RU2221050C2 - Способ прямой плавки - Google Patents

Способ прямой плавки Download PDF

Info

Publication number
RU2221050C2
RU2221050C2 RU2001109266/02A RU2001109266A RU2221050C2 RU 2221050 C2 RU2221050 C2 RU 2221050C2 RU 2001109266/02 A RU2001109266/02 A RU 2001109266/02A RU 2001109266 A RU2001109266 A RU 2001109266A RU 2221050 C2 RU2221050 C2 RU 2221050C2
Authority
RU
Russia
Prior art keywords
metal
furnace
metal layer
layer
slag
Prior art date
Application number
RU2001109266/02A
Other languages
English (en)
Other versions
RU2001109266A (ru
Inventor
Кэролин Энн МакКАРТИ (AU)
Кэролин Энн МакКАРТИ
Родни Джеймс ДРАЙ (AU)
Родни Джеймс Драй
Тара Эллен ГОЛДСВОРТИ (AU)
Тара Эллен ГОЛДСВОРТИ
Original Assignee
Текнолоджикал Ресорсиз Пти. Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Текнолоджикал Ресорсиз Пти. Лтд. filed Critical Текнолоджикал Ресорсиз Пти. Лтд.
Publication of RU2001109266A publication Critical patent/RU2001109266A/ru
Application granted granted Critical
Publication of RU2221050C2 publication Critical patent/RU2221050C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0026Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide in the flame of a burner or a hot gas stream
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0037Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/08Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces heated electrically, with or without any other source of heat
    • F27B3/085Arc furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/22Arrangements of air or gas supply devices
    • F27B3/225Oxygen blowing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/18Charging particulate material using a fluid carrier
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/04Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces of multiple-hearth type; of multiple-chamber type; Combinations of hearth-type furnaces
    • F27B3/045Multiple chambers, e.g. one of which is used for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/19Arrangements of devices for discharging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0025Charging or loading melting furnaces with material in the solid state
    • F27D3/0026Introducing additives into the melt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Saccharide Compounds (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Primary Cells (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Semiconductor Lasers (AREA)
  • Manufacture Of Iron (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Fats And Perfumes (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Изобретение относится к способу получения металла из металлосодержащего сырья. Способ включает формирование жидкой ванны, содержащей слой металла и слой шлака над слоем металла, в металлургической печи. Вдувают газ-носитель, металлосодержащее сырье и твердый углеродосодержащий материал в слой металла через множество фурм для вдувания твердых материалов, расположенных над поверхностью слоя металла и простирающихся по направлению к нему, и вызывают выброс расплавленного материала из жидкой ванны в виде всплесков, капель и брызг в пространство над номинально спокойной поверхностью жидкой ванны для образования переходной зоны. Расплавляют металлосодержащее сырье до металла в слое металла. Вдувают кислородосодержащий газ в печь через одну или несколько фурм и дожигают реакционные газы, выделяющиеся из жидкой ванны, причем поднимающиеся и затем опускающиеся всплески, капли и брызги расплавленного материала в переходной зоне облегчают теплоотдачу в жидкую ванну, а переходная зона уменьшает потери теплоты из печи через боковые стены, контактирующие с переходной зоной. Формируют трубку из твердого материала на выпускном конце, по меньшей мере, одной фурмы при вдувании металлосодержащего сырья и углеродосодержащего материала через фурмы для вдувания твердых материалов и тем самым увеличивают эффективную длину фурмы или фурм. Изобретение позволит обеспечить требование безопасности и производительности. 2 с. и 11 з.п. ф-лы, 4 ил.

