RU2159213C2 - Способ очистки кремния и устройство для его осуществления - Google Patents

Способ очистки кремния и устройство для его осуществления Download PDF

Info

Publication number
RU2159213C2
RU2159213C2 RU99104054/12A RU99104054A RU2159213C2 RU 2159213 C2 RU2159213 C2 RU 2159213C2 RU 99104054/12 A RU99104054/12 A RU 99104054/12A RU 99104054 A RU99104054 A RU 99104054A RU 2159213 C2 RU2159213 C2 RU 2159213C2
Authority
RU
Russia
Prior art keywords
crucible
silicon
rotation
melt
axis
Prior art date
Application number
RU99104054/12A
Other languages
English (en)
Other versions
RU99104054A (ru
Inventor
М.А. Абдюханов
И.М. Абдюханов
В.М. Меркушкин
Ю.А. Кузьмин
Original Assignee
Абдюханов Мансур Абдрахманович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Абдюханов Мансур Абдрахманович filed Critical Абдюханов Мансур Абдрахманович
Priority to RU99104054/12A priority Critical patent/RU2159213C2/ru
Priority to PCT/RU2000/000038 priority patent/WO2000050342A1/ru
Application granted granted Critical
Publication of RU2159213C2 publication Critical patent/RU2159213C2/ru
Publication of RU99104054A publication Critical patent/RU99104054A/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Изобретение относится к способу очистки кремния и устройству для его осуществления в плазменной технологии очистки кремния при промышленном производстве кремния для фотоэлектронной промышленности, и в т.ч. для изготовления солнечных батарей. Сущность изобретения заключается в способе, включающем разогрев неочищенного кремния плазменным факелом до получения расплава и обработки расплава инертными, восстановительными газами, парами воды во вращающемся тигле с получением расплава цилиндрической формы. Сущность изобретения также заключается в устройстве для осуществления данного способа, которое состоит из вращающегося тигля и плазмотрона с каналами подачи газов, при этом тигель представляет собой обечайку цилиндрической формы. Получают кремний повышенной чистоты с однородным распределением примесей по выплавляемому объему промышленным способом. Сокращается время очистки, снижаются энергетические и материальные затраты. 2 с. и 9 з.п. ф-лы, 5 ил.

