer and method
US6899182B2 (en) * 2002-05-08 2005-05-31 Baker Hughes Incorporated Method of screen or pipe expansion downhole without addition of pipe at the surface
US6742598B2 (en) * 2002-05-29 2004-06-01 Weatherford/Lamb, Inc. Method of expanding a sand screen
US7055609B2 (en) * 2002-06-03 2006-06-06 Schlumberger Technology Corporation Handling and assembly equipment and method
US7036600B2 (en) * 2002-08-01 2006-05-02 Schlumberger Technology Corporation Technique for deploying expandables
GB2412934B (en) * 2002-08-06 2006-08-09 Schlumberger Holdings Expandable tubular devices and related methods
US7086476B2 (en) * 2002-08-06 2006-08-08 Schlumberger Technology Corporation Expandable devices and method
US6935432B2 (en) 2002-09-20 2005-08-30 Halliburton Energy Services, Inc. Method and apparatus for forming an annular barrier in a wellbore
US6854522B2 (en) 2002-09-23 2005-02-15 Halliburton Energy Services, Inc. Annular isolators for expandable tubulars in wellbores
US7182141B2 (en) * 2002-10-08 2007-02-27 Weatherford/Lamb, Inc. Expander tool for downhole use
US7191842B2 (en) * 2003-03-12 2007-03-20 Schlumberger Technology Corporation Collapse resistant expandables for use in wellbore environments
CA2521528A1 (en) * 2003-04-17 2004-10-28 Shell Canada Limited System for expanding a tubular element in a wellbore
BRPI0409897A (pt) * 2003-05-05 2006-05-23 Shell Int Research dispositivo de expansão
OA13217A (en) 2003-07-07 2006-12-13 Sheel Internationale Res Mij Bv Expanding a tubular element to different inner diameters.
MY137430A (en) * 2003-10-01 2009-01-30 Shell Int Research Expandable wellbore assembly
US7478686B2 (en) * 2004-06-17 2009-01-20 Baker Hughes Incorporated One trip well drilling to total depth
GB2420357B (en) * 2004-11-17 2008-05-21 Schlumberger Holdings Perforating logging tool
GB0520860D0 (en) * 2005-10-14 2005-11-23 Weatherford Lamb Tubing expansion
US7832488B2 (en) 2005-11-15 2010-11-16 Schlumberger Technology Corporation Anchoring system and method
US7407013B2 (en) * 2006-12-21 2008-08-05 Schlumberger Technology Corporation Expandable well screen with a stable base
US20080289812A1 (en) * 2007-04-10 2008-11-27 Schlumberger Technology Corporation System for downhole packing
CN101796261A (zh) * 2007-04-18 2010-08-04 动力管柱系统公司 多孔管状结构
US9194512B2 (en) 2007-04-30 2015-11-24 Mark Andreychuk Coiled tubing with heat resistant conduit
CA2630084A1 (en) * 2007-04-30 2008-10-30 Mark Andreychuk Coiled tubing with retainer for conduit
US7857064B2 (en) * 2007-06-05 2010-12-28 Baker Hughes Incorporated Insert sleeve forming device for a recess shoe
GB0712345D0 (en) 2007-06-26 2007-08-01 Metcalfe Paul D Downhole apparatus
US8733453B2 (en) 2007-12-21 2014-05-27 Schlumberger Technology Corporation Expandable structure for deployment in a well
US8291781B2 (en) 2007-12-21 2012-10-23 Schlumberger Technology Corporation System and methods for actuating reversibly expandable structures
US7896088B2 (en) 2007-12-21 2011-03-01 Schlumberger Technology Corporation Wellsite systems utilizing deployable structure
US20090308619A1 (en) * 2008-06-12 2009-12-17 Schlumberger Technology Corporation Method and apparatus for modifying flow
US8197747B2 (en) * 2008-08-15 2012-06-12 Xiao Huang Low-melting boron-free braze alloy compositions
US9546548B2 (en) 2008-11-06 2017-01-17 Schlumberger Technology Corporation Methods for locating a cement sheath in a cased wellbore
WO2010053931A1 (en) * 2008-11-06 2010-05-14 Schlumberger Canada Limited Distributed acoustic wave detection
US20100122810A1 (en) * 2008-11-19 2010-05-20 Langlais Michael D Well screens and method of making well screens
WO2010088542A1 (en) * 2009-01-30 2010-08-05 Schlumberger Canada Limited Downhole pressure barrier and method for communication lines
US8453729B2 (en) 2009-04-02 2013-06-04 Key Energy Services, Llc Hydraulic setting assembly
US9303477B2 (en) 2009-04-02 2016-04-05 Michael J. Harris Methods and apparatus for cementing wells
US8684096B2 (en) * 2009-04-02 2014-04-01 Key Energy Services, Llc Anchor assembly and method of installing anchors
WO2010132894A1 (en) 2009-05-15 2010-11-18 Vast Power Portfilio, Llc Method and apparatus for strain relief in thermal liners for fluid transfer
DK179473B1 (en) 2009-10-30 2018-11-27 Total E&P Danmark A/S A device and a system and a method of moving in a tubular channel
DK177946B9 (da) 2009-10-30 2015-04-20 Maersk Oil Qatar As Brøndindretning
DK178339B1 (en) 2009-12-04 2015-12-21 Maersk Oil Qatar As An apparatus for sealing off a part of a wall in a section drilled into an earth formation, and a method for applying the apparatus
US8261842B2 (en) 2009-12-08 2012-09-11 Halliburton Energy Services, Inc. Expandable wellbore liner system
WO2011146418A1 (en) 2010-05-17 2011-11-24 Vast Power Portfolio, Llc Bendable strain relief fluid filter liner, method and apparatus
US8924158B2 (en) 2010-08-09 2014-12-30 Schlumberger Technology Corporation Seismic acquisition system including a distributed sensor having an optical fiber
US8789595B2 (en) 2011-01-14 2014-07-29 Schlumberger Technology Corporation Apparatus and method for sand consolidation
DK177547B1 (da) 2011-03-04 2013-10-07 Maersk Olie & Gas Fremgangsmåde og system til brønd- og reservoir-management i udbygninger med åben zone såvel som fremgangsmåde og system til produktion af råolie
EP2631423A1 (en) 2012-02-23 2013-08-28 Services Pétroliers Schlumberger Screen apparatus and method
US9322249B2 (en) 2012-02-23 2016-04-26 Halliburton Energy Services, Inc. Enhanced expandable tubing run through production tubing and into open hole
US20150275588A1 (en) * 2012-10-24 2015-10-01 Tdtech Limited Centralisation system
GB201223055D0 (en) * 2012-12-20 2013-02-06 Carragher Paul Method and apparatus for use in well abandonment
WO2016068917A1 (en) 2014-10-29 2016-05-06 Halliburton Energy Services, Inc. Internally trussed high-expansion support for refracturing operations
WO2016076853A1 (en) 2014-11-12 2016-05-19 Halliburton Energy Services, Inc. Internally trussed high-expansion support for inflow control device sealing applications
US10563486B2 (en) 2016-06-06 2020-02-18 Baker Hughes, A Ge Company, Llc Screen assembly for a resource exploration system
US10900289B2 (en) 2017-01-05 2021-01-26 Saudi Arabian Oil Company Drilling bottom hole assembly for loss circulation mitigation
AU2018261402B2 (en) 2017-05-01 2022-09-22 Halliburton Energy Services, Inc. Biflex with flow lines
WO2019027462A1 (en) 2017-08-03 2019-02-07 Halliburton Energy Services, Inc. METHODS FOR SUPPORTING WELLBORE FORMATIONS WITH EXTENDABLE STRUCTURES
US10662762B2 (en) 2017-11-02 2020-05-26 Saudi Arabian Oil Company Casing system having sensors
EP3717739B1 (en) * 2017-11-27 2023-06-28 Conocophillips Company Method and apparatus for washing an upper completion
US11519261B2 (en) * 2018-04-10 2022-12-06 Halliburton Energy Services, Inc. Deployment of downhole sensors
US20200024025A1 (en) * 2018-07-19 2020-01-23 Maluki Takumah Insert lock tab wrap folder and adhesive tab wrap folder
CN109263133B (zh) * 2018-09-13 2021-04-09 大连海洋大学 一种变形模式可控的智能结构及其变形方法
US10954739B2 (en) 2018-11-19 2021-03-23 Saudi Arabian Oil Company Smart rotating control device apparatus and system
FR3088983B1 (fr) * 2018-11-23 2020-12-11 Commissariat Energie Atomique Registre aéraulique adoptant un état intermédiaire filtrant entre des états passant et non-passant
US11078749B2 (en) 2019-10-21 2021-08-03 Saudi Arabian Oil Company Tubular wire mesh for loss circulation and wellbore stability
GB2626287A (en) 2020-01-31 2024-07-17 Halliburton Energy Services Inc Compliant screen shroud to limit expansion
CN115605667A (zh) 2020-04-02 2023-01-13 艺达思健康与科学有限责任公司(Us) 具有波纹管密闭密封件的精密容积泵

Family Cites Families (399)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US261252A (en) 1882-07-18 Drive-well point or strainer
US1314600A (en) 1919-09-02 Flexible shaft
US380419A (en) 1888-04-03 Ooooog
US997191A (en) 1909-10-25 1911-07-04 Henry C Hogarth Well-casing.
