RU2106385C1 - Способ термического крекинга углеводородов - Google Patents
Способ термического крекинга углеводородов Download PDFInfo
- Publication number
- RU2106385C1 RU2106385C1 RU94046001A RU94046001A RU2106385C1 RU 2106385 C1 RU2106385 C1 RU 2106385C1 RU 94046001 A RU94046001 A RU 94046001A RU 94046001 A RU94046001 A RU 94046001A RU 2106385 C1 RU2106385 C1 RU 2106385C1
- Authority
- RU
- Russia
- Prior art keywords
- reaction
- reaction zone
- plates
- zone
- hydrocarbon
- Prior art date
Links
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 32
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000004227 thermal cracking Methods 0.000 title abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims abstract description 46
- 238000005336 cracking Methods 0.000 claims abstract description 17
- 239000004215 Carbon black (E152) Substances 0.000 claims description 24
- 239000002826 coolant Substances 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 14
- 125000006850 spacer group Chemical group 0.000 claims description 11
- 239000003153 chemical reaction reagent Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 239000003054 catalyst Substances 0.000 claims description 8
- 238000002485 combustion reaction Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 6
- 230000003197 catalytic effect Effects 0.000 claims description 5
- 239000003085 diluting agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 4
- 239000000446 fuel Substances 0.000 claims description 4
- 239000002994 raw material Substances 0.000 claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 239000000571 coke Substances 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000013213 extrapolation Methods 0.000 description 2
- -1 for example Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000003915 liquefied petroleum gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000007084 catalytic combustion reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G9/14—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
- C10G9/18—Apparatus
- C10G9/20—Tube furnaces
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
- C10G47/22—Non-catalytic cracking in the presence of hydrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S585/00—Chemistry of hydrocarbon compounds
- Y10S585/919—Apparatus considerations
- Y10S585/921—Apparatus considerations using recited apparatus structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S585/00—Chemistry of hydrocarbon compounds
- Y10S585/919—Apparatus considerations
- Y10S585/921—Apparatus considerations using recited apparatus structure
- Y10S585/924—Reactor shape or disposition
- Y10S585/926—Plurality or verticality
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Carbon And Carbon Compounds (AREA)
- Materials For Medical Uses (AREA)
- Glass Compositions (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Catalysts (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Использование: изобретение относится к термическому крекингу углеводородов. Сущность изобретения: осуществляют некаталитический, свободный от пара крекинг углеводорода в реакционных зонах, каждая из которых имеет обогреваемые снаружи поверхности с отношением нагретой поверхности к объему выше 3 см- 1, при такой скорости, что поток через каждую реакционную зону является, по существу, ламинарным. 9 з.п.ф-лы, 3 ил., 1 табл.
Description
Изобретение относится к термическому крекингу, и в частности, к термическому крекингу углеводородов. Углеводороды, содержащие 2 или более атомов углерода, например, этан, пропан, бутан, LPG и нафта (лигроин), обычно подвергают крекингу для получения олефинов путем пропускания смеси углеводорода и пара через трубы, свободные от внутренней набивки, нагретые до высокой температуры в печи в отсутствии катализатора. Пример такого способа описан в Европейском патенте EP 0 208 359. Трубы обычно имеют внутренний диаметр от 25 до 100 мм и более, и смесь сырье, идущее на переработку, пар пропускают через трубы с высокой скоростью, чтобы поток через трубы был максимально турбулентным для обеспечения хорошей теплопередачи. Обычно скорость потока соответствует числу Рейнольдса порядка 500,000 и выше.
Присутствие пара способствует передаче тепла от стенок печи углеводороду: температура стенок трубы, контактирующих с технологическим потоком обычно на 100oC и более выше, чем температура газа. Пар также уменьшает образование отложений углерода и действует как разбавитель для снижения парциального давления (поскольку реакция крекинга для олефинов поддерживается при низких парциальных давлениях углеводородов). Обычно используют от 0,3 до 0,5 т, пара на тонну углеводородного сырья, и давление на выходе обычно ниже, чем 2,5 бар абс., например, в диапазоне от 1,7 до 2,1 бар абс.