Description

Изобретение относится к плазменной технологии очистки кремния при промышленном производстве кремния для фотоэлектронной промышленности, и в том числе для изготовления солнечных батарей.
Известен способ очистки кремния, заключающийся в а) расплавлении исходного неочищенного кремния вместе с силикатом кальция при температуре не ниже 1544oC, в ходе которого бор, присутствующий в качестве примеси в кремнии, переходит в шлак, б) выдержку расплава под атмосферой инертного газа для разделения на нижний слой шлака и верхний слой кремния с последующим регулированием температуры в пределах 1430-1544oC для коагуляции шлака, причем кремний в это время не претерпевает каких-либо изменений, и в) погружение охлаждающего элемента в расплав кремния, в результате чего на его поверхности осаждается кремний высокой чистоты. Затем этот элемент извлекают из расплава и удаляют с него массу застывшего кремния. На следующей стадии г) кремний высокой чистоты подвергают переплавке и вакуумной обработке для испарения содержащегося в нем фосфора. См. заявку N PCT - WO 9703922 A1 от 14.05.95.
Там же фиг. 2, раскрыто устройство для его осуществления состоящее из неподвижного тигля с расплавом и опускаемого в расплав вращающегося и охлаждаемого изнутри элемента съема чистого кремния. Однако данный способ и устройство для его осуществления не приспособлены для промышленного производства, является трудоемким.
Наиболее близким к предлагаемому способу и устройству является способ и устройство по EP 0855367 A1, опубликованному 29.07.1998 Bulletin 1998/31. По этому способу тигель располагается под плазмотроном и загружается металлургическим кремнием, расплавляется и на расплав кремния подается технологический газ или газовые смеси окислительного и восстановительного свойства, причем подача этих газов и смесей производится вместе с потоком плазмы инертного газа, при этом зеркало расплава меняет свою площадь от площади круга при отсутствии воздействия плазмы до площади фигуры, ограниченной параболой при воздействии потока плазмы с технологическими газами и смесями, при этом поток плазмы может отклонятся от вертикальной оси на определенный угол, и сами потоки технологических газов и смесей подаются под определенным углом к потоку плазмы с осуществлением контроля параметров их подачи.
Устройство для осуществления этого способа состоит из тигля на расстоянии d, от которого по вертикальной оси вверх расположен плазмотрон с каналами подающими технологические газы и смеси, устройство его предварительного подогрева и желоб подачи неочищенного кремния.
Однако для получения этим способом кремния с уровнем чистоты от 10 ppmw до 1 ppmw и содержанием примесей фосфора, железа, алюминия, титана меньше чем 0.1 ppmw каждого, для бора от 0.1 до 0.3 ppmw, а углерода и кислорода меньше чем 5 ppmw необходим длительный процесс рафинирования, что исключает его получение промышленным способом.
Кроме того, расплав кремния имеет увеличивающуюся к низу тигля толщину расплава, что соответственно исключает равномерный характер его обработки и однородность чистоты получаемого кремния. Чем толще обрабатываемый слой, тем дольше время обработки расплава, что влечет за собой значительные затраты энергии, чистого инертного газа, водорода и других технологических смесей. А выравнивание слоя за счет каскада тиглей или системы перемешивания электромагнитным воздействием предполагает дополнительные затраты.
Задачей изобретения является получение кремния повышенной чистоты с однородным распределением примесей по выплавляемому объему промышленным способом, сокращение времени очистки, снижение энергетических и материальных затрат.
Поставленная задача решается за счет того, что в способе, включающем разогрев в тигле неочищенного кремния до получения расплава и обработку расплава плазменным факелом, содержащим инертный газ, восстановительный газ и пары воды, разогрев и обработку кремния плазменным факелом производят одновременно с вращением тигля вокруг своей оси до получения расплава формы полого цилиндра, при этом плазменный факел направляют вдоль оси вращения, а слив готовой продукции производят при достижении заданного уровня содержания примесей, при этом разогрев в тигле неочищенного кремния до получения расплава производят до температуры 1500-1800oC, а вращение тигля производится вокруг оси, расположение которой меняют при достижении скорости вращения
Figure 00000002