US1135809A (en) 1914-01-21 1915-04-13 Eli Jones Well-strainer.
US1233888A (en) 1916-09-01 1917-07-17 Frank W A Finley Art of well-producing or earth-boring.
US1301285A (en) 1916-09-01 1919-04-22 Frank W A Finley Expansible well-casing.
US1229437A (en) 1916-10-09 1917-06-12 William H Foster Strainer.
US1276213A (en) 1918-01-10 1918-08-20 Bert A Hare Oil-well strainer.
US1647907A (en) 1926-10-29 1927-11-01 Dennis D Doty Well casing
US1945079A (en) 1931-02-10 1934-01-30 Midland Steel Prod Co Method of forming axle housings
US1981525A (en) 1933-12-05 1934-11-20 Bailey E Price Method of and apparatus for drilling oil wells
US2050128A (en) 1934-03-30 1936-08-04 Schlumberger Well Surv Corp Thermometric method of locating the top of the cement behind a well casing
US2016683A (en) 1934-05-21 1935-10-08 Alfred S Black Fishing tool
US2171840A (en) 1937-10-25 1939-09-05 Baggah Corp Method for determining the position of cement slurry in a well bore
US2220205A (en) 1939-03-31 1940-11-05 Standard Oil Dev Co Method of locating detectable cement in a borehole
US2217708A (en) 1939-05-08 1940-10-15 Oil Equipment Engineering Corp Well cementing method and apparatus
US2371385A (en) 1942-12-14 1945-03-13 Standard Oil Dev Co Gravel-packed liner and perforation assembly
US2530966A (en) 1943-04-17 1950-11-21 Standard Oil Dev Co Well completion apparatus
US2696169A (en) 1948-04-10 1954-12-07 Phillips Petroleum Co Shaped charge well-pipe perforator
US2677466A (en) 1951-02-08 1954-05-04 Proportioncers Inc Core for filter elements
US2769655A (en) 1953-04-10 1956-11-06 Lloyd R Holmes Internal pipe gripping tool
US2760581A (en) 1954-02-05 1956-08-28 Johnston Testers Inc Well completion tool
US2835328A (en) 1954-12-10 1958-05-20 George A Thompson Well point
US2812025A (en) 1955-01-24 1957-11-05 James U Teague Expansible liner
US2815025A (en) * 1956-02-16 1957-12-03 Fenton Liver bile pouch
US3069125A (en) 1958-01-20 1962-12-18 Robertshaw Fulton Controls Co Heat actuated snap acting valve
US2990017A (en) 1958-06-24 1961-06-27 Moretrench Corp Wellpoint
US2912025A (en) * 1958-07-07 1959-11-10 William K Thomas Hacksaw and frame therefor
US3179168A (en) 1962-08-09 1965-04-20 Pan American Petroleum Corp Metallic casing liner
US3203451A (en) 1962-08-09 1965-08-31 Pan American Petroleum Corp Corrugated tube for lining wells
US3253842A (en) 1963-12-10 1966-05-31 Thiokol Chemical Corp Shear key joint
US3297092A (en) 1964-07-15 1967-01-10 Pan American Petroleum Corp Casing patch
US3353599A (en) 1964-08-04 1967-11-21 Gulf Oil Corp Method and apparatus for stabilizing formations
US3358492A (en) 1965-09-08 1967-12-19 Embassy Ind Inc Mandrel construction
US3389752A (en) 1965-10-23 1968-06-25 Schlumberger Technology Corp Zone protection
US3415321A (en) 1966-09-09 1968-12-10 Dresser Ind Shaped charge perforating apparatus and method
US3508587A (en) 1966-09-29 1970-04-28 Hans A Mauch Tubular structural member
US3414055A (en) 1966-10-24 1968-12-03 Mobil Oil Corp Formation consolidation using a combustible liner
US3463247A (en) 1967-08-07 1969-08-26 Robbins & Assoc James S Drill stem breakout apparatus
US3507340A (en) 1968-02-05 1970-04-21 Schlumberger Technology Corp Apparatus for well completion
US3482629A (en) 1968-06-20 1969-12-09 Shell Oil Co Method for the sand control of a well
US3489220A (en) 1968-08-02 1970-01-13 J C Kinley Method and apparatus for repairing pipe in wells
US3556219A (en) 1968-09-18 1971-01-19 Phillips Petroleum Co Eccentric gravel-packed well liner
US3561529A (en) 1968-10-02 1971-02-09 Electric Wireline Specialties Through-tubing nonretrievable bridge plug
US3604732A (en) 1969-05-12 1971-09-14 Lynes Inc Inflatable element
US3657744A (en) 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US3672705A (en) 1970-06-19 1972-06-27 Garren Corp Pipe jack
US3712373A (en) 1970-10-02 1973-01-23 Pan American Petroleum Corp Multi-layer well screen
US3692114A (en) 1970-10-22 1972-09-19 Shell Oil Co Fluidized sandpacking
US3785193A (en) 1971-04-10 1974-01-15 Kinley J Liner expanding apparatus
US3818986A (en) 1971-11-01 1974-06-25 Dresser Ind Selective well treating and gravel packing apparatus
CH543400A (de) 1972-10-10 1973-10-31 Peyer Siegfried Klemmvorrichtung für Büropapiere
US4185856A (en) 1973-04-13 1980-01-29 Mcevoy Oilfield Equipment Company Pipe joint with remotely operable latch
US3864970A (en) 1973-10-18 1975-02-11 Schlumberger Technology Corp Methods and apparatus for testing earth formations composed of particles of various sizes
US3913676A (en) 1974-06-19 1975-10-21 Baker Oil Tools Inc Method and apparatus for gravel packing
US3963076A (en) 1975-03-07 1976-06-15 Baker Oil Tools, Inc. Method and apparatus for gravel packing well bores
US4064938A (en) 1976-01-12 1977-12-27 Standard Oil Company (Indiana) Well screen with erosion protection walls
US4065953A (en) 1976-06-15 1978-01-03 Mannesmann Aktiengesellschaft Mechanical tube expander
US5643314A (en) 1995-11-13 1997-07-01 Navius Corporation Self-expanding stent
US4309891A (en) 1978-02-17 1982-01-12 Texaco Inc. Double action, self-contained swages for joining two small tubes
DE2815705C2 (de) 1978-04-12 1986-10-16 Rolf 3100 Celle Rüße Verfahren und Vorrichtung zum Zentrieren von Futterrohren
US4253522A (en) 1979-05-21 1981-03-03 Otis Engineering Corporation Gravel pack tool
US4323625A (en) * 1980-06-13 1982-04-06 Monsanto Company Composites of grafted olefin polymers and cellulose fibers
FR2487086A1 (fr) 1980-07-18 1982-01-22 Albertini Prosper Procede et dispositifs pour la mise en place et le maintien d'un ruban dans une enchassure de lunettes pour obtention d'un gabarit par coulee
US4401158A (en) 1980-07-21 1983-08-30 Baker International Corporation One trip multi-zone gravel packing apparatus
US4337969A (en) 1980-10-06 1982-07-06 Schlumberger Technology Corp. Extension member for well-logging operations
JPS5832275B2 (ja) 1980-12-11 1983-07-12 永岡金網株式会社 スクリ−ン
US4541486A (en) 1981-04-03 1985-09-17 Baker Oil Tools, Inc. One trip perforating and gravel pack system
US4375164A (en) 1981-04-22 1983-03-01 Halliburton Company Formation tester
SE445884B (sv) 1982-04-30 1986-07-28 Medinvent Sa Anordning for implantation av en rorformig protes