Description

Изобретение относится к способу получения металлов (данный термин включает также и металлические сплавы), в частности, хотя ни в коей мере не исключительно, железа, из металлосодержащего сырья, такого как руды, частично восстановленные руды и металлосодержащие отходы, в металлургической печи, содержащей жидкую ванну.
Настоящее изобретение конкретно касается способа прямой плавки в ванне расплавленного металла для получения расплавленного металла из металлосодержащего сырья.
Известен способ прямой плавки, в котором реакционной средой служит слой расплавленного металла, обычно именуемый процессом HIsmelt, описанный в международной заявке PCT/AU96/00197 (WO 96/31627), на имя заявителя настоящего изобретения.
Процесс HIsmelt, описанный в вышеупомянутой международной заявке, заключается в следующем:
(a) формируют ванну расплавленного металла и шлака в печи;
(b) вдувают в ванну
(i) металлосодержащее сырье, обычно оксиды металлов, и
(ii) твердый углеродосодержащий материал, обычно уголь, который действует как восстановитель оксидов металлов и как источник энергии;
(c) расплавляют металлосодержащее сырье до металла в слое металла.
В данном контексте под "плавлением" подразумевается тепловая обработка, при которой происходят химические реакции восстановления оксидов металлов с получением жидкого металла.
Процесс HIsmelt также включает дожигание реакционных газов, таких как СО и Н2, выделяющихся из ванны в пространство над нею, с кислородосодержащим газом, и передачу образующейся при дожигании теплоты в ванну, чтобы увеличить тепловую энергию, необходимую для плавления металлосодержащего сырья.
Процесс HIsmelt также включает формирование переходной зоны над номинально спокойной поверхностью ванны, в которой находится благоприятная масса поднимающихся, а затем опускающихся капель, или всплесков, или брызг расплавленного металла и/или шлака, обеспечивающая эффективную среду для передачи в ванну тепловой энергии, образующейся при дожигании реакционных газов над ванной.
В результате обширных исследований процесса HIsmelt, проведенных на экспериментальной установке, автор сделал ряд важных заключений в отношении этого процесса.
Одно из этих заключений состоит в том, что можно достичь чрезвычайно высокой степени управления процессом посредством
(a) вдувания твердых материалов, таких как металлосодержащее сырье и твердый углеродосодержащий материал, в слой металла через множество фурм, расположенных над слоем металла и простирающихся в его направлении, и
(b) формирования трубки из твердого материала, которым обычно является, по меньшей мере преимущественно, шлак, на концах каждой фурмы и тем самым увеличения длины фурм.
Управление процессом осуществляется в результате того, что длины трубок автоматически изменяются вместе с уровнем расплавленного металла и тем самым поддерживается практически постоянное расстояние между эффективными концами фурм и металлом.
Длина трубки на фурме определяется уровнем расплавленного металла в жидкой ванне вблизи фурмы. В частности, когда уровень расплавленного металла поднимается, существует более высокая вероятность того, что расплавленный металл, который выплескивается или иным образом выбрасывается над слоем металла, будет контактировать с концом трубки и расплавлять его в результате более высокой теплоотдачи металла по сравнению со шлаком. А когда уровень расплавленного металла опускается, существует меньшая вероятность контакта расплавленного металла с трубкой, и поэтому конец трубки может постепенно удлиняться в направлении слоя металла. Изменения уровня расплавленного металла происходят в процессах как с непрерывным, так и периодическим выпуском металла, и поэтому изобретение подходит для обоих процессов.
Кроме обеспечения высокой степени управления вводом твердых материалов в слой металла, что важно для процесса прямой плавки в жидкой ванне, такого как процесс HIsmelt, настоящее изобретение позволяет работать с неподвижными фурмами для вдувания твердых материалов. Такое решение обладает преимуществом, поскольку подвижные фурмы требуют уплотнений, а уплотнения трудно сконструировать так, чтобы не было ни утечек, ни выхода из строя.
Кроме перечисленных выше преимуществ настоящее изобретение позволяет расположить фурму дальше от зоны выплеска расплавленного металла и тем самым предотвратить повреждение фурм в результате контакта с расплавленным металлом, и в то же время обеспечить, чтобы эффективный конец фурмы находился как можно ближе к слою металла. Это позволяет использовать фурму с водяным охлаждением, не приближая ее настолько близко к расплавленному металлу, чтобы рисковать безопасностью. Этот момент особенно важен в процессе прямой плавки в жидкой ванне, таком как HIsmelt. Таким образом, настоящее изобретение отвечает противоречивым требованиям, а именно: (i) безопасности, которая диктует расположение фурм как можно дальше от слоя металла, и (ii) производительности, которая диктует расположение фурм как можно ближе к слою металла, чтобы оптимизировать вдувание реагентов в слой металла.
Согласно настоящему изобретению предложен способ прямой плавки для получения металла из металлосодержащего сырья, заключающийся в том, что:
(a) формируют жидкую ванну, содержащую слой металла и слой шлака над слоем металла в металлургической печи,
(b) вдувают газ-носитель, металлосодержащее сырье и твердый углеродосодержащий материал в слой металла через множество фурм для вдувания твердых материалов, расположенных над поверхностью слоя металла и простирающихся по направлению к нему, и вызывают выброс расплавленного материала из жидкой ванны в виде капель, всплесков и брызг в пространство над номинально спокойной поверхностью жидкой ванны для образования переходной зоны,
(c) расплавляют металлосодержащее сырье до металла в слое металла,
(d) вдувают кислородосодержащий газ в печь через одну или несколько фурм и дожигают реакционные газы, выделяющиеся из жидкой ванны, в результате чего поднимающиеся, а затем опускающиеся капли, всплески и брызги расплавленного материала в переходной зоне облегчают теплоотдачу в жидкую ванну, а переходная зона уменьшает потери теплоты из печи через боковые стены, контактирующие с переходной зоной, отличающийся тем, что формируют трубку из твердого материала на конце, по меньшей мере, одной фурмы при вдувании металлосодержащего сырья и углеродосодержащего материала через фурмы для вдувания твердых материалов и тем самым увеличивают эффективную длину фурмы или фурм.
Обычно основную часть расплавленного материала в каплях, всплесках и брызгах составляет расплавленный металл из слоя металла, а остальную часть - шлак. Типично капли, всплески и брызги расплавленного материала по мере их движения вверх захватывают дополнительный расплавленный материал (в частности, шлак). Кроме того, капли, всплески и брызги расплавленного материала постепенно теряют импульс и падают вниз к слою металла. Так как металл имеет более высокую плотность, чем шлак, относительное количество металла в расплавленном материале в каплях, всплесках и брызгах уменьшается с уменьшением расстояния от слоя металла до места, где переходная зона может включать лишь небольшие количества металла, если они вообще есть.
Понятие "слой металла" в данном контексте означает ту область ванны, которая состоит преимущественно из металла. В частности, данное понятие охватывает область или зону, включающую дисперсию расплавленного шлака в сплошном объеме металла.
Понятие "слой шлака" в данном контексте означает ту область ванны, которая состоит преимущественно из шлака. В частности, данное понятие охватывает область или зону, включающую дисперсию расплавленного металла в сплошном объеме шлака.
Пространство над номинально спокойной поверхностью ванны в дальнейшем будет называться "верхним пространством".
Под "спокойной поверхностью" в контексте жидкой ванны следует понимать поверхность жидкой ванны в таких условиях процесса, когда отсутствует вдувание газа и твердых материалов и поэтому не происходит перемешивания ванны.
Аналогичным образом, под "спокойной поверхностью" в контексте слоя металла подразумевается поверхность слоя металла в таких условиях процесса, когда отсутствует вдувание газа и твердых материалов и поэтому не происходит перемешивания ванны.
Обычно трубка или трубки образуются, по меньшей мере преимущественно, из затвердевшего шлака. Трубка или каждая трубка может включать некоторое количество затвердевшего металла.
Предпочтительно, способ включает в себя размещение каждой фурмы для вдувания твердых материалов таким образом, чтобы ее выпускной конец находился ниже поверхности жидкой ванны и над слоем металла.
Предпочтительно, способ включает в себя размещение каждой фурмы для вдувания твердых материалов таким образом, чтобы ее выпускной конец находился на расстоянии, по меньшей мере, 150 мм над спокойной поверхностью слоя металла.
Предпочтительно, способ включает в себя размещение каждой фурмы для вдувания твердых материалов таким образом, чтобы ее выпускной конец находился на расстоянии не более 500 мм, предпочтительнее не более 400 мм, над спокойной поверхностью слоя металла.
