RU2178604C2 - Малогабаритная антенна для портативного устройства радиосвязи - Google Patents
Малогабаритная антенна для портативного устройства радиосвязи Download PDFInfo
- Publication number
- RU2178604C2 RU2178604C2 RU99112172/09A RU99112172A RU2178604C2 RU 2178604 C2 RU2178604 C2 RU 2178604C2 RU 99112172/09 A RU99112172/09 A RU 99112172/09A RU 99112172 A RU99112172 A RU 99112172A RU 2178604 C2 RU2178604 C2 RU 2178604C2
- Authority
- RU
- Russia
- Prior art keywords
- conductor
- grounded
- antenna
- emitter
- oriented
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/44—Resonant antennas with a plurality of divergent straight elements, e.g. V-dipole, X-antenna; with a plurality of elements having mutually inclined substantially straight portions
- H01Q9/46—Resonant antennas with a plurality of divergent straight elements, e.g. V-dipole, X-antenna; with a plurality of elements having mutually inclined substantially straight portions with rigid elements diverging from single point
Landscapes
- Support Of Aerials (AREA)
- Details Of Aerials (AREA)
- Waveguide Aerials (AREA)
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
Abstract
Изобретение предназначено для использования в портативном устройстве радиосвязи, таком, как пейджер двунаправленного действия. Техническим результатом является малые габариты и высокое усиление. В возможном варианте осуществления антенна содержит излучатель в виде нагруженного несимметричного вибратора и заземленный излучатель. Излучатель в виде нагруженного несимметричного вибратора включает в себя первый и второй проводники на подложке платы печатной схемы, причем первый проводник имеет заданную длину и ориентирован в горизонтальном направлении. Второй проводник имеет форму меандровой линии и ориентирован в вертикальном направлении. Заземленный излучатель включает в себя отдельные первое и второе заземления в нижней части подложки платы печатной схемы, причем первое и второе заземления симметричны относительно второго проводника. 2 с. и 12 з. п. ф-лы, 9 ил.
Description
Изобретение относится к антеннам, более конкретно к малогабаритной антенне, в особенности пригодной для использования в портативном устройстве радиосвязи, имеющей излучатель в форме меандровой линии.
В последнее время портативные устройства радиосвязи стали миниатюрными и имеют малый вес, в связи с чем осуществляются интенсивные разработки малогабаритных антенн, пригодных для использования в таких устройствах. Такие малогабаритные антенны должны быть удобными и простыми для эксплуатации пользователем, а также должны иметь всенаправленную диаграмму направленности по азимуту и иметь относительно высокий раскрыв по углу места. Кроме того, в условиях, когда портативное устройство радиосвязи располагается вблизи тела пользователя, последнее должно в минимальной степени влиять на основные характеристики антенны, т. е. на входной импеданс и колебания величины усиления.
Одно из решений, направленных на удовлетворение вышеуказанных требований, описано в патенте США N 4700194 от 13 октября 1987 г. . В соответствии с этим решением, когда ток антенны протекает в заземленной схеме и в корпусе оконечного устройства, ток, протекающий в антенне, изменяется, если корпус оконечного устройства размещается вблизи тела пользователя, так что входной импеданс и усиление антенны могут изменяться в значительной степени. В результате даже без использования четвертьволновой схемы режекции или симметрирующего трансформатора, как в известных вертикальных антеннах в виде полуволнового вибратора с коаксиальным экраном в нижней части, хорошо электрическая развязка может быть обеспечена между антенной и схемой заземления коаксиальной линии передачи или электрической схемы.
На фиг. 1 представлена диаграмма, иллюстрирующая конструкцию известной четвертьволновой микрополосковой антенны (ЧМПА), которая описана в вышеупомянутом патенте США N 4700194. В соответствии с фиг. 1 центрированная относительно диэлектрика 61 антенна включает в себя излучающий элемент на одной поверхности диэлектрика и элемент заземления на другой поверхности. Первый излучающий элемент 62 (первое фидерное средство) электрически соединен с сигнальным проводником линии передачи. Второй излучающий элемент конструктивно выполнен на элементе заземления таким образом, что электрически соединяет проводник заземления линии передачи и элемент заземления и расположен в положении, где напряжение стоячей волны, индуцированное в элементе заземления, принимает минимальное значение. В обычной микрополосковой антенне заземляющий экран не действует в качестве заземления, если размер заземляющего экрана мал по сравнению длиной волны на рабочей частоте. В таком случае синусоидальное изменение распределения напряжения или напряжение стоячей волны индуцируется в заземляющем экране. В результате паразитный ток индуцируется во внешнем проводнике коаксиальной линии передачи. В антенне по фиг. 1 для снижения вероятности генерирования такого паразитного тока до минимума внешний проводник линии передачи соединяется с элементом заземления во второй точке возбуждения, где напряжение стоячей волны, индуцированное в элементе заземления, становится минимальным. При использовании такой конструкции паразитный ток в линии передачи может быть уменьшен или исключен без применения какой-либо четвертьволновой схемы режекции, которая используется в обычных конструкциях вертикальных антенн в виде полуволнового вибратора с коаксиальным экраном в нижней части. Соответственно отклонения в характеристиках антенны могут быть существенно снижены в случаях, когда антенна располагается в непосредственной близости от тела пользователя или некоторой электрической схемы.
На фиг. 2 и 4 представлены диаграммы, иллюстрирующие изменение характеристики усиления в дБ в зависимости от длины L известной четвертьволновой микрополосковой антенны, а на фиг. 3 представлена диаграмма, иллюстрирующая изменение характеристики усиления в зависимости от ширины W известной четвертьволновой микрополосковой антенны.
Недостатком известной четвертьволновой микрополосковой антенны является то, что изменение характеристики эффективности антенны существенно зависит от толщины подложки платы печатной схемы (ППС). Большая толщина ППС приводит к более высокому усилению, но увеличивает размеры и вес антенны, вызывая неудобства для пользователя портативного устройства связи, которое становится более громоздким. В противоположность этому, если ППС имеет малую толщину, то, хотя такое устройство удобно использовать в качестве переносного, однако усиление антенны может соответственно снизиться.
Задачей изобретения является создание антенны, имеющей малые размеры и вес и обеспечивающей высокое усиление и эффективное применение в портативном устройстве связи. Желательно минимизировать изменения антенных характеристик, когда антенна располагается вблизи тела пользователя.