US4558219A (en) 1982-07-06 1985-12-10 Dresser Industries, Inc. Method and apparatus for determining flow characteristics within a well
SU1105620A1 (ru) 1983-02-03 1984-07-30 Белорусский Научно-Исследовательский Геологоразведочный Институт Фильтр дл нефт ных и гидрогеологических скважин
US4495997A (en) 1983-05-11 1985-01-29 Conoco Inc. Well completion system and process
US4626129A (en) 1983-07-27 1986-12-02 Antonius B. Kothman Sub-soil drainage piping
US4665906A (en) 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US4600037A (en) 1984-03-19 1986-07-15 Texas Eastern Drilling Systems, Inc. Flexible drill pipe
US4566538A (en) 1984-03-26 1986-01-28 Baker Oil Tools, Inc. Fail-safe one trip perforating and gravel pack system
FR2562345B1 (fr) 1984-04-02 1986-06-27 Alsthom Atlantique Dispositif d'accouplement pour moteurs electriques
US4553595A (en) 1984-06-01 1985-11-19 Texaco Inc. Method for forming a gravel packed horizontal well
US4558742A (en) 1984-07-13 1985-12-17 Texaco Inc. Method and apparatus for gravel packing horizontal wells
US4580568A (en) 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
BE900733A (fr) 1984-10-02 1985-02-01 Diamant Boart Sa Dispositif de controle du verrouillage d'un carottier double a cable.
US4706659A (en) 1984-12-05 1987-11-17 Regents Of The University Of Michigan Flexible connecting shaft for intramedullary reamer
GB8432814D0 (en) 1984-12-31 1985-02-06 Lifeline Ltd Catheter mount assembly
US4606408A (en) 1985-02-20 1986-08-19 Halliburton Company Method and apparatus for gravel-packing a well
GB2175824A (en) 1985-05-29 1986-12-10 Barry Rene Christopher Paul Producing composite metal articles
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US5102417A (en) 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4665918A (en) 1986-01-06 1987-05-19 Garza Gilbert A Prosthesis system and method
HU196195B (en) 1986-04-28 1988-10-28 Richter Gedeon Vegyeszet Process for producing 1,4-disubstituted piperazine derivatives and pharmaceuticals comprising the compounds
US4740207A (en) 1986-09-10 1988-04-26 Kreamer Jeffry W Intralumenal graft
US4893623A (en) 1986-12-09 1990-01-16 Advanced Surgical Intervention, Inc. Method and apparatus for treating hypertrophy of the prostate gland
US4783995A (en) 1987-03-06 1988-11-15 Oilfield Service Corporation Of America Logging tool
JPH088933B2 (ja) 1987-07-10 1996-01-31 日本ゼオン株式会社 カテ−テル
US4832121A (en) 1987-10-01 1989-05-23 The Trustees Of Columbia University In The City Of New York Methods for monitoring temperature-vs-depth characteristics in a borehole during and after hydraulic fracture treatments
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5192307A (en) 1987-12-08 1993-03-09 Wall W Henry Angioplasty stent
FR2626222B1 (fr) 1988-01-22 1991-08-30 Labavia Installation de freinage de vehicules a dispositif d'antiblocage des roues et ralentisseur a commande controlee
JP2561853B2 (ja) 1988-01-28 1996-12-11 株式会社ジェイ・エム・エス 形状記憶性を有する成形体及びその使用方法
US4809792A (en) 1988-03-03 1989-03-07 National-Oilwell Support system for a top driven drilling unit
US5226913A (en) 1988-09-01 1993-07-13 Corvita Corporation Method of making a radially expandable prosthesis
CA1322628C (en) 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
DE8812719U1 (de) 1988-10-11 1989-11-09 Lindenberg, Josef, 7500 Karlsruhe Vorrichtung zum Beheben von Stenosen
US4874327A (en) 1988-11-07 1989-10-17 Halliburton Logging Services, Inc. Universal cable head for a multiconductor logging cable
FR2642812B1 (fr) 1989-02-08 1991-05-31 Crouzet Sa Dispositif de commutation de fluide, piezoelectrique a commande optique
US4990155A (en) 1989-05-19 1991-02-05 Wilkoff Howard M Surgical stent method and apparatus
US4994071A (en) 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
US4945991A (en) 1989-08-23 1990-08-07 Mobile Oil Corporation Method for gravel packing wells
US5141360A (en) 1989-09-18 1992-08-25 David Zeman Irrigation tubing
IE73670B1 (en) 1989-10-02 1997-07-02 Medtronic Inc Articulated stent
US5163321A (en) 1989-10-17 1992-11-17 Baroid Technology, Inc. Borehole pressure and temperature measurement system
US4976142A (en) 1989-10-17 1990-12-11 Baroid Technology, Inc. Borehole pressure and temperature measurement system
US5243190A (en) 1990-01-17 1993-09-07 Protechnics International, Inc. Radioactive tracing with particles
US5119373A (en) 1990-02-09 1992-06-02 Luxcom, Inc. Multiple buffer time division multiplexing ring
US5545208A (en) 1990-02-28 1996-08-13 Medtronic, Inc. Intralumenal drug eluting prosthesis
EP0527932B1 (fr) 1990-05-18 1998-11-04 NOBILEAU, Philippe Preforme et procede pour tuber et/ou chemiser un volume cylindrique
US5156220A (en) 1990-08-27 1992-10-20 Baker Hughes Incorporated Well tool with sealing means
DE9014230U1 (de) 1990-10-13 1991-11-21 Angiomed AG, 7500 Karlsruhe Vorrichtung zum Aufweiten einer Stenose in einer Körperröhre
WO1992006734A1 (en) 1990-10-18 1992-04-30 Ho Young Song Self-expanding endovascular stent
US5174379A (en) 1991-02-11 1992-12-29 Otis Engineering Corporation Gravel packing and perforating a well in a single trip
US5211241A (en) 1991-04-01 1993-05-18 Otis Engineering Corporation Variable flow sliding sleeve valve and positioning shifting tool therefor
US5628822A (en) * 1991-04-02 1997-05-13 Synthetic Industries, Inc. Graded fiber design and concrete reinforced therewith
US5197978B1 (en) 1991-04-26 1996-05-28 Advanced Coronary Tech Removable heat-recoverable tissue supporting device
US5107927A (en) 1991-04-29 1992-04-28 Otis Engineering Corporation Orienting tool for slant/horizontal completions
JP3308559B2 (ja) 1991-06-05 2002-07-29 キヤノン株式会社 データ通信装置及びデータ処理方法
US5147370A (en) 1991-06-12 1992-09-15 Mcnamara Thomas O Nitinol stent for hollow body conduits
US5186255A (en) 1991-07-16 1993-02-16 Corey John C Flow monitoring and control system for injection wells
US5500013A (en) 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
CA2380683C (en) 1991-10-28 2006-08-08 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
FR2683449A1 (fr) 1991-11-08 1993-05-14 Cardon Alain Endoprothese pour implantation transluminale.