В контексте высот расположения фурм для вдувания твердых материалов над спокойной поверхностью слоя металла, описанных в предыдущих двух абзацах, в зависимости от таких параметров, как удельный массовый расход твердого материала через фурмы, заявитель обнаружил на экспериментальной установке, что длина трубки или трубок составляла до 600 мм, обычно, по меньшей мере, 200 мм. Понятно, что длина трубки 600 мм и угол фурмы 30-60o к вертикали неизбежно означает то, что трубка или трубки могут простираться ниже спокойной поверхности слоя металла. Это заключение важно для процесса, в котором плавление происходит, по меньшей мере, преимущественно, в слое металла, так как это означает, что имеет место значительное проникновение твердого материала в слой металла.
Предпочтительно, на этапе (d) формируют трубку или трубки посредством вдувания металлосодержащего сырья и/или углеродосодержащего материала через фурмы для вдувания твердых материалов, чтобы эндотермическая природа этих материалов создавала вокруг концов фурм для вдувания твердых материалов область, температура которой ниже температуры затвердевания шлака. Важным управляющим параметром в этом отношении является вдувание металлосодержащего материала и углеродосодержащего материала вместе с газом, не содержащим кислород.
Поэтому на этапе (b) предпочтительно вдувают металлосодержащее сырье и углеродосодержащий материал с газом, не содержащим кислород.
Предпочтительно, способ включает вдувание металлосодержащего материала и/или углеродосодержащего материала таким образом, чтобы трубка или каждая трубка образовывала коаксиальное удлинение фурмы или каждой фурмы для вдувания твердых материалов. Важными управляющими параметрами в этом отношении являются удельный массовый расход металлосодержащего сырья и углеродосодержащего материала и/или скорость потока газа-носителя, металлосодержащего сырья и углеродосодержащего материала.
Предпочтительно, способ включает поддержание температуры выпускного конца каждой фурмы для вдувания твердых материалов ниже температуры затвердевания шлака, чтобы способствовать первоначальному затвердеванию твердого материала на концах.
Более предпочтительно, выпускной конец каждой фурмы для вдувания твердых материалов охлаждается водой и это водяное охлаждение поддерживает температуру конца ниже температуры затвердевания шлака.
Предпочтительно, данный способ соответствует описанному в международной заявке PCT/AU99/00538 на изобретение "Способ прямой плавки" на имя заявителя настоящего изобретения, упоминаемой здесь для сведения.
Согласно изобретению также предложена печь для получения металла из металлосодержащего сырья способом прямой плавки, содержащая жидкую ванну, имеющую слой металла и слой шлака над слоем металла, причем печь содержит:
(a) горн, выполненный из огнеупорного материала и имеющий основание и стороны, контактирующие с расплавленным металлом;
(b) боковые стены, простирающиеся вверх от сторон горна и контактирующие со слоем шлака;
(c) одну или несколько фурм, простирающихся вниз в печь, для вдувания кислородосодержащего газа в печь;
(d) множество фурм для вдувания твердых материалов, простирающихся вниз внутрь печи, для вдувания газа-носителя, металлосодержащего сырья и углеродосодержащего материала в слой металла, причем выпускной конец, по меньшей мере, одной фурмы расположен над поверхностью слоя металла во время осуществления способа прямой плавки в печи и имеет затвердевшую на нем трубку из твердого материала, которая образует удлинение выпускного конца фурмы, и
(e) средство для выпуска расплавленного металла и шлака из печи.
Предпочтительно, печь для восстановительной плавки соответствует описанной в международной заявке PCT/AU99/00537 на изобретение "Печь для прямой плавки" на имя заявителя настоящего изобретения, упоминаемой здесь для сведения.
Предпочтительно, каждая фурма для вдувания твердых материалов расположена таким образом, что ее выпускной конец находится ниже поверхности жидкой ванны.
Предпочтительно, каждая фурма для вдувания твердых материалов расположена таким образом, что ее выпускной конец находится, по меньшей мере, на 150 мм выше спокойной поверхности слоя металла.
Предпочтительно, каждая фурма для вдувания твердых материалов расположена таким образом, что ее выпускной конец находится не более чем на 500 мм, предпочтительнее, не более чем на 400 мм выше спокойной поверхности слоя металла.
Предпочтительно, трубка или трубки находятся на расстоянии, по меньшей мере, 200 мм, более предпочтительно, по меньшей мере, 300 мм на разных стадиях процесса.
Предпочтительно, каждая фурма для вдувания твердых материалов содержит:
(a) полый удлиненный элемент, образующий центральный канал для сырья и имеющий впускной конец и выпускной конец, и
(b) наружную водяную охлаждающую рубашку.
Предпочтительно, упомянутый элемент простирается за пределы водяной охлаждающей рубашки на выпускном конце фурмы.
Предпочтительно, наружная поверхность водяной охлаждающей рубашки имеет поверхность с углублениями или другого профиля, чтобы увеличить открытую поверхность водяной охлаждающей рубашки.
Предпочтительно, фурмы для вдувания твердых материалов простираются вниз внутрь печи под углом 30-60o к вертикали.
Предпочтительно, выпускной конец каждой фурмы для вдувания твердых материалов находится в слое шлака.
В дальнейшем изобретение поясняется описанием примера его выполнения со ссылками на прилагаемые чертежи, на которых изображено:
на фиг.1 изображен вертикальный разрез металлургической печи, схематично поясняющий в схематическом виде предпочтительный вариант выполнения предлагаемого способа;
на фиг.2 - поперечное сечение с вырывом предпочтительного варианта выполнения фурмы для вдувания твердых материалов;
на фиг.3 - вид фурмы с торца в направлении стрелки С на фиг.2 и
на фиг.4 - поперечное сечение по линии А-А на фиг.2.
В дальнейшем изобретение описано на примере прямой плавки железной руды для получения жидкого чугуна, однако само собой разумеется, что изобретение не ограничено данным применением и может использоваться для любых подходящих металлических руд и/или концентратов и других металлосодержащих материалов, включая частично восстановленные металлические руды и металлосодержащие отходы, которые могут быть предварительно нагреты.
Изображенная на чертеже печь содержит горн, имеющий основание 3 и стороны 55, выполненные из огнеупорного кирпича; боковые стены 5, образующие практически цилиндрическую камеру, направленную вверх от сторон 55 горна, которая состоит из верхней цилиндрической секции 51 и нижней цилиндрической секции 53; свод 7; выпускной канал 9 для отходящих газов; копильник 58 для непрерывного выпуска расплавленного металла и летку 61 для выпуска шлака.
При работе печь содержит жидкую ванну железа и шлака, которая состоит из слоя 15 расплавленного металла и слоя 16 расплавленного шлака над слоем 15 металла. Стрелкой 17 показано положение номинальной спокойной поверхности слоя 15 металла, а стрелкой 19 - положение номинальной спокойной поверхности слоя 16 шлака. Под "спокойной поверхностью" следует понимать поверхность в отсутствии вдувания газа и твердых материалов в печь.
Печь также содержит две фурмы 11 для вдувания твердых материалов, проходящие вниз и внутрь через боковые стены 5 в слой 16 шлака для вдувания в слой 15 металла железной руды, твердого углеродосодержащего материала и флюсов, вовлеченных в газ-носитель, не содержащий кислорода. Положение фурм 11 выбирается таким образом, чтобы во время осуществления процесса их выпускные концы 35 находились над спокойной поверхностью 17 слоя 15 металла. Это положение фурм 11 уменьшает риск повреждения фурм в результате контакта с расплавленным металлом. Оно также позволяет охлаждать фурмы 11 водой, что значительно снижает риск, связанный с использованием водяного охлаждения.
Во время работы фурмы 11 охлаждаются водой в достаточной степени, чтобы поддерживать температуру на их концах 35 ниже температуры затвердевания шлака. Это способствует первоначальному затвердеванию твердого материала на конце 35 каждой фурмы 11, и данный затвердевший материал служит основой для трубки 81 из твердого материала, которая затем образует удлинение на каждом конце 35 фурм 11. Твердым материалом является, по меньшей мере, преимущественно шлак.
Основным механизмом образования трубки является эндотермическая природа вдуваемых через фурмы 11 железной руды и углеродосодержащего материала, которые образуют область вокруг концов 35 фурм 11, имеющую температуру ниже температуры затвердевания шлака. Использование не содержащего кислород газа способствует эндотермическим реакциям.
Кроме того, регулирование таких параметров, как удельный массовый расход железной руды и углеродосодержащего материала и скорость газа-носителя из фурм 11, гарантирует, что трубки 81 образуют коаксиальное удлинение фурм 11.
Длины трубок 81 регулируются автоматически уровнем расплавленного металла в слое 15 металла. В частности, как отмечалось выше, при повышении уровня металла расплавленный металл, который неизбежно выплескивается или иным образом выбрасывается из слоя 15 металла в слой шлака 16, контактирует с концами трубок 81 и расплавляет эти концы (за счет более высокой теплоотдачи металла по сравнению со шлаком). А при снижении уровня металла и уменьшении контакта расплавленного металла с концами трубок 81 на них затвердевает шлак и тем самым удлиняет концы трубок 81.
Из описанного выше ясно, что длину трубки 81 определяет расстояние между выпускными концами трубок 81 и расплавленным металлом. Важным результатом этой взаимосвязи является то, что обеспечивается практически постоянное расстояние между точками вдувания из фурм 11 и слоем 15 металла, а это значительно способствует управлению процессом.
