RU2069328C1 - Дифференциальный датчик давления жидкости и способ изготовления его чувствительного элемента - Google Patents

Дифференциальный датчик давления жидкости и способ изготовления его чувствительного элемента Download PDF

Info

Publication number
RU2069328C1
RU2069328C1 SU874613103A SU4613103A RU2069328C1 RU 2069328 C1 RU2069328 C1 RU 2069328C1 SU 874613103 A SU874613103 A SU 874613103A SU 4613103 A SU4613103 A SU 4613103A RU 2069328 C1 RU2069328 C1 RU 2069328C1
Authority
RU
Russia
Prior art keywords
diaphragm
pressure
module
elements
central
Prior art date
Application number
SU874613103A
Other languages
English (en)
Inventor
А.Кнехт Томас
Л.Фрик Роджер
М.Брюсхофф Стивен
Original Assignee
Роузмаунт Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Роузмаунт Инк. filed Critical Роузмаунт Инк.
Application granted granted Critical
Publication of RU2069328C1 publication Critical patent/RU2069328C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/08Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/147Details about the mounting of the sensor to support or covering means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • G01L13/025Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements using diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means
    • G01L19/003Fluidic connecting means using a detachable interface or adapter between the process medium and the pressure gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means
    • G01L19/0038Fluidic connecting means being part of the housing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0061Electrical connection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0627Protection against aggressive medium in general
    • G01L19/0645Protection against aggressive medium in general using isolation membranes, specially adapted for protection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/148Details about the circuit board integration, e.g. integrated with the diaphragm surface or encapsulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0073Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a semiconductive diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/04Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Amplifiers (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

Использование: для измерения дифференциального давления. Сущность изобретения: дифференциальный датчик давления жидкости содержит чувствительный диафрагменный модуль, установленный между двумя боковыми опорными элементами с отверстиями для подвода измеряемого давления. Модуль может быть выполнен из одного или двух диафрагменных элементов. При отсутствии измеряемого давления обе поверхности диафрагменного модуля являются вогнутыми, а при предельном давлении соответствующая сторона модуля становится плоской и прижимается к одной из опорных пластин, что защищает модуль от разрушения высоким давлением. Способ изготовления чувствительного элемента датчика предусматривает шлифовку соответствующей поверхности модуля при действии максимального давления, до получения плоской поверхности. После снятия давления эта шлифованная поверхность становится вогнутой. Аналогично шлифуется и другая сторона модуля, который может быть изготовлен из двух диафрагменных элементов, соединенных в монолит отвердевающим материалом. 6 с. и 2 з.п.ф-лы, 16 ил.

Description

Данное изобретение относится к серийно изготавливаемым дифференциальным элементам давления, у которых диафрагмы выполнены из хрупких материалов, снабженных защитой от избыточного давления, и установленным в кожухе для обеспечения нормальной работы в значительном диапазоне линейного статического давления.
В патенте США N 4572000 описан датчик давления, имеющий хрупкую диафрагму, которая при избыточном давлении оказывается плоской на плоской опорной пластине. В этом патенте диафрагма выпучивается при начальном давлении и происходит так, что она остается на опорной пластине и по существу плоской при максимальном давлении.
Известны также и другие устройства, в которых используются хрупкие диафрагмы, которые имеют торцевые опорные буртики, а измерение может производиться за счет емкостного измерения или за счет применения тензометрических датчиков, установленных на самой диафрагме.
Данное изобретение относится к элементам измерения давления, в которых используется единственная кремниевая активная диафрагма, которая выполнена такой, что она поддерживается между плоскими опорными пластинами или элементами и имеет такую форму, чтобы получались вогнутые поверхности при нулевой разности давлений, и каждая обращена к одному из опорных элементов. Вогнутая поверхность выполнена так, что при состоянии покоя она имеет точно прогнутую форму диафрагмы, и когда измеряемое давление действует в сторону перемещения диафрагмы к опорной поверхности, поверхность диафрагмы, обращенная к опоре, станет плоской и полностью ложится на опору. За счет полной опоры диафрагмы предотвращаются избыточные напряжения, которые могут привести к образованию трещин или поломке хрупкого материала диафрагмы. Диафрагма предпочтительно выполнена из такого материала, как кремний, сапфир, германий или другого полупроводника или подходящего керамического материала.
