RU2255794C2 - Способ регенерации и выделения оксифторидов серы из газовых смесей - Google Patents

Способ регенерации и выделения оксифторидов серы из газовых смесей Download PDF

Info

Publication number
RU2255794C2
RU2255794C2 RU2002123346/15A RU2002123346A RU2255794C2 RU 2255794 C2 RU2255794 C2 RU 2255794C2 RU 2002123346/15 A RU2002123346/15 A RU 2002123346/15A RU 2002123346 A RU2002123346 A RU 2002123346A RU 2255794 C2 RU2255794 C2 RU 2255794C2
Authority
RU
Russia
Prior art keywords
sulfur
adsorption
oxyfluorides
desorption
gas
Prior art date
Application number
RU2002123346/15A
Other languages
English (en)
Other versions
RU2002123346A (ru
Inventor
Хэйнц-Иоахим БЕЛТ (DE)
Хэйнц-Иоахим БЕЛТ
Михаэль ПИТТРОФФ (DE)
Михаэль ПИТТРОФФ
Маттиас РИЛАНД (DE)
Маттиас РИЛАНД
Томас ШВАРЦЕ (DE)
Томас Шварце
Original Assignee
Зольвай Флуор Унд Деривате Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зольвай Флуор Унд Деривате Гмбх filed Critical Зольвай Флуор Унд Деривате Гмбх
Publication of RU2002123346A publication Critical patent/RU2002123346A/ru
Application granted granted Critical
Publication of RU2255794C2 publication Critical patent/RU2255794C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/308Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/26Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Treating Waste Gases (AREA)

Abstract

Изобретение относится к способу регенерации и выделения оксифторидов серы из газовых смесей. Способ регенерации и выделения оксифторидов серы из газовых смесей включает пропускание газовой смеси по меньшей мере через одну ступень адсорбции и/или одну ступень мембранного разделения с использованием цеолитов с модулем больше 10 и диаметром пор от 0,4 до 0,7 нм. Выделенные оксифториды серы при необходимости после десорбции могут направляться на повторное использование. Обогащенные при разделении на мембране оксифториды серы могут непосредственно направляться на повторное использование. Изобретение позволяет полностью исключить сброс в атмосферу экологически вредных компонентов и обеспечивает возможность их повторного использования. 10 з.п. ф-лы, 1 ил., 1 табл.