На фиг.2-4 изображен предпочтительный вариант выполнения фурмы 11. Фурма 11 содержит полый элемент 71, который образует центральный канал для подачи железной руды, твердого углеродосодержащего материала и флюсов, вовлеченных в подходящий газ-носитель, от впускного отверстия 73 к выпускному отверстию 75 на выпускном конце 35 фурмы 11. Фурма 11 также имеет водяную охлаждающую рубашку 77, которая охватывает элемент 71 на значительной части его длины. Передний конец элемента 71 выступает за передний конец рубашки 77. Это удлинение 78 элемента 71 имеет меньший диаметр, чем остальная часть элемента 71. Элемент 71 имеет заплечик 79, образующий переход между частями элемента 71 с большим и меньшим диаметром. Заплечик 79 расположен рядом с передним концом 83 водяной охлаждающей рубашки 77, так что заплечик 79 и передний конец 83 рубашки 77 образуют круглую выемку, обозначенную в общем позицией 81. Эта выемка 81 и удлинение 78 элемента 71 способствуют удержанию шлаковой трубки на конце 35 фурмы 11. Водяная охлаждающая рубашка 77 имеет поверхность с углублениями, обозначенную в общем позицией 85, что увеличивает открытую площадь поверхности рубашки 77 и способствует затвердеванию слоя шлака на рубашке 77, защищающей фурму 11.
При работе в установившемся режиме железная руда, твердый углеродосодержащий материал (обычно уголь) и флюсы (обычно известняк и оксид магния), увлеченные газом-носителем (обычно N2), вдуваются в слой 15 металла через фурмы 11. Импульс твердых материалов и газа-носителя вынуждает твердый материал и газ-носитель проникать в слой 15 металла. Уголь улетучивается и тем самым образует газ в слое 15 металла. Углерод частично растворяется в металле и частично остается в виде твердого углерода. Железная руда расплавляется до металла и во время реакции плавления образуется газообразный оксид углерода. Газы, попадающие в слой 15 металла и образующиеся при улетучивании угля и плавлении, выталкивают вверх расплавленный металл, твердый углерод и расплавленный шлак (втянутый в слой 15 металла сверху в результате вдувания твердых материалов и газа) из слоя 15 металла, что вызывает движение вверх всплесков, капель и брызг расплавленного материала, и эти всплески, капли и брызги захватывают шлак по мере их движения через слой 16 шлака.
Это выталкивание вверх расплавленного материала и твердого углерода вызывает значительное перемешивание в слое 15 металла и слое 16 шлака, в результате чего слой 16 шлака увеличивается в объеме и имеет поверхность, показанную стрелкой 30. Степень перемешивания такова, что слой 15 металла и слой шлака 16 имеют на всем протяжении каждой области по существу одинаковую температуру, обычно 1450-1550oС, с колебаниями порядка 30o в каждой области, и одинаковые химические составы на всем протяжении каждой области.
Кроме того, движение вверх всплесков, капель и брызг расплавленного металла и шлака, вызванное выталкиванием вверх расплавленного металла, твердого углерода и шлака, распространяется в верхнее пространство 31, находящееся над расплавленным материалом в печи, и
(a) образует переходную зону 23, и
(b) выталкивает некоторое количество расплавленного материала (преимущественно шлака) за пределы переходной зоны и на часть верхней цилиндрической секции 51 боковых стен 5, которая находится над переходной зоной 23, и на свод 7.
В общем слой 16 шлака представляет собой сплошной объем жидкости с пузырьками газа и металлом (обычно в виде капель) в нем, а переходная зона 23 представляет собой сплошной объем газа с всплесками, каплями и брызгами расплавленного материала (которым на этой стадии является, по меньшей мере, преимущественно, шлак) в ней.
Значительное перемешивание слоя 15 металла и слоя 16 шлака, вызванное описанным выше выталкиванием, обеспечивает сильное перемешивание металла в слое 16 шлака. Преднамеренное вдувание твердого углеродосодержащего материала в слой 15 металла обеспечивает высокие уровни растворенного углерода в металле, который перемешан в слое шлака. Вследствие растворенного углерода в металле, находящемся в слое шлака, и сильного перемешивания металла в нем слой шлака имеет требуемые низкие уровни (типично ниже 5%) FeO в шлаке.
Печь также содержит фурму 13 для вдувания кислородосодержащего газа, которая расположена в центре и проходит в вертикальном направлении вниз в печь. Положение фурмы 13 и расход газа через нее выбираются таким образом, чтобы в установившемся режиме кислородосодержащий газ проникал в центральную область переходной зоны 23 и поддерживал практически свободное от металла и шлака пространство 25 вокруг конца фурмы 13.
При работе в установившемся режиме вдувание кислородосодержащего газа через фурму 13 вызывает дожигание реакционных газов СО и H2 в переходной зоне 23 и в свободном пространстве 25 вокруг конца фурмы 13 и создает высокие температуры порядка 2000oС или выше в этом газовом пространстве. Теплота передается поднимающимся и опускающимся всплескам, каплям и брызгам расплавленного материала в области вдувания газа, а затем она частично передается слою 15 металла, когда металл и шлак возвращаются в него.
Предпочтительно, уровень дожигания составляет, по меньшей мере, 40%, причем дожигание определяется как
Figure 00000002
,
где [СО2] = объем % СO2 в отходящем газе;
[H2O] = объем % Н2О в отходящем газе;
[СО] = объем % СО в отходящем газе и
2] = объем % H2 в отходящем газе.
Свободное пространство 25 вокруг конца фурмы 13 важно для достижения высоких уровней дожигания, так как оно обеспечивает увлечение газов в верхнее пространство над переходной зоной 23 к концевой области фурмы 13 и тем самым увеличивает дожигание имеющихся реакционных газов.
Суммарный эффект положения фурмы 13, расхода газа через фурму 13 и движения вверх всплесков, капель и брызг расплавленного металла и шлака состоит в формировании переходной зоны 23 вокруг нижней области фурмы 13, обозначенной в общем позицией 27. Эта область создает частичный барьер для радиационного теплообмена с боковыми стенами 5.
Более того, в установившемся режиме поднимающиеся и опускающиеся всплески, капли и брызги расплавленного шлака являются эффективным средством передачи теплоты из переходной зоны 23 в жидкую ванну, в результате чего температура переходной зоны 23 в области боковых стен 5 составляет порядка 1450-1550oС.
Данная печь сконструирована с учетом уровней слоя 15 чугуна, слоя 16 шлака и переходной зоны 23 в печи, когда процесс идет в установившемся режиме, а также с учетом всплесков, капель и брызг расплавленного материала, которые выбрасываются в верхнее пространство 31 над переходной зоной 23, когда процесс идет в установившемся режиме, поэтому
(a) горн и нижняя цилиндрическая секция 53 боковых стен 5, которые контактируют со слоями 15 и 16 металла и шлака, выполнены из огнеупорного кирпича (показаны перекрестной штриховкой на чертеже);
(b) по меньшей мере, часть нижней цилиндрической секции 53 боковых стен 5 покрыта водоохлаждаемыми панелями 8, и
(c) верхняя цилиндрическая секция 51 боковых стен 5 и свод 7, которые контактируют с переходной зоной 23 и верхним пространством 31, выполнены из водоохлаждаемых панелей 57, 59.
Каждая водоохлаждаемая панель 8, 57, 59 (не показана) в верхней цилиндрической секции 51 боковых стен 5 имеет параллельные верхние и нижние края и параллельные боковые края и изогнута таким образом, что образует секцию цилиндрической камеры. Каждая панель содержит внутреннюю трубу водяного охлаждения и наружную трубу водяного охлаждения. Трубы имеют извилистую конфигурацию, при которой горизонтальные секции соединены криволинейными секциями. Каждая труба дополнительно имеет водоприемник и водовыпуск. Трубы смещены по вертикали таким образом, что горизонтальные секции наружной трубы не находятся непосредственно сзади горизонтальных секций внутренней трубы, если смотреть со стороны открытой поверхности панели, т.е. поверхности, которая открыта внутрь печи. Каждая панель также содержит огнеупорную набивку, которая заполняет пространства между смежными прямолинейными секциями каждой трубы и между трубами. Каждая панель дополнительно содержит опорную плиту, образующую наружную поверхность панели.
Водоприемники и водовыпуски труб подсоединены к источнику водоснабжения (не показан), который обеспечивает циркуляцию воды по трубам с высокой скоростью.
Работы, проведенные заявителем на экспериментальной установке, подтвердили эффективность и экономичность описанных выше способа и устройства при плавке железной руды.
В описанные выше предпочтительные варианты осуществления настоящего изобретения можно внести множество модификаций, не выходящих за рамки объема изобретения.
Например, несмотря на то, что в предпочтительном варианте осуществления изобретения предусмотрено вдувание железной руды, твердого углеродосодержащего материала и флюсов через каждую фурму 11, понятно, что изобретение этим не ограничено и распространяется также на те варианты, в которых через каждую фурму 11 вдувается только один или два упомянутых материала.
Также, хотя в предпочтительном варианте осуществления изобретения предусмотрен непрерывный выпуск металла через копильник 58, настоящее изобретение этим не ограничено и распространяется также на периодический выпуск расплавленного металла.