В возможном варианте осуществления настоящего изобретения малогабаритная антенна для портативного устройства радиосвязи содержит излучатель, выполненный в виде нагруженного несимметричного вибратора, и заземленный излучатель. Излучатель, выполненный в виде нагруженного несимметричного вибратора, содержит первый и второй проводники на подложке платы печатной схемы, причем первый проводник имеет заданную длину и ориентирован в горизонтальном направлении, а второй проводник имеет форму меандровой линии и ориентирован в вертикальном направлении. Заземленный излучатель включает в себя первый заземленный излучатель и второй заземленный излучатель на нижней части подложки платы печатной схемы, причем первый и второй заземленные излучатели симметричны относительно второго проводника.
Изобретение поясняется более подробно в нижеследующем описании, иллюстрируемом чертежами, на которых представлено следующее:
фиг. 1 - диаграмма, иллюстрирующая конструкцию четвертьволновой микрополосковой антенны, известной из предшествующего уровня техники;
фиг. 2 - диаграмма, иллюстрирующая изменение характеристики усиления в зависимости от общей длины антенны по фиг. 1:
фиг. 3 - диаграмма, иллюстрирующая изменение характеристики усиления в зависимости от ширины антенны по фиг. 1;
фиг. 4 - диаграмма, иллюстрирующая изменение характеристики усиления в зависимости от длины Gz неметаллизированной части антенны по фиг. 1;
фиг. 5 - диаграмма, иллюстрирующая конструкцию антенны в виде несимметричного вибратора, соответствующей возможному варианту осуществления изобретения;
фиг. 6 - детальная схема антенны по фиг. 5;
фиг. 7 - диаграмма, иллюстрирующая распределение тока нагруженного несимметричного вибратора и эквивалентного несимметричного вибратора;
фиг. 8 - график зависимости усиления от длины антенны в виде симметричного вибратора;
фиг. 9 - график зависимости усиления от ширины антенны в виде симметричного вибратора.
фиг. 1 - диаграмма, иллюстрирующая конструкцию четвертьволновой микрополосковой антенны, известной из предшествующего уровня техники;
фиг. 2 - диаграмма, иллюстрирующая изменение характеристики усиления в зависимости от общей длины антенны по фиг. 1:
фиг. 3 - диаграмма, иллюстрирующая изменение характеристики усиления в зависимости от ширины антенны по фиг. 1;
фиг. 4 - диаграмма, иллюстрирующая изменение характеристики усиления в зависимости от длины Gz неметаллизированной части антенны по фиг. 1;
фиг. 5 - диаграмма, иллюстрирующая конструкцию антенны в виде несимметричного вибратора, соответствующей возможному варианту осуществления изобретения;
фиг. 6 - детальная схема антенны по фиг. 5;
фиг. 7 - диаграмма, иллюстрирующая распределение тока нагруженного несимметричного вибратора и эквивалентного несимметричного вибратора;
фиг. 8 - график зависимости усиления от длины антенны в виде симметричного вибратора;
фиг. 9 - график зависимости усиления от ширины антенны в виде симметричного вибратора.
На фиг. 5 схематично представлена антенна в виде несимметричного вибратора, выполненная в соответствии с возможным вариантом осуществления настоящего изобретения. Антенна показана для использования во взаимосвязи с пейджером 10 двунаправленного действия, однако изобретение может иметь и другое применение.
Согласно фиг. 5, антенная система 20 содержит излучатель 12 из проводника, выполненного по форме нагруженного несимметричного вибратора, заземленный излучатель 13, выполненный по форме меандровой линии, и коаксиальную линию передачи (коаксиальный кабель) 27 для соединения излучателя 12 из проводника и заземленного излучателя 13 с ППС 11, снабженной радиочастотным усилителем мощности. Более конкретно коаксиальный кабель 27 содержит сигнальный проводник (не показан), одним концом соединенный с излучателем 12, и заземленный проводник, соединенный с заземленным излучателем 13. При этом сигнальный проводник коаксиального кабеля 27 другим своим концом соединен с сигнальным проводником портативного устройства радиосвязи (на чертеже не показано), а заземленный проводник коаксиального кабеля соединен с заземленной частью портативного устройства радиосвязи. Излучатель 12 из проводника и заземленный излучатель 13 размещены на одной основной поверхности ППС 21, которая может быть размещена в корпусе 28 антенны в форме откидной крышки. Корпус 28 в форме откидной крышки перемещается вместе с антенной системой 20 относительно корпуса пейджера 10. Т. е. антенная система 20 перемещается из положения оси Y в положение оси Z, причем корпус пейджера центрирован относительно оси X. В рабочем положении антенная система 20 находится в вертикальном положении (ориентирована в направлении Z, как показано на фиг. 5).
На фиг. 6 показана детальная схема антенны по фиг. 5, более конкретно показывающая ППС 21 антенной системы 20. Излучатель 12 из проводника, выполненный по форме нагруженного несимметричного вибратора, состоит из ориентированного в первом, например, в горизонтальном направлении первого проводника 23 и ориентированного во втором, например, в вертикальном направлении второго проводника 22, имеющего форму меандровой линии. Верхний конец проводника 22, ориентированного в вертикальном направлении, нагружен на проводник 23, ориентированный в горизонтальном направлении. В данном примере электрическая длина проводника 22 равна 0,49 длины волны, а электрическая длина проводника 23 равна 0,3 длины волны. Эта конструкция основана на учете того факта, что длина антенны, имеющей наивысшее усиление из эквивалентных антенн в виде вертикального несимметрического вибратора, равна 0,625 длины волны. Кроме того, в целом антенная система 20, которая использует нагрузку и форму меандровой линии и вышеуказанные длины для максимизации усиления, в особенности пригодна для использования совместно с корпусом 28 в форме прямоугольной или квадратной откидной крышки.
Заземленный излучатель 13 размещен в нижней части ППС 21 антенной системы 20 параллельно проводнику 23, ориентированному в горизонтальном направлении. В представленной конфигурации заземленный излучатель 13 разделен на две части, симметричные относительно вертикальной части излучателя 12, а именно на первый и второй излучатели 24 и 25, симметричные относительно вертикального проводника 22 и соединенные с заземлением коаксиальной линии 27 передачи в точке 26 заземления фидера. Более конкретно первый заземленный излучатель 24 размещен с первой стороны от проводника 22, а второй заземленный излучатель 25 размещен со второй стороны от проводника 22, причем первый и второй заземленные излучатели 24, 25 соединены друг с другом. Для повышения эффективности заземленного излучателя 13 каждый из заземленных излучателей 24, 25 предпочтительно имеет электрическую длину, равную половине длины волны. Качество ППС 21 антенной системы 20, соответствующей предпочтительному варианту осуществления изобретения, может соответствовать FR-4 при толщине, например, 0,25 мм. ППС 21 может быть размещена в корпусе 28 в виде откидной крышки из поликарбоната. Конденсатор 34 и индуктивность 35 используются для согласования импедансов.