где n - число оборотов тигля;
R - внутренний радиус расплава, м;
g - ускорение силы тяжести, м/с2 %,
при этом расплав формы полого цилиндра получают с регулируемой толщиной стенки и обработку ведут по внутренней поверхности расплава, как вдоль оси вращения, так и под острым углом к ней, а в плазменный факел добавляют смесь воздуха с восстановительным газом, при этом в процессе очистки кремния осуществляют взятие проб без остановки вращения тигля, а слив готовой продукции производят при достижении заданного уровня содержания примесей путем изменения положения оси вращения тигля от горизонтального положения и за счет снижения скорости вращения тигля.
Устройство для осуществления по данному способу очистки кремния, состоит из тигля и плазмотрона с каналами подачи газов, при этом тигель представляет собой обечайку цилиндрической формы с двумя фланцами на торцах, футерованную и облицованную кварцевым стеклом изнутри, с одной стороны в отверстие фланца вставлен плазмотрон, а с противоположной стороны во втором фланце расположено отверстие для выхода газа и удаления примесей и слива кремния в изложницу, а на внешнем диаметре этого фланца, выполненного в виде двух спаренных шкивов для привода вращения тигля и для вращения пары катков, на которые опирается тигель с возможностью изменения точек опоры по хорде окружности паза с одной стороны, а с другой стороны, тигель опирается на вторую пару катков первым фланцем, а катки попарно расположены на трапециидальной раме и каждая пара имеет одну общую ось вращения, заделанную в подшипники на раме, которая крепится снизу к платформе с двигателем, а сама платформа подвешена через амортизаторы к каркасу, при этом привод вращения выполнен в виде цепи и шкива со звездочкой, а шкив для вращения пары катков имеет паз.
Металлургический кремний чистотой от 98 до 99,6 мас.% производится промышленным способом, но для использования его в солнечных элементах требуется удаление примесей. Примеси большинства металлов могут быть удалены методом направленной кристаллизации, т.к. их коэффициенты распределения значительно ниже единицы. Однако фосфор и бор не могут быть удалены этим методом, потому что их коэффициенты распределения близки к единице. Фосфор может быть удален испарением в процессе вакуумного переплава. Углерод может быть удален осаждением или затвердеванием SiC, окислением углерода и удалением в виде CO в процессе очистки. Удаление бора остается проблемой.
На фиг. 1 изображен общий вид устройства со стороны слива кремния в изложницу.
На фиг. 2 - фрагмент вида сбоку с частичным разрезом и схемой перемещения слоев жидкого кремния при вращении тигля и подаче технологических газов и смесей.
На фиг. 3 - схема размещения жидкого слоя при максимальных оборотах.
На фиг. 4 - схема размещения жидкого слоя при пониженных оборотах.
На фиг. 5 - схема размещения жидкого слоя при низких оборотах.
На практике реализация предложенного способа осуществляется следующим образом. В тигель поз. 1 загружается металлургический кремний в мелкодисперсном, размолотом или кусковом виде в количестве, позволяющем при расплавлении и вращение тигля придавать расплаву форму полого цилиндра с регулируемой толщиной стенки.