Claims (13)

1. Способ прямой плавки для получения металла из металлосодержащего сырья, включающий формирование жидкой ванны, содержащей слой металла и слой шлака над слоем металла, в металлургической печи, вдувание газа-носителя, металлосодержащего сырья и твердого углеродосодержащего материала в слой металла через множество фурм для вдувания твердых материалов, расположенных над поверхностью слоя металла и простирающихся по направлению к нему, и вызывание выброса расплавленного материала из жидкой ванны в виде всплесков, капель и брызг в пространство над номинально спокойной поверхностью жидкой ванны для образования переходной зоны, расплавление металлосодержащего сырья до металла в слое металла, вдувание кислородосодержащего газа в печь через одну или несколько фурм и дожигание реакционных газов, выделяющихся из жидкой ванны, причем поднимающиеся и затем опускающиеся всплески, капли и брызги расплавленного материала в переходной зоне облегчают теплоотдачу в жидкую ванну, а переходная зона уменьшает потери теплоты из печи через боковые стены, контактирующие с переходной зоной, отличающийся тем, что формируют трубку из твердого материала на выпускном конце, по меньшей мере, одной фурмы при вдувании металлосодержащего сырья и углеродосодержащего материала через фурмы для вдувания твердых материалов и тем самым увеличивают эффективную длину фурмы или фурм.
2. Способ по п.1, отличающийся тем, что на этапе вдувания кислородсодержащего газа в печь при формировании трубки или трубок вдувают металлосодержащее сырье и/или углеродосодержащий материал через фурмы для вдувания твердых материалов так, чтобы эндотермическая природа этих материалов создавала вокруг выпускных концов фурм для вдувания твердых материалов область, температура которой ниже температуры затвердевания шлака.
3. Способ по п.1, отличающийся тем, что вдуваемый газ-носитель представляет собой газ, не содержащий кислород.
4. Способ по любому из пп.1-3, отличающийся тем, что вдувают металлосодержащее сырье и/или углеродосодержащий материал так, чтобы трубка или каждая трубка образовала коаксиальное удлинение фурмы или каждой фурмы для вдувания твердых материалов.
5. Способ по п.4, отличающийся тем, что регулируют удельный массовый расход металлосодержащего сырья и углеродосодержащего материала и/или скорость газа-носителя, металлосодержащего сырья и углеродосодержащего материала.
6. Способ по любому из пп.1-4, отличающийся тем, что поддерживают температуру выпускного конца каждой фурмы для вдувания твердых материалов ниже температуры затвердевания шлака, чтобы способствовать первоначальному затвердеванию твердого материала на концах.
7. Способ по любому из пп.1-6, отличающийся тем, что размещают каждую фурму для вдувания твердых материалов так, чтобы ее выпускной конец находился ниже поверхности жидкой ванны и выше слоя металла.
8. Печь для получения металла из металлосодержащего сырья способом прямой плавки, содержащая жидкую ванну, имеющую слой металла и слой шлака над слоем металла, отличающаяся тем, что печь содержит горн, выполненный из огнеупорного материала и имеющий основание и стороны, контактирующие с расплавленным металлом, боковые стены, простирающиеся вверх от сторон горна и контактирующие со слоем шлака, одну или несколько фурм, направленных вниз в печь, для вдувания кислородосодержащего газа в печь, множество фурм для вдувания твердых материалов, направленных вниз внутрь печи, для вдувания газа-носителя, металлосодержащего сырья и углеродосодержащего материала в слой металла, причем выпускной конец, по меньшей мере, одной фурмы расположен выше поверхности слоя металла во время осуществления способа прямой плавки в печи и имеет затвердевшую на нем трубку из твердого материала, образующую удлинение выпускного конца фурмы, и средство для выпуска расплавленного металла и шлака из печи.
9. Печь по п.8, отличающаяся тем, что выпускной конец каждой фурмы для вдувания твердых материалов расположен на расстоянии, по меньшей мере, 150 мм над спокойной поверхностью слоя металла.
10. Печь по п.8 или 9, отличающаяся тем, что выпускной конец каждой фурмы для вдувания твердых материалов расположен на расстоянии не более 500 мм над спокойной поверхностью слоя металла.
11. Печь по любому из пп.8-10, отличающаяся тем, что каждая фурма для вдувания твердых материалов содержит полый удлиненный элемент, образующий центральный канал для сырья и имеющий впускной конец и выпускной конец, и наружную водяную охлаждающую рубашку.
12. Печь по п.11, отличающаяся тем, что упомянутый элемент выступает за пределы водяной охлаждающей рубашки на выпускном конце каждой фурмы.
13. Печь по любому из пп.8-12, отличающаяся тем, что каждая фурма для вдувания твердых материалов направлена вниз внутрь печи под углом 30-60° к вертикали.
RU2001109266/02A 1998-09-04 1999-09-03 Способ прямой плавки RU2221050C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPP5700A AUPP570098A0 (en) 1998-09-04 1998-09-04 A direct smelting process
AUPP5700 1998-09-04

Publications (2)