Способы изготовления позволяют решить проблему образования полости в поверхности кремниевой диафрагмы, обращенной к опорам, соответствующей формы, и при этом не требуется создание или образование поверхности опорного слоя. Опорный слой предпочтительно выполняют из стекла, и когда используется емкостное измерение, эти стеклянные опорные слои обеспечиваются металлическими емкостными пластинами, нанесенными на них.
Вогнутые поверхности диафрагмы предпочтительно изготавливают серийно, то есть делают несколько диафрагм на вафле, на которую закрепляют опорные диски. После формовки вафля и опорные диски могут разрезаться на отдельные ячейки.
Поверхности диафрагмы могут выполняться за счет сгибания диафрагмы под давлением во время изготовления и притирки или шлифования противоположной поверхности до плоского состояния, когда диафрагмы находятся под давлением. Когда давление снимается, получается полость с точно заданной формой на поверхности, которая подвергалась притирке или шлифованию.
Затем может обрабатываться противоположная сторона диафрагмы со стороны, имеющей вогнутую форму, таким же путем, чтобы получилась вторая вогнутая поверхность на диафрагме. Диафрагма также может быть изготовлена с использованием двух секций диафрагмы или половинок, у каждой из которых имеется одна вогнутая поверхность. Обе секции скрепляют друг с другом на границе перехода, так, чтобы получившаяся конструкция имела две обращенные наружу вогнутые поверхности, к которым могут прикрепляться два опорных слоя. В опорных слоях выполняют отверстия, через которые допускается измеряемое давление.
Другой возможный способ предусматривает конструкцию с двумя вафлями, имеющими половинки диафрагмы, которые сгибаются под давлением, а затем скрепляются с наружными поверхностями вафель, в то время, как половинки диафрагмы остаются согнутыми под давлением. Прикладывается скрепляющий материал и после этого диафрагмы остаются в придавленном виде даже после снятия давления. Затем к противоположным сторонам вафель прикрепляют опорные диски.
Используются диафрагмы разной формы для измерения дифференциальных давлений, а когда давление подается с одной стороны диафрагмы, она переместится в сторону созданной поверхности опорной пластины, и поверхность диафрагмы станет плоской, когда она соприкоснется с такой опорной поверхностью, за счет чего она оказывается полностью подпертой относительно избыточных давлений.
Измерительные ячейки сплачивают в кожухи, содержащие массивные конструкции из материала с коэффициентом температурного расширения, согласующимся с этим коэффициентом ячеек измерения давления, чтобы ячейки оставались вместе и сохранялось поджатие по периметру ячеек. Зажимная конструкция также снабжена проходами для пропускания давления к конструкции, а за счет выбора зажимной конструкции или конфигурации кожуха может обеспечиваться механическая компенсация зазоров диафрагмы, которые изменяются при различных статических давлениях измеряемых режимов. Эта техника компенсации полезна для датчиков, являющихся емкостными. Статическое давление является средним давлением на противоположных сторонах диафрагмы, и во многих случаях статическое давление в несколько сот или даже тысяч фунтов на квадратный дюйм может наблюдаться в линиях, идущих к датчикам дифференциального давления, тогда как измеренное дифференциальное давление может быть до 6,9 кПа. Необходимы датчики для работы при статических линейных давлениях, которые изменяются от низких до высоких. Точное расположение областей, где скрепляются вместе измерительные ячейки и управление площадью уплотнения, которое влияет на сгибание датчика, позволяет производить компенсацию различных статических линейных давлений, получаемых при управлении и изменении радиального напряжения диафрагм, которое влияет на жесткость диафрагмы, а тем самым и на величину сгибания при заданном дифференциальном давлении, действующем на диафрагму. По мере возрастания статического давления зазор между поверхностью диафрагмы, которая образует одну емкостную пластину датчика, и соответствующей опорной поверхностью, которая имеет другую емкостную пластину, изменяется так, что эти поверхности стремятся к отделению при повышении статического давления. За счет такого закрепления ячейки в кожухе уменьшается pадиальное напряжение диафрагмы и в то же время возможно осуществление компенсации.
Все эти датчики могут изготавливаться серийно для уменьшения стоимости. При серийном производстве обычно предусматривается применение вафель из полупроводника, когда будет несколько диафрагм на вафле во время этапов производства, прикрепление вафли или стеклянных дисков, образующих опорные пластинки, а затем разрезание вафли на отдельные датчики, когда завершена обработка.