Разогрев загруженного кремния до состояния расплава с температурой 1500-1800oC производится факелом плазмотрона одновременно с вращением тигля вокруг оси подачи факела от горизонтального положения до вертикального при достижении скорости вращения
Figure 00000003

где n - число оборотов тигля, с;
g - ускорение силы тяжести, м/с2;
R - внутренний радиус полого цилиндра, м;
K - коэффициент.
Затем ведется обработка расплава смесями окислительного и восстановительного газов по внутренней поверхности образованного цилиндра, например, воздухом, водяным паром и водородом. Расход подачи технологических смесей и газов, время обработки и мощность факела плазмотрона регулируются в зависимости от состояния исходного материала и по степени очистки кремния от примесей путем взятия проб во время обработки расплава кремния, которые можно отбирать без остановки вращения тигля. При достижении заданного уровня содержания примесей, производят слив кремния в изложницу путем изменения положения оси вращения тигля от горизонтального или за счет снижения скорости вращения тигля при вертикальном положении оси вращения тигля.
Устройство для осуществления данного способа состоит из тигля 1 и плазмотрона 2 с каналами подачи технологических и плазмообразующего газов. Тигель 1 представляет собой обечайку цилиндрической формы (см. фиг. 2), выполненную из, желательно, нержавеющей стали и футерованную изнутри теплоизолирующим слоем 3, состоящим из мелкодисперсного кварца и толщина которого является расчетной величиной для обеспечения перепада температур от 1800 до 100oC, и остеклованный слой 4 кварца. С двух сторон на торцах цилиндрической обечайки расположены фланцы 5 и 6. С одной стороны в отверстие фланца 5, имеющего каналы (на фиг. не показаны) для подачи технологических газов или смесей, вставлен с минимальным зазором плазмотрон 2, а с противоположной стороны во фланце 6 имеется отверстие 7 для удаления газов и слива кремния в изложницу 8. На внешнем диаметре фланца 6 имеются два спаренных шкива 9 и 10. На шкиве 9 может быть выполнена, например, звездочка для вращения тигля через цепь 11 двигателем 12. А на другом шкиве 10 выполнен паз 13 для вращения в нем пары катков 14 и 15, и на которые опирается тигель с возможностью изменения точек опоры по хорде окружности паза 13 при помощи вращения ручки 16. С другой стороны тигель опирается фланцем 5 на вторую пару катков 17 и 18, а сами катки попарно расположены на трапецеидальной раме 19 и 20 и имеют одну общую ось вращения 21, заделанную в охлаждаемые подшипники 22. Тигель сверху может быть поджат к каткам дополнительными роликами. Рама, на которой подвешен тигель, жестко крепится снизу к платформе 23 с закрепленным на ней двигателем 12, а сама платформа 23 подвешена через амортизаторы 24 к каркасу 25 посредством шарниров. Устройство для плазменной очистки кремния работает следующим образом.
В тигель 1 загружается расчетное количество размолотого металлургического кремния (MG - Si) повышенной чистоты, который производится промышленным способом в больших количествах. Затем тигель раскручивают до скорости
Figure 00000004