Publication Number Publication Date
RU2001109266A RU2001109266A (ru) 2003-01-20
RU2221050C2 true RU2221050C2 (ru) 2004-01-10

Family

ID=3809924

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001109266/02A RU2221050C2 (ru) 1998-09-04 1999-09-03 Способ прямой плавки

Country Status (17)

Country Link
US (1) US6478848B1 (ru)
EP (1) EP1114191B1 (ru)
JP (1) JP2002524656A (ru)
KR (1) KR20010079741A (ru)
CN (1) CN1207400C (ru)
AT (1) ATE258995T1 (ru)
AU (1) AUPP570098A0 (ru)
BR (1) BR9913449A (ru)
CA (1) CA2341898C (ru)
CZ (1) CZ302736B6 (ru)
DE (1) DE69914612T2 (ru)
ID (1) ID29849A (ru)
MY (1) MY123336A (ru)
RU (1) RU2221050C2 (ru)
TW (1) TW450998B (ru)
WO (1) WO2000014285A1 (ru)
ZA (1) ZA200101736B (ru)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ599400A0 (en) 2000-03-03 2000-03-23 Technological Resources Pty Limited Direct smelting process and apparatus
AUPQ695000A0 (en) * 2000-04-17 2000-05-11 Technological Resources Pty Limited A direct smelting process and apparatus
AUPQ783100A0 (en) * 2000-05-30 2000-06-22 Technological Resources Pty Limited Apparatus for injecting solid particulate material into a vessel
AUPQ890700A0 (en) * 2000-07-20 2000-08-10 Technological Resources Pty Limited A direct smelting process and apparatus
AUPR023100A0 (en) * 2000-09-19 2000-10-12 Technological Resources Pty Limited A direct smelting process and apparatus
AUPR624801A0 (en) * 2001-07-10 2001-08-02 Technological Resources Pty Limited A gas injection lance
CA2513193C (en) 2004-07-27 2012-10-02 Technological Resources Pty. Limited Apparatus for injecting solid particulate material into a vessel
UA92686C2 (ru) * 2006-11-02 2010-11-25 Роквул Інтернешнл А/С Способ и устройство для производства минеральных волокон
RU2010114611A (ru) * 2007-09-14 2011-10-20 Баррик Гольд Корпорейшн (CA) Способ восстановления металлов платиновой группы с использованием восстановителей
CN101445848B (zh) * 2008-12-22 2010-08-11 莱芜钢铁集团有限公司 一种含铁物料连续炼钢工艺方法及装置
CN101839645B (zh) * 2009-08-24 2012-12-26 中国恩菲工程技术有限公司 从含锌渣中回收有价金属的设备
RU2591929C2 (ru) * 2011-02-09 2016-07-20 Текнолоджикал Ресорсиз Пти. Лимитед Способ прямой плавки
DK2909875T3 (da) 2012-10-16 2020-08-24 Ambri Inc Elektrokemiske energilagringsanordninger og -huse
US9312522B2 (en) 2012-10-18 2016-04-12 Ambri Inc. Electrochemical energy storage devices
US9520618B2 (en) 2013-02-12 2016-12-13 Ambri Inc. Electrochemical energy storage devices
US9735450B2 (en) 2012-10-18 2017-08-15 Ambri Inc. Electrochemical energy storage devices
US11387497B2 (en) 2012-10-18 2022-07-12 Ambri Inc. Electrochemical energy storage devices
US11211641B2 (en) 2012-10-18 2021-12-28 Ambri Inc. Electrochemical energy storage devices
US11721841B2 (en) 2012-10-18 2023-08-08 Ambri Inc. Electrochemical energy storage devices
US10541451B2 (en) 2012-10-18 2020-01-21 Ambri Inc. Electrochemical energy storage devices
US10270139B1 (en) 2013-03-14 2019-04-23 Ambri Inc. Systems and methods for recycling electrochemical energy storage devices
US9502737B2 (en) 2013-05-23 2016-11-22 Ambri Inc. Voltage-enhanced energy storage devices
EP3058605B1 (en) 2013-10-16 2023-12-06 Ambri Inc. Seals for high temperature reactive material devices
US10181800B1 (en) 2015-03-02 2019-01-15 Ambri Inc. Power conversion systems for energy storage devices
WO2016141354A2 (en) 2015-03-05 2016-09-09 Ambri Inc. Ceramic materials and seals for high temperature reactive material devices
US9893385B1 (en) 2015-04-23 2018-02-13 Ambri Inc. Battery management systems for energy storage devices
US11929466B2 (en) 2016-09-07 2024-03-12 Ambri Inc. Electrochemical energy storage devices
EP3607603A4 (en) 2017-04-07 2021-01-13 Ambri Inc. MOLTEN SALT BATTERY WITH SOLID METAL CATHODE
AT521769B1 (de) * 2018-12-18 2020-06-15 Dipl Ing Alfred Edlinger Verfahren zum Verarbeiten von schmelzflüssigem Material