Однако, использование пара неэффективно в тепловом отношении и ставит проблемы окружающей среды. Так, пар не является абсолютно инертным при применяемых условиях: обычно стоки крекинга содержат небольшой процент органических насыщенных кислородом соединений, например, уксусного альдегида, ацетона, карбоксильных кислот и фенолов, полученных в результате реакции пара с углеводородом. После реакции крекинга отходящий газ охлаждают для конденсирования пара и в результате этого некоторые из этих соединений проходят в жидкую водную фазу. Хотя большую часть воды рециркулируют для образования большего количества пара, присутствие этих соединений неизбежно влечет за собой добавку основных материалов, например, аммиака, к воде для снижения коррозии. Некоторое количество воды спускается в качестве прочистки для исключения образования накипи нежелательных компонентов. Такая прочистка, обычно в количестве около 10% сконденсированной воды, должна быть обработана перед выпуском для исключения проблем загрязнения окружающей среды.
Трубы крекинг-установки обычно изготовлены из стали, содержащей долю никеля для того, чтобы обеспечить требуемые механические свойства при расчетных температурах. Никель и небольшое количество некоторых других компонентов стали катализируют реакцию углеводородов с паром и также катализируют разложение отложений углерода, которые прилипают к поверхностям труб и снижают теплопередачу. Для облегчения этих проблем обычно принято вводить некоторое количество соединений серы (которые снижают каталитическую активность никеля, действуя как каталитический яд) в подлежащее переработке сырье. Однако соединения серы впоследствии должны быть удалены из отходящего технологического газа: это часто осуществляется посредством скруббера, где технологический газ контактирует с водным щелочным раствором. Утилизация щелочных стоков также представляет проблему для окружающей среды.
Заявители обнаружили, что эти проблемы могут быть разрешены за счет осуществления реакции крекинга при реальном отсутствии пара. Для того, чтобы реакция крекинга могла проходить удовлетворительно, в крекинг- процессе необходимо произвести различные изменения.
В соответствии с этим мы разработали способ крекинга углеводородов, включающий пропускание углеводородного сырья для переработки, по существу, свободного от пара, через обогреваемую снаружи свободную от катализатора реакционную зону, имеющую нагретую поверхность, с объемным отношением около 3 см-1 при скорости, обеспечивающей, по существу, ламинарное течение через реакционную зону.
Способ осуществляется при реальном отсутствии пара, хотя мы не исключаем присутствие небольших количеств пара, например, до 0,1 частей по весу пара на часть по весу перерабатываемого углеводородного сырья.
Предпочтительнее, поток реагента содержит менее, чем 0,05 частей по весу пара на часть по весу углеводородного сырья, идущего на переработку.
Реакция может осуществляться при парциальных давлениях углеводорода, подобных тем, которые обычно используются. Необязательно, может быть использован разбавитель, например, водород или метан, но возможно, и часто предпочтительнее, крекировать углеводородное перерабатываемое сырье в отсутствии разбавителя.
Температура реакции обычно находится в диапазоне температур, обычно используемых при крекинге углеводорода: предпочтительнее, реакционная зона нагрева до температуры в диапазоне 700 - 1100oC, в особенности, в диапазоне 700 - 900oC.
Для того, чтобы реакция крекинга проводилась эффективно и чтобы обеспечить хорошую теплопередачу, реакцию осуществляют, пропуская газ, по существу, ламинарным потоком, через реакционную зону, имеющую высокое отношение нагретой поверхности к объему. В трубчатом реакторе, т.е. при осуществлении крекинга в трубах, отношение поверхности к объему равно 4/d, где d -внутренний диаметр трубы. Как упоминалось выше, крекинг обычно осуществляется в трубах с внутренним диаметром, лежащим в диапазоне от 25 до 100 мм: в таких трубах отношение поверхности к объему находится в пределах 0,4 - 1,6 см-1 В настоящем изобретении используемое отношение поверхности к объему намного выше, например, выше 3 см-1, и предпочтительнее, находится в пределах 4 - 20 см-1. В результате увеличения отношения поверхности к объему разность температур между поверхностью реактора и пропускаемым через него газом уменьшается. Скорость потока при этом такова, что поток, по существу, является ламинарным, т.е. имеет число или критерий Рейнольдса ниже 3000.