где n - число оборотов тигля, с;
R - радиус внутренней полости, м;
g - ускорение силы тяжести, м/с2;
K - коэффициент,
при этом кремний группируется в виде полого цилиндра со сквозным отверстием по оси цилиндра, прижатого внешней поверхностью к теплоизолирующему слою. Затем включается плазмотрон 2, в котором в качестве плазмообразующего газа используется, например, аргон или другой инертный газ, или воздух. Плазменным потоком, направленным по оси тигля внутрь полого цилиндрического образования нагревают содержимое тигля, расплавляют и поддерживают температуру расплава в диапазоне 1500-1800oC путем регулирования тока плазмотрона и расхода плазмообразующего газа.
Такой способ нагрева кремния с внутренней поверхности полого цилиндрического образования и отсутствие открытого зеркала расплава уменьшает тепловые потери и потери на испарение кремния и обеспечивает достижение высокой энергетической эффективности нагрева и благоприятные условия работы плазмотрона, что существенно увеличивает ресурс его работы. В результате напора плазменной струи и вращения тигля происходит перемешивание слоев расплава как показано черными стрелками на фиг. 2. В зависимости от числа оборотов тигля производится дополнительное перемешивание расплава, как это показано черными стрелками на фиг. 3, 4, 5. На фиг. 3 показана форма расплава при максимальных оборотах тигля, когда
Figure 00000005
На фиг. 4 - при
Figure 00000006
и на фиг. 5 при
Figure 00000007
Для наиболее эффективного перемешивания расплава используют все четыре режима. Надо отметить, что изменением массы засыпки регулируется толщина обрабатываемого слоя кремния. Причем эта величина расчетная и ее легко подсчитать исходя из объема полого цилиндра и массы закладываемой порции кремния. Теперь расплавленный и сформированный в полый цилиндр нужной толщины кремний подвергают обработке технологическими газами - окислительным (кислородом) и восстановительным (водородом, монооксидом углерода или углеводородным газом ряда CnН2n+2) в различных соотношениях, подавая их непосредственно через сопло плазмотрона или через специальные каналы в головке плазмотрона или во фланце 5. Активированный в плазме кислород эффективно окисляет бор в приповерхностном слое кремния, превращая его в летучие оксиды бора (BO, BO2, B2O3), которые уносятся газовым потоком через отверстие 7 фланца 6 тигля 1. Восстановительные газы подаются непосредственно на внутреннюю поверхность цилиндрического расплава, предотвращая окисление кремния, и образование на его поверхности пленки диоксида кремния, препятствующей диффузии бора из объема в приповерхностный слой расплава кремния. Проверенным и очень эффективным способом получения окислительного и восстановительного газов в плазменном потоке является подача паров воды, которые в результате диссоциации в плазме дают активный кислород и водород. Содержание паров воды в смеси газов регулируют в диапазоне от 10 до 40% по массе. При обработке расплава расход плазмообразующего и инертного газов, мощность и конфигурация факела плазмотрона, время обработки расплава регулируют в зависимости от качества исходного материала (MG-Si) и качества получаемого продукта (COG - Si) путем взятия проб, в том числе во время обработки расплава при вращении тигля, через отверстие 7 во фланце 6.
При достижении заданного уровня примесей бора в пределах 0,3 ppmw производят слив готовой продукции в изложницу 8 путем отклонения тигля от горизонтального положения или за счет снижения его скорости вращения при вертикальном расположении. Для осуществления непрерывного технологического процесса подачу металлургического кремния в тигель производят непрерывно в расчетном количестве не останавливая его вращение через любое из двух торцевых отверстий или через специальный канал в неподвижном фланце, жестко связанном с плазмотроном.
Такой способ и устройство для очистки кремния дает ряд преимуществ в сравнении с обработкой расплава в неподвижном тигле. Обработка расплава кремния в замкнутом ограниченном объеме позволяет уменьшить потери на излучение, испарение и окисление, т.к. общая поверхность обрабатываемого расплава кремния значительно превосходит площадь выхлопного отверстия в торцевой стенке тигля. Площадь обрабатываемой поверхности жидкого кремния по изобретению значительно больше обрабатываемой площади кремния в открытом и неподвижном тигле и может быть выражена конкретной величиной.
Если взять радиус открытого тигля равным радиусу внутреннего цилиндра, то обрабатываемая поверхность в первом случае равна πR2, а в нашем π2RL. Если считать, что длина вращающегося тигля превосходит радиус в 3-4 раза, т. е. L = (3-4)R то получим, что площадь обрабатываемой поверхности по предлагаемому изобретению в 6-8 раз больше, т.е. величина обрабатываемой поверхности всегда больше на 2 L/R и ограничена только длиной эффективного воздействия факела плазмотрона. Кроме того, труднейшая проблема послойного перемешивания расплава решается простой регулировкой скорости вращения тигля, что очевидно из схем перемешивания, показанных на фиг. 2, 3, 4, 5. Очень важно, что попутно при вращении расплава все мелкие частицы более тугоплавких примесей в т.ч. тяжелых металлов и карбида кремния будут оттесняться центробежными силами на внешнюю границу жидкого слоя и останутся в гарнисажном слое при сливе. Периодическая обработка плазмотроном гарнисажного слоя путем его нагрева, слива и замены чистым кварцем предотвращает накопление примесей в гарнисажном слое и сохраняет необходимую чистоту получаемого таким способом кремния.

