RU2126514C1 - Способ подачи тепла в энергосистеме с внешним огневым нагревом (варианты) и устройство для его осуществления (варианты) - Google Patents

Способ подачи тепла в энергосистеме с внешним огневым нагревом (варианты) и устройство для его осуществления (варианты) Download PDF

Info

Publication number
RU2126514C1
RU2126514C1 RU94034120A RU94034120A RU2126514C1 RU 2126514 C1 RU2126514 C1 RU 2126514C1 RU 94034120 A RU94034120 A RU 94034120A RU 94034120 A RU94034120 A RU 94034120A RU 2126514 C1 RU2126514 C1 RU 2126514C1
Authority
RU
Russia
Prior art keywords
flue gas
combustion
fuel
stream
gas stream
Prior art date
Application number
RU94034120A
Other languages
English (en)
Other versions
RU94034120A (ru
Inventor
И.Калина Александр
Original Assignee
Эксерджи, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эксерджи, Инк. filed Critical Эксерджи, Инк.
Publication of RU94034120A publication Critical patent/RU94034120A/ru
Application granted granted Critical
Publication of RU2126514C1 publication Critical patent/RU2126514C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/24Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by separately-fired heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/042Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with fuel supply in stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/04Arrangements of recuperators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/30Staged fuel supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Chimneys And Flues (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Electric Stoves And Ranges (AREA)
  • Fertilizers (AREA)
  • Control Of Resistance Heating (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

Способ и устройство для многоступенчатого сгорания предназначены для использования совместно с энергетическими установками с внешним огневым нагревом. Степень охлаждения топочного газа на какой-либо стадии контролируется путем управления количеством стадий сгорания. Обеспечиваются возможность согласования температуры выделяемого тепла на каждой стадии с термическими характеристиками рабочей среды из энергетической установки. Повышается эффективность энергетической системы, 4 с. и 32 з.п.ф-лы, 2 ил.