US5234448A (en) 1992-02-28 1993-08-10 Shadyside Hospital Method and apparatus for connecting and closing severed blood vessels
US5282823A (en) 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
WO1993019803A1 (en) 1992-03-31 1993-10-14 Boston Scientific Corporation Medical wire
US5354308A (en) 1992-05-01 1994-10-11 Beth Israel Hospital Association Metal wire stent
US5540712A (en) 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
AU678350B2 (en) 1992-05-08 1997-05-29 Schneider (Usa) Inc. Esophageal stent and delivery tool
US5476434A (en) 1992-05-27 1995-12-19 Kalb; Irvin M. Female incontinence device including electronic sensors
MY108743A (en) 1992-06-09 1996-11-30 Shell Int Research Method of greating a wellbore in an underground formation
MY108830A (en) 1992-06-09 1996-11-30 Shell Int Research Method of completing an uncased section of a borehole
US5496365A (en) 1992-07-02 1996-03-05 Sgro; Jean-Claude Autoexpandable vascular endoprosthesis
EP0653924B1 (en) 1992-08-06 1997-03-05 William Cook Europe A/S A prosthetic device for sustaining a blood-vessel or hollow organ lumen
US6336938B1 (en) 1992-08-06 2002-01-08 William Cook Europe A/S Implantable self expanding prosthetic device
US5318121A (en) 1992-08-07 1994-06-07 Baker Hughes Incorporated Method and apparatus for locating and re-entering one or more horizontal wells using whipstock with sealable bores
US5396957A (en) 1992-09-29 1995-03-14 Halliburton Company Well completions with expandable casing portions
US5355948A (en) 1992-11-04 1994-10-18 Sparlin Derry D Permeable isolation sectioned screen
US5449382A (en) 1992-11-04 1995-09-12 Dayton; Michael P. Minimally invasive bioactivated endoprosthesis for vessel repair
DE9317550U1 (de) 1992-11-18 1994-01-27 Minnesota Mining And Manufacturing Co., Saint Paul, Minn. Applikationsschale für Dentalmaterial
US5309988A (en) 1992-11-20 1994-05-10 Halliburton Company Electromechanical shifter apparatus for subsurface well flow control
US5383926A (en) 1992-11-23 1995-01-24 Children's Medical Center Corporation Re-expandable endoprosthesis
BE1006440A3 (fr) 1992-12-21 1994-08-30 Dereume Jean Pierre Georges Em Endoprothese luminale et son procede de preparation.
US5329998A (en) 1992-12-23 1994-07-19 Halliburton Company One trip TCP/GP system with fluid containment means
US5419760A (en) 1993-01-08 1995-05-30 Pdt Systems, Inc. Medicament dispensing stent for prevention of restenosis of a blood vessel
DE4300285A1 (de) 1993-01-08 1994-07-14 Wolf Gmbh Richard Instrument zum Implantieren und Extrahieren von Stents
WO1994016646A1 (en) 1993-01-19 1994-08-04 Schneider (Usa) Inc. Clad composite stent
US5355949A (en) 1993-04-22 1994-10-18 Sparlin Derry D Well liner with dual concentric half screens
US5441515A (en) 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5377104A (en) 1993-07-23 1994-12-27 Teledyne Industries, Inc. Passive seismic imaging for real time management and verification of hydraulic fracturing and of geologic containment of hazardous wastes injected into hydraulic fractures
CA2127637C (en) 1993-07-26 2006-01-03 Scott Bair Fluid jet surgical cutting tool
US5913897A (en) 1993-09-16 1999-06-22 Cordis Corporation Endoprosthesis having multiple bridging junctions and procedure
FR2710834B1 (fr) 1993-10-05 1995-12-22 Guerbet Sa Organe tubulaire expansible pour endoprothèse intraluminale, endoprothèse intraluminale, procédé de fabrication.
US5562690A (en) 1993-11-12 1996-10-08 United States Surgical Corporation Apparatus and method for performing compressional anastomoses
IT1269443B (it) 1994-01-19 1997-04-01 Stefano Nazari Protesi vascolare per la sostituzione o il rivestimento interno di vasi sanguigni di medio e grande diametro e dispositivo per la sua applicazione senza interruzione del flusso ematico
US5403341A (en) 1994-01-24 1995-04-04 Solar; Ronald J. Parallel flow endovascular stent and deployment apparatus therefore
US5442173A (en) 1994-03-04 1995-08-15 Schlumberger Technology Corporation Method and system for real-time monitoring of earth formation fracture movement
US5556413A (en) 1994-03-11 1996-09-17 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
JP3426334B2 (ja) 1994-03-11 2003-07-14 株式会社ナガオカ コイル状井戸用スクリーン
JP3296920B2 (ja) 1994-03-15 2002-07-02 京セラミタ株式会社 ファクシミリ装置
US5843120A (en) 1994-03-17 1998-12-01 Medinol Ltd. Flexible-expandable stent
US5449373A (en) 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5733303A (en) 1994-03-17 1998-03-31 Medinol Ltd. Flexible expandable stent
JP3665877B2 (ja) 1994-03-24 2005-06-29 株式会社リコー 複合機
US6001123A (en) 1994-04-01 1999-12-14 Gore Enterprise Holdings Inc. Folding self-expandable intravascular stent-graft
DE69510986T2 (de) 1994-04-25 1999-12-02 Advanced Cardiovascular Systems, Inc. Strahlungsundurchlässige Stentsmarkierungen
JP3011017B2 (ja) 1994-04-28 2000-02-21 ブラザー工業株式会社 ファクシミリ装置
US5450898A (en) 1994-05-12 1995-09-19 Sparlin; Derry D. Gravity enhanced maintenance screen
US6582461B1 (en) 1994-05-19 2003-06-24 Scimed Life Systems, Inc. Tissue supporting devices
US6013854A (en) 1994-06-17 2000-01-11 Terumo Kabushiki Kaisha Indwelling stent and the method for manufacturing the same
DE69530891T2 (de) 1994-06-27 2004-05-13 Corvita Corp., Miami Bistabile luminale Transplantat-Endoprothesen
US5397355A (en) 1994-07-19 1995-03-14 Stentco, Inc. Intraluminal stent
US5456319A (en) 1994-07-29 1995-10-10 Atlantic Richfield Company Apparatus and method for blocking well perforations
US5702419A (en) 1994-09-21 1997-12-30 Wake Forest University Expandable, intraluminal stents
US5545210A (en) 1994-09-22 1996-08-13 Advanced Coronary Technology, Inc. Method of implanting a permanent shape memory alloy stent
US5899882A (en) 1994-10-27 1999-05-04 Novoste Corporation Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient
FR2728156B1 (fr) 1994-12-16 1997-05-30 Fouere Alain Manchon extensible interne a usage chirurgical pour dilatation de conduits physiologiques
JPH08186696A (ja) 1994-12-28 1996-07-16 Nec Corp ファクシミリ装置
US5492175A (en) 1995-01-09 1996-02-20 Mobil Oil Corporation Method for determining closure of a hydraulically induced in-situ fracture
MY121223A (en) 1995-01-16 2006-01-28 Shell Int Research Method of creating a casing in a borehole
DE19508805C2 (de) 1995-03-06 2000-03-30 Lutz Freitag Stent zum Anordnen in einer Körperröhre mit einem flexiblen Stützgerüst aus mindestens zwei Drähten mit unterschiedlicher Formgedächtnisfunktion
ES2151082T3 (es) 1995-03-10 2000-12-16 Impra Inc Soporte encapsulado endoluminal y procedimientos para su fabricacion y su colocacion endoluminal.