Claims (11)

1. Способ очистки кремния, включающий разогрев в тигле неочищенного кремния до получения расплава и обработку расплава плазменным факелом, содержащим инертный газ, восстановительный газ и пары воды, отличающийся тем, что разогрев и обработку кремния плазменным факелом производят одновременно с вращением тигля вокруг своей оси до получения расплава формы полого цилиндра, при этом плазменный факел направляют вдоль оси вращения, а слив готовой продукции производят при достижении заданного уровня содержания примесей.
2. Способ по п.1, отличающийся тем, что разогрев в тигле неочищенного кремния до получения расплава производят до 1500 - 1800oC.
3. Способ по п.1, отличающийся тем, что вращение тигля производят вокруг оси, расположение которой меняют при достижении скорости вращения
Figure 00000008

где n - число оборотов тигля, с;
R - внутренний радиус расплава, м;
g - ускорение силы тяжести, м/с2.
4. Способ по п.1, отличающийся тем, что расплав формы полого цилиндра получают с регулируемой толщиной стенки.
5. Способ по п.1, отличающийся тем, что обработку ведут по внутренней поверхности расплава как вдоль оси вращения, так и под острым углом к ней.
6. Способ по п. 1, отличающийся тем, что в плазменный факел добавляют смесь воздуха с восстановительным газом.
7. Способ по п.1, отличающийся тем, что в процессе очистки кремния осуществляют взятие проб без остановки вращения тигля.
8. Способ по п.1, отличающийся тем, что слив готовой продукции производят при достижении заданного уровня содержания примесей путем изменения положения оси вращения тигля от горизонтального положения и за счет снижения скорости вращения тигля.
9. Устройство для очистки кремния, состоящее из тигля и плазматрона с каналами подачи газов, отличающееся тем, что тигель представляет собой обечайку цилиндрической формы с двумя фланцами на торцах, футерованную и облицованную кварцевым стеклом изнутри, с одной стороны в отверстие фланца вставлен плазматрон, а с противоположной стороны во втором фланце расположено отверстие для выхода газа и удаления примесей и слива кремния в изложницу, а на внешнем диаметре этого фланца, выполненного в виде двух спаренных шкивов для привода вращения тигля и для вращения пары катков, на которые опирается тигель с возможностью изменения точек опоры по хорде окружности паза с одной стороны, а с другой стороны тигель опирается на вторую пару катков первым фланцем, а катки попарно расположены на трапецеидальной раме и каждая пара имеет одну общую ось вращения, заделанную в подшипники на раме, которая крепится снизу к платформе с двигателем, а сама платформа подвешена через амортизаторы к каркасу.
10. Устройство по п.9, отличающееся тем, что привод вращения выполнен в виде цепи и шкива со звездочкой.
11. Устройство по п.9, отличающееся тем, что шкив для вращения пары катков имеет паз.
RU99104054/12A 1999-02-25 1999-02-25 Способ очистки кремния и устройство для его осуществления RU2159213C2 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU99104054/12A RU2159213C2 (ru) 1999-02-25 1999-02-25 Способ очистки кремния и устройство для его осуществления
PCT/RU2000/000038 WO2000050342A1 (fr) 1999-02-25 2000-02-07 Procede de purification de silicium et dispositif de mise en oeuvre de ce procede

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99104054/12A RU2159213C2 (ru) 1999-02-25 1999-02-25 Способ очистки кремния и устройство для его осуществления

Publications (2)

Publication Number Publication Date
RU2159213C2 true RU2159213C2 (ru) 2000-11-20
RU99104054A RU99104054A (ru) 2001-05-10

Family

ID=20216539

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99104054/12A RU2159213C2 (ru) 1999-02-25 1999-02-25 Способ очистки кремния и устройство для его осуществления

Country Status (2)

Country Link
RU (1) RU2159213C2 (ru)
WO (1) WO2000050342A1 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2465199C2 (ru) * 2010-11-17 2012-10-27 Общество c ограниченной ответственностью "Энергия" Способ рафинирования металлургического кремния плазмой сухого аргона с инжекцией воды на поверхность расплава с последующей направленной кристаллизацией
RU2465200C1 (ru) * 2011-02-14 2012-10-27 Общество с ограниченной ответственностью "ЭНЕРГИЯ" Способ рафинирования металлургического кремния
RU2465201C1 (ru) * 2011-02-14 2012-10-27 Общество с ограниченной ответственностью "ЭНЕРГИЯ" Способ получения слитков поликристаллического кремния
RU2465202C2 (ru) * 2010-11-17 2012-10-27 Общество c ограниченной ответственностью "Энергия" Способ очистки металлургического кремния увлажненной плазмой переменного тока в вакууме
RU2565198C1 (ru) * 2014-11-27 2015-10-20 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Способ очистки технического кремния
RU2693172C1 (ru) * 2018-10-09 2019-07-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" ФГБОУ ВО "РГРТУ" Способ очистки металлургического кремния от примесей
RU2702173C1 (ru) * 2018-12-25 2019-10-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Способ повышения эффективности очистки кремния