Description

Изобретение относится к способу и системам для сгорания топлива с целью подачи тепла к бойлерам и перегревателям энергетических установок с внешним огневым нагревом.
Системы сгорания, используемые в настоящее время для энергетических установок с внешним огневым нагревом, могут быть разделены на две категории: системы, в которых воздух, подаваемый в камеру сгорания, подогревается, и системы, в которых воздух не подвергается подогреву. Система сгорания с подогревом воздуха обеспечивает более высокую эффективность энергетической системы, поскольку тепло высвобождается в температурном диапазоне, который выше температуры, при которой топочные газы используются для подогрева встречного воздуха, например, обычно в температурном диапазоне, находящемся приблизительно выше 700oF /371oC/.
Два известных типа процессов сгорания включают в себя системы сгорания с распыляемым углем /в которых угол для сгорания измельчается в мелкий порошок/ и системы сгорания с псевдоожиженным слоем. Системы сгорания с распыляемым углем обычно используются только для сжигания угля /который в отличие от других видов топлива может быть размолот в мелкий порошок/. Для обеспечения полного сгорания мелкий угольный порошок обычно сжигается при наличии 15 - 20% избыточного воздуха. Отвод тепла осуществляется посредством специальных труб, окружающих зону пламени. В этих трубах рабочая среда /обычно вода/ доводится до кипения, тем самым предотвращается перегрев и прожигание труб.
Температура сгорания обычно весьма высока, так что в качестве побочного продукта образуются оказывающие вредное воздействие на окружающую среду окислы азота /NOx/. Высокая температура сгорания также препятствует удалению, например, через известняковую добавку, оказывающих вредное влияние на окружающую среду серных газов.
В системах сгорания с псевдоожиженным слоем сгоранию могут подвергаться различные виды твердого топлива. Топливо обычно подается в зону сгорания, смешанным с известняком; назначение известняка заключается в удалении серных газов. Как и в случае системы с распылением угля, топливо обычно сжигается по меньшей мере при 15 - 20% избыточного воздуха, с тем чтобы обеспечить его полное сгорание. Специальные охладительные трубы, которые забирают тепло в таких камерах сгорания, располагаются непосредственно в зоне сгорания, обеспечивая тем самым эффективное охлаждение. В результате этого в системах с псевдоожиженным слоем сгорания топлива может осуществляться при температурах, приблизительно составляющих 1600oF /871oC/. При таких температурах известняк поглощает серные газы и из воздуха не образуются газы NOx. Однако вследствие того, что масса тепла выделяется посредством простого охлаждения топочного газа от 1600oF примерно до 700oF /от 871oC примерно до 370oC/, в этом случае выделяется недостаточное количество тепла для повторного нагрева рабочей среды при силовом цикле и таким образом сжижается эффективность энергетической системы.
В качестве ближайшего аналога принят способ подачи тепла к энергосистеме с внешним огневым нагревом, включающий сжигание топлива в нескольких камерах сгорания с последующей теплопередачей и устройство для подачи тепла к энергетической системе с внешним огневым нагревом для сжигании топлива в нескольких камерах сгорания с последующим охлаждением, содержащее подогреватель для подогрева поступающего потока воздуха с использованием теплопередачи от потока топочного газа, первую из камер сгорания для сгорания смеси подогретого воздуха и части общего количества топлива для формирования первого потока топочного газа, по меньшей мере, одну дополнительную камеру сгорания, последовательно расположенную для сгорания остального топлива, на одной или более из последовательных стадий для формирования на каждой стадии потока топочного газа, использующего потока топочного газа, создаваемого на непосредственно предшествующей стадии /SU 1726897 A, F23 C 6/04, 1992 г./
Данному техническому решению присущи все недостатки, описанные выше.
Задачей изобретения является повышение эффективности энергетической системы. Согласно первому аспекту изобретения данная задача решается в способе подачи топлива к энергосистеме с внешним огневым нагревом, включающем сжигание топлива в нескольких камерах сгорания с последующей теплопередачей, содержащем следующие стадии;
подачу потока подогретого воздуха и части общего количества топлива, предназначенного для сгорания, к первой камере сгорания;
сгорание смеси подогретого воздуха и топлива для сжигания для формирования первого потока топочного газа; при этом
выбор количества топлива, подаваемого к первой камере сгорания, таким образом, чтобы температура первого потока поточного газа была ниже температуры, при которой образуются газы окислов азота; передачу тепла от первого потока топочного газа к потоку рабочей среды из энергетической системы с внешним огневым нагревом;
сгорание остального топлива на последовательных одной или более стадиях сгорания для формирования на каждой стадии потока топочного газа с использованием потока топочного газа, создаваемого на непосредственно предшествующей стадии сгорания;
выбор количества топлива на каждой последовательной стадии сгорания таким образом, чтобы температура потока топочного газа, создаваемого на стадии сгорания, была ниже температуры, при которой образуются газы оксидов азота;
причем сумма возрастания температуры, взаимосвязанных с каждой стадией сгорания, равна возрастанию температуры, взаимосвязанному со сгоранием всего топлива при одной стадии сгорания с использованием минимального количества воздуха, необходимого для сгорания и
теплопередачу от каждого последовательного потока топочного газа к потоку рабочей среды из энергетической системы с внешним огневым нагревом.
Согласно второму аспекту изобретения задача решается в способе подачи тепла к энергосистеме с внешним огневым нагревом, включающем сжигание топлива в нескольких камерах сгорания с последующей теплопередачей, содержащем следующие стадии
подачу потока подогретого воздуха и части общего количества топлива к первой камере сгорания;
сгорание смеси подогретого воздуха и топлива для формирования первого потока топочного газа; при этом
количество топлива, подаваемого к первой камере сгорания, выбирается таким образом, чтобы температура первого потока топочного газа была меньше температуры, при которой образуются газы окислов азота;
теплопередачу от первого потока топочного газа к потоку рабочей среды из энергетической системы с внешним огневым нагревом:
сгорание смеси первого потока топочного газа и второй части топлива во второй камере сгорания для формирования второго потока топочного газа; причем
количество топлива, подаваемого ко второй камере сгорания, выбирается таким образом, чтобы температура второго потока топочного газа была ниже температуры, при которой образуются газы окислов азота;
теплопередачу от второго потока топочного газа к потоку рабочей среды из энергетической системы с внешним огневым нагревом;
сгорание смеси второго потока топочного газа и третьей части топлива в третьей камере сгорания для формирования третьего потока топочного газа, при этом
количество топлива, подаваемого к третьей камере сгорания, выбирается таким образом, чтобы температура третьего потока топочного газа была ниже температуры, при которой образуются газы окислов азота и
теплопередачу от третьего потока топочного газа к потоку рабочей среды из энергетической системы в внешним огневым нагревом; причем
сумма возрастаний температуры, взаимосвязанных с каждой стадией сгорания, равна возрастанию температуры, взаимосвязанному со сгоранием всего топлива при одной стадии сгорания с использованием минимального количества воздуха, необходимого для сгорания.
Согласно третьему аспекту изобретения задача решается в устройстве для подачи тепла к энергетической системе с внешним огневым нагревом для сжатия топлива в нескольких камерах сгорания с последующим охлаждением содержащем
подогреватель для подогрева потока поступающего воздуха с использованием теплопередачи от потока топочного газа;
первую из камер сгорания для сгорания смеси подогретого воздуха и части общего количества топлива для формирования первого потока топочного газа;
по меньшей мере одну дополнительную камеру сгорания, расположенную последовательно для сгорания остального топлива на одной или более последовательных стадиях для формирования на каждой стадии потока топочного газа, с использованием потока топочного газа, создаваемого на непосредственно предшествующей стадии сгорания;
измерительный прибор для выбора количества топлива, подаваемого к первой камере сгорания, так чтобы температура первого потока топочного газа была ниже той температуры, при которой образуются газы окислов азота;
первый теплообменник для теплопередачи от первого потока топочного газа к потоку рабочей среды из энергетической установки с внешним огневым нагревом;
по меньшей мере один измерительный прибор для выбора количества топлива на каждой последовательной стадии сгорания, так чтобы температура потока топочного газа, создаваемого на стадии сгорания, была ниже той температуры, при которой образуются газы окислов азота; при этом сумма возрастаний температуры, взаимосвязанных с каждой стадии сгорания, равна возрастанию температуры, взаимосвязанному со сгоранием всего топлива на одной стадии при использовании минимального количества воздуха, необходимого для сгорания; и