GB9505721D0 (en) 1995-03-21 1995-05-10 Univ London Expandable surgical stent
EP0734698B9 (de) 1995-04-01 2006-07-05 Variomed AG Stent zur transluminalen Implantation in Hohlorgane
US5576485A (en) 1995-04-03 1996-11-19 Serata; Shosei Single fracture method and apparatus for simultaneous measurement of in-situ earthen stress state and material properties
US5515915A (en) 1995-04-10 1996-05-14 Mobil Oil Corporation Well screen having internal shunt tubes
GB9510465D0 (en) * 1995-05-24 1995-07-19 Petroline Wireline Services Connector assembly
US6602281B1 (en) 1995-06-05 2003-08-05 Avantec Vascular Corporation Radially expansible vessel scaffold having beams and expansion joints
US5609629A (en) 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
RU2157146C2 (ru) 1995-06-13 2000-10-10 ВИЛЬЯМ КУК Европа, A/S Устройство для имплантации в сосудах и полых органах (его варианты)
IL123039A (en) 1995-07-25 2002-02-10 Medstent Inc Expandable stent
US5641023A (en) 1995-08-03 1997-06-24 Halliburton Energy Services, Inc. Shifting tool for a subterranean completion structure
DK171865B1 (da) 1995-09-11 1997-07-21 Cook William Europ Ekspanderbar endovasculær stent
US5562697A (en) 1995-09-18 1996-10-08 William Cook, Europe A/S Self-expanding stent assembly and methods for the manufacture thereof
UA67719C2 (en) 1995-11-08 2004-07-15 Shell Int Research Deformable well filter and method for its installation
GB9522942D0 (en) 1995-11-09 1996-01-10 Petroline Wireline Services Downhole tool
GB9524109D0 (en) 1995-11-24 1996-01-24 Petroline Wireline Services Downhole apparatus
US5824040A (en) 1995-12-01 1998-10-20 Medtronic, Inc. Endoluminal prostheses and therapies for highly variable body lumens
DK0865562T3 (da) 1995-12-09 2002-07-22 Weatherford Lamb Rørledningsforbindelsesdel
NO965327L (no) 1995-12-14 1997-06-16 Halliburton Co Sporbare brönnsementsammensetninger og metoder
US6203569B1 (en) 1996-01-04 2001-03-20 Bandula Wijay Flexible stent
US5895406A (en) 1996-01-26 1999-04-20 Cordis Corporation Axially flexible stent
US6258116B1 (en) 1996-01-26 2001-07-10 Cordis Corporation Bifurcated axially flexible stent
US5695516A (en) 1996-02-21 1997-12-09 Iso Stent, Inc. Longitudinally elongating balloon expandable stent
GB2347449B (en) 1996-03-29 2000-12-06 Sensor Dynamics Ltd Apparatus for the remote measurement of physical parameters
NZ331269A (en) 1996-04-10 2000-01-28 Advanced Cardiovascular System Expandable stent, its structural strength varying along its length
US5891191A (en) 1996-04-30 1999-04-06 Schneider (Usa) Inc Cobalt-chromium-molybdenum alloy stent and stent-graft
GB2313078B (en) 1996-05-18 2000-03-08 Camco Int Improvements in or relating to torque machines
US5806589A (en) 1996-05-20 1998-09-15 Lang; Duane Apparatus for stabbing and threading a drill pipe safety valve
US5670161A (en) 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent
US5697971A (en) * 1996-06-11 1997-12-16 Fischell; Robert E. Multi-cell stent with cells having differing characteristics
US5896928A (en) 1996-07-01 1999-04-27 Baker Hughes Incorporated Flow restriction device for use in producing wells
MY116920A (en) 1996-07-01 2004-04-30 Shell Int Research Expansion of tubings
US5922020A (en) 1996-08-02 1999-07-13 Localmed, Inc. Tubular prosthesis having improved expansion and imaging characteristics
US5723781A (en) 1996-08-13 1998-03-03 Pruett; Phillip E. Borehole tracer injection and detection method
US5776183A (en) 1996-08-23 1998-07-07 Kanesaka; Nozomu Expandable stent
US5954133A (en) 1996-09-12 1999-09-21 Halliburton Energy Services, Inc. Methods of completing wells utilizing wellbore equipment positioning apparatus
US5807404A (en) 1996-09-19 1998-09-15 Medinol Ltd. Stent with variable features to optimize support and method of making such stent
CA2210087A1 (en) 1996-09-25 1998-03-25 Mobil Oil Corporation Alternate-path well screen with protective shroud
US5755776A (en) 1996-10-04 1998-05-26 Al-Saadon; Khalid Permanent expandable intraluminal tubular stent
US5868781A (en) 1996-10-22 1999-02-09 Scimed Life Systems, Inc. Locking stent
GB9622480D0 (en) 1996-10-29 1997-01-08 Weatherford Lamb Apparatus and method for running tubulars
US6049597A (en) 1996-10-29 2000-04-11 Canon Kabushiki Kaisha Data communication system between a personal computer and facsimile machine through an interface
WO1998020810A1 (en) 1996-11-12 1998-05-22 Medtronic, Inc. Flexible, radially expansible luminal prostheses
US6142230A (en) 1996-11-14 2000-11-07 Weatherford/Lamb, Inc. Wellbore tubular patch system
US5785120A (en) 1996-11-14 1998-07-28 Weatherford/Lamb, Inc. Tubular patch
US5957195A (en) 1996-11-14 1999-09-28 Weatherford/Lamb, Inc. Wellbore tool stroke indicator system and tubular patch
US6273634B1 (en) 1996-11-22 2001-08-14 Shell Oil Company Connector for an expandable tubing string
US6027527A (en) 1996-12-06 2000-02-22 Piolax Inc. Stent
US5833001A (en) 1996-12-13 1998-11-10 Schlumberger Technology Corporation Sealing well casings
GB9625939D0 (en) 1996-12-13 1997-01-29 Petroline Wireline Services Expandable tubing
US6206911B1 (en) 1996-12-19 2001-03-27 Simcha Milo Stent combination
US8353948B2 (en) 1997-01-24 2013-01-15 Celonova Stent, Inc. Fracture-resistant helical stent incorporating bistable cells and methods of use
CA2602435C (en) 1997-01-24 2012-03-13 Paragon Intellectual Properties, Llc Bistable spring construction for a stent and other medical apparatus
DE69831935T2 (de) 1997-01-24 2006-07-27 Paragon Intellectual Properties, LLC, Charleston Bistabiler federaufbau für ein stent
US8663311B2 (en) 1997-01-24 2014-03-04 Celonova Stent, Inc. Device comprising biodegradable bistable or multistable cells and methods of use
US6360633B2 (en) 1997-01-29 2002-03-26 Weatherford/Lamb, Inc. Apparatus and method for aligning tubulars
GB2321866A (en) 1997-02-07 1998-08-12 Weatherford Lamb Jaw unit for use in a tong
DE19703482A1 (de) 1997-01-31 1998-08-06 Ernst Peter Prof Dr M Strecker Stent
US5827321A (en) 1997-02-07 1998-10-27 Cornerstone Devices, Inc. Non-Foreshortening intraluminal prosthesis
US5997580A (en) 1997-03-27 1999-12-07 Johnson & Johnson Professional, Inc. Cement restrictor including shape memory material
US5842516A (en) 1997-04-04 1998-12-01 Mobil Oil Corporation Erosion-resistant inserts for fluid outlets in a well tool and method for installing same
WO1998045009A2 (en) 1997-04-04 1998-10-15 Oiltools International B.V. Filter for subterranean use
MY119637A (en) * 1997-04-28 2005-06-30 Shell Int Research Expandable well screen.