Антенна, соответствующая предпочтительному варианту осуществления изобретения, работает следующим образом. Эффективность антенны определяется эффективностью излучения, которая может быть определена с использованием следующего выражения:
где η - эффективность излучения, Rr - сопротивление излучения, Ом, RL-сопротивление потерь, Ом.
где η - эффективность излучения, Rr - сопротивление излучения, Ом, RL-сопротивление потерь, Ом.
В уравнении (1) при уменьшении длины излучателя сопротивление излучения Rr снижается.
Для увеличения эффективности излучения до значения, близкого к эффективности антенны, необходимо увеличивать длину излучателя Rr и использовать проводник с низкими потерями с низким сопротивлением RL. Таким образом, возможные варианты осуществления настоящего изобретения могут быть реализованы с использованием формы меандровой линии для проводника, чтобы уменьшить физическую длину излучателя антенны, при увеличении эффективности излучения за счет увеличения длины излучателя в функции длины волны. Наконец, усиление антенны может быть увеличено без увеличения физической длины излучателя.
В статье К. Харченко "Антенный проводник в форме меандровой линии". (Радио, N 8, 1979, с. 21) описано, что по мере увеличения частоты (уменьшения периода) меандровой линии антенного проводника, полоса пропускания антенны сужается. Поэтому, как показано на фиг. 6, в данном варианте осуществления настоящего изобретения используется ориентированный в горизонтальном направлении проводник 23, нагруженный на излучатель 22, так что электрическая эквивалентная длина может быть увеличена до требуемого значения без избыточного сужения ширины полосы антенны. Достигаемый эффект заключается в том, что антенна работает аналогично антенне с излучателем увеличенной длины, тем самым обеспечивая повышение усиления антенны.
На фиг. 7 представлен график, иллюстрирующий распределение тока в нагруженном несимметричном вибраторе и в эквивалентном несимметричном вибраторе, причем часть 7а графика иллюстрирует нагруженный несимметричный вибратор и распределение тока в нем, а часть 7b графика иллюстрирует распределение тока в антенне в виде эквивалентного несимметричного вибратора. Желательно получить хорошее распределение тока в ориентированном в вертикальном направлении проводнике антенны. Таким образом, антенна работает аналогично тому, как при увеличении длины на Δ lv, при использовании горизонтального проводника (нагруженный излучатель), что видно из следующего выражения (2):
L v eqv = lv + Δ lv,
где Δ lv - увеличение длины эквивалентного вертикального проводника.
L v eqv = lv + Δ lv,
где Δ lv - увеличение длины эквивалентного вертикального проводника.
Для нагруженной антенны в виде несимметричного вибратора, если только значение тока в конечной точке "А" (см. фиг. 7), ориентированного в вертикальном направлении проводника 22, не становится равным нулю, указанное значение определяется реактивным импедансом ориентированного в горизонтальном направлении проводника 23 антенны в виде нагруженного несимметричного вибратора. Только если входной реактивный импеданс нагруженного излучателя в точке А равен входному реактивному импедансу в точке В эквивалентного несимметричного вибратора, то ориентированный в вертикальном направлении проводник антенны может быть увеличен на Δ l.
В данной ситуации входные реактивные импедансы XA и XB нагруженного излучателя в положениях A и B таковы, как представлено ниже в выражениях (3) и (4):
где 1H - длина "плеча", ориентированного в горизонтальном направлении проводника нагруженного несимметричного вибратора (т. е. примерно половина полной горизонтальной длины всего проводника 23), a ZOH - собственный импеданс ориентированного в горизонтальном направлении проводника нагруженного несимметричного вибратора;
где ZOV- собственный импеданс ориентированного в вертикальном направлении проводника нагруженного несимметричного вибратора.
где 1H - длина "плеча", ориентированного в горизонтальном направлении проводника нагруженного несимметричного вибратора (т. е. примерно половина полной горизонтальной длины всего проводника 23), a ZOH - собственный импеданс ориентированного в горизонтальном направлении проводника нагруженного несимметричного вибратора;
где ZOV- собственный импеданс ориентированного в вертикальном направлении проводника нагруженного несимметричного вибратора.
Кроме того, если два входных реактивных импеданса XA и XB равны друг другу, то Δlv можно получить из выражения (5) в следующем виде:
В результате, lv eqv равно сумме lv и Δ lv. Т. е. lv eqv = lv - Δ lv. Иными словами, можно видеть, что физическая длина антенны в виде ненагруженного вибратора увеличивается на Δ lv. Кроме того, корпус оконечного пользовательского устройства, покрытого металлической пленкой, или заземление установленной в нем ППС может служить в качестве заземления для всей антенны в виде несимметричного вибратора. Следовательно, если пользователь берет свое оконечное устройство в руки, эффективность излучения может снижаться, несмотря на то, что его заземление служит в качестве заземленного излучателя (см. "Mobile Antenna Systems Handbook", K. Fujimoto, J. R. James, Artech House, Boston-London, 1994, pp. 217-243).
В результате, lv eqv равно сумме lv и Δ lv. Т. е. lv eqv = lv - Δ lv. Иными словами, можно видеть, что физическая длина антенны в виде ненагруженного вибратора увеличивается на Δ lv. Кроме того, корпус оконечного пользовательского устройства, покрытого металлической пленкой, или заземление установленной в нем ППС может служить в качестве заземления для всей антенны в виде несимметричного вибратора. Следовательно, если пользователь берет свое оконечное устройство в руки, эффективность излучения может снижаться, несмотря на то, что его заземление служит в качестве заземленного излучателя (см. "Mobile Antenna Systems Handbook", K. Fujimoto, J. R. James, Artech House, Boston-London, 1994, pp. 217-243).