по меньшей мере один дополнительный теплообменник для теплопередачи от каждого последовательного потока топочного газа к потоку рабочей среды из энергетической системы с внешним огневым нагревом.
Согласно четвертому аспекту изобретения задача решается в устройстве для подачи тепла к энергетической системе с внешним огневым нагревом для сжигания топлива в нескольких камерах сгорания с последующим охлаждением, содержащем
подогреватель для подогрева потока входящего воздуха, с использованием тепла, передаваемого от потока топочного газа;
первую камеру сгорания для сгорания смеси подогретого воздуха и части общего количества топлива для формировании первого потока топочного газа;
вторую камеру сгорания для сгорания смеси первого потока топочного газа и второй части топлива с целью формирования второго потока топочного газа;
первый измерительный прибор для выбора количества топлива, подаваемого к первой камере сгорания, так чтобы температура первого потока топочного газа была ниже температуры, при которой образуется газы окислов азота;
первый теплообменник для теплопередачи от первого потока топочного газа к потоку рабочей среды из энергетической системы с внешним огневым нагревом;
второй измерительный прибор для выбора количества топлива, подаваемого к второй камере сгорания, так чтобы температура второго потока топочного газа была ниже температуры, при которой образуются газы окислов азота;
второй теплообменник для теплопередачи от второго потока топочного газа к потоку рабочей среды из энергетической системы с внешним огневым нагревом;
третью камеру сгорания для сгорания смеси второго потока топочного газа и третьей части топлива для формирования третьего топочного газа;
третий измерительный прибор для выбора количества топлива, подаваемого к третьей камере сгорания, так чтобы температура третьего потока топочного газа была ниже температуры, при которой образуются газы окислов азота;
третий теплообменник для теплопередачи от третьего потока топочного газа к потоку рабочей среды из энергетической системы с внешним огневым нагревом; при этом
сумма возрастаний температуры, взаимосвязанных с каждой стадией сгорания, равна возрастанию температуры, взаимосвязанному со сгоранием всего упомянутого топлива при одной стадии сгорания с использованием минимального количества воздуха, необходимого для сгорания.
В предпочтительных вариантах осуществления изобретения способ и устройство могут дополнительно включать в себя четвертый цикл сгорания, при котором смесь третьего потока топочного газа и четвертой части топлива сгорания в четвертой камере сгорания для образования четвертого потока топочного газа. Количество топлива, подаваемого к четвертой камере сгорания, выбирается таким образом, чтобы температура четвертого потока топочного газа была ниже температуры, при которой образуются газы окислов азота. Затем тепло передается от четвертого потока топочного газа к потоку рабочей среды из энергетической системы с внешним огневым нагревом. Сумма возрастаний температуры, взаимосвязанных с каждой стадией сгорания при системе с четырьмя циклами, равна возрастанию температуры, взаимосвязанному со сгоранием всего топлива за одну стадию сгорания при использовании минимального количества воздуха, необходимого для сгорания.
В других предпочтительных вариантах осуществления изобретения тепло дополнительно передается от последнего потока топочного газа к поступающему потоку воздуха для предварительного нагрева этого воздушного потока, после чего поток топочного газа удаляется в атмосферу. Серные газы также могут быть удалены из потока топочного газа, например, путем добавления к топливу известняка на последних стадиях сгорания /например, к третьей или четвертой камере сгорания/, либо путем газоочистки последнего потока топочного газа /например, третьего или четвертого потока/ до выделения этого потока в атмосферу. Одна или более из камер сгорания /например, третья или четвертая камера/ может представлять собой камеру сгорания с псевдоожиженным слоем, в том случае, когда какой-либо из потоков топочных газов не содержит достаточного количества кислорода для сгорания, часть подогретого потока воздуха может быть отведена и сожжена вместе с топливом для пополнения этого дефицита.
Температура каждого потока топочного газа предпочтительно составляет не более 1700oF /927oC/, например, не более 1600 - 1700oF с тем, чтобы предотвратить образование газов окислов азота. Общий избыток воздуха по отношению к общему количеству потребного топлива предпочтительно составляет 5 - 7%.
Существенное преимущество многостадийной системы сгорания согласно изобретению заключается в том, что степень охлаждения топочного газа на какой-либо стадии /а, следовательно, и температура выделяемого топлива/ может контролироваться путем управления количеством стадий сгорания. А это, в свою очередь, обеспечивает возможность согласования температуры выделяемого тепла с термическими характеристиками рабочей среды. Способность точного расчета температуры выделяемого тепла в любой точке в процессе сгорания для согласования с термическими характеристиками рабочей среды посредствам манипулирования количеством стадий сгорания обеспечивает весьма эффективное средство повышения коэффициента полезного действия энергетической установки.
Поскольку в процессе сгорания используется подогретый воздух, тепло выделяется при достаточно высоких температурах, с тем, чтобы обеспечить повторное нагревание рабочей среды энергетической системы, а это приводит к дальнейшему повышению эффективности. Поскольку эти температуры могут быть выбраны так, чтобы они были существенно выше температуры, до которой топочный газ будет охлаждаться в конечном теплообменнике, количество тепла, создаваемое при более высоких температурах, будет больше количества тепла, образуемого при меньших температурах. Использование множественных стадий сгорания дополнительно обеспечивает выделение тепла при более высоких температурах за счет сужения степени охлаждения топочного газа на любой стадии сгорания. Практический результат заключается в том, что средняя температура, тем самым обеспечивая использование предложенной системы для силового цикла с одним или многочисленным повторным нагревом рабочей среды и дополнительное повышение эффективности. В то же время температура любого потока топочного газа, создаваемого в процессе сгорания, никогда не превысит тот уровень /приблизительно 1600 - 1700oF/ /870 - 927oC/, при котором серные газы могут быть эффективно удалены, например, путем добавления известняка, и при котором образуются газы окислов азота, что приводит к чистому в отношении окружающей среды производству топлива.
Другое преимущество заключается в том, что поскольку сжигается лишь часть топлива в каждой камере сгорания, количество воздуха в любой данной камере сгорания остается высоким, в то время как общий избыток воздуха по отношению к общему количеству сгораемого топлива составляет лишь 5 - 7%. Этим уменьшаются потери тепла с газами, уходящими в дымоход.
Поскольку нет необходимости в создании камер сгорания с трубами или другими поверхностями, потребляющими тепло, газ или воздух может проходить через камеры сгорания с резко увеличенной скоростью, тем самым уменьшается общий размер камеры сгорания. Кроме того, теплообменники, используемые для получения тепла, могут быть изготовлены заранее и доставлены на место в виде легко собираемых секций, за счет чего резко уменьшается стоимость сооружения такой системы сгорания. Дополнительное преимущество заключается в том, чтобы трубы теплообменника не подвергаются взаимодействию чрезмерно высоких температур, как в случае системы сгорания с распылением угля, а также эрозии, от псевдоожиженного слоя. В результате для труб теплообменника могут быть использованы более дешевые материалы, причем в меньших количествах, что дополнительно способствует снижению стоимости системы.
Другое преимущество заключается в том, что предложенная система легко управляется и всегда можно отрегулировать количество как топлива, так и воздух для любой конкретной системы сгорания.
Иные отличительные признаки и преимущества изобретения будут очевидны из нижеследующего описания предпочтительных вариантов его осуществления и из формулы изобретения.
Краткое описание чертежей.
На фиг. 1 представлено схематическое изображение варианта осуществления способа и устройства согласно настоящему изобретению с тремя циклами сгорания.
На фиг. 2 представлено схематическое изображение варианта осуществления способа и устройства согласно настоящему изобретению с четырьмя циклами сгорания.
Это изобретение представляет собой новые способ и устройство для сгорания топлива для подвода тепла к энергетическим установкам с внешним огневым нагревом. На фиг. 1 схематически представлен вариант осуществления предпочтительного устройства, которое может быть использовано в случае способа согласно настоящему изобретению. Точнее, на фиг. 1 представлена система сгорания 100, которая включает в себя вентилятор 101, подогреватель воздуха 102, камеры сгорания 103, 104 и 105, теплообменники 106, 107 и 108, а также внешнюю энергетическую систему 109.