EP0910725B1 (en) 1997-05-02 2003-07-30 Baker Hughes Incorporated Wellbores utilizing fiber optic-based sensors and operating devices
US6281489B1 (en) 1997-05-02 2001-08-28 Baker Hughes Incorporated Monitoring of downhole parameters and tools utilizing fiber optics
US5918672A (en) 1997-05-08 1999-07-06 Mcconnell; Howard T. Shroud for a well screen
US5925879A (en) 1997-05-09 1999-07-20 Cidra Corporation Oil and gas well packer having fiber optic Bragg Grating sensors for downhole insitu inflation monitoring
WO1998057030A1 (en) 1997-06-09 1998-12-17 Baker Hughes Incorporated Control and monitoring system for chemical treatment of an oilfield well
FR2765619B1 (fr) 1997-07-01 2000-10-06 Schlumberger Cie Dowell Procede et dispositif pour la completion de puits pour la production d'hydrocarbures ou analogues
DE19728337A1 (de) 1997-07-03 1999-01-07 Inst Mikrotechnik Mainz Gmbh Implantierbare Gefäßstütze
GB9714651D0 (en) 1997-07-12 1997-09-17 Petroline Wellsystems Ltd Downhole tubing
MY122241A (en) 1997-08-01 2006-04-29 Shell Int Research Creating zonal isolation between the interior and exterior of a well system
US6059822A (en) 1997-08-22 2000-05-09 Uni-Cath Inc. Stent with different mesh patterns
US5964296A (en) 1997-09-18 1999-10-12 Halliburton Energy Services, Inc. Formation fracturing and gravel packing tool
KR20010082497A (ko) 1997-09-24 2001-08-30 메드 인스티튜트, 인코포레이티드 반경방향으로 팽창가능한 스텐트
US6042606A (en) 1997-09-29 2000-03-28 Cook Incorporated Radially expandable non-axially contracting surgical stent
US6021850A (en) 1997-10-03 2000-02-08 Baker Hughes Incorporated Downhole pipe expansion apparatus and method
US6029748A (en) 1997-10-03 2000-02-29 Baker Hughes Incorporated Method and apparatus for top to bottom expansion of tubulars
US6003600A (en) 1997-10-16 1999-12-21 Halliburton Energy Services, Inc. Methods of completing wells in unconsolidated subterranean zones
GB9723031D0 (en) * 1997-11-01 1998-01-07 Petroline Wellsystems Ltd Downhole tubing location method
US6147774A (en) 1997-12-08 2000-11-14 Ricoh Company, Ltd. Multifunction interface card for interfacing a facsimile machine, secure modem, and a personal computer
US6190406B1 (en) 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
US5981630A (en) * 1998-01-14 1999-11-09 Synthetic Industries, Inc. Fibers having improved sinusoidal configuration, concrete reinforced therewith and related method
JPH11275298A (ja) 1998-01-19 1999-10-08 Brother Ind Ltd ファクシミリ送信システム
US6623521B2 (en) 1998-02-17 2003-09-23 Md3, Inc. Expandable stent with sliding and locking radial elements
BR9908571A (pt) 1998-03-06 2000-11-21 Shell Int Research Processo para monitoração de fluxo de fluido
US6019789A (en) 1998-04-01 2000-02-01 Quanam Medical Corporation Expandable unit cell and intraluminal stent
US6263972B1 (en) 1998-04-14 2001-07-24 Baker Hughes Incorporated Coiled tubing screen and method of well completion
US6213686B1 (en) 1998-05-01 2001-04-10 Benton F. Baugh Gimbal for J-Lay pipe laying system
US6315040B1 (en) 1998-05-01 2001-11-13 Shell Oil Company Expandable well screen
US6093203A (en) 1998-05-13 2000-07-25 Uflacker; Renan Stent or graft support structure for treating bifurcated vessels having different diameter portions and methods of use and implantation
US6244349B1 (en) 1998-05-14 2001-06-12 Halliburton Energy Services, Inc. Circulating nipple and method for setting well casing
US6135208A (en) 1998-05-28 2000-10-24 Halliburton Energy Services, Inc. Expandable wellbore junction
US6083258A (en) 1998-05-28 2000-07-04 Yadav; Jay S. Locking stent
US6261319B1 (en) 1998-07-08 2001-07-17 Scimed Life Systems, Inc. Stent
GB9817246D0 (en) 1998-08-08 1998-10-07 Petroline Wellsystems Ltd Connector
GB2340859A (en) 1998-08-24 2000-03-01 Weatherford Lamb Method and apparatus for facilitating the connection of tubulars using a top drive
US6095242A (en) 1998-08-28 2000-08-01 Fmc Corporation Casing hanger
US6755856B2 (en) * 1998-09-05 2004-06-29 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection, coupled with improved protection against restenosis and thrombus formation
US6193744B1 (en) 1998-09-10 2001-02-27 Scimed Life Systems, Inc. Stent configurations
CA2248484A1 (en) 1998-09-25 2000-03-25 Lloyd L. Walker Back spin swivelling device for a progressive cavity pump
US6152599A (en) 1998-10-21 2000-11-28 The University Of Texas Systems Tomotherapy treatment table positioning device
AU751664B2 (en) 1998-10-29 2002-08-22 Shell Internationale Research Maatschappij B.V. Method for transporting and installing an expandable steel tube
US6745845B2 (en) 1998-11-16 2004-06-08 Shell Oil Company Isolation of subterranean zones
GB2343691B (en) 1998-11-16 2003-05-07 Shell Int Research Isolation of subterranean zones
US6634431B2 (en) 1998-11-16 2003-10-21 Robert Lance Cook Isolation of subterranean zones
US6263966B1 (en) 1998-11-16 2001-07-24 Halliburton Energy Services, Inc. Expandable well screen
DE69931348D1 (de) 1998-12-17 2006-06-22 Chevron Usa Inc Vorrichtung und verfahren zum schutz von optischen geräten unter rauhen betriebszuständen
GB2346632B (en) 1998-12-22 2003-08-06 Petroline Wellsystems Ltd Downhole sealing
EP2273064A1 (en) 1998-12-22 2011-01-12 Weatherford/Lamb, Inc. Procedures and equipment for profiling and jointing of pipes
US6138776A (en) 1999-01-20 2000-10-31 Hart; Christopher A. Power tongs
US6253850B1 (en) 1999-02-24 2001-07-03 Shell Oil Company Selective zonal isolation within a slotted liner
US6330918B1 (en) 1999-02-27 2001-12-18 Abb Vetco Gray, Inc. Automated dog-type riser make-up device and method of use
US6330911B1 (en) 1999-03-12 2001-12-18 Weatherford/Lamb, Inc. Tong
US6325825B1 (en) 1999-04-08 2001-12-04 Cordis Corporation Stent with variable wall thickness
US6419025B1 (en) 1999-04-09 2002-07-16 Shell Oil Company Method of selective plastic expansion of sections of a tubing
WO2000061915A1 (en) 1999-04-09 2000-10-19 Shell Internationale Research Maatschappij B.V. Method of creating a wellbore in an underground formation
US6227303B1 (en) 1999-04-13 2001-05-08 Mobil Oil Corporation Well screen having an internal alternate flowpath
US6536291B1 (en) 1999-07-02 2003-03-25 Weatherford/Lamb, Inc. Optical flow rate measurement using unsteady pressures
US6264685B1 (en) 1999-07-06 2001-07-24 Datascope Investment Corp. Flexible high radial strength stent
US6513599B1 (en) 1999-08-09 2003-02-04 Schlumberger Technology Corporation Thru-tubing sand control method and apparatus
US6220345B1 (en) 1999-08-19 2001-04-24 Mobil Oil Corporation Well screen having an internal alternate flowpath
US6571046B1 (en) 1999-09-23 2003-05-27 Baker Hughes Incorporated Protector system for fiber optic system components in subsurface applications
WO2001026584A1 (en) * 1999-10-14 2001-04-19 United Stenting, Inc. Stents with multilayered struts
US6343651B1 (en) 1999-10-18 2002-02-05 Schlumberger Technology Corporation Apparatus and method for controlling fluid flow with sand control
US6446729B1 (en) 1999-10-18 2002-09-10 Schlumberger Technology Corporation Sand control method and apparatus
US6374565B1 (en) 1999-11-09 2002-04-23 Foster-Miller, Inc. Foldable member
US6321503B1 (en) 1999-11-16 2001-11-27 Foster Miller, Inc. Foldable member
WO2001035715A2 (en) 1999-11-18 2001-05-25 Petrus Besselink Method for placing bifurcated stents
US6578630B2 (en) 1999-12-22 2003-06-17 Weatherford/Lamb, Inc. Apparatus and methods for expanding tubulars in a wellbore
US6325148B1 (en) 1999-12-22 2001-12-04 Weatherford/Lamb, Inc. Tools and methods for use with expandable tubulars
US6598678B1 (en) 1999-12-22 2003-07-29 Weatherford/Lamb, Inc. Apparatus and methods for separating and joining tubulars in a wellbore
AU782553B2 (en) 2000-01-05 2005-08-11 Baker Hughes Incorporated Method of providing hydraulic/fiber conduits adjacent bottom hole assemblies for multi-step completions
CA2401730C (en) 2000-03-02 2009-08-04 Harold J. Vinegar Controllable production well packer
BR0108874B1 (pt) 2000-03-02 2011-12-27 poÇo de petràleo para produÇço de produtos de petràleo, e, mÉtodo de produzir petràleo a partir de um poÇo de petràleo.