Вследствие небольшой доли или отсутствия пара важно снизить до минимума образование отложений углерода: поскольку образование отложений углерода катализируется никелем или другими металлами, поверхность реактора, открытая газу, подвергаемому крекингу, является, предпочтительнее, инертной, т.е., по существу, не проявляет каталитической активности в отношении реакций углеводородов при температуре реакции. Это может быть обеспечено путем конструирования реактора из каталитически инертных материалов, например, окиси кремния или карбида кремния, или из металлов, например, меди, которая не проявляет каталитической активности при используемых условиях или путем выполнения непористого покрытия из таких материалов на подходящих конструкционных материалах, например, стали. Прежде покрытия из инертных материалов, таких как окись кремния, не имели большого успеха вследствие абразивного воздействия турбулентных газовых потоков и заметной летучести окиси кремния в паре при высоких температурах. Ламинарный поток при отсутствии пара делает в изобретении такие покрытия возможными. Альтернативно к подаваемому в реактор потоку реагента может быть добавлен коксовый ингибитор. В отсутствие пара такой коксовый ингибитор может более эффективно сохраняться на поверхностях реактора.
В изобретении реактор имеет поверхности, обогреваемые снаружи, т.е. пропусканием теплоносителя через греющую зону, смежную с реакционной зоной и отделенную от реакционной зоны относительно тонкой стенкой.
Теплоноситель может быть продуктом сгорания любого приемлемого топлива. Альтернативно греющая зона может иметь покрытие из катализатора горения на своих поверхностях, при этом смесь воздух/топливо пропускают через греющую зону таким образом, что, по крайней мере, часть тепла получают за счет горения, происходящего в греющей зоне. Альтернативно теплоноситель может быть горячим гелием из охлаждающей системы ядерного реактора.
Для увеличения пропускной способности и полезного выхода предпочтительнее иметь множество реакционных зон, расположенных параллельно. Например, реактор может иметь конфигурацию хонейкомба или пчелиных сот, для того, чтобы сотовые каналы являлись попеременно реакционными зонами и греющими зонами, через которые пропускают теплоноситель.
Альтернативно и предпочтительнее, реактор имеет форму комплекта, например, стопы, параллельных пластин. Углеводородное сырье и теплоноситель в определенном порядке проходят через чередующиеся зазоры или промежутки между пластинами. Таким образом углеводородное сырье пропускают через одну пару пластин, в то же время теплоноситель пропускают через задор или промежуток на другой стороне этой же пары пластин. Поэтому при использовании в качестве греющей зоны пластин, несущих катализатор горения, катализатор горения расположен на одной стороне пластины, при этом поверхности пластин, покрытые катализатором, обращены лицом друг к другу: смесь воздух/топливо пропускают через зазор между противолежащими покрытыми катализатором поверхностями таким образом, что, по крайней мере, часть тепла получают за счет каталитического горения, происходящего на этих поверхностях, и тепло передается через пластину углеводородному сырью, проходящему в зазорах или промежутках поверхностями пластин, не имеющих катализатора горения.
Для того, чтобы получить высокое отношение нагретой поверхности к объему для области, в которой осуществляется крекинг-реакция, в таком реакторе с пластинчатой конфигурацией, пластины, ограничивающие зону, через которую пропускают углеводородное подлежащее переработке сырье, предпочтительнее размещать с интервалом или промежутком между ними в 1 - 5 мм. Размещение с таким промежутком обеспечивает отношение поверхности к объему, приблизительно равное 4 - 20 см-1. Промежуток между пластинами, ограничивающими зазоры, через которые пропускают теплоноситель, может иметь подобную величину, но не обязательно точно такую же, как промежутки между пластинами, через которые пропускают углеводородное сырье.