Фиг. 1 схематическое изометрическое изображение ячейки датчика, выполненной в соответствии с данным изобретением, где показана опорная конструкция измерительной ячейки.
Фиг. 2 схематическое изображение, на котором показано устройство на фиг. 1, закрепленное в кожухе, и схематическое изображение изоляторных диафрагм для передачи давлений к измерительной ячейке.
Фиг. 3 сечение обычной диафрагмы и опорной пластины, где показана начальная стадия изготовления при серийном производстве, но при этом показана только одна ячейка.
Фиг. 4 сечение такое же, как и на фиг. 3, иллюстрирующее следующий этап изготовления.
На фиг. 5 показан отдельный изготовленный датчик или половинка датчика с поверхностью диафрагмы, выполненной в соответствии с данным изобретением.
Фиг. 6 другой вид конструкции датчика давления, выполненного с использованием двух или более частей датчика, показанных на фиг. 5.
Фиг. 7 сечение диафрагмы и опорной пластинки, образующих половину измерительной ячейки, выполненной в соответствии с данным изобретением во второй его форме.
Фиг. 8 сечение, на котором показаны два из углов диафрагмы и опорной пластинки, приведенных на фиг. 7, собранные в ячейку датчика давления.
Фиг. 9 сечение типичного устройства серийного процесса изготовления измерительных ячеек в соответствии с данным изобретением при видоизмененном процессе.
Фиг. 10 сечение, на котором показано устройство, приведенное на фиг. 9, при другом этапе изготовления ячеек измерения давления.
Фиг. 11 сечение, на котором показан этап установки частично изготовленной диафрагмы на опорную пластинку.
Фиг. 12 другой этап процесса создания диафрагмы в соответствии с модифицированным вариантом изобретения.
Фиг. 13 вафля с диафрагмами, выполненными после осуществления этапа, показанного на фиг. 12.
Фиг. 14 сечение партии изготовленных измерительных ячеек после прикрепления второй опорной пластинки на место в соответствии с модифицированным вариантом изобретения.
Фиг. 15 сечение блока датчика, на котором показано предпочтительное зажимное приспособление измерительных ячеек в наружном кожухе.
Фиг. 16 фрагментарное сечение модифицированного зажимного кожуха.
На фиг. 1 показана измерительная ячейка дифференциального давления с одиночной диафрагмой, обозначенная позицией 10, которая помещена между первым закрывающим опорным цилиндрическим элементом 11 и вторым закрывающим опорным цилиндрическим элементом 12. Каждый цилиндр выполнен из стекла типа Пирекс или другого подходящего материала и имеет отверстие или проход, проходящий вдоль центральной оси, для допуска к ячейке двух давлений, представленных стрелкой 14-Р1 и стрелкой 15-Р2. Измерительная ячейка 10 зажата между цилиндрами 11 и 12, в основном как показано на фиг. 2. Зажим может иметь торцевые колпачки или рамки 20 и 21, скрепленные вместе болтами 22, зажимающими цилиндры 11 и 12 на измерительной ячейке 10. На фиг. 2 также схематически показаны первый и второй изоляторы 24 и 30, которые используются для передачи известным путем давления на измерительную ячейку 10 через проходы в цилиндрах соответственно 11 и 12, при этом диафрагма измерительной ячейки не подвергается давлению измеряемой среды.
Изоляция давления является хорошо известным приемом и, как показано, изолятор 24 содержит изолирующую диафрагму 25, которая охватывает полость 26, содержащую несжимаемую жидкость типа силиконового масла, которое передает давление по трубке 27 в канал в центре цилиндра 11 и тем самым к одной стороне диафрагмы в ячейке 10, что будет показано далее. Изолирующая диафрагма 25 подвергается прямому давлению Р1, обозначенному стрелкой 14 на фиг. 2. Изолятор 30 имеет изолирующую диафрагму 31 и, эта изолирующая диафрагма установлена на подходящей опоре или блоке 32, определяющем камеру 33, которая наполнена несжимаемой жидкостью, которая заполняет линию 34, ведущую к центральному продольному отверстию в цилиндре 12, который прижат к противоположной стороне ячейки датчика 10 со стороны цилиндра 11. Таким образом, давление Р2, обозначенное стрелкой 15, также действует на диафрагму 31. Дифференциальное давление между давлениями Р1 и Р2 будет измерено с помощью измерительной ячейки 10.