Первый и второй заземленные излучатели 24 и 25 выполнены в предпочтительном варианте осуществления изобретения так, чтобы минимизировать эффект влияния тела пользователя на излучение антенны в виде несимметричного вибратора, когда пользовательское оконечное устройство располагается в непосредственной близости от тела человека. Поскольку ток антенны отделен от заземления пейджера 10 двунаправленного действия, то снижение эффективности излучения может быть минимизировано в положении, когда пользователь держит это устройство в руке. Также, когда пользователь действительно использует оконечное устройство, первый и второй заземленные излучатели 24 и 25 размещаются на ППС 21 антенны, установленной на верхней поверхности пейджера 10 двунаправленного действия, наиболее удаленной от тела пользователя в рабочем положении пейджера.
Излучение от первого и от второго заземленных излучателей 24 и 25 зависит от закона изменения напряжения сигнала. Переменное напряжение сигнала может сформировать паразитный ток, протекающий вдоль поверхности (заземления) коаксиальной линии передачи 27, тем самым изменяя такие характеристики антенны, как диаграмма направленности, входной импеданс и усиление. Для исключения изменения таких характеристик первый и второй излучатели 24 и 25 противоположны один другому и центрированы относительно оси Z антенны на ППС 21, а электрическая длина каждого из них равна L = (2n - 1) λ/4, где n - положительная постоянная. Т. е. электрическая длина каждого из заземленных излучателей 24 и 25 устанавливается равной нечетному кратному четверти длины волны. Если электрическая длина каждого из заземленных излучателей 24 и 25 одинакова, то паразитный ток, протекающий от поверхности заземленного излучателя 26 к его заземлению, может быть минимизирован. Следовательно, будет иметь место весьма незначительное ухудшение характеристик антенны и эффективности излучения под влиянием близко расположенного тела пользователя, даже если заземление пейджера 10 двунаправленного действия находится в непосредственной близости от него.
Из фиг. 2-4 следует, что характеристика усиления четвертьволновой микрополосковой антенны является функцией длин L и Gz и ширины W антенны и что ее характеристика усиления является более низкой по сравнению с характеристикой усиления антенны в виде симметричного вибратора. На фиг. 8 представлена зависимость усиления от длины антенны в виде симметричного вибратора, которую можно сравнить с графиками, показанными на фиг. 2-4.
Сравним антенну, соответствующую варианту осуществления настоящего изобретения, с известной антенной. Если параметры антенны, соответствующей настоящему изобретению (L = 47,3 мм; εγ = 4,5 мм; f = 916 МГц), адаптировать к известной антенне, то можно осуществить указанное сравнение. Сравнение усиления антенны, соответствующей настоящему изобретению, и известной антенны состоит в следующем.
Если для конструкции, иллюстрируемой фиг. 1, предположить, что b= λs /4, L = 47,3 мм, εγ = 4,5 мм; f = 916 МГц и d = 1.2 мм, то параметры λs., b, Gr определяются, как показано ниже:
b = λs/4 = 38,6 мм, (7)
Gz = L - b = 8,7 мм.
b = λs/4 = 38,6 мм, (7)
Gz = L - b = 8,7 мм.
С учетом фиг. 2 и 4, для случая, когда L= 47.3 мм и Gz = 8,7 мм, усиление, как показано на этих фигурах, примерно равно - 12,5 dBd (-10,35 dBi). Антенна, используемая в рассматриваемом варианте осуществления, имеет электрическую длину 0,625 λ. Для данного случая усиление равно примерно 3dBd (5,15 dBi), как видно из фиг. 8. Таким образом, в известной антенне усиление может ухудшиться примерно на 15 дБ. (Отметим, что графики, приведенные на фиг. 8 и 9, относятся к антенне в виде симметричного вибратора. Однако усиление антенны в виде несимметричного вибратора по существу то же самое, что и для эквивалентного симметричного вибратора. Таким образом, можно считать, что фиг. 8 и 9 представляют усиление антенны в виде несимметричного вибратора, соответствующего настоящему изобретению).
Другой проблемой для предшествующего уровня техники является то, что характеристика эффективности η четвертьволновой микрополосковой антенны изменяется в функции толщины d ППС. Если технические характеристики антенны, используемой в настоящем изобретении, адаптировать к характеристикам известной антенны (L = 47,3 мм, εγ = 4,5 мм, f = 916 МГц и d = 0.25 мм), то усиление соответственно изменениям толщины d может быть представлено, как показано на фиг. 9. Усиление антенны с вышеуказанными параметрами равно примерно - 12.5 dBd. Здесь толщина d = 1,2 мм, при этом, как показано на фиг. 9, эффективность антенны определяется следующими параметрами, представленными в выражении (9):
F= c/λ0;
λ0 = c/f = 3•10/916•10= 327,5 мм;
F = 1,2/327,5= 0,003664.
F= c/λ0;
λ0 = c/f = 3•10/916•10= 327,5 мм;
F = 1,2/327,5= 0,003664.
Как показано на фиг. 9, если F = d/ λ0 = 0,003664, то эффективность антенны составляет около 50%. Если толщина d ППС равна 0,25 мм, F = 0,000736 и эффективность антенны примерно равна 4,5%.
Следовательно, если d = 1,2 мм, η примерно равно 50%. Если d = 0,25 мм, η примерно равно 4,5%. В случае ППС большой толщины (d = 1,2 мм) значение усиления примерно в 11 раз превышает значение усиления для случая тонкой ППС (d = 0,25 мм). При вычислении усиления с использованием вышеуказанного результата усиление антенны будет определяться согласно выражению (10) следующим образом:
G = -12,5 dBd - 10 log11 = -22,9 dBd (10).
G = -12,5 dBd - 10 log11 = -22,9 dBd (10).
Из приведенного выше выражения (10), что усиление снижается примерно на 10 дБ по сравнению со случаем, когда d = 1,2 мм. Кроме того, усиление снижается примерно на 25 дБ по сравнению с усилением антенны в виде симметричного вибратора.
Поскольку антенная система, соответствующая настоящему изобретению, может быть реализована с использованием ППС малой толщины, то она будет иметь малый вес, будет удобной в применении ввиду простоты установки на верхней поверхности пользовательского оконечного устройства (например, пейджера). Кроме того, поскольку вертикальный излучатель, размещенный на ППС, выполнен в форме меандровой линии, то физическая длина уменьшена, что позволяет получить наилучшие электрические характеристики для ограниченных размеров антенны. Кроме того, поскольку на верхнем конце ориентированного в вертикальном направлении излучателя использован другой ориентированный в горизонтальном направлении излучатель, и ориентированный в вертикальном направлении излучатель эквивалентным образом увеличен, то это приводит к увеличению усиления антенны. К тому же, поскольку ориентированные в вертикальном и горизонтальном направлении излучатели и заземленный излучатель выполнены на одной ППС малой толщины, это упрощает изготовление антенны. Заземленный излучатель препятствует протеканию антенного тока в заземление оконечного устройства. Изменения характеристик антенны могут быть минимизированы в зависимости от изменения состояния заземления оконечного устройства, например, как результат контакта с телом пользователя. Следовательно, изобретение обеспечивает создание антенн с устойчивыми высокими характеристиками.