Теплоноситель может течь в одном направлении с потоком, противотоком или поперек потока углеводородного сырья. Однако для реакции крекинга предпочтительнее с точки зрения тепловых требований поток в одном направлении. Хотя конструкция может способствовать этому, течение потока теплоносителя в направлении, поперечном направлению потока углеводородного сырья, может создать проблемы, поскольку одна сторона установки реактора имеет тенденцию нагреваться намного сильнее, чем другая сторона.
На фиг. 1 показан вертикальный разрез комплекта пластин и распорок; на фиг. 2 - вид сверху одной пластины и связанных с ней распорок; на фиг 3 -вид сверху пластины и ее распорок, примыкающих к пластине и распоркам фиг. 2.
Согласно чертежам реактор собран из множества прямоугольных пластин 10, у каждой из которых срезаны углы, и распорок 11 между соседними пластинами. Каждая распорка имеет два края 12, 13, соответствующих длине и ширине, соответственно, пластин до срезанных углов и один интегральный, т.е. выполненный за одно целое, элемент, соединяющий два края 1 и 13. С каждой пластиной связаны две распорки 11a и 11b, расположенные таким образом, что одна распорка 11a проходит вдоль двух примыкающих краев пластины и срезанный угол, а другая распорка 11b проходит вдоль противоположных краев пластины и противоположный угол, таким образом каждая пластина с парой ее распорок образует полкообразную конструкцию со щелями при паре противоположных углов. Распорки, связанные с последующей примыкающей пластиной, расположены таким образом, что зазоры или щели расположены при другой паре противоположных углов. К углам комплекта прикреплены трубопроводы, не показанные, для обеспечения течения реагента по диагонали через полкообразную конструкцию одной пластины от входного канала для реагента на одном углу и к выходному каналу для продукта на расположенном по диагонали противоположном углу, при этом теплоноситель течет по диагонали через полкообразную структуру примыкающих пластин выше и ниже этой пластины от входного канала для теплоносителя на другом углу комплекта к выходному каналу для теплоносителя на расположенном по диагонали противоположном углу.
Предпочтительнее, чтобы пластины и, следовательно, реакционная и греющие зоны имели удлиненную прямоугольную, а не квадратную конфигурацию, с входами и выходами для потоков реагентов и теплоносителя, расположенных на диагонально противоположных углах их соответствующих зон, при этом входы расположены на углах, примыкающих к более коротким сторонам прямоугольных пластин. Следовательно входные каналы и для теплоносителя, и для углеводородного сырья расположены на углах, примыкающих к более коротким сторонам прямоугольников: как показано на фигуре 2, теплоноситель течет в направлении стрелки 15a, тогда как поток реагента течет обычно в спутном потоке в направлении пунктирной стрелки на другой стороне пластины. Аналогично, согласно фиг.3 поток реагента течет в направлении стрелки 16b, тогда как теплоноситель течет в направлении пунктирной стрелки 15a на другой стороне пластины.
Отдельные пластины и распорки не обязательно должны быть сварены или сплавлены друг с другом. Поэтому комплект установки может быть закреплен или зажат вместе с входными и выходными трубопроводами и помещен в сосуд или оболочку, в которую подают подходящий газ, например, метан, с давлением, немного превышающим реакционное давление. Герметизирующий газ будет проходить через любую неплотность в соответствующую реакционную или греющую зону и, следовательно, становится частью реагентов в этой зоне. В таких неплотностях постоянно происходит нарастание отложений углерода или кокса в результате чего такие неплотности или места протечек снижаются до минимума.