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2647045A (en) 1948-12-06 1953-07-28 Rummel Roman Gasification of combustible materials
GB1003026A (en) 1963-02-21 1965-09-02 Farnsfield Ltd Continuous production of furnace products
US3844770A (en) 1971-09-17 1974-10-29 I Nixon Manufacture of steel and ferrous alloys
US3845190A (en) 1972-06-20 1974-10-29 Rockwell International Corp Disposal of organic pesticides
DE2304369C2 (de) 1973-01-26 1974-12-12 Mannesmann Ag, 4000 Duesseldorf Verfahren und Vorrichtung zum pyrolytischen Aufbau von Abfallstoffen
FI50663C (fi) 1973-03-21 1976-05-10 Tampella Oy Ab Palamisilman syötön ja happiylimäärän säädön järjestely jätteenpolttou unissa
JPS5227467B2 (ru) 1973-11-21 1977-07-20
IT1038230B (it) 1974-05-22 1979-11-20 Krupp Gmbh Procedimento per la produzione di acciaio
US4053301A (en) 1975-10-14 1977-10-11 Hazen Research, Inc. Process for the direct production of steel
US4145396A (en) 1976-05-03 1979-03-20 Rockwell International Corporation Treatment of organic waste
GB1600375A (en) 1977-03-16 1981-10-14 Glacier Metal Co Ltd Method and apparatus for reducing metal oxide
DE2759713C2 (de) 1977-10-11 1983-10-27 Mannesmann AG, 4000 Düsseldorf Gefäßdeckel für einen Metallschmelzofen, insbesondere elektrischen Lichtbogenofen
SE7901372L (sv) 1979-02-15 1980-08-16 Luossavaara Kiirunavaara Ab Sett vid framstellning av stal
ATE5202T1 (de) 1979-12-11 1983-11-15 Eisenwerk-Gesellschaft Maximilianshuette Mbh Stahlerzeugungsverfahren.
MX154705A (es) 1979-12-21 1987-12-02 Korf Ikosa Ind Aco Horno mejorado para fundir y afinar chatarras,hierro esponja,hierro crudo y hierro liquido para la produccion de acero
DE3131293C2 (de) 1980-12-01 1987-04-23 Sumitomo Metal Industries, Ltd., Osaka Verfahren zur Vergasung von festem, teilchenförmigem, kohlenstoffhaltigem Brennstoff
US4400936A (en) 1980-12-24 1983-08-30 Chemical Waste Management Ltd. Method of PCB disposal and apparatus therefor
EP0063924B2 (en) 1981-04-28 1990-03-14 Kawasaki Steel Corporation Methods for melting and refining a powdery ore containing metal oxides and apparatuses for melt-refining said ore
JPS58133309A (ja) 1982-02-01 1983-08-09 Daido Steel Co Ltd ツインリアクタ−製鉄方法および装置
SE457265B (sv) 1981-06-10 1988-12-12 Sumitomo Metal Ind Foerfarande och anlaeggning foer framstaellning av tackjaern
DE3139375A1 (de) 1981-10-03 1983-04-14 Horst Dipl.-Phys. Dr. 6000 Frankfurt Mühlberger Verfahren zum herstellen von agglomeraten, wie pellets oder briketts, sowie zur metallgewinnung aus diesen
ZA827820B (en) 1981-10-30 1983-08-31 British Steel Corp Production of steel
US4402274A (en) 1982-03-08 1983-09-06 Meenan William C Method and apparatus for treating polychlorinated biphenyl contamined sludge
US4431612A (en) 1982-06-03 1984-02-14 Electro-Petroleum, Inc. Apparatus for the decomposition of hazardous materials and the like
US4511396A (en) 1982-09-01 1985-04-16 Nixon Ivor G Refining of metals
US4455017A (en) 1982-11-01 1984-06-19 Empco (Canada) Ltd. Forced cooling panel for lining a metallurgical furnace
DE3244744A1 (de) 1982-11-25 1984-05-30 Klöckner-Werke AG, 4100 Duisburg Verfahren zur direktreduktion von eisenerz im schachtofen
US4468300A (en) 1982-12-20 1984-08-28 Aluminum Company Of America Nonconsumable electrode assembly and use thereof for the electrolytic production of metals and silicon
US4468298A (en) 1982-12-20 1984-08-28 Aluminum Company Of America Diffusion welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon
US4468299A (en) 1982-12-20 1984-08-28 Aluminum Company Of America Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon
FI66648C (fi) 1983-02-17 1984-11-12 Outokumpu Oy Suspensionssmaeltningsfoerfarande och anordning foer inmatningav extra gas i flamsmaeltugnens reaktionsschakt
US4447262A (en) 1983-05-16 1984-05-08 Rockwell International Corporation Destruction of halogen-containing materials
DE3318005C2 (de) 1983-05-18 1986-02-20 Klöckner CRA Technologie GmbH, 4100 Duisburg Verfahren zur Eisenherstellung
US4664618A (en) 1984-08-16 1987-05-12 American Combustion, Inc. Recuperative furnace wall
US4622007A (en) 1984-08-17 1986-11-11 American Combustion, Inc. Variable heat generating method and apparatus
US4923391A (en) 1984-08-17 1990-05-08 American Combustion, Inc. Regenerative burner
DE3434004C2 (de) 1984-09-15 1987-03-26 Dornier System Gmbh, 7990 Friedrichshafen Verfahren und Vorrichtung zur Müllvergasung
US4684448A (en) 1984-10-03 1987-08-04 Sumitomo Light Metal Industries, Ltd. Process of producing neodymium-iron alloy
SE453304B (sv) 1984-10-19 1988-01-25 Skf Steel Eng Ab Sett for framstellning av metaller och/eller generering av slagg fran oxidmalmer
US4574714A (en) 1984-11-08 1986-03-11 United States Steel Corporation Destruction of toxic chemicals
US4602574A (en) 1984-11-08 1986-07-29 United States Steel Corporation Destruction of toxic organic chemicals
US4572482A (en) 1984-11-19 1986-02-25 Corcliff Corporation Fluid-cooled metallurgical tuyere
US4565574A (en) 1984-11-19 1986-01-21 Nippon Steel Corporation Process for production of high-chromium alloy by smelting reduction
JPS61295334A (ja) * 1985-06-21 1986-12-26 Mitsubishi Metal Corp 製錬炉
AU598237B2 (en) 1986-03-04 1990-06-21 Ausmelt Pty Ltd Recovery of values from antimony ores and concentrates
DE3607775A1 (de) 1986-03-08 1987-09-17 Kloeckner Cra Tech Verfahren zur schmelzreduktion von eisenerz
DE3607776A1 (de) 1986-03-08 1987-09-17 Kloeckner Cra Tech Verfahren zur herstellung von eisen
DE3607774A1 (de) 1986-03-08 1987-09-17 Kloeckner Cra Tech Verfahren zur zweistufigen schmelzreduktion von eisenerz
DE3608802C2 (de) 1986-03-15 1994-10-06 Mannesmann Ag Verfahren und Vorrichtung zum kontinuierlichen Einschmelzen von Schrott
US4701214A (en) 1986-04-30 1987-10-20 Midrex International B.V. Rotterdam Method of producing iron using rotary hearth and apparatus
US4718643A (en) 1986-05-16 1988-01-12 American Combustion, Inc. Method and apparatus for rapid high temperature ladle preheating
US4999097A (en) 1987-01-06 1991-03-12 Massachusetts Institute Of Technology Apparatus and method for the electrolytic production of metals
JP2647403B2 (ja) 1987-02-16 1997-08-27 モスコフスキー、インスチツート、スタリ、イ、スプラホフ 製鋼用の中間生産物である高炭素鉄の生成法ならびに炉
CA1337241C (en) 1987-11-30 1995-10-10 Nkk Corporation Method for smelting reduction of iron ore and apparatus therefor
US4940488C2 (en) 1987-12-07 2002-06-18 Kawasaki Heavy Ind Ltd Method of smelting reduction of ores containing metal oxides
JPH01195226A (ja) 1988-01-29 1989-08-07 Kobe Steel Ltd 溶融還元方法
DE327862T1 (de) 1988-02-12 1989-12-07 Kloeckner Cra Patent Gmbh, 4100 Duisburg Verfahren und vorrichtung zur nachverbrennung.
FI84841C (sv) 1988-03-30 1992-01-27 Ahlstroem Oy Förfarande och anordning för reduktion av metalloxidhaltigt material
US4890562A (en) 1988-05-26 1990-01-02 American Combustion, Inc. Method and apparatus for treating solid particles
US5042964A (en) 1988-05-26 1991-08-27 American Combustion, Inc. Flash smelting furnace
DE3835332A1 (de) 1988-10-17 1990-04-19 Ralph Weber Verfahren zur herstellung von stahl aus feinerz
US5238646A (en) 1988-12-29 1993-08-24 Aluminum Company Of America Method for making a light metal-rare earth metal alloy
US5037608A (en) 1988-12-29 1991-08-06 Aluminum Company Of America Method for making a light metal-rare earth metal alloy
JPH02221336A (ja) 1989-02-21 1990-09-04 Nkk Corp Ni鉱石の溶融還元法
US5039480A (en) 1989-02-21 1991-08-13 Nkk Corporation Method for manufacturing molten metal containing Ni and Cr
DK0474703T3 (da) 1989-06-02 1994-09-05 Cra Services Fremgangsmåde til fremstilling af ferrolegeringer i en reaktor med smeltet bad
US5024737A (en) 1989-06-09 1991-06-18 The Dow Chemical Company Process for producing a reactive metal-magnesium alloy
EP0493476B1 (en) * 1989-09-29 1998-12-02 Ausmelt Limited Top submerged injection with a shrouded lance
US5005493A (en) 1989-11-08 1991-04-09 American Combustion, Inc. Hazardous waste multi-sectional rotary kiln incinerator
ES2090157T3 (es) 1990-03-13 1996-10-16 Cra Services Un procedimiento para producir metales y aleaciones metalicas en un recipiente de reduccion en estado fundido.
US5271341A (en) 1990-05-16 1993-12-21 Wagner Anthony S Equipment and process for medical waste disintegration and reclamation
US5177304A (en) 1990-07-24 1993-01-05 Molten Metal Technology, Inc. Method and system for forming carbon dioxide from carbon-containing materials in a molten bath of immiscible metals
US5332199A (en) 1990-09-05 1994-07-26 Fuchs Systemtechnik Gmbh Metallurgical vessel
GB9023716D0 (en) * 1990-10-31 1990-12-12 Whellock John G Metallurgical apparatus and methods
DE4042176C2 (de) 1990-12-29 1993-12-09 Tech Resources Pty Ltd Verfahren zur Reduktion von Metalloxiden im schmelzflüssigen Zustand
US5191154A (en) 1991-07-29 1993-03-02 Molten Metal Technology, Inc. Method and system for controlling chemical reaction in a molten bath
US5279715A (en) 1991-09-17 1994-01-18 Aluminum Company Of America Process and apparatus for low temperature electrolysis of oxides
BR9206507A (pt) 1991-09-20 1995-10-24 Ausmelt Ltd Processo para a produção de ferro
DE69225470T2 (de) 1991-12-06 1999-01-14 Tech Resources Pty Ltd Aufbereitung von Abfällen
DE4206828C2 (de) 1992-03-04 1996-06-20 Tech Resources Pty Ltd Schmelzreduktionsverfahren mit hoher Produktivität
US5222448A (en) 1992-04-13 1993-06-29 Columbia Ventures Corporation Plasma torch furnace processing of spent potliner from aluminum smelters
US5324341A (en) 1992-05-05 1994-06-28 Molten Metal Technology, Inc. Method for chemically reducing metals in waste compositions
DE69324682T2 (de) 1992-06-29 1999-12-23 Tech Resources Pty Ltd Behandlung von abfall
DE4234973C1 (de) 1992-10-16 1994-06-01 Tech Resources Pty Ltd Verfahren zum Schutz der feuerfesten Ausmauerung im Gasraum von metallurgischen Reaktionsgefäßen
DE4234974C2 (de) 1992-10-16 1994-12-22 Tech Resources Pty Ltd Verfahren zur Verstärkung der Stoffumsätze in metallurgischen Reaktionsgefäßen
US5333558A (en) 1992-12-07 1994-08-02 Svedala Industries, Inc. Method of capturing and fixing volatile metal and metal oxides in an incineration process
US5301620A (en) 1993-04-01 1994-04-12 Molten Metal Technology, Inc. Reactor and method for disassociating waste
US5443572A (en) 1993-12-03 1995-08-22 Molten Metal Technology, Inc. Apparatus and method for submerged injection of a feed composition into a molten metal bath
DE4343957C2 (de) 1993-12-22 1997-03-20 Tech Resources Pty Ltd Konverterverfahren zur Produktion von Eisen
IT1280115B1 (it) 1995-01-17 1998-01-05 Danieli Off Mecc Procedimento di fusione per forno elettrico ad arco con sorgenti alternative di energia e relativo forno elettrico ad arco
US5529599A (en) 1995-01-20 1996-06-25 Calderon; Albert Method for co-producing fuel and iron
NL9500264A (nl) 1995-02-13 1996-09-02 Hoogovens Staal Bv Werkwijze voor het produceren van vloeibaar ruwijzer.
AUPN226095A0 (en) * 1995-04-07 1995-05-04 Technological Resources Pty Limited A method of producing metals and metal alloys
DE19518343C2 (de) 1995-05-18 1997-08-21 Tech Resources Pty Ltd Schmelzreduktionsverfahren mit erhöhter Effektivität
US5741349A (en) 1995-10-19 1998-04-21 Steel Technology Corporation Refractory lining system for high wear area of high temperature reaction vessel
AUPN701495A0 (en) * 1995-12-07 1996-01-04 Ausmelt Limited Recovery of cobalt from slag
AUPO426396A0 (en) * 1996-12-18 1997-01-23 Technological Resources Pty Limited A method of producing iron
US5938815A (en) 1997-03-13 1999-08-17 The Boc Company, Inc. Iron ore refining method