Claims (14)
1. Малогабаритная антенна для портативного устройства радиосвязи, содержащая излучатель в виде нагруженного несимметричного вибратора, размещенный на подложке печатной схемы, включающий в себя первый проводник, имеющий заданную длину и ориентированный в горизонтальном направлении, и второй проводник, имеющий форму меандровой линии и ориентированный в вертикальном направлении, и заземленный излучатель, включающий в себя первый заземленный излучатель и второй заземленный излучатель на нижней части упомянутой подложки печатной схемы, причем первый и второй заземленные излучатели симметричны относительно упомянутого второго проводника.
2. Антенна по п. 1, отличающаяся тем, что в упомянутом излучателе, выполненном в виде нагруженного несимметричного вибратора, упомянутый первый проводник, ориентированный в горизонтальном направлении, образует нагрузочную линию, проходящую вправо и влево на верхнем конце упомянутого второго проводника, выполненного в форме меандровой линии, ориентированного в вертикальном направлении.
3. Антенна по п. 1, отличающаяся тем, что заземленный излучатель имеет форму меандровой линии, при этом указанный заземленный излучатель ориентирован симметрично относительно ориентированного в вертикальном направлении второго проводника излучателя, выполненного в форме нагруженного несимметричного вибратора, причем правая часть расположенного слева первого заземленного излучателя и левая часть расположенного справа второго заземленного излучателя соединены друг с другом и электрическая длина каждого из упомянутых первого и второго заземленных излучателей равна нечетному кратному четверти длины волны.
4. Антенна по п. 2, отличающаяся тем, что заземленный излучатель имеет форму меандровой линии, при этом указанный заземленный излучатель ориентирован симметрично относительно ориентированного в вертикальном направлении второго проводника излучателя, выполненного в форме нагруженного несимметричного вибратора, причем правая часть расположенного слева первого заземленного излучателя и левая часть расположенного справа второго заземленного излучателя соединены друг с другом и электрическая длина каждого из упомянутых первого и второго заземленных излучателей равна нечетному кратному четверти длины волны.
5. Антенна по п. 3, отличающаяся тем, что упомянутая печатная схема выполнена с возможностью соединения посредством коаксиального кабеля с другой печатной схемой, установленной в портативном устройстве радиосвязи, причем упомянутая другая печатная схема снабжена радиочастотным усилителем.
6. Антенна по п. 5, отличающаяся тем, что коаксиальный кабель содержит сигнальный проводник, одним концом соединенный с нижней частью упомянутого второго проводника излучателя, выполненного в виде нагруженного несимметричного вибратора, и заземленный проводник, соединенный с упомянутыми первым и вторым заземленными излучателями, причем сигнальный проводник коаксиального кабеля своим другим концом соединен с сигнальным проводником портативного устройства радиосвязи, а заземленный проводник соединен с заземленной частью упомянутого портативного устройства радиосвязи, при этом антенна и портативное устройство радиосвязи выполнены с возможностью электрического соединения друг с другом.
7. Антенна по п. 1, отличающаяся тем, что упомянутая печатная схема установлена в откидном корпусе антенны.
8. Антенна по п. 7, отличающаяся тем, что корпус антенны выполнен из поликарбоната.
9. Антенна, содержащая излучатель в виде нагруженного несимметричного вибратора, включающий в себя первый и второй проводники на подложке печатной схемы, причем упомянутый первый проводник, имеющий заданную длину, ориентирован в первом направлении, упомянутый второй проводник, имеющий форму меандровой линии, ориентирован во втором направлении, перпендикулярном упомянутому первому направлению, и заземленный излучатель, включающий в себя первый заземленный излучатель, размещенный с первой стороны от второго проводника, и второй заземленный излучатель, размещенный с второй стороны от второго проводника, причем первый и второй заземленные излучатели соединены друг с другом.
10. Антенна по п. 9, отличающаяся тем, что упомянутые первый и второй заземленные излучатели ориентированы в первом направлении.
11. Антенна по п. 9, отличающаяся тем, что каждый из упомянутых первого и второго заземленных излучателей имеет форму меандровой линии.
12. Антенна по п. 9, отличающаяся тем, что по меньшей мере один из упомянутых первого и второго заземленных излучателей емкостным способом связан с упомянутым вторым проводником.
13. Антенна по п. 9, отличающаяся тем, что только один из упомянутых первого и второго заземленных излучателей емкостным способом связан с упомянутым вторым проводником.