Хотя сера в загрузке сырья не вредит реакции, предпочтительнее, чтобы загрузка сырья не содержала серу и ее соединения: таким образом, исключается необходимость последующих очистных операций по удалению серы. По этой причине предпочтительнее использовать такое сырье как этан, пропан, бутан, LPG или раффинаты от производства ароматических веществ. Нафтовое сырье обычно содержит значительное количество серы, но может быть использовано в том случае, когда включен этап десульфуризации. Сырье содержит насыщенные углеводороды, включающие 2 или более атомов углерода, но также может содержать небольшую долю ненасыщенных углеводородов, загружаемое сырье также может содержать водород и/или метан в качестве разбавителя.
Понятно, что как и при обычном крекинге, происходит образование отложений углерода или кокса. Отложения углерода должны удаляться так же, как в обычной практике, путем таких приемов, как, например, коксоудаление паром при высокой температуре или обжигание кислородсодержащим газом. Последний способ является предпочтительным там, где реакционная зона имеет покрытие из таких материалов, как окись кремния, обладающих заметной летучестью в паре. Изобретение обеспечивает ряд преимуществ. Преодолеваются не только вышеупомянутые проблемы окружающей среды, но также исключается обработка технологическим паром, что обеспечивает экономию капиталовложений, при использовании несодержащего серы загружаемого сырья исключаются щелочные скрубберы, что обеспечивает дополнительное снижение капиталовложений, кроме того, за счет исключения необходимости в увеличении технологического пара обеспечивается экономия энергетических затрат.
Далее изобретение иллюстрируется следующими примерами. Для каждого примера использовали трубу из окиси кремния длиной 2 м с внутренним диаметром 2 мм. Отношение поверхности к объему составляло около 20 см-1 Трубу нагревали в печи с равномерным одинаковым температурным профилем. Загружаемое сырье, не содержащее пар и серу, предварительно не подогревали. Давление на выходе составляло 1,4 бар абс. и падение давления в реакторе составляло менее, чем 0,05 бар. Скорость потока была такова, что критерий Рейнольдса составлял около 500.
Пример 1.
В печи устанавливали температуру 890oC и в течение 2 ч. через трубу пропускали поток этана со скоростью 84 г/ч. Продукт резко охлаждали и исследовали через различные интервалы в процессе эксперимента. Типичные результаты анализа представлены в таблице. Спустя два часа пропускание этана заканчивали, отложения углерода или кокса обжигали в воздухе и измеряли выделившуюся двуокись углерода. Измерения показали, что в течение двухчасовой длительности реакции отложилось 15 мг кокса. Экстраполирование показало, что реактор может оставаться включенным в течение 8 дн при этих условиях, прежде чем за счет образования отложений кокса поперечное сечение трубы уменьшится на 10%.
Пример 2.
Повторяли пример 1, используя загрузку пропана со скоростью 79 г/ч. при температуре печи 875oC. Как и в примере 1, количество отложений кокса в течение двух часов составило 15 мг.
Пример 3.
Повторяли пример 1 при температуре печи 840oC и подавая со скоростью 8 г/ч. жидкое углеводородное сырье со средней молекулярной массой 94 и полимерным составом, мас.%: п - парафин - 22, i - парафин - 67, цикло-парафин - 4, ароматические вещества -7.
Реакция была остановлена через 1 ч. и, как и в примере 1, определяли количество отложившегося кокса. Измерения показали, что в течение одночасовой длительности реакции отложилось 12 мг кокса. Экстраполирование показало, реактор может оставаться включенным около 3,5 дн, при этих условиях, прежде чем поперечное сечение трубы за счет образования отложений кокса уменьшится на 10%.
Claims (10)
1. Способ крекинга углеводородов путем пропускания углеводородного сырья, содержащего насыщенные углеводороды с 2 или более углеродными атомами, через обогреваемую снаружи реакционную зону, свободную от катализатора, отличающийся тем, что поток сырья, пропускаемый через реакционную зону, содержит менее 0,1 мас.% пара на 1 мас.% углеводородного сырья, а реакционную зону обогревают снаружи до температуры 700 - 1100oС, причем реакционная зона имеет отношение нагретой поверхности к объему выше 3 см- 1, при этом указанный поток сырья пропускают через реакционную зону с такой скоростью, что поток является ламинарным и имеет критерий Рейнольдса ниже 3000.