GB2360584B (en) 2000-03-25 2004-05-19 Abb Offshore Systems Ltd Monitoring fluid flow through a filter
US6478091B1 (en) * 2000-05-04 2002-11-12 Halliburton Energy Services, Inc. Expandable liner and associated methods of regulating fluid flow in a well
US6457518B1 (en) * 2000-05-05 2002-10-01 Halliburton Energy Services, Inc. Expandable well screen
US6415509B1 (en) 2000-05-18 2002-07-09 Halliburton Energy Services, Inc. Methods of fabricating a thin-wall expandable well screen assembly
US6675901B2 (en) 2000-06-01 2004-01-13 Schlumberger Technology Corp. Use of helically wound tubular structure in the downhole environment
US6378614B1 (en) 2000-06-02 2002-04-30 Oil & Gas Rental Services, Inc. Method of landing items at a well location
US6554064B1 (en) 2000-07-13 2003-04-29 Halliburton Energy Services, Inc. Method and apparatus for a sand screen with integrated sensors
US7100690B2 (en) 2000-07-13 2006-09-05 Halliburton Energy Services, Inc. Gravel packing apparatus having an integrated sensor and method for use of same
AU2001270615B2 (en) 2000-07-13 2004-10-14 Shell Internationale Research Maatschappij B.V. Deploying a cable through a guide conduit in a well
US6799637B2 (en) * 2000-10-20 2004-10-05 Schlumberger Technology Corporation Expandable tubing and method
US6789621B2 (en) 2000-08-03 2004-09-14 Schlumberger Technology Corporation Intelligent well system and method
US6681854B2 (en) 2000-11-03 2004-01-27 Schlumberger Technology Corp. Sand screen with communication line conduit
US6695054B2 (en) 2001-01-16 2004-02-24 Schlumberger Technology Corporation Expandable sand screen and methods for use
US6848510B2 (en) * 2001-01-16 2005-02-01 Schlumberger Technology Corporation Screen and method having a partial screen wrap
GB2366578B (en) 2000-09-09 2002-11-06 Schlumberger Holdings A method and system for cement lining a wellbore
US6478092B2 (en) * 2000-09-11 2002-11-12 Baker Hughes Incorporated Well completion method and apparatus
GB2366817B (en) 2000-09-13 2003-06-18 Schlumberger Holdings Pressurized system for protecting signal transfer capability at a subsurface location
US6431271B1 (en) * 2000-09-20 2002-08-13 Schlumberger Technology Corporation Apparatus comprising bistable structures and methods for their use in oil and gas wells
JP3956602B2 (ja) 2000-10-13 2007-08-08 株式会社日立製作所 蒸気タービン用ロータシャフトの製造法
GB2379693B8 (en) 2000-10-20 2012-12-19 Halliburton Energy Serv Inc Expandable wellbore tubing
GB2395214B (en) 2000-10-20 2004-12-29 Schlumberger Holdings Expandable wellbore tubing
CA2513263C (en) 2000-10-20 2009-09-15 Schlumberger Canada Limited Expandable tubing and method
BRPI0107164B1 (pt) 2000-10-20 2016-04-26 Schlumberger Surenco Sa equipamento para uso em um furo de poço, método para estabelecer uma seção não revestida de um furo de poço em uma formação subterrânea, método para facilitar o uso de um furo de poço, método para vedar uma parte de um furo de poço tubular, sistema para facilitar a comunicação ao longo de um furo de poço e método de roteamento de uma linha de poço
GB0026314D0 (en) 2000-10-27 2000-12-13 Faversham Ind Ltd Tyre puncture sealants
GB2382831B (en) 2000-11-03 2003-08-13 Schlumberger Holdings Sand screen with communication line conduit
GB0028041D0 (en) 2000-11-17 2001-01-03 Weatherford Lamb Expander
US7222676B2 (en) 2000-12-07 2007-05-29 Schlumberger Technology Corporation Well communication system
US6725934B2 (en) 2000-12-21 2004-04-27 Baker Hughes Incorporated Expandable packer isolation system
US6520254B2 (en) 2000-12-22 2003-02-18 Schlumberger Technology Corporation Apparatus and method providing alternate fluid flowpath for gravel pack completion
AU2006202182B2 (en) 2001-01-16 2010-03-25 Halliburton Energy Services, Inc. Expandable devices
US6575245B2 (en) 2001-02-08 2003-06-10 Schlumberger Technology Corporation Apparatus and methods for gravel pack completions
US7168485B2 (en) 2001-01-16 2007-01-30 Schlumberger Technology Corporation Expandable systems that facilitate desired fluid flow
US6695067B2 (en) 2001-01-16 2004-02-24 Schlumberger Technology Corporation Wellbore isolation technique
NO335594B1 (no) 2001-01-16 2015-01-12 Halliburton Energy Serv Inc Ekspanderbare anordninger og fremgangsmåte for disse
CA2544701A1 (en) 2001-01-16 2002-07-16 Schlumberger Canada Limited Expandable sand screen and methods for use
DE60226185D1 (de) 2001-01-16 2008-06-05 Schlumberger Technology Bv Bistabile, ausdehnbare Vorrichtung und Verfahren zum Ausdehnen einer solchen Vorrichtung
US6648071B2 (en) 2001-01-24 2003-11-18 Schlumberger Technology Corporation Apparatus comprising expandable bistable tubulars and methods for their use in wellbores
US6540777B2 (en) 2001-02-15 2003-04-01 Scimed Life Systems, Inc. Locking stent
US6568481B2 (en) 2001-05-04 2003-05-27 Sensor Highway Limited Deep well instrumentation
US6510896B2 (en) 2001-05-04 2003-01-28 Weatherford/Lamb, Inc. Apparatus and methods for utilizing expandable sand screen in wellbores
US7172027B2 (en) 2001-05-15 2007-02-06 Weatherford/Lamb, Inc. Expanding tubing
GB0111779D0 (en) 2001-05-15 2001-07-04 Weatherford Lamb Expanding tubing
US6571871B2 (en) 2001-06-20 2003-06-03 Weatherford/Lamb, Inc. Expandable sand screen and method for installing same in a wellbore
US6688395B2 (en) 2001-11-02 2004-02-10 Weatherford/Lamb, Inc. Expandable tubular having improved polished bore receptacle protection
US6877553B2 (en) 2001-09-26 2005-04-12 Weatherford/Lamb, Inc. Profiled recess for instrumented expandable components
US6932161B2 (en) 2001-09-26 2005-08-23 Weatherford/Lams, Inc. Profiled encapsulation for use with instrumented expandable tubular completions
CA2357883C (en) 2001-09-28 2010-06-15 Noetic Engineering Inc. Slotting geometry for metal pipe and method of use of the same