14. Антенна по п. 9, отличающаяся тем, что размеры антенны выбраны так, чтобы обеспечивать возможность использования антенны во взаимосвязи с переносным портативным устройством радиосвязи.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960052132A KR100193851B1 (ko) | 1996-11-05 | 1996-11-05 | 휴대용 무선기기의 소형 안테나 |
KR1996-52132 | 1996-11-05 | ||
KR96-52132 | 1996-11-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU99112172A RU99112172A (ru) | 2001-04-10 |
RU2178604C2 true RU2178604C2 (ru) | 2002-01-20 |
Family
ID=19480842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU99112172/09A RU2178604C2 (ru) | 1996-11-05 | 1997-09-08 | Малогабаритная антенна для портативного устройства радиосвязи |
Country Status (11)
Country | Link |
---|---|
US (1) | US5936587A (ru) |
EP (1) | EP0937313B1 (ru) |
JP (1) | JP2000508498A (ru) |
KR (1) | KR100193851B1 (ru) |
CN (1) | CN1108643C (ru) |
AU (1) | AU716524B2 (ru) |
BR (1) | BR9712738A (ru) |
DE (1) | DE69732975T2 (ru) |
IL (1) | IL121693A (ru) |
RU (1) | RU2178604C2 (ru) |
WO (1) | WO1998020578A1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2637365C2 (ru) * | 2015-06-30 | 2017-12-04 | Общество с ограниченной ответственностью "Научно-производственное предприятие "Технологии и системы радиомониторинга" | Малогабаритная широкодиапазонная антенна |
US9887452B2 (en) | 2011-11-01 | 2018-02-06 | Nec Corporation | Artificial satellite with integrated antenna |
Families Citing this family (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7019695B2 (en) * | 1997-11-07 | 2006-03-28 | Nathan Cohen | Fractal antenna ground counterpoise, ground planes, and loading elements and microstrip patch antennas with fractal structure |
GB2323476B (en) * | 1997-03-20 | 2002-01-16 | David Ganeshmoorthy | Communication antenna and equipment |
KR19990034478A (ko) * | 1997-10-29 | 1999-05-15 | 구자홍 | 이동통신 단말기용 수신장치 |
SE511068C2 (sv) * | 1997-11-06 | 1999-08-02 | Ericsson Telefon Ab L M | Portabel elektronisk kommunikationsanordning med dubbelbandigt antennsystem |
SE511131C2 (sv) * | 1997-11-06 | 1999-08-09 | Ericsson Telefon Ab L M | Portabel elektronisk kommunikationsanordning med flerbandigt antennsystem |
US6107967A (en) * | 1998-07-28 | 2000-08-22 | Wireless Access, Inc. | Billboard antenna |
US6147653A (en) * | 1998-12-07 | 2000-11-14 | Wallace; Raymond C. | Balanced dipole antenna for mobile phones |
GB2344969B (en) * | 1998-12-19 | 2003-02-26 | Nec Technologies | Mobile phone with incorporated antenna |
US6232924B1 (en) | 1998-12-21 | 2001-05-15 | Ericsson Inc. | Flat blade antenna and flip mounting structures |
US6301489B1 (en) | 1998-12-21 | 2001-10-09 | Ericsson Inc. | Flat blade antenna and flip engagement and hinge configurations |
US6249688B1 (en) | 1998-12-21 | 2001-06-19 | Ericcson Inc. | Antenna electrical coupling configurations |
WO2000052784A1 (de) * | 1999-03-01 | 2000-09-08 | Siemens Aktiengesellschaft | Integrierbare multiband-antenne |
USD431558S (en) * | 1999-03-01 | 2000-10-03 | Ericsson Inc. | Flip and blade antenna for radiotelephone |
US6357887B1 (en) | 1999-05-14 | 2002-03-19 | Apple Computers, Inc. | Housing for a computing device |
US6977808B2 (en) * | 1999-05-14 | 2005-12-20 | Apple Computer, Inc. | Display housing for computing device |
US6198442B1 (en) * | 1999-07-22 | 2001-03-06 | Ericsson Inc. | Multiple frequency band branch antennas for wireless communicators |
WO2001013464A1 (en) * | 1999-08-18 | 2001-02-22 | Ericsson, Inc. | A dual band bowtie/meander antenna |
BR9917493B1 (pt) | 1999-09-20 | 2012-09-18 | antena de nìveis múltiplos. | |
WO2001047059A1 (en) * | 1999-12-23 | 2001-06-28 | Rangestar Wireless, Inc. | Dual polarization slot antenna assembly |
CN100373693C (zh) * | 2000-01-19 | 2008-03-05 | 弗拉克托斯股份有限公司 | 空间填充小型天线 |
JP3640595B2 (ja) * | 2000-05-18 | 2005-04-20 | シャープ株式会社 | 積層パターンアンテナ及びそれを備えた無線通信装置 |
US6323814B1 (en) * | 2000-05-24 | 2001-11-27 | Bae Systems Information And Electronic Systems Integration Inc | Wideband meander line loaded antenna |
US6690331B2 (en) | 2000-05-24 | 2004-02-10 | Bae Systems Information And Electronic Systems Integration Inc | Beamforming quad meanderline loaded antenna |
US6480158B2 (en) | 2000-05-31 | 2002-11-12 | Bae Systems Information And Electronic Systems Integration Inc. | Narrow-band, crossed-element, offset-tuned dual band, dual mode meander line loaded antenna |
AU2001275024A1 (en) | 2000-05-31 | 2001-12-11 | Bae Systems Information And Electronic Systems Integration, Inc. | Scanning, circularly polarized varied impedance transmission line antenna |
US6344825B1 (en) * | 2000-08-31 | 2002-02-05 | Inventec Corporation | Antenna apparatus for portable electronic device |
EP1198027B1 (en) * | 2000-10-12 | 2006-05-31 | The Furukawa Electric Co., Ltd. | Small antenna |
WO2002060007A1 (en) * | 2001-01-25 | 2002-08-01 | Bae Systems Information And Electronic Systems Integration Inc. | Meander line loaded tunable patch antenna |
US7023909B1 (en) | 2001-02-21 | 2006-04-04 | Novatel Wireless, Inc. | Systems and methods for a wireless modem assembly |
US6842148B2 (en) * | 2001-04-16 | 2005-01-11 | Skycross, Inc. | Fabrication method and apparatus for antenna structures in wireless communications devices |