2. Способ по п. 1, отличающийся тем, что поток реагента, пропускаемый через реакционную зону, содержит водород или метан в качестве разбавителя.
3. Способ по п.1 или 2, отличающийся тем, что поверхности реакционной зоны, открытые воздействию крекируемого газа, выбраны не проявляющими каталитической активностью в отношении реакций углеводородов при температуре реакции.
4. Способ по п.3, отличающийся тем, что поверхности реакционной зоны, открытые воздействию крекируемого газа, выполнены из окиси кремния, карбида кремния, меди или имеют непористое покрытие из этих материалов.
5. Способ по любому из пп.1 - 4, отличающийся тем, что реакционную зону нагревают путем пропускания теплоносителя через греющую зону, отделенную от реакционной зоны тонкой стенкой.
6. Способ по п.5, отличающийся тем, что используют греющую зону с покрытием из катализатора горения на своих поверхностях, при этом смесь топливо/воздух пропускают через греющую зону таким образом, что, по крайней мере, часть тепла получают за счет горения, происходящего в греющей зоне.
7. Способ по любому из пп.1 - 6, отличающийся тем, что используют множество расположенных параллельно реакционных зон.
8. Способ по п.7, отличающийся тем, что реакционные и греющие зоны располагают попеременно за счет промежутков между примыкающими пластинами комплекта пластин, разделенных распорками.
9. Способ по п.8, отличающийся тем, что используемые пластины и, следовательно, реакционные и греющие зоны имеют удлиненную прямоугольную конфигурацию, при этом входы и выходы для потока реагента и теплоносителя располагают по диагонали в противолежащих углах их соответствующих зон, причем входы располагают на углах, примыкающих к более короткой стороне прямоугольника.
10. Способ по п. 8 или 9, отличающийся тем, что используемый комплект пластин скрепляют вместе с входным и выходным трубопроводами и заключают в сосуд или оболочку, в которую подают газ под давлением выше реакционного давления.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9210655.8 | 1992-05-19 | ||
GB929210655A GB9210655D0 (en) | 1992-05-19 | 1992-05-19 | Thermal cracking |
PCT/GB1993/000920 WO1993023498A1 (en) | 1992-05-19 | 1993-04-30 | Thermal cracking |
Publications (2)
Publication Number | Publication Date |
---|---|
RU94046001A RU94046001A (ru) | 1996-09-20 |
RU2106385C1 true RU2106385C1 (ru) | 1998-03-10 |
Family
ID=10715712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU94046001A RU2106385C1 (ru) | 1992-05-19 | 1993-04-30 | Способ термического крекинга углеводородов |
Country Status (22)
Country | Link |
---|---|
US (1) | US5728916A (ru) |
EP (1) | EP0641373B1 (ru) |
JP (1) | JP3501803B2 (ru) |
KR (1) | KR100255219B1 (ru) |
CN (1) | CN1032433C (ru) |
AT (1) | ATE145423T1 (ru) |
AU (1) | AU663953B2 (ru) |
BR (1) | BR9306383A (ru) |
CA (1) | CA2134209C (ru) |
CZ (1) | CZ287517B6 (ru) |
DE (1) | DE69306107T2 (ru) |
DK (1) | DK0641373T3 (ru) |
ES (1) | ES2093966T3 (ru) |
GB (2) | GB9210655D0 (ru) |
HU (1) | HU214224B (ru) |
MY (1) | MY107775A (ru) |
RO (1) | RO115532B1 (ru) |
RU (1) | RU2106385C1 (ru) |