Description

Настоящее изобретение относится к способу регенерации, соответственно выделения оксифторидов серы из газовых смесей, прежде всего к регенерации сульфурилфторида (SO2F2) или тионилфторида (SOF2) из загрязненного этими веществами воздуха или отработанного воздуха.
В заявке DE 19708669 описан способ газообработки помещений, заключающийся в том, что через помещения пропускают соответствующий фумигант и непрерывно отводят газовую среду, при этом фумигант можно отделять, например в адсорбере, и после десорбции направлять на повторное использование. В качестве адсорбентов в заявке указаны угольные частицы и частицы оксида алюминия, а в качестве фумигантов предлагается использовать среди прочих сульфурилфторид. Сульфурилфторид может применяться и применяется как средство борьбы с вредителями. Так, например, с помощью SO2F2 можно бороться с вредителями в свежезаготовленной древесине, в деревянных конструкциях (уничтожение личинок точильщиков, грибов), в складских помещениях для продовольственных запасов и на мельницах (уничтожение долгоносиков) или с вредителями изделий из текстиля. При этом SO2F2 применяют индивидуально либо в сочетании с другими известными средствами борьбы с вредителями. По завершении газообработки (фумигации) SO2F2 обычно подвергают термическому разложению или деструкции путем щелочения. Образующиеся при этом вторичные продукты можно направлять во многих случаях лишь на предусмотренные для таких целей свалки.
Поэтому газовые смеси указанного выше типа целесообразно подвергать соответствующей переработке с целью регенерировать оксифториды серы для их последующего повторного использования.
С учетом вышеизложенного в основу настоящего изобретения была положена задача разработать способ разделения газовых смесей, который позволял бы практически полностью исключить сброс в атмосферу экологически вредных компонентов указанных газовых смесей и который обеспечивал бы возможность повторного использования соответствующих выделенных компонентов. Кроме того, при осуществлении такого способа не должны образовываться какие-либо вторичные продукты, требующие утилизации.
Согласно изобретению указанная задача решается благодаря тому, что содержащие оксифториды серы газовые смеси, преимущественно оксифторид серы/воздух, с целью регенерировать эти оксифториды серы подвергают взаимодействию с адсорбентами и/или разделяют с помощью мембран и выделенные оксифториды серы в зависимости от потребностей, необязательно после десорбции, направляют на повторное использование. Что касается содержащегося в газовой смеси воздуха, то после частичного либо полного удаления оксифторидов серы его можно без проблем сбрасывать в атмосферу.
Под оксифторидами серы в контексте настоящего описания имеются в виду прежде всего SO2F2, SOF4 и SOF2. Разделению могут подвергаться газовые смеси с содержанием оксифторидов серы от 5 об.част./млн и выше, соответственно от 20 мг/м и выше.
Согласно изобретению смесь пропускают через по меньшей мере одну ступень адсорбции и/или ступень мембранного разделения с использованием в этих целях цеолитов, в которых соотношение SiO2/Аl2О3, так называемый модуль, составляет больше 10, предпочтительно больше 100, размер частиц составляет больше 1 мм, предпочтительно больше 2 мм, а диаметр пор составляет от 0,4 до 0,7 нм, предпочтительно от 0,5 до 0,65 нм, при этом размер частиц указан для цеолита, применяемого в качестве адсорбента.
Особенно пригодными для замены Аl2О3 в решетке на SiO2 являются цеолиты, подвергаемые предварительно деалюминированию, благодаря чему повышается вышеназванный модуль. Одновременно с этим удается снизить действие полярных сил и повысить тем самым гидрофобность цеолитов (см. W. Otten и др., Chem.-Ing. Tech. 64, №10, с. 915-922 (1992)).
Согласно изобретению цеолиты можно применять как в виде рыхлого насыпного материала в адсорбционных колоннах, так и в качестве мембраны, причем комбинация обоих названных подходов также соответствует целям изобретения.
Адсорбцию осуществляют при давлении максимум 15 атмосфер при температуре 21°С.
Согласно одному из вариантов осуществления способа по изобретению борьбу с вредителями с помощью SО2F2 проводят в закрытых емкостях или помещениях. Используемую для фумигации газовую смесь, содержащую SO2F2 (от 0,05 до 10 об.% SО2F2), по завершении такой газообработки отводят из этих емкостей или помещений и с целью регенерации SO2F2 подвергают взаимодействию с адсорбентами и/или пропускают через мембраны. Воздух из газовой смеси после такого практически полного удаления SO2F2 можно затем выбрасывать в атмосферу.
Согласно другому варианту осуществления изобретения газовую смесь пропускают через две или более ступеней, т.е. ступени адсорбции и/или ступени мембранного разделения.
Адсорбированный оксифторид серы можно десорбировать из сорбента путем повышения температуры и/или понижения давления и направлять затем на повторное использование.
Регенерацию адсорбентов (десорбцию) осуществляют по известной технологии за счет подвода тепла и/или понижения давления. Десорбцию осуществляют в диапазоне температур от 20 до 300°С, предпочтительно при температуре выше 100°С. Десорбцию, как было установлено, целесообразно проводить при пониженном давлении. Согласно одному из вариантов осуществления изобретения для обеспечения десорбции в адсорбционной колонне после нагревания предусматривается создавать технический вакуум вплоть до 10-3 ат.
Поскольку в газовой смеси дополнительно могут содержаться примеси, перед процессом адсорбции целесообразно проводить очистку, например путем фильтрации или адсорбции с использованием других адсорбентов. Согласно изобретению при необходимости предусматривается также сначала удалять из газовой смеси, например сушкой с помощью соответствующих сушильных агентов, воду и затем пропускать смесь через адсорберы или мембрану.
В состав установки, предназначенной для осуществления предлагаемого в изобретении способа, входят по меньшей мере один адсорбер с засыпкой цеолитов с модулем больше 10, предпочтительно более 100, размером частиц больше 1 мм, предпочтительно больше 2 мм, и диаметром пор от 0,4 до 0,7 нм, предпочтительно от 0,5 до 0,65 нм, и/или по меньшей мере одна мембрана, выполненная из цеолита с модулем 10, предпочтительно 100, и диаметром пор от 0,4 до 0,7 нм, предпочтительно от 0,5 до 0,65 нм, либо содержащая такой цеолит. Перед адсорбером, соответственно перед мембраной, расположен компрессор. Указанная установка имеет далее по меньшей мере подводящую линию для газовой смеси, отводящую линию для выброса газа в атмосферу, а также измерительные, регулирующие и контрольные устройства.