Энергетическая система 109 может представлять собой любую систему преобразования энергии с внешним прямым огневым нагревом. Система сгорания согласно изобретению особенно полезна в случае силовых циклов и систем, в которых большое количество тепла, требуемое для циклов преобразования энергии, используется не для испарения рабочей среды, а скорее для ее перегрева и повторного нагрева. Примеры таких энергетических систем описаны, например, в патентах США NN 4632006 и 4899545, которые введены сюда посредствам ссылки на них.
Если обратиться к фиг. 1, то атмосферный воздух с параметрами в точке 1 подается в систему сгорания 100 посредством вентилятора 101. После того как давление воздуха увеличится, поток воздуха выходит из вентилятора, имея параметры точки 2. Затем воздух проходит через подогреватель 102, где он нагревается до температуры, приблизительно составляющей 500 - 600oF /260- 316oC/ и приобретает параметры точки 3. После этого поток воздуха подразделяется на два подпотока с параметрами соответственно в точках 4 и 5. Подпоток с параметрами точки 4 /состоящий большей частью из воздуха/, затем направляется в первую камеру сгорания 103, где он сжигается совместно с топливом, подаваемый к камере 103 в таком количестве, чтобы создать топочные газы, которые покидают камеру сгорания 103 при температуре, не превышающей 1600 - 1700oF /871 - 927oC/, которая необходима для предотвращения образования газов окислов азота. Количество топлива, подаваемого к камере 103, представляет собой лишь часть общего количества топлива, предназначенного для сгорания.
После этого топочный газ, имеющий параметры точки 6, проходит через первый теплообменник 106. Рабочая среда энергетической системы 109 также проходит через теплообменник 106 противотоком, в результате чего этой рабочей среде передается тепло топочного газа. Затем охлажденный топочный газ выходит из теплообменника 106, приобретая параметры точки 7. Температура в точке 7 выбирается таким образом, чтобы обеспечить необходимую высокую температуру тепла, передаваемого рабочей среде. При необходимости температура в точке 7 может существенно выше температуры в точке 4, так что все тепло, передаваемое рабочей среде в первом теплообменнике, будет иметь относительно высокую температуру.
Поскольку только часть общего количества топлива, предназначенного для сгорания, сжигается в первой камере сгорания 103, топочный газ, покидающий первую камеру сгорания, все еще содержит значительное количество кислорода и таким образом может быть использован для дальнейшего сгорания. Поэтому после прохождения через теплообменник 106 топочный газ, имеющий параметры точки 7, направляется во вторую камеру сгорания 104, которая вновь запитывается топливом в количестве, необходимом для создания топочных газов, выходящих из камеры сгорания 104, при температуре, не превышающей 1600 - 1700oF /871 - 927oC/.
Топочный газ покидает вторую камеру сгорания 104 с параметрами, соответствующими точке 8. После этого топочный газ проходит через второй теплообменник 107 и вновь охлаждается, при этом происходит передача тепла рабочей среде энергетической системы 109 и получение параметров в точке 9.
Температура топочного газа в точке 9 выбирается таким образом, чтобы обеспечить необходимую высокую температуру тепла, выделяемого в теплообменнике 107 и передаваемого рабочей среде. Поскольку как в первой, так и во второй камерах сгорания сжигается лишь часть топлива, предназначенного для сгорания, топочный газ, имеющий параметры точки 9, все еще содержит достаточное количество кислорода, необходимое для завершения сгорания в третьей камере сгорания 105. Однако, если в топочном газе содержится недостаточное количество кислорода, чтобы обеспечить полное сгорание в третьей камере сгорания, поток подогретого воздуха, имеющего параметры точки 5, дополнительно подается в третью камеру сгорания 105.
Остаток топлива подается в третью камеру сгорания 105 для завершения процесса сгорания, опять принимая во внимание, чтобы количество топлива выбиралось таким образом, чтобы температура получаемого топочного газа не превышала 1600 - 1700oF /871 - 927oC/. Для поглощения серных газов из топочного газа в камеру сгорания 105 может быть добавлен известняк, тем самым осуществляется эффективное управление их выпуском. С этой целью третья камера сгорания 105 может представлять собой камеру с псевдоожиженным слоем.
Топочный газ, покидающий третью камеру сгорания 105 и имеющий параметры точки 10, проходит через третий теплообменник 108, где вновь передает тепло рабочей среде от энергетической системы 109, а затем покидает теплообменник 108, имея параметры точки 11. Температура в точке 11 ниже температуры в точках 7 и 9, то есть выхода из первого и второго теплообменников 106 и 107. После этого топочный газ направляется противотоком воздуху, поступающему в подогреватель 102, и охлаждается так, что имеет параметры точки 12. Затем он удаляется в дымоход.
Каждая отдельная система сгорания взаимосвязана с возрастанием температуры потока поступающих газов. Общее возрастание температуры во всех камерах сгорания равно возрастанию, которое было бы доступно, если бы топливо сжигалось на одной стадии с использованием минимального количества воздуха, необходимого для полного сгорания. Однако возможно, что вследствие относительно высокой температуры топочного газа, поступающего во вторую и третью камеры сгорания, количество топлива, которое может сжигаться в этих камерах, должно быть уменьшено, с тем, чтобы температура топочного газа, покидающего эти камеры сгорания, не превышала величины порядка 1600 - 1700oF /871 - 927oC/. В результате этого полное увеличение температуры во всех трех камерах сгорания может быть меньше полного возрастания температуры, определяемого сгоранием всего топлива на одной стадии. Это, в свою очередь, может вызвать сохранение топочным газом, покидающим третью камеру сгорания, значительного количества кислорода, приводя тем самым к неприемлемо большему избытку воздуха для всего процесса сгорания. Чтобы избежать этой проблемы, может быть использована дополнительная стадия сгорания, то есть четвертая камера сгорания.
Система 200 с четырьмя стадиями сгорания представлена на фиг. 2. Система сгорания 200 идентична система 100 /фиг. 1/, за исключением того, что она дополнительно включает в себя четвертую камеру сгорания 110 и четвертый теплообменник 111. После того как раз выходит из третьего теплообменника 108, имея параметры точки 11, он подается в четвертую камеру сгорания 110 совместно с остающимся топливом, с тем, чтобы завершить процесс сгорания /вновь следует позаботиться о выборе количества топлива таким, образом, чтобы температура получаемого топочного газа не превышала 1600 - 1700oF /871 - 927oC/. Если содержание кислорода в топочном газе недостаточно для обеспечения полного сгорания, в камеру 110 дополнительно подается поток подогретого воздуха с параметрами в точке 5. В камеру сгорания 110 также может быть добавлен известняк для поглощения из топочного газа сепрных газов /в том случае камера сгорания 110 может представлять собой камеру с псевдоожиженным слоем/.
Топочный газ, покидающий четвертую камеру сгорания и имеющий параметры точки 12, проходит через четвертый теплообменник 111, где он передает тепло рабочей среде от энергетической системы 109, а затем выходит из теплообменника 111 с параметрами точки 13. Температура в точке 13 ниже температуры в точках 7, 9, и 11, то есть в точках выхода из первого, второго и третьего теплообменников 106, 107 и 108. После этого топочный газ противотоком к поступающему воздуху подается в подогреватель воздуха 102 и охлаждается для получения параметров точки 14. Затем он выводится дымоход.
Хотя настоящее изобретение описано применительно к определенному количеству предпочтительных вариантов его осуществления, для квалифицированных специалистов в этой области очевидны многие изменения и модификации этих вариантов. Предполагается, что прилагаемая формула изобретения охватывает все модификации и изменения, которые находятся в объеме изобретения и не отклоняются от его существа.
Например, хотя описанные выше системы представлены как трехступенчатые и четырехступенчатые системы сгорания, очевидно, что может быть использовано любое количество стадий, то есть устройство может иметь более трех и четырех стадий, либо даже всего лишь две. Количество стадий выбирается на основе термических характеристик потока рабочей среды, так, чтобы при этих характеристиках они соответствовали температуре выделяемого тепла. При этом выделенное тепло может быть точно рассчитано для соответствия требованиям энергетической установки, тем самым увеличивается общая эффективность.
Очистка топочных газов с целью удаления серных газов может быть выполнена до удаления газов в дымоход, например, посредством использования газоочистителя.
Большое количество камер может быть расположено по вертикали, то есть последняя камера сгорания сверху, а предыдущая камера сгорания снизу. В таком случае система может иметь такую конфигурацию, что зола из конечной камеры сгорания, также как и топливо, которое не полностью сгорело в конечной камере сгорания, последовательно падает вниз к каждой предыдущей камере сгорания. Такое расположение гарантирует сгорание всего топлива и в то же время обеспечивает возможность удаления золы только из самой нижней камеры.