Also Published As

Publication number Publication date
CA2341898A1 (en) 2000-03-16
US6478848B1 (en) 2002-11-12
CN1314954A (zh) 2001-09-26
DE69914612T2 (de) 2004-06-24
AUPP570098A0 (en) 1998-10-01
CN1207400C (zh) 2005-06-22
MY123336A (en) 2006-05-31
ID29849A (id) 2001-10-18
CZ302736B6 (cs) 2011-10-12
EP1114191A4 (en) 2003-07-02
BR9913449A (pt) 2001-07-24
EP1114191A1 (en) 2001-07-11
JP2002524656A (ja) 2002-08-06
ATE258995T1 (de) 2004-02-15
CA2341898C (en) 2010-02-23
KR20010079741A (ko) 2001-08-22
TW450998B (en) 2001-08-21
CZ2001764A3 (cs) 2002-02-13
ZA200101736B (en) 2001-09-25
DE69914612D1 (de) 2004-03-11
WO2000014285A1 (en) 2000-03-16
EP1114191B1 (en) 2004-02-04

Similar Documents

Publication Publication Date Title
RU2221050C2 (ru) Способ прямой плавки
ES2241288T3 (es) Convertidor de fusion directa y procedimiento de fusion directa.
EP1067201B1 (en) Start-up procedure for direct smelting process
RU2258743C2 (ru) Способ прямой плавки для получения жидкого чугуна и/или ферросплавов
JP4883833B2 (ja) 直接製錬装置および方法
ES2251922T3 (es) Procedimiento de fusion directa.
KR100728760B1 (ko) 직접제련 방법 및 그 장치
KR20010074750A (ko) 직접 용융 공정
EP3077552B1 (en) Smelting process and apparatus
EP1287170B1 (en) Apparatus for injecting solid particulate material into a vessel
RU2258744C2 (ru) Способ и устройство прямой выплавки
RU2265062C2 (ru) Способ и устройство для прямой плавки
ES2249014T3 (es) Procedimiento de fusion directa.
AU768223B2 (en) A direct smelting process
AU766100B2 (en) Direct smelting vessel and direct smelting process
MXPA01002154A (en) A direct smelting process
AU2001261907B2 (en) Apparatus for injecting solid particulate material into a vessel
MXPA00009410A (en) A direct smelting process
MXPA00012297A (es) Recipiente de fundicion directa y proceso de fundicion directa
AU2001261907A1 (en) Apparatus for injecting solid particulate material into a vessel
AU6545100A (en) Direct smelting apparatus and process

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130904