US7452098B2 (en) * | 2001-06-15 | 2008-11-18 | Apple Inc. | Active enclosure for computing device |
WO2002103504A2 (en) * | 2001-06-15 | 2002-12-27 | Apple Computer, Inc. | Active enclosure for computing device |
US7766517B2 (en) * | 2001-06-15 | 2010-08-03 | Apple Inc. | Active enclosure for computing device |
US7071889B2 (en) | 2001-08-06 | 2006-07-04 | Actiontec Electronics, Inc. | Low frequency enhanced frequency selective surface technology and applications |
US9755314B2 (en) | 2001-10-16 | 2017-09-05 | Fractus S.A. | Loaded antenna |
US6567056B1 (en) * | 2001-11-13 | 2003-05-20 | Intel Corporation | High isolation low loss printed balun feed for a cross dipole structure |
US6882316B2 (en) | 2002-01-23 | 2005-04-19 | Actiontec Electronics, Inc. | DC inductive shorted patch antenna |
WO2003063292A1 (en) * | 2002-01-23 | 2003-07-31 | E-Tenna Corporation | Dc inductive shorted patch antenna |
AU2003245383A1 (en) * | 2002-06-03 | 2003-12-19 | Mendolia, Greg, S. | Combined emi shielding and internal antenna for mobile products |
US7184800B2 (en) * | 2002-10-15 | 2007-02-27 | Kyocera Wireless Corp. | Printed stubby unbalanced dipole antenna |
US7242574B2 (en) | 2002-10-22 | 2007-07-10 | Sullivan Jason A | Robust customizable computer processing system |
KR101259706B1 (ko) | 2002-10-22 | 2013-05-06 | 제이슨 에이. 설리반 | 향상된 방열 특성을 갖는 비주변 처리 제어 모듈 |
US7256991B2 (en) | 2002-10-22 | 2007-08-14 | Sullivan Jason A | Non-peripherals processing control module having improved heat dissipating properties |
JP2006510321A (ja) | 2002-12-22 | 2006-03-23 | フラクタス・ソシエダッド・アノニマ | 移動通信デバイス用のマルチバンド・モノポール・アンテナ |
WO2005076407A2 (en) | 2004-01-30 | 2005-08-18 | Fractus S.A. | Multi-band monopole antennas for mobile communications devices |
JP3833609B2 (ja) * | 2002-12-27 | 2006-10-18 | 本田技研工業株式会社 | 車載アンテナ |
FI115173B (fi) * | 2002-12-31 | 2005-03-15 | Filtronic Lk Oy | Taitettavan radiolaitteen antenni |
FR2850966B1 (fr) | 2003-02-10 | 2005-03-18 | Rhodia Polyamide Intermediates | Procede de fabrication de composes dinitriles |
DE10311040A1 (de) * | 2003-03-13 | 2004-10-07 | Kathrein-Werke Kg | Antennenanordnung |
FR2854891B1 (fr) | 2003-05-12 | 2006-07-07 | Rhodia Polyamide Intermediates | Procede de preparation de dinitriles |
US7336243B2 (en) * | 2003-05-29 | 2008-02-26 | Sky Cross, Inc. | Radio frequency identification tag |
KR100450878B1 (ko) * | 2003-06-13 | 2004-10-13 | 주식회사 에이스테크놀로지 | 중앙 급전 구조를 갖는 이동통신 단말기 내장형 안테나 |
JP4590595B2 (ja) | 2003-09-09 | 2010-12-01 | 独立行政法人情報通信研究機構 | 広帯域複数周波共用アンテナ |
US7193565B2 (en) * | 2004-06-05 | 2007-03-20 | Skycross, Inc. | Meanderline coupled quadband antenna for wireless handsets |
US7408512B1 (en) * | 2005-10-05 | 2008-08-05 | Sandie Corporation | Antenna with distributed strip and integrated electronic components |
US7973174B2 (en) | 2005-10-18 | 2011-07-05 | Invista North America S.A.R.L. | Process of making 3-aminopentanenitrile |
US20070164909A1 (en) * | 2006-01-13 | 2007-07-19 | Ogawa Harry K | Embedded antenna of a mobile device |
CZ2008547A3 (cs) | 2006-03-17 | 2009-06-10 | Invista Technologies S. A. R. L. | Zpusob purifikace triorganofosfitu ošetrením bazickým aditivem |
US20070257842A1 (en) * | 2006-05-02 | 2007-11-08 | Air2U Inc. | Coupled-fed antenna device |
GB2439110B (en) * | 2006-06-13 | 2009-08-19 | Thales Holdings Uk Plc | An ultra wideband antenna |
US7919646B2 (en) | 2006-07-14 | 2011-04-05 | Invista North America S.A R.L. | Hydrocyanation of 2-pentenenitrile |
US8738103B2 (en) | 2006-07-18 | 2014-05-27 | Fractus, S.A. | Multiple-body-configuration multimedia and smartphone multifunction wireless devices |
US20080143606A1 (en) * | 2006-12-18 | 2008-06-19 | Motorola, Inc. | Antenna assembly and communications assembly |
WO2009075692A2 (en) | 2007-05-14 | 2009-06-18 | Invista Technologies S.A.R.L. | High efficiency reactor and process |
CN101952004B (zh) | 2007-06-13 | 2015-08-12 | 因温斯特技术公司 | 改善己二腈质量的方法 |
TW200924281A (en) * | 2007-11-22 | 2009-06-01 | Quanta Comp Inc | Built-in antenna |
EP2229353B1 (en) | 2008-01-15 | 2018-01-03 | INVISTA Textiles (U.K.) Limited | Hydrocyanation of pentenenitriles |
CN101910119B (zh) | 2008-01-15 | 2013-05-29 | 因温斯特技术公司 | 用于制备和精制3-戊烯腈,和用于精制2-甲基-3-丁烯腈的方法 |
KR101610423B1 (ko) | 2008-10-14 | 2016-04-08 | 인비스타 테크놀러지스 에스.에이 알.엘. | 2-sec-알킬-4,5-디-(n-알킬)페놀의 제조 방법 |
WO2011017543A1 (en) | 2009-08-07 | 2011-02-10 | Invista Technologies S.A. R.L. | Hydrogenation and esterification to form diesters |
WO2012109393A1 (en) | 2011-02-08 | 2012-08-16 | Henry Cooper | High gain frequency step horn antenna |
US9478868B2 (en) | 2011-02-09 | 2016-10-25 | Xi3 | Corrugated horn antenna with enhanced frequency range |
KR101297332B1 (ko) * | 2012-02-28 | 2013-08-14 | 에이트론(주) | 다중 공진 안테나 |
CN103296422A (zh) * | 2012-03-01 | 2013-09-11 | 华硕电脑股份有限公司 | 电子装置 |
US20160181690A1 (en) * | 2012-09-19 | 2016-06-23 | Wireless Research Development | Pentaband antenna |
US9413069B2 (en) * | 2013-02-25 | 2016-08-09 | Taoglas Group Holdings Limited | Compact, multi-port, Wi-Fi dual band MIMO antenna system |
US9450309B2 (en) | 2013-05-30 | 2016-09-20 | Xi3 | Lobe antenna |
KR20160113196A (ko) * | 2014-01-24 | 2016-09-28 | 더 안테나 컴퍼니 인터내셔널 엔.브이. | 안테나 모듈, 안테나 및 이러한 안테나 모듈을 포함한 모바일장치 |