SK (1) | SK280311B6 (ru) |
TW (1) | TW284782B (ru) |
UA (1) | UA27897C2 (ru) |
WO (1) | WO1993023498A1 (ru) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040037760A1 (en) * | 2002-08-21 | 2004-02-26 | Abb Lummus Heat Transfer | Steam reforming catalytic reaction apparatus |
JP7352991B1 (ja) * | 2022-08-18 | 2023-09-29 | マイクロ波化学株式会社 | 分解装置、分解方法及び分解物の製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5760398B2 (ru) * | 1974-01-14 | 1982-12-18 | Babcock Hitachi Kk | |
US4636297A (en) * | 1984-08-16 | 1987-01-13 | Hakuto Chemical Co., Ltd. | Method for preventing coking in hydrocarbon treatment process |
FR2648145B1 (fr) * | 1989-06-08 | 1991-10-04 | Inst Francais Du Petrole | Utilisation d'alliages a base de nickel dans un procede de craquage thermique d'une charge petroliere et reacteur pour la mise en oeuvre du procede |
FR2662158B1 (fr) * | 1990-05-17 | 1992-08-14 | Inst Francais Du Petrole | Procede de conversion thermique du methane et reacteur pour la mise en óoeuvre du procede. |
US5270016A (en) * | 1990-05-17 | 1993-12-14 | Institut Francais Du Petrole | Apparatus for the thermal conversion of methane |
US5162599A (en) * | 1991-09-19 | 1992-11-10 | Exxon Research And Engineering Co. | Rapid thermal pyrolysis of gaseous feeds containing hydrocarbon molecules mixed with an inert working gas |
-
1992
- 1992-05-19 GB GB929210655A patent/GB9210655D0/en active Pending
-
1993
- 1993-04-28 GB GB939308733A patent/GB9308733D0/en active Pending
- 1993-04-30 RU RU94046001A patent/RU2106385C1/ru not_active IP Right Cessation
- 1993-04-30 RO RO94-01843A patent/RO115532B1/ro unknown
- 1993-04-30 DE DE69306107T patent/DE69306107T2/de not_active Expired - Fee Related
- 1993-04-30 JP JP51996793A patent/JP3501803B2/ja not_active Expired - Fee Related
- 1993-04-30 UA UA94119037A patent/UA27897C2/uk unknown
- 1993-04-30 AU AU40773/93A patent/AU663953B2/en not_active Ceased
- 1993-04-30 HU HU9403090A patent/HU214224B/hu not_active IP Right Cessation
- 1993-04-30 DK DK93910161.4T patent/DK0641373T3/da active
- 1993-04-30 CA CA002134209A patent/CA2134209C/en not_active Expired - Fee Related
- 1993-04-30 ES ES93910161T patent/ES2093966T3/es not_active Expired - Lifetime
- 1993-04-30 US US08/347,374 patent/US5728916A/en not_active Expired - Fee Related
- 1993-04-30 KR KR1019940704150A patent/KR100255219B1/ko not_active IP Right Cessation
- 1993-04-30 WO PCT/GB1993/000920 patent/WO1993023498A1/en active IP Right Grant
- 1993-04-30 SK SK1386-94A patent/SK280311B6/sk unknown
- 1993-04-30 BR BR9306383A patent/BR9306383A/pt not_active IP Right Cessation
- 1993-04-30 CZ CZ19942833A patent/CZ287517B6/cs not_active IP Right Cessation
- 1993-04-30 AT AT93910161T patent/ATE145423T1/de not_active IP Right Cessation
- 1993-04-30 EP EP93910161A patent/EP0641373B1/en not_active Expired - Lifetime
- 1993-05-14 MY MYPI93000901A patent/MY107775A/en unknown
- 1993-05-18 TW TW082103908A patent/TW284782B/zh active
- 1993-05-19 CN CN93107079A patent/CN1032433C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
AU4077393A (en) | 1993-12-13 |
CA2134209A1 (en) | 1993-11-25 |