Согласно одному из предпочтительных вариантов оказалось целесообразным предусмотреть по меньшей мере два каскада адсорбции с использованием в каждом из них нескольких адсорбционных колонн, поскольку тем самым удается обеспечить работу в непрерывном режиме, но при условии, что указанные каскады включены в технологическую схему параллельно. Благодаря соответствующим устройствам регулирования и управления создается возможность попеременного ведения процессов адсорбции и десорбции.
Согласно еще одному предпочтительному варианту выполнения изобретения разделяемую газовую смесь подают с помощью насоса или компрессора по подводящей линии в каскад адсорбции.
Количество и производительность адсорберов зависят от того, насколько высоким, соответственно низким является содержание оксифторидов серы в обрабатываемом газе. Производительность адсорберов можно варьировать, например, за счет увеличения объема отдельных адсорбционных колонн или же за счет увеличения количества последних.
Перед выбросом газа в атмосферу по завершении процесса удаления оксифторидов серы его состав подвергают анализу и контролю с помощью соответствующего контрольного устройства, предпочтительно ИК-спектрометра.
Ниже изобретение более подробно поясняется со ссылкой на прилагаемый чертеж.
На чертеже схематично показана установка с двумя параллельно расположенными каскадами адсорбции, в каждом из которых предусмотрены по две расположенных последовательно адсорбционных колонны. Такая установка имеет компактную компоновку и позволяет монтировать ее на шасси, например, грузового автомобиля. Для упрощения на чертеже не показаны компрессоры, расположенные перед каждой из адсорбционных колонн. По той же причине на чертеже не показаны нагревательные устройства, вакуумные насосы, измерительные и регулирующие устройства, а также остальное вспомогательное оборудование.
Адсорбционные колонны заполнены вышеуказанными цеолитами в виде сыпучего материала.
Для обеспечения работы установки в непрерывном режиме в одном из ее каскадов происходит адсорбция, а в другом - регенерация.
Газовую смесь под максимальным давлением 20 ат подают по линии А в адсорбер 1. Выходящая из адсорбера 1 газовая смесь поступает по линии В в адсорбер 2. До сброса в атмосферу состав выходящей из адсорбера 2 газовой смеси, которая не содержит оксифторидов серы или содержит их в пренебрежимо малых количествах, подвергают анализу и контролю в контрольном устройстве АЕ (предпочтительно с помощью ИК-газоанализатора).
Одновременно в адсорберах 3 и 4, соединенных между собой линией D, происходит регенерация, т.е. адсорбированная в них газовая смесь десорбируется. Такую десорбцию осуществляют за счет изменения давления и температуры, для чего адсорбционные колонны нагревают, соответственно изменяют в них с помощью вакуумных насосов давление.
Десорбированная газовая смесь с высоким содержанием оксифторида серы поступает в сборник-ловушку, после чего ее можно использовать в дальнейшем.
Согласно другому варианту осуществления способа разделяемую газовую смесь предлагается пропускать и через ступень мембранного разделения, и через ступень адсорбции в их сочетании.
Давление на входной стороне мембраны обычно выше давления окружающей среды. Перед мембраной установлен насос или компрессор. Разделяемую газовую смесь подают под давлением вплоть до 20 ат. Поступающий со ступени мембранного разделения ретентат (фаза, не прошедшая через мембранный фильтр) с повышенным содержанием оксифторида серы поступает в сборник-ловушку и, например после ожижения с помощью компрессора, сразу же может повторно использоваться.
Пермиат (фаза, прошедшая через мембранный фильтр) с целью его дальнейшего разделения подают по меньшей мере в один адсорбер. При необходимости пермиат перед поступлением в адсорбер можно сжимать.
В другом варианте предусматривается возможность подавать ретентат с первой ступени мембранного разделения на вторую ступень разделения на мембране. Образующийся на этой второй ступени мембранного разделения ретентат можно возвращать на первую ступень либо подавать в расположенный далее адсорбер.
Мембрана может быть выполнена обычным образом. В рассматриваемом случае мембрану изготавливают из материала, содержащего цеолит с модулем больше 10, предпочтительно больше 100, и диаметром пор от 0,4 до 0,7 нм, предпочтительно от 0,5 до 0,65 нм, либо представляющего собой такой цеолит.
Установка может быть не стационарного, а передвижного типа. Так, например, ее можно монтировать на шасси автотранспортного средства, что позволяет таким образом осуществлять способ по изобретению непосредственно на месте.
Ниже изобретение более подробно поясняется на примерах, которые не ограничивают его объем. В этих примерах в качестве адсорбентов использовали следующие типы цеолитов:
Figure 00000002
Пример 1
Смесь SО2F2 и N2, содержавшую 2,47 об.% SO2F2, пропускали через адсорбер с засыпкой 320 г адсорбента. В качестве адсорбента использовали Zeocat PZ-2/400 (фирма Chemie Uetikon GmbH, Ютикон (Швейцария)). Указанную газовую смесь в течение 54 мин пропускали с расходом 3,13 л/мин через адсорбент до достижения предельно допустимой концентрации SO2F2 в 20 об. частей/млн. Производительность по адсорбции определяли по приросту массы адсорбента в результате его насыщения адсорбируемым материалом.
Результат: Количество адсорбированного газа составило 23,28 г, 18,78 г из них приходилось на долю SО2F2.
Пример 2
Смесь SO2F2 и N2, содержавшую 2,47 об.% SO2F2, пропускали через адсорбер с засыпкой 360 г адсорбента. В качестве адсорбента использовали Wessalith DAZ F20 (фирма Degussa AG). Указанную газовую смесь в течение 44 мин пропускали с расходом 3,63 л/мин через адсорбент до достижения предельно допустимой концентрации SO2F2 в 147 част./млн по истечении 51 мин. Производительность по адсорбции определяли по приросту массы адсорбента в результате его насыщения адсорбируемым материалом.
Результат: Количество адсорбированного газа составило 23,4 г, 17,73 г из них приходилось на долю SO2F2.
Пример 3 (сравнительный пример)
Эксперимент проводили аналогично примеру 1.
В качестве адсорбента использовали Sicolith 400 (фирма Solvay).
Результат: Количество адсорбированного газа оказалась ниже пределов обнаружения.
Пример 4 (сравнительный пример)
Эксперимент проводили аналогично примеру 2.
В качестве адсорбента использовали Grace 522 (фирма W.R. Grace, Вормс, Нидерланды). Результат: Количество адсорбированного газа ниже пределов обнаружения.
Приведенные результаты свидетельствуют о том, что при использовании цеолитов, которые не отвечают предлагаемым в изобретении критериям выбора касательно модуля, размера частиц и диаметра пор, осуществлять адсорбцию, например SO2F2, невозможно.