Claims (36)

1. Способ подачи тепла к энергосистеме с внешним огневым нагревом, включающий сжигание топлива в нескольких камерах сгорания с последующей теплопередачей, отличающийся тем, что он содержит следующие стадии: подачу потока подогретого воздуха и части общего количества топлива к первой камере сгорания; сгорание смеси подогретого воздуха и топлива для сжигания для формирования первого потока топочного газа; выбор количества топлива, подаваемого к первой камере сгорания таким образом, чтобы температура первого потока топочного газа была ниже температуры, при которой образуются газы окислов азота; передачу тепла от первого потока топочного газа к потоку рабочей среды из энергосистемы с внешним огневым нагревом; сгорание остального топлива на последовательных одной или более стадиях сгорания для формирования на каждой стадии потока топочного газа с использованием потока топочного газа, создаваемого на непосредственно предшествующей стадии сгорания; выбор количества топлива на каждой последовательной стадии сгорания таким образом, чтобы температура потока топочного газа, создаваемого на стадии сгорания, была ниже температуры, при которой образуются газы окислов азота; причем сумма возрастаний температуры, взаимосвязанных с каждой стадией сгорания, равна возрастанию температуры, взаимосвязанному со сгоранием всего топлива при одной стадии сгорания с использованием минимального количества воздуха, необходимого для сгорания, и теплопередачу от каждого последовательного потока топочного газа к потоку рабочей среды из энергосистемы с внешним огневым нагревом.
2. Способ по п.1, отличающийся тем, что теплопередачу, осуществляют от последнего потока топочного газа к поступающему потоку воздуха для подогрева этого потока воздуха и удаляют последний поток топочного газа в атмосферу.
3. Способ по п.1, отличающийся тем, что известняк добавляют к топливу на последней стадии сгорания для удаления серных газов.
4. Способ по п.1, отличающийся тем, что удаляют серные газы путем проведения газоочистки последнего потока топочного газа.
5. Способ по п.1, отличающийся тем, что отводят часть подогретого потока воздуха и осуществляют сгорание упомянутой части с топливом на одной или более из упомянутых стадий.
6. Способ по п.1, отличающийся тем, что температура каждого из потоков топочного газа не превышает 1700oF(927oC) для предотвращения образования газов окислов азота.
7. Способ по п.1, отличающийся тем, что общий избыток воздуха по отношению к общему количеству потребляемого топлива составляет 5 - 7%.
8. Способ подачи тепла к энергосистеме с внешним огневым нагревом, включающий сжигание топлива в нескольких камерах сгорания с последующей теплопередачей, отличающийся тем, что он содержит следующие стадии: подачу потока подогретого воздуха и части общего количества топлива к первой камере сгорания; сгорание смеси подогретого воздуха и топлива для формирования первого потока топочного газа; при этом количество топлива, подаваемого к первой камере сгорания, выбирают таким образом, чтобы температура первого потока топочного газа была ниже температуры, при которой образуются газы окислов азота; теплопередачу от первого потока топочного газа к потоку рабочей среды из энергосистемы с внешним огневым нагревом;
сгорание смеси первого потока топочного газа и второй части топлива во второй камере сгорания для формирования второго потока топочного газа; причем количество топлива, подаваемого ко второй камере сгорания, выбирают таким образом, чтобы температура второго потока топочного газа была ниже температуры, при которой образуются газы окислов азота; теплопередачу от второго потока топочного газа к потоку рабочей среды из энергосистемы с внешним огневым нагревом; сгорание смеси второго потока топочного газа и третьей части топлива в третьей камере сгорания для формирования третьего потока топочного газа, при этом количество топлива, подаваемого к третьей камере сгорания, выбирают таким образом, чтобы температуры третьего потока топочного газа была ниже температуры, при которой образуются газы окислов азота; и теплопередачу от третьего потока топочного газа к потоку рабочей среды из энергосистемы с внешним огневым нагревом; причем сумма возрастаний температуры, взаимосвязанных с каждой стадией сгорания, равна возрастанию температуры, взаимосвязанному со сгоранием всего топлива при одной стадии сгорания с использованием минимального количества воздуха, необходимого для сгорания.
9. Способ по п.8, отличающийся тем, что теплопередачу осуществляют от третьего потока топочного газа к поступающему потоку воздуха для подогрева этого потока воздуха и удаляют третий поток топочного газа в атмосферу.
10. Способ по п. 8, отличающийся тем, что он включает добавление известняка к топливу в третьей камере сгорания.
11. Способ по п.8, отличающийся тем, что удаляют серные газы посредством проведения газоочистки третьего потока топочного газа.
12. Способ по п.8, отличающийся тем, что отводят часть подогретого потока воздуха и осуществляют сжигание этой части с топливом на одной или более из стадий сгорания.
13. Способ по п.8, отличающийся тем, что температура каждого из потоков топочного газа не превышает 1700oF(927oC) с тем, чтобы предотвратить образование газов окислов азота.
14. Способ по п.8, отличающийся тем, что общий избыток воздуха по отношению к полному количеству потребляемого топлива составляет 5 - 7%.
15. Способ по п. 8, отличающийся тем, что он дополнительно содержит: сгорание смеси третьего потока топочного газа и четвертой части топлива в четвертой камере сгорания для образования четвертого потока топочного газа; причем количество топлива, подаваемого к четвертой камере сгорания, выбирают таким образом, чтобы температура четвертого потока топочного газа была ниже температуры, при которой образуются газы окислов азота; теплопередачу от четвертого потока топочного газа к потоку рабочей среды из энергетической системы с внешним огневым нагревом; при этом сумма возрастаний температуры, взаимосвязанных с каждой стадией сгорания, равна возрастанию температуры, взаимосвязанному со сгоранием всего топлива при одной стадии сгорания с использованием минимального количества воздуха, необходимого для сгорания.
16. Способ по п.15, отличающийся тем, что теплопередачу осуществляют от четвертого потока топочного газа к поступающему потоку воздуха для подогрева этого потока воздуха и удаляют четвертый поток топочного газа в атмосферу.
17. Способ по п.15, отличающийся тем, что он дополнительно включает добавление известняка к топливу в четвертой камере сгорания.
18. Способ по п. 15, отличающийся тем, что удаляют серные газы посредством проведения газоочистки четвертого потока топочного газа.
19. Способ по п.15, отличающийся тем, что отводят часть подогретого потока воздуха и осуществляют сгорание этой части с топливом на одной или более стадиях сгорания.
20. Способ по п.15, отличающийся тем, что температура каждого из потоков топочных газов не превышает 1700oF(927oC) для предотвращения образования газов окислов азота.
21. Способ по п.15, отличающийся тем, что общий избыток воздуха по отношению к полному количеству потребляемого топлива составляет 5 - 7%.