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101581046B1 (ko) * 2009-12-16 2015-12-30 주식회사 케이씨씨 플라즈마 아크토치의 위치조절장치
CN103351001B (zh) * 2013-06-19 2015-06-03 青岛隆盛晶硅科技有限公司 工业硅分离杂质的方法
CN109133068B (zh) * 2018-11-19 2021-06-22 成都斯力康科技股份有限公司 冶金法除杂制备太阳能级硅锭的装置及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2229229A1 (de) * 1972-06-15 1974-01-10 Siemens Ag Verfahren zum herstellen von aus silizium oder siliziumcarbid bestehenden formkoerpern
FR2487808A1 (fr) * 1980-08-01 1982-02-05 Electricite De France Procede et dispositif d'elimination du bore dans le silicium par fusion de zone sous plasma reactif
SU1333229A3 (ru) * 1983-02-28 1987-08-23 Скф Стил Инджиниринг Аб (Фирма) Способ получени кремни
EP0274283B1 (fr) * 1987-01-08 1989-05-24 Rhone-Poulenc Chimie Procédé de purification sous plasma de silicium divisé
DE3727646A1 (de) * 1987-08-19 1989-03-02 Bayer Ag Verfahren zur kontinuierlichen raffination von silicium
SU1630213A1 (ru) * 1989-07-21 1994-01-30 МГУ им.М.В.Ломоносова Устройство для получения пенографита

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2465199C2 (ru) * 2010-11-17 2012-10-27 Общество c ограниченной ответственностью "Энергия" Способ рафинирования металлургического кремния плазмой сухого аргона с инжекцией воды на поверхность расплава с последующей направленной кристаллизацией
RU2465202C2 (ru) * 2010-11-17 2012-10-27 Общество c ограниченной ответственностью "Энергия" Способ очистки металлургического кремния увлажненной плазмой переменного тока в вакууме
RU2465200C1 (ru) * 2011-02-14 2012-10-27 Общество с ограниченной ответственностью "ЭНЕРГИЯ" Способ рафинирования металлургического кремния
RU2465201C1 (ru) * 2011-02-14 2012-10-27 Общество с ограниченной ответственностью "ЭНЕРГИЯ" Способ получения слитков поликристаллического кремния
RU2565198C1 (ru) * 2014-11-27 2015-10-20 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Способ очистки технического кремния
RU2693172C1 (ru) * 2018-10-09 2019-07-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" ФГБОУ ВО "РГРТУ" Способ очистки металлургического кремния от примесей
RU2702173C1 (ru) * 2018-12-25 2019-10-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Способ повышения эффективности очистки кремния

Also Published As

Publication number Publication date
WO2000050342A1 (fr) 2000-08-31

Similar Documents

Publication Publication Date Title
JP3309141B2 (ja) 電子ビーム溶解による結晶シリコンインゴットの鋳造方法および装置
US3917479A (en) Furnaces
JP4433610B2 (ja) シリコンの精製方法および精製装置
US4747906A (en) Process and apparatus for purifying silicon
RU2159213C2 (ru) Способ очистки кремния и устройство для его осуществления
JP3473369B2 (ja) シリコンの精製方法
KR910007297B1 (ko) 금속의 연속주조장치 및 이 장치의 작동방법
JP2012502879A (ja) 溶融汚染物およびウェーハ汚染物を低減するための一方向凝固炉
EA015387B1 (ru) Способ и устройство очистки низкокачественного кремнийсодержащего материала
JPS6150881B2 (ru)
CA1310472C (en) Process for the production of ultra high purity polycrystalline silicon
US4911896A (en) Fused quartz member for use in semiconductor manufacture
US4834832A (en) Process and apparatus for the manufacture of silicon rods
US5312471A (en) Method and apparatus for the manufacture of large optical grade SiO2 glass preforms
US4242175A (en) Silicon refining process
JP3848816B2 (ja) 高純度金属精製方法及びその装置
RU2465201C1 (ru) Способ получения слитков поликристаллического кремния
RU2089633C1 (ru) Устройство для плавления и литья металлов и сплавов
RU2213792C1 (ru) Плазменный реактор-сепаратор
RU2465200C1 (ru) Способ рафинирования металлургического кремния
JPH05262512A (ja) シリコンの精製方法
RU2465199C2 (ru) Способ рафинирования металлургического кремния плазмой сухого аргона с инжекцией воды на поверхность расплава с последующей направленной кристаллизацией
WO2013168214A1 (ja) アルミニウム精製装置およびアルミニウム精製方法
US4231755A (en) Process for purifying solid substances
RU2146650C1 (ru) Способ рафинирования кремния и его сплавов