Claims (11)

1. Способ регенерации и выделения оксифторидов серы из газовых смесей, отличающийся тем, что газовую смесь пропускают по меньшей мере через одну ступень адсорбции и/или одну ступень мембранного разделения с использованием цеолитов с модулем больше 10 и диаметром пор от 0,4 до 0,7 нм и выделенные оксифториды серы при необходимости после десорбции либо непосредственно направляют на повторное использование.
2. Способ по п.1, отличающийся тем, что в качестве адсорбента используют цеолит с модулем больше 10, размером частиц больше 1 мм и диаметром пор от 0,4 до 0,7 нм.
3. Способ по п.1, отличающийся тем, что в качестве адсорбента используют цеолит с модулем больше 100, размером частиц больше 2 мм и диаметром пор от 0,5 до 0,65 нм.
4. Способ по п.1, отличающийся тем, что мембрана содержит цеолит с модулем больше 100 и диаметром пор от 0,5 до 0,65 нм или выполнена из такого цеолита.
5. Способ по п.1, отличающийся тем, что адсорбцию осуществляют при давлении максимум 20 атмосфер при температуре 21°С.
6. Способ по п.1, отличающийся тем, что при его осуществлении применяют смесь оксифторид серы/воздух с содержанием оксифторида серы по меньшей мере 5 об.ч./млн, соответственно 20 мг/м3.
7. Способ по п.1, отличающийся тем, что предусматривают две или более ступеней адсорбции и/или мембранного разделения.
8. Способ по п.1, отличающийся тем, что оксифториды серы десорбируют из сорбента путем повышения температуры и/или понижения давления.
9. Способ по п.8, отличающийся тем, что десорбцию осуществляют в диапазоне температур от 20 до 300°С, предпочтительно при температуре выше 100°С.
10. Способ по п.8, отличающийся тем, что десорбцию осуществляют при давлении вплоть до 10-3 ат.
11. Способ по любому из пп.1-10, отличающийся тем, что предусмотрена возможность его осуществления в установке передвижного типа.
RU2002123346/15A 2000-02-08 2001-02-02 Способ регенерации и выделения оксифторидов серы из газовых смесей RU2255794C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10005456A DE10005456A1 (de) 2000-02-08 2000-02-08 Verfahren zur Rückgewinnung und/oder Abtrennung von Schwefeloxifluoriden aus Gasgemischen
DE10005456.0 2000-02-08