USD760205S1 (en) * | 2014-03-28 | 2016-06-28 | Lorom Industrial Co., Ltd. | Antenna for glass |
USD815621S1 (en) | 2016-07-11 | 2018-04-17 | Taoglas Group Holdings Limited | Antenna |
GB2556156B (en) | 2016-09-02 | 2022-03-30 | Taoglas Group Holdings Ltd | Multi-band MIMO panel antennas |
US10840589B2 (en) | 2016-09-02 | 2020-11-17 | Taoglas Group Holdings Limited | Multi-band MIMO panel antennas |
CN110323553B (zh) * | 2019-04-01 | 2021-07-16 | 深圳三星通信技术研究有限公司 | 天线的辐射单元及天线 |
CN110828990A (zh) * | 2019-10-31 | 2020-02-21 | 深圳市道通智能航空技术有限公司 | 一种天线 |
TWI738343B (zh) * | 2020-05-18 | 2021-09-01 | 為昇科科技股份有限公司 | 蜿蜒天線結構 |
CN116941129A (zh) * | 2022-02-22 | 2023-10-24 | 京东方科技集团股份有限公司 | 天线 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4313121A (en) * | 1980-03-13 | 1982-01-26 | The United States Of America As Represented By The Secretary Of The Army | Compact monopole antenna with structured top load |
US4684953A (en) * | 1984-01-09 | 1987-08-04 | Mcdonnell Douglas Corporation | Reduced height monopole/crossed slot antenna |
US4644366A (en) * | 1984-09-26 | 1987-02-17 | Amitec, Inc. | Miniature radio transceiver antenna |
JP2515624B2 (ja) * | 1990-11-01 | 1996-07-10 | 原田工業株式会社 | アンテナ結合回路 |
GB9102935D0 (en) * | 1991-02-12 | 1991-03-27 | Shaye Communications Ltd | Improvements in and relating to antennae |
DE4113277C2 (de) * | 1991-04-19 | 1996-08-08 | Hagenuk Telecom Gmbh | Antenne für ein mobiles Telefon |
JPH0690108A (ja) * | 1992-09-07 | 1994-03-29 | Nippon Telegr & Teleph Corp <Ntt> | 小型アンテナ及びその製造方法 |
AT398532B (de) * | 1992-09-22 | 1994-12-27 | Linser Franz Dr | Krafttrainingsgerät |
DE4410618A1 (de) * | 1994-03-26 | 1995-09-28 | Reitter & Schefenacker Gmbh | Außenrückblickspiegel für Kraftfahrzeuge |
WO1996027219A1 (en) * | 1995-02-27 | 1996-09-06 | The Chinese University Of Hong Kong | Meandering inverted-f antenna |
US5706016A (en) * | 1996-03-27 | 1998-01-06 | Harrison, Ii; Frank B. | Top loaded antenna |
-
1996
- 1996-11-05 KR KR1019960052132A patent/KR100193851B1/ko not_active IP Right Cessation
-
1997
- 1997-06-30 US US08/884,812 patent/US5936587A/en not_active Expired - Lifetime
- 1997-09-03 IL IL12169397A patent/IL121693A/xx not_active IP Right Cessation
- 1997-09-08 CN CN97199577A patent/CN1108643C/zh not_active Expired - Fee Related
- 1997-09-08 AU AU41377/97A patent/AU716524B2/en not_active Ceased
- 1997-09-08 WO PCT/KR1997/000166 patent/WO1998020578A1/en active IP Right Grant
- 1997-09-08 BR BR9712738-8A patent/BR9712738A/pt not_active Application Discontinuation
- 1997-09-08 DE DE69732975T patent/DE69732975T2/de not_active Expired - Fee Related
- 1997-09-08 EP EP97939247A patent/EP0937313B1/en not_active Expired - Lifetime
- 1997-09-08 JP JP10521233A patent/JP2000508498A/ja active Pending
- 1997-09-08 RU RU99112172/09A patent/RU2178604C2/ru not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9887452B2 (en) | 2011-11-01 | 2018-02-06 | Nec Corporation | Artificial satellite with integrated antenna |
RU2637365C2 (ru) * | 2015-06-30 | 2017-12-04 | Общество с ограниченной ответственностью "Научно-производственное предприятие "Технологии и системы радиомониторинга" | Малогабаритная широкодиапазонная антенна |
Also Published As
Publication number | Publication date |
---|---|
CN1108643C (zh) | 2003-05-14 |
KR100193851B1 (ko) | 1999-06-15 |
CN1237278A (zh) | 1999-12-01 |
AU716524B2 (en) | 2000-02-24 |
IL121693A (en) | 2000-06-01 |
WO1998020578A1 (en) | 1998-05-14 |
IL121693A0 (en) | 1998-02-22 |
AU4137797A (en) | 1998-05-29 |
DE69732975T2 (de) | 2005-09-08 |
EP0937313B1 (en) | 2005-04-06 |
KR19980034169A (ko) | 1998-08-05 |
EP0937313A1 (en) | 1999-08-25 |
US5936587A (en) | 1999-08-10 |
BR9712738A (pt) | 1999-10-19 |
JP2000508498A (ja) | 2000-07-04 |
DE69732975D1 (de) | 2005-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2178604C2 (ru) | Малогабаритная антенна для портативного устройства радиосвязи | |
US4700194A (en) | Small antenna | |
US7079081B2 (en) | Slotted cylinder antenna | |
US6768476B2 (en) | Capacitively-loaded bent-wire monopole on an artificial magnetic conductor | |
US6288682B1 (en) | Directional antenna assembly | |
US7205944B2 (en) | Methods and apparatus for implementation of an antenna for a wireless communication device | |
EP0070150B1 (en) | Antenna arrangement for personal radio transceivers | |
US20030043075A1 (en) | Broad band and multi-band antennas | |
US7079077B2 (en) | Methods and apparatus for implementation of an antenna for a wireless communication device | |
US5914695A (en) | Omnidirectional dipole antenna | |
US4584585A (en) | Two element low profile antenna | |
WO2003041217A2 (en) | Multiband antenna formed of superimposed compressed loops | |
JP2001203521A (ja) | 平面形マイクロストリップパッチアンテナ | |
JP3255803B2 (ja) | 移動無線用アンテナ | |
JP3937935B2 (ja) | 情報処理装置用無線通信カード | |
KR100861865B1 (ko) | 무선 단말기 | |
JP2004015500A (ja) | アンテナ素子及びアンテナ装置 | |
JPH01206705A (ja) | 無指向性マイクロストリップアンテナ | |
KR100287997B1 (ko) | 무선근거리통신망용평면모노폴안테나 | |
JP2001358516A (ja) | チップ型アンテナ素子およびアンテナ装置並びにそれを搭載した通信機器 | |
JPH08213832A (ja) | 移動無線用アンテナ | |
JPS6284606A (ja) | アンテナ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20090909 |