US6722427B2 (en) 2001-10-23 2004-04-20 Halliburton Energy Services, Inc. Wear-resistant, variable diameter expansion tool and expansion methods
US6622797B2 (en) 2001-10-24 2003-09-23 Hydril Company Apparatus and method to expand casing
US6719064B2 (en) 2001-11-13 2004-04-13 Schlumberger Technology Corporation Expandable completion system and method
US6688397B2 (en) 2001-12-17 2004-02-10 Schlumberger Technology Corporation Technique for expanding tubular structures
US6675891B2 (en) 2001-12-19 2004-01-13 Halliburton Energy Services, Inc. Apparatus and method for gravel packing a horizontal open hole production interval
US6722441B2 (en) 2001-12-28 2004-04-20 Weatherford/Lamb, Inc. Threaded apparatus for selectively translating rotary expander tool downhole
GB2408531B (en) 2002-03-04 2006-03-08 Schlumberger Holdings Methods of monitoring well operations
GB0209472D0 (en) 2002-04-25 2002-06-05 Weatherford Lamb Expandable downhole tubular
US7055609B2 (en) 2002-06-03 2006-06-06 Schlumberger Technology Corporation Handling and assembly equipment and method
AU2003250913A1 (en) 2002-07-08 2004-01-23 Abbott Laboratories Vascular Enterprises Limited Drug eluting stent and methods of manufacture
DE10233085B4 (de) 2002-07-19 2014-02-20 Dendron Gmbh Stent mit Führungsdraht
US6969402B2 (en) 2002-07-26 2005-11-29 Syntheon, Llc Helical stent having flexible transition zone
US7036600B2 (en) 2002-08-01 2006-05-02 Schlumberger Technology Corporation Technique for deploying expandables
US20050163821A1 (en) 2002-08-02 2005-07-28 Hsing-Wen Sung Drug-eluting Biodegradable Stent and Delivery Means
US7086476B2 (en) 2002-08-06 2006-08-08 Schlumberger Technology Corporation Expandable devices and method
CA2497519C (en) 2002-08-07 2012-05-29 Kentucky Oil N.V. Apparatus for a stent or other medical device having a bistable spring construction
GB2410270B (en) 2002-10-15 2006-01-11 Schlumberger Holdings Expandable sandscreens
US6924640B2 (en) 2002-11-27 2005-08-02 Precision Drilling Technology Services Group Inc. Oil and gas well tubular inspection system using hall effect sensors
US6907930B2 (en) 2003-01-31 2005-06-21 Halliburton Energy Services, Inc. Multilateral well construction and sand control completion
US7191842B2 (en) 2003-03-12 2007-03-20 Schlumberger Technology Corporation Collapse resistant expandables for use in wellbore environments
US6962203B2 (en) 2003-03-24 2005-11-08 Owen Oil Tools Lp One trip completion process
US6823943B2 (en) 2003-04-15 2004-11-30 Bemton F. Baugh Strippable collapsed well liner
US20050055080A1 (en) 2003-09-05 2005-03-10 Naim Istephanous Modulated stents and methods of making the stents
US20050182479A1 (en) 2004-02-13 2005-08-18 Craig Bonsignore Connector members for stents
US7291166B2 (en) 2005-05-18 2007-11-06 Advanced Cardiovascular Systems, Inc. Polymeric stent patterns
US7476245B2 (en) 2005-08-16 2009-01-13 Advanced Cardiovascular Systems, Inc. Polymeric stent patterns
EP2094204B1 (en) 2006-10-21 2020-01-08 CeloNova Stent, Inc. Deformable lumen support devices
WO2009073609A1 (en) 2007-11-30 2009-06-11 Tini Alloy Company Biocompatible copper-based single-crystal shape memory alloys

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE45011E1 (en) 2000-10-20 2014-07-15 Halliburton Energy Services, Inc. Expandable tubing and method
USRE45099E1 (en) 2000-10-20 2014-09-02 Halliburton Energy Services, Inc. Expandable tubing and method
USRE45244E1 (en) 2000-10-20 2014-11-18 Halliburton Energy Services, Inc. Expandable tubing and method
US8230913B2 (en) 2001-01-16 2012-07-31 Halliburton Energy Services, Inc. Expandable device for use in a well bore
RU2491409C2 (ru) * 2008-03-25 2013-08-27 Бэйкер Хьюз Инкорпорейтед Система анкерного крепления и изоляции в стволе скважины

Also Published As

Publication number Publication date
US6799637B2 (en) 2004-10-05
GB2404683A (en) 2005-02-09
US7156180B2 (en) 2007-01-02
GB2368082A8 (en) 2012-12-19
GB2368082B (en) 2003-05-21
CA2359450A1 (en) 2002-04-20
US6772836B2 (en) 2004-08-10
US20030079885A1 (en) 2003-05-01
US7185709B2 (en) 2007-03-06
NO20015069D0 (no) 2001-10-18
GB2368082B8 (en) 2012-12-19
GB2368082A (en) 2002-04-24
US20040182581A1 (en) 2004-09-23
USRE45244E1 (en) 2014-11-18
GB0423501D0 (en) 2004-11-24
SA02220629B1 (ar) 2006-12-10
NO20015069L (no) 2002-04-22
NL1019192C2 (nl) 2002-04-23
USRE45099E1 (en) 2014-09-02
SG91940A1 (en) 2002-10-15
USRE45011E1 (en) 2014-07-15
US20020046840A1 (en) 2002-04-25
GB0125006D0 (en) 2001-12-05
US20030079886A1 (en) 2003-05-01
US20060027376A1 (en) 2006-02-09
US20040177959A1 (en) 2004-09-16
RU2003134377A (ru) 2005-05-27
US7398831B2 (en) 2008-07-15
NO331429B1 (no) 2011-12-27
GB2404683B (en) 2005-03-30
CA2359450C (en) 2005-12-13

Similar Documents

Publication Publication Date Title
RU2263198C2 (ru) Расширяемое приспособление (варианты), устройство (варианты) и способ их использования в буровой скважине (варианты)
US6695054B2 (en) Expandable sand screen and methods for use
US6695067B2 (en) Wellbore isolation technique
US7048052B2 (en) Apparatus comprising expandable bistable tubulars and methods for their use in wellbores
JP3958602B2 (ja) 収縮状態と拡張状態との間で移行できるセルから拡張可能器具を形成する技術
US6896052B2 (en) Expanding tubing
GB2379690A (en) Routing a communication line next to an expandable tubing
RU2225497C2 (ru) Устройство, расширяемый трубчатый компонент (варианты) и способ их использования в буровой скважине (варианты)
GB2395214A (en) Bistable tubular
CA2513263C (en) Expandable tubing and method
CA2544643C (en) Expandable sand screen and methods for use
CA2367859C (en) Expandable sand screen and methods for use

Legal Events

Date Code Title Description
PC4A Invention patent assignment

Effective date: 20090227