Publications (2)

Publication Number Publication Date
RU2002123346A RU2002123346A (ru) 2004-01-27
RU2255794C2 true RU2255794C2 (ru) 2005-07-10

Family

ID=7630173

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002123346/15A RU2255794C2 (ru) 2000-02-08 2001-02-02 Способ регенерации и выделения оксифторидов серы из газовых смесей

Country Status (16)

Country Link
US (1) US6706090B2 (ru)
EP (1) EP1261412B1 (ru)
JP (1) JP2003522090A (ru)
AT (1) ATE253970T1 (ru)
AU (1) AU773355B2 (ru)
BR (1) BR0106073A (ru)
CA (1) CA2401097A1 (ru)
CZ (1) CZ297810B6 (ru)
DE (2) DE10005456A1 (ru)
HU (1) HUP0302754A2 (ru)
IL (1) IL148115A (ru)
NO (1) NO20023679D0 (ru)
RU (1) RU2255794C2 (ru)
SK (1) SK285937B6 (ru)
WO (1) WO2001058569A1 (ru)
ZA (1) ZA200201870B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2505345C2 (ru) * 2008-07-04 2014-01-27 Дзе Саут Эфрикен Нюклеа Энерджи Корпорейшн Лимитед Способ выделения газообразного компонента из смеси газообразных соединений

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10204935A1 (de) * 2002-02-07 2003-08-21 Solvay Fluor & Derivate Reinigung von Sulfurylfluorid
US20050183573A1 (en) * 2002-06-25 2005-08-25 Solvay Fluor Und Derivate Gmbh Method for separating gas mixtures
EP1571126A1 (de) * 2004-03-04 2005-09-07 Solvay Fluor GmbH Reinigung von Sulfurylfluorid
BE1016744A6 (nl) * 2005-03-24 2007-05-08 Desclean Belgie Nv Werkwijze en inrichting voor het fumigeren van producten in een gesloten ruimte.
GB201116801D0 (en) 2011-09-29 2011-11-09 Johnson Matthey Plc Purification process
US9517447B1 (en) * 2015-06-01 2016-12-13 Uop Llc Processes for removing contaminants from a dehydrogenation effluent

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3078640A (en) * 1959-12-18 1963-02-26 Union Carbide Corp Separation of sulfur compounds from vapor mixtures
JPS56139129A (en) * 1980-04-02 1981-10-30 Toyo Soda Mfg Co Ltd Zeolite occluding agent
JPS5925620B2 (ja) * 1979-09-20 1984-06-19 東ソー株式会社 吸蔵方法
JPS61242901A (ja) * 1985-04-17 1986-10-29 Toyo Soda Mfg Co Ltd 臭素回収用吸着剤及び臭素回収方法
US5332424A (en) * 1993-07-28 1994-07-26 Air Products And Chemicals, Inc. Hydrocarbon fractionation by adsorbent membranes
US5417950A (en) * 1994-07-07 1995-05-23 The Boc Group, Inc. Process for the purification of nitric oxide
US5505908A (en) * 1994-09-01 1996-04-09 Halozone Technologies, Inc. Recycling and recovery of methyl bromide fumigant
GB9607066D0 (en) * 1996-04-03 1996-06-05 Ici Plc Purification process
US5759237A (en) * 1996-06-14 1998-06-02 L'air Liquide Societe Anonyme Pour L'etude Et, L'exploitation Des Procedes Georges Claude Process and system for selective abatement of reactive gases and recovery of perfluorocompound gases
DE19646995B4 (de) * 1996-11-14 2006-04-20 Binker Materialschutz Gmbh Verfahren zur Begasung von Räumen ohne Austritt von Begasungsmittel in die Umwelt
US5753011A (en) * 1997-01-17 1998-05-19 Air Products And Chemicals, Inc. Operation of staged adsorbent membranes
DE19706806C1 (de) * 1997-02-21 1998-03-26 Draegerwerk Ag Verfahren zur Adsorption eines Gasgemisches aus Lachgas und Narkosemitteldampf
US6099619A (en) * 1997-10-09 2000-08-08 Uop Llc Purification of carbon dioxide
US6074459A (en) * 1998-01-05 2000-06-13 Uop Llc Ultra pure gases: removal of halocarbons, fluorocarbons, and sulfur compounds from gas streams
US5976222A (en) * 1998-03-23 1999-11-02 Air Products And Chemicals, Inc. Recovery of perfluorinated compounds from the exhaust of semiconductor fabs using membrane and adsorption in series
DE19910678A1 (de) * 1998-08-20 2000-09-14 Solvay Fluor & Derivate Verfahren zur Reinigung von SF¶6¶-kontaminierten Gasen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2505345C2 (ru) * 2008-07-04 2014-01-27 Дзе Саут Эфрикен Нюклеа Энерджи Корпорейшн Лимитед Способ выделения газообразного компонента из смеси газообразных соединений