CZ283394A3 (en) | 1995-03-15 |
ATE145423T1 (de) | 1996-12-15 |
US5728916A (en) | 1998-03-17 |
WO1993023498A1 (en) | 1993-11-25 |
JPH07506613A (ja) | 1995-07-20 |
KR950701673A (ko) | 1995-04-28 |
HU214224B (hu) | 1998-01-28 |
ES2093966T3 (es) | 1997-01-01 |
SK138694A3 (en) | 1995-06-07 |
DE69306107T2 (de) | 1997-04-03 |
CN1032433C (zh) | 1996-07-31 |
TW284782B (ru) | 1996-09-01 |
UA27897C2 (uk) | 2000-10-16 |
GB9210655D0 (en) | 1992-07-01 |
RO115532B1 (ro) | 2000-03-30 |
MY107775A (en) | 1996-06-15 |
SK280311B6 (sk) | 1999-11-08 |
CA2134209C (en) | 2004-07-27 |
RU94046001A (ru) | 1996-09-20 |
CZ287517B6 (en) | 2000-12-13 |
CN1082092A (zh) | 1994-02-16 |
HUT67844A (en) | 1995-05-29 |
DE69306107D1 (de) | 1997-01-02 |
EP0641373B1 (en) | 1996-11-20 |
DK0641373T3 (da) | 1997-04-28 |
HU9403090D0 (en) | 1995-01-30 |
KR100255219B1 (ko) | 2000-05-01 |
AU663953B2 (en) | 1995-10-26 |
GB9308733D0 (en) | 1993-06-09 |
BR9306383A (pt) | 1998-09-15 |
EP0641373A1 (en) | 1995-03-08 |
JP3501803B2 (ja) | 2004-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5264114A (en) | Hydrocarbon treating process | |
RU2031702C1 (ru) | Реактор для проведения экзотермической газофазной реакции и способ проведения экзотермической газофазной реакции | |
US4410418A (en) | Method for reducing carbon formation in a thermal cracking process | |
DE502008001771D1 (de) | Verfahren der inbetriebnahme einer heterogen katalysierten partiellen gasphasenoxidation von acrolein zu acrylsäure oder von methacrolein zu methacrylsäure | |
US4119706A (en) | Method of catalytically recombining radiolytic hydrogen and radiolytic oxygen | |
WO2006069393A2 (en) | Dehydrogenation process | |
US4246235A (en) | Horizontal flow catalytic reactor | |
JPH05508433A (ja) | アルカンを脱水素する方法及び装置 | |
US4599480A (en) | Sequential cracking of hydrocarbons | |
US3048476A (en) | Conversion of hydrocarbons and carbonaceous materials | |
RU2106385C1 (ru) | Способ термического крекинга углеводородов | |
EP0246111A1 (en) | Flow streamlining device for transfer line heat exchangers | |
KR100277412B1 (ko) | 에틸렌 로 오염방지제 | |
US4703793A (en) | Minimizing coke buildup in transfer line heat exchangers | |
EP0839782A1 (en) | Process for the inhibition of coke formation in pyrolysis furnaces | |
US20140105802A1 (en) | Denox Treatment For A Regenerative Pyrolysis Reactor | |
JP5807017B2 (ja) | アルカリ金属塩の気化および運搬 | |
US2768882A (en) | Catalytic reactor | |
RU2359748C2 (ru) | Реактор для осуществления газофазных каталитических процессов | |
US20160347622A1 (en) | Process for producing hydrogen cyanide using flow straightener | |
GB790166A (en) | Improvements in or relating to processes and apparatus for effecting a rapid change in temperature of gaseous fluid or for rapidly vaporising liquid fluid | |
JPH0256238A (ja) | 灌液型固定床反応器 | |
EP0987237A2 (en) | Process for the catalytic alkylation of a hydrocarbon feed | |
SA93140003B1 (ar) | التكسير الحراري thermal cracking | |
RU2305594C1 (ru) | Реактор для синтеза ароматических углеводородов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20070501 |