22. Устройство для подачи тепла к энергетической системе с внешним огневым нагревом для сжигания топлива в нескольких камерах сгорания с последующим охлаждением, содержащее подогреватель для подогрева поступающего потока воздуха с использованием теплопередачи от потока топочного газа; первую из камер сгорания для сгорания смеси подогретого воздуха и части общего количества топлива для формирования первого потока топочного газа; по меньшей мере одну дополнительную камеру сгорания, последовательно расположенную для сгорания остального топлива на одной или более из последовательных стадий сгорания для формирования на каждой стадии потока топочного газа, использующего поток топочного газа, создаваемого на непосредственно предшествующей стадии; отличающееся тем, что оно содержит: измерительный прибор для выбора количества топлива, подаваемого к первой из камер сгорания так, чтобы температура первого потока топочного газа была ниже температуры, при которой образуются газы окислов азота; первый теплообменник для теплопередачи от первого потока топочного газа к потоку рабочей среды из энергосистемы с внешним огневым нагревом;
по меньшей мере один измерительный прибор для выбора количества топлива на каждой последовательной стадии сгорания так, чтобы температура потока топочного газа, создаваемого на стадии сгорания, была ниже температуры, при которой образуются газы окислов азота; при этом сумма возрастаний температуры, взаимосвязанных с каждой стадией сгорания, равна возрастанию температуры, взаимосвязанному со сгоранием всего топлива на одной стадии сгорания при использовании минимального количества воздуха, необходимого для сгорания, и по меньшей мере, один дополнительный теплообменник для передачи тепла от каждого последовательного потока топочного газа к потоку рабочей среды из энергосистемы с внешним огневым нагревом.
23. Устройство по п.22, отличающееся тем, что оно дополнительно содержит средства для добавления известняка к топливу в последней камере сгорания для удаления серных газов.
24. Устройство по п.22, отличающееся тем, что оно дополнительно содержит газоочиститель для проведения газоочистки последнего потока топочного газа для удаления серных газов.
25. Устройство по п.22, отличающееся тем, что оно дополнительно содержит средства для отвода части подогретого воздуха к по меньшей мере одной из камер сгорания для сгорания с топливом.
26. Устройство по п.22, отличающееся тем, что по меньшей мере одна из камер сгорания представляет собой камеру сгорания с псевдоожиженным слоем.
27. Устройство для подачи тепла к энергетической системе с внешним огневым нагревом для сжигания топлива в нескольких камерах сгорания с последующим охлаждением, содержащее подогреватель для подогрева поступающего воздушного потока с использованием теплопередачи от потока топочного газа; первую камеру сгорания для сгорания смеси подогретого воздуха и части общего количества топлива для формирования первого потока топочного газа; вторую камеру сгорания для сгорания смеси первого потока топочного газа и второй части топлива для формирования второго потока топочного газа; отличающееся тем, что оно содержит: первый измерительный прибор для выбора количества топлива, подаваемого к первой камере сгорания так, чтобы температура первого потока топочного газа была ниже температуры, при которой образуются газы окислов азота; первый теплообменник для теплопередачи от первого потока топочного газа к потоку рабочей среды из энергосистемы с внешним огневым нагревом; второй измерительный прибор для выбора количества топлива,
подаваемого ко второй камере сгорания так, чтобы температура второго потока топочного газа были ниже температуры, при которой образуются газы окислов азота; второй теплообменник для теплопередачи от второго потока топочного газа к потоку рабочей среды из энергосистемы с внешним огневым нагревом; третью камеру сгорания для сгорания смеси второго потока топочного газа и третьей части топлива для формирования третьего потока топочного газа; третий измерительный прибор для выбора количества топлива, подаваемого к третьей камере сгорания так, чтобы температура третьего потока топочного газа была ниже температуры, при которой образуются газы окислов азота; третий теплообменник для передачи тепла от третьего потока топочного газа к потоку рабочей среды из энергосистемы с внешним огневым нагревом; при этом сумма возрастаний температуры, взаимосвязанных с каждой стадией сгорания, равна возрастанию температуры, взаимосвязанному со сгоранием всего топлива на одной стадии сгорания с использованием минимального количества воздуха, необходимого для сгорания.
28. Устройство по п.27, отличающееся тем, что оно дополнительно содержит средства для добавления известняка к топливу в третьей камере сгорания для удаления серных газов.
29. Устройство по п.27, отличающееся тем, что оно дополнительно содержит газоочиститель для проведения газоочистки третьего потока топочного газа для удаления серных газов.
30. Устройство по п.27, отличающееся тем, что оно дополнительно содержит средства для отвода части подогретого воздушного потока к по меньшей мере одной из упомянутых камер сгорания для сгорания с топливом.
31. Устройство по п. 27, отличающееся тем, что третья камера сгорания представляет собой камеру сгорания с псевдоожиженным слоем.
32. Устройство по п.27, отличающееся тем, что оно дополнительно содержит: четвертую камеру сгорания для сгорания смеси третьего потока топочного газа и четвертой части топлива для формирования четвертого потока топочного газа; четвертый измерительный прибор для выбора количества топлива, подаваемого к четвертой камере сгорания таким образом, чтобы температура четвертого потока топочного газа была ниже температуры, при которой образуются газы окислов азота; четвертый теплообменник для передачи тепла от четвертого потока топочного газа к потоку рабочей среды из энергосистемы с внешним огневым нагревом; при этом сумма возрастаний температуры, взаимосвязанных с каждой стадией сгорания, равна возрастанию температуры, взаимосвязанному со сгоранием всего топлива на одной стадии сгорания с использованием минимального количества воздуха, необходимого для сгорания.
33. Устройство по п.32, отличающееся тем, что оно дополнительно содержит средства для добавления известняка к топливу в четвертой камере сгорания для удаления серных газов.
34. Устройство по п. 32, дополнительно содержащее газоочиститель для проведения газоочистки четвертого потока топочного газа для удаления серных газов.
35. Устройство по п. 32, дополнительно содержащее средства для отвода части подогретого потока воздуха к по меньшей мере одной из камер сгорания для сгорания с топливом.
36. Устройство по п.32, отличающееся тем, что четвертая камера сгорания представляет собой камеру сгорания с псевдоожиженным слоем.
RU94034120A 1993-09-27 1994-09-26 Способ подачи тепла в энергосистеме с внешним огневым нагревом (варианты) и устройство для его осуществления (варианты) RU2126514C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/127,167 1993-09-27
US08/127,167 US5450821A (en) 1993-09-27 1993-09-27 Multi-stage combustion system for externally fired power plants