Also Published As

Publication number Publication date
ATE253970T1 (de) 2003-11-15
EP1261412A1 (de) 2002-12-04
IL148115A0 (en) 2002-09-12
CZ297810B6 (cs) 2007-04-04
IL148115A (en) 2005-05-17
NO20023679L (no) 2002-08-02
AU4057901A (en) 2001-08-20
SK16122001A3 (sk) 2002-03-05
WO2001058569A1 (de) 2001-08-16
NO20023679D0 (no) 2002-08-02
JP2003522090A (ja) 2003-07-22
EP1261412B1 (de) 2003-11-12
CZ20013945A3 (cs) 2002-04-17
DE10005456A1 (de) 2001-08-09
AU773355B2 (en) 2004-05-20
US20030047069A1 (en) 2003-03-13
HUP0302754A2 (hu) 2003-11-28
DE50100962D1 (de) 2003-12-18
CA2401097A1 (en) 2001-08-16
ZA200201870B (en) 2003-04-08
RU2002123346A (ru) 2004-01-27
SK285937B6 (sk) 2007-11-02
US6706090B2 (en) 2004-03-16
BR0106073A (pt) 2002-04-02

Similar Documents

Publication Publication Date Title
US7025803B2 (en) Methane recovery process
EP0490632B1 (en) Continuous method for removing oil vapor from feed gases containing oil and water vapor
JP2003311148A (ja) 吸着剤並びにガス精製方法及び装置
US3659400A (en) Carbon dioxide removal from breathable atmospheres
US8968649B2 (en) Dual element pressure swing adsorption air purification system and method
KR20190084067A (ko) 유기 용제 회수 시스템 및 유기 용제 회수 방법
RU2255794C2 (ru) Способ регенерации и выделения оксифторидов серы из газовых смесей
JP6318580B2 (ja) 有機溶剤回収システム
US10852280B1 (en) Helium reclamation and recycling filtration system and method for analytical instrumentation
JP4766329B2 (ja) 多目的ガス処理装置及びその運転方法
JP5852422B2 (ja) 超高純度窒素ガスの精製方法
JP2005095858A (ja) 揮発性炭化水素を含む排ガスの浄化方法
KR20020061087A (ko) 유기용제 회수형 흡/탈착 시스템
CN213492958U (zh) 一种用于有机废气净化的环保净化处理设备
US20050183573A1 (en) Method for separating gas mixtures
JPH05337323A (ja) 溶剤の回収方法
JP4332608B2 (ja) 溶剤含有ガスの処理方法
DE102021130002A1 (de) Verwertung von Kohlendioxid aus der Umgebungsluft
JP2009291677A (ja) 溶剤精製装置
KR970061333A (ko) 농축산소를 이용한 공기청정장치 및 공기청정장치의 산소농축방법
HU225823B1 (en) Method and apparatus for purifying and deodorizing of liquid hydrocarbons
JP2003024740A (ja) 廃棄ガス浄化方法
JPH02261539A (ja) 有機溶剤回収用吸着材
JPH06137537A (ja) 排ガスの燃焼除害方法及び装置
MXPA02002637A (es) Separacion de gases que contienen sf6.

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100203