Publications (2)

Publication Number Publication Date
RU94034120A RU94034120A (ru) 1996-08-20
RU2126514C1 true RU2126514C1 (ru) 1999-02-20

Family

ID=22428657

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94034120A RU2126514C1 (ru) 1993-09-27 1994-09-26 Способ подачи тепла в энергосистеме с внешним огневым нагревом (варианты) и устройство для его осуществления (варианты)

Country Status (12)

Country Link
US (1) US5450821A (ru)
EP (1) EP0645581B1 (ru)
JP (1) JPH07217820A (ru)
CN (1) CN1050892C (ru)
AT (1) ATE200566T1 (ru)
DE (1) DE69427060D1 (ru)
DK (1) DK0645581T3 (ru)
IS (1) IS4211A (ru)
IT (1) IT1271213B (ru)
NZ (1) NZ264476A (ru)
PH (1) PH30405A (ru)
RU (1) RU2126514C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2561760C1 (ru) * 2014-06-24 2015-09-10 Андрей Владиславович Курочкин Способ нагрева технологических сред

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572871A (en) * 1994-07-29 1996-11-12 Exergy, Inc. System and apparatus for conversion of thermal energy into mechanical and electrical power
US5649426A (en) * 1995-04-27 1997-07-22 Exergy, Inc. Method and apparatus for implementing a thermodynamic cycle
US5588298A (en) * 1995-10-20 1996-12-31 Exergy, Inc. Supplying heat to an externally fired power system
US5822990A (en) * 1996-02-09 1998-10-20 Exergy, Inc. Converting heat into useful energy using separate closed loops
US5950433A (en) * 1996-10-09 1999-09-14 Exergy, Inc. Method and system of converting thermal energy into a useful form
ES2151793B1 (es) * 1997-11-12 2001-07-01 Holter Heinz Professor Dr Sc D Procedimiento para quemar combustible fosil y basuras.
US5953918A (en) * 1998-02-05 1999-09-21 Exergy, Inc. Method and apparatus of converting heat to useful energy
US6105369A (en) * 1999-01-13 2000-08-22 Abb Alstom Power Inc. Hybrid dual cycle vapor generation
US6105368A (en) * 1999-01-13 2000-08-22 Abb Alstom Power Inc. Blowdown recovery system in a Kalina cycle power generation system
US6155052A (en) * 1999-01-13 2000-12-05 Abb Alstom Power Inc. Technique for controlling superheated vapor requirements due to varying conditions in a Kalina cycle power generation system cross-reference to related applications
US6195998B1 (en) 1999-01-13 2001-03-06 Abb Alstom Power Inc. Regenerative subsystem control in a kalina cycle power generation system
US6202418B1 (en) 1999-01-13 2001-03-20 Abb Combustion Engineering Material selection and conditioning to avoid brittleness caused by nitriding
US6167705B1 (en) 1999-01-13 2001-01-02 Abb Alstom Power Inc. Vapor temperature control in a kalina cycle power generation system
US6155053A (en) * 1999-01-13 2000-12-05 Abb Alstom Power Inc. Technique for balancing regenerative requirements due to pressure changes in a Kalina cycle power generation system
US6263675B1 (en) 1999-01-13 2001-07-24 Abb Alstom Power Inc. Technique for controlling DCSS condensate levels in a Kalina cycle power generation system
US6158220A (en) * 1999-01-13 2000-12-12 ABB ALSTROM POWER Inc. Distillation and condensation subsystem (DCSS) control in kalina cycle power generation system
US6116028A (en) * 1999-01-13 2000-09-12 Abb Alstom Power Inc. Technique for maintaining proper vapor temperature at the super heater/reheater inlet in a Kalina cycle power generation system
US6253552B1 (en) 1999-01-13 2001-07-03 Abb Combustion Engineering Fluidized bed for kalina cycle power generation system
US6125632A (en) * 1999-01-13 2000-10-03 Abb Alstom Power Inc. Technique for controlling regenerative system condensation level due to changing conditions in a Kalina cycle power generation system
US6158221A (en) * 1999-01-13 2000-12-12 Abb Alstom Power Inc. Waste heat recovery technique
US6213059B1 (en) 1999-01-13 2001-04-10 Abb Combustion Engineering Inc. Technique for cooling furnace walls in a multi-component working fluid power generation system
US6035642A (en) * 1999-01-13 2000-03-14 Combustion Engineering, Inc. Refurbishing conventional power plants for Kalina cycle operation
DE60033738T2 (de) 1999-07-01 2007-11-08 General Electric Co. Vorrichtung zur Befeuchtung und Heizung von Brenngas
US6474069B1 (en) 2000-10-18 2002-11-05 General Electric Company Gas turbine having combined cycle power augmentation
US6347520B1 (en) 2001-02-06 2002-02-19 General Electric Company Method for Kalina combined cycle power plant with district heating capability
US6829895B2 (en) 2002-09-12 2004-12-14 Kalex, Llc Geothermal system
US6820421B2 (en) 2002-09-23 2004-11-23 Kalex, Llc Low temperature geothermal system
US6735948B1 (en) 2002-12-16 2004-05-18 Icalox, Inc. Dual pressure geothermal system
US6769256B1 (en) * 2003-02-03 2004-08-03 Kalex, Inc. Power cycle and system for utilizing moderate and low temperature heat sources
RS52092B (en) * 2003-02-03 2012-06-30 Kalex Llc. PROCEDURE AND DEVICE FOR THE APPLICATION OF THE THERMODYNAMIC CYCLE FOR THE USE OF HEAT ENERGY OF MEDIUM-TEMPERATURE AND LOW-TEMPERATURE HEAT SOURCES
US7305829B2 (en) * 2003-05-09 2007-12-11 Recurrent Engineering, Llc Method and apparatus for acquiring heat from multiple heat sources
US7264654B2 (en) * 2003-09-23 2007-09-04 Kalex, Llc Process and system for the condensation of multi-component working fluids
US7065967B2 (en) * 2003-09-29 2006-06-27 Kalex Llc Process and apparatus for boiling and vaporizing multi-component fluids
CA2543470A1 (en) * 2003-10-21 2005-05-12 Petroleum Analyzer Company, Lp An improved combustion apparatus and methods for making and using same
US8117844B2 (en) * 2004-05-07 2012-02-21 Recurrent Engineering, Llc Method and apparatus for acquiring heat from multiple heat sources
KR100689106B1 (ko) 2006-02-28 2007-03-09 고등기술연구원연구조합 유동층 연소로에서의 질소산화물 저감 장치 및 방법
FI123022B (fi) * 2007-09-03 2012-10-15 Andritz Oy Menetelmä sellutehtaan hajukaasujen käsittelyssä
US8087248B2 (en) * 2008-10-06 2012-01-03 Kalex, Llc Method and apparatus for the utilization of waste heat from gaseous heat sources carrying substantial quantities of dust
US8695344B2 (en) * 2008-10-27 2014-04-15 Kalex, Llc Systems, methods and apparatuses for converting thermal energy into mechanical and electrical power
US8176738B2 (en) 2008-11-20 2012-05-15 Kalex Llc Method and system for converting waste heat from cement plant into a usable form of energy
US8474263B2 (en) 2010-04-21 2013-07-02 Kalex, Llc Heat conversion system simultaneously utilizing two separate heat source stream and method for making and using same
US9657937B2 (en) * 2010-08-23 2017-05-23 Saudi Arabian Oil Company Steam generation system having multiple combustion chambers and dry flue gas cleaning
US8833077B2 (en) 2012-05-18 2014-09-16 Kalex, Llc Systems and methods for low temperature heat sources with relatively high temperature cooling media
US9816024B2 (en) 2015-06-01 2017-11-14 King Fahd University of Pertoleum and Minerals 2-(p-alkoxyphenyl)-2-imidazolines and their use as corrosion inhibitors
CN108019740A (zh) * 2017-11-20 2018-05-11 徐州工程学院 一种生物质燃料锅炉装置及其工作方法
CN108715441B (zh) * 2018-06-01 2022-01-28 雷波明信实业发展有限公司 一种流化床法磷酸生产工艺及系统
CZ308666B6 (cs) * 2018-10-22 2021-02-03 Kovosta - fluid a.s. Sestava fluidního kotle a způsob spalování alespoň dvou druhů paliv ve fluidním kotli

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1425246A (en) * 1973-06-05 1976-02-18 Inst Vysokikh Temperatur Akade Methods of burning fuel
GB1496116A (en) * 1976-06-24 1977-12-30 United Stirling Ab & Co Method and an apparatus for burning hydrocarbon fuel
US4354821A (en) * 1980-05-27 1982-10-19 The United States Of America As Represented By The United States Environmental Protection Agency Multiple stage catalytic combustion process and system
DE3707773C2 (de) * 1987-03-11 1996-09-05 Bbc Brown Boveri & Cie Einrichtung zur Prozesswärmeerzeugung
JPH02272207A (ja) * 1988-09-10 1990-11-07 Kansai Electric Power Co Inc:The 水管式ボイラとその燃焼方法
DE4034008A1 (de) * 1989-11-07 1991-05-08 Siemens Ag Zwei- oder mehrstufige kesselfeuerung mit geringer, no(pfeil abwaerts)x(pfeil abwaerts)-emission und entsprechende verfahren
US5085156A (en) * 1990-01-08 1992-02-04 Transalta Resources Investment Corporation Combustion process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Котлер В.Р. Снижение выбросов оксидов азота котлами ТЭС при сжигании органического топлива, Серия "Котельные установки и водоподготовка", Итоги науки и техники, ВИНИТИ, - М., 1987, N7. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2561760C1 (ru) * 2014-06-24 2015-09-10 Андрей Владиславович Курочкин Способ нагрева технологических сред

Also Published As

Publication number Publication date
NZ264476A (en) 1995-07-26
DK0645581T3 (da) 2001-06-18
PH30405A (en) 1997-05-08
ITMI941949A1 (it) 1996-03-26
EP0645581A2 (en) 1995-03-29
US5450821A (en) 1995-09-19
ATE200566T1 (de) 2001-04-15
EP0645581B1 (en) 2001-04-11
EP0645581A3 (en) 1996-09-25
ITMI941949A0 (it) 1994-09-26
CN1103940A (zh) 1995-06-21
RU94034120A (ru) 1996-08-20
JPH07217820A (ja) 1995-08-18
CN1050892C (zh) 2000-03-29
DE69427060D1 (de) 2001-05-17
IT1271213B (it) 1997-05-27
IS4211A (is) 1995-03-28

Similar Documents

Publication Publication Date Title
RU2126514C1 (ru) Способ подачи тепла в энергосистеме с внешним огневым нагревом (варианты) и устройство для его осуществления (варианты)
CA2188223C (en) Supplying heat to an externally fired power system
EP1946006B1 (en) Method and system for heating of water based on hot gases
RU1838635C (ru) Способ производства электрической и тепловой энергии
US4468923A (en) Process and plant for generating electrical energy
RU2471133C2 (ru) Способ и установка по производству цементного клинкера с одновременной выработкой электроэнергии
JPS61217607A (ja) 化石燃料を用いて燃やす大規模燃焼装置のNOx含有量を減らすための方法及び装置
ES2433687T3 (es) Método y disposición para producir energía eléctrica en una fábrica de pasta papelera
US5297959A (en) High temperature furnace
CA2206432A1 (en) Method of operating a combined cycle power plant
CN107642789A (zh) 一种分级配风型蓄热式焚烧炉
JPS62501230A (ja) 化石系燃料を使用して窒素酸化物を生成することなく蒸気を発生する方法と装置
JPH06221110A (ja) 廃棄物または特殊廃棄物の燃焼プラントにおけるエネルギー製造方法
JPH06511061A (ja) 電気エネルギを環境適合式に発生させる方法及びこの方法を実施する設備
JPH09506163A (ja) 熱エネルギの生成を伴う廃棄物燃焼方法
US20060249101A1 (en) Steam generator comprising successive combustion chambers
JP2007526976A5 (ru)
CZ283962B6 (cs) Způsob výroby plynů a zařízení k provádění tohoto způsobu
KR102232107B1 (ko) 가압 순산소 연소 보일러
SU1437609A1 (ru) Котельный агрегат
EP0807785B1 (en) Heat-recovery boiler
CN2388496Y (zh) 酒精废液雾化干燥焚烧炉
SU1092181A1 (ru) Способ работы регенератора
RU2030206C1 (ru) Установка для десульфурации топочных газов
JPH09257206A (ja) 輻射型ボイラ装置および蒸気発生法