Один способ изготовления измерительной ячейки с одиночной изгибной диафрагмой измерения давления, использующей хрупкие материалы типа кремния или другие полупроводники для диафрагм, показан на фиг. 3-6. Изготовленная измерительная ячейка 10 показана на фиг. 6 в увеличенном виде. Необходимо отметить, что рисунки изображены не масштабно и не пропорционально по отношению к реальным устройствам. С целью наглядности толщина слоев и глубина полостей и выемок сильно преувеличены.
Ячейка 10 изготовлена при серийном процессе. Вафля из кремния, показанная позицией 40, предназначена для изготовления множества диафрагм, но подробно показана только одна такая диафрагма.
Вафля 40 вытравлена с образованием выемок 42 в заданных местах, и выемки образуют более тонкие изгибные диафрагмы 43, поддерживаемые ребрами 44, которые вырезаны в вафле, когда закончен серийный процесс и отдельные ячейки 10 оказываются отделенными. Периферийная часть отдельной ячейки для одной половинки ячейки показана жирной линией на фиг. 3
Вафлю 40 помещают сверху стеклянного диска 45, который может быть выполнен из боросиликатного стекла типа Пирекса. Стеклянный диск 45 снабжен множеством каналов или отверстий 46, проходящих насквозь, которые должны совпадать с выемками 42 на вафле 40. Стеклянные диски 45 металлизируют известным способом, чтобы получились тонкие слои металла в пределах периферийной части выемок 42. Металлические слои образуют емкостные пластинки 47 для емкостного измерения изгибов диафрагмы. В отверстиях 46 имеется металлизированный слой 46А, проходящий насквозь к металлическому слою 48 на противоположной стороне стеклянного диска, который может использоваться для прикрепления электрических отводов к обкладкам 47 конденсатора, когда изготовлены отдельные измерительные ячейки. Металлический слой 46А в отверстиях проводит электрические сигналы от обкладок 47 конденсатора к соответствующему слою 48, который может использоваться для прикрепления подходящих отводов типа показанных позицией 49. Таким образом, узлы диафрагмы оказываются совпадающими со слоем 50 жесткого опорного основания, который образован из диска 45, выполненного из стекла.
Вафли и стеклянный диск прикреплены вместе с использованием анодного закрепления или другого закрепляющего приема так, что получается сцепление за ободками 44 диафрагмы и стеклянного диска, захватывающее выемку или полость 42 и обеспечивающее отверстие в ней только через отверстие 46.
На фиг. 4 показан следующий этап процесса изготовления измерительных ячеек, при котором давление, показанное стрелкой 51, подают к каждому из отверстий 46 (одновременно на несколько отверстий в стекле подается давление), и при этом прогибается первоначальное сечение диафрагмы или тонкое сечение 43, которое совпадает с выемкой 42. Диафрагма принимает изогнутую форму, как показано изогнутой линией 43А, и пунктирной линией 43В, которая получается, когда диафрагма изгибается наружу. Давление держится для сохранения изогнутой диафрагмы 43 в изогнутом виде, что вызвано поданным давлением. Затем наружная выпуклая часть, выделенная пунктирной линией 43В, будет притерта или отшлифована так, чтобы образовалась плоская поверхность 43С поперек всей вафли в то время, как диафрагмы остаются под давлением.
Когда давление, обозначенное стрелкой 51, сбрасывается, изогнутые диафрагмы 43 расслабляются и принимают конфигурацию, показанную на фиг. 5, а затем поверхность 43С образует вогнутую поверхность. Поверхность 43А примет свою первоначальную по существу плоскую конфигурацию. Так как вафельный материал, показанный пунктирными линиями 43В, будет убран, выпуклая форма поверхности 43С в центральных частях изгибной диафрагмы станет обратным изображением выгнутой наружу конфигурации диафрагмы под давлением.
Множество половинок ячеек, показанных 10А, получается, таким образом, на единой вафле и прикрепленном стеклянном диске. Изготавливается вторая идентичная вафля и стеклянный диск. Для завершения обработки измерительной ячейки две вафли, имеющие идентичные половинки 10А и 10В ячеек, помещают вместе, как показано на фиг. 6, причем поверхности 43С каждой половинки 10А и 10В ячейки обращены друг к другу. Слой стеклянного фритта или другого подходящего прикрепляющего материала, показанного на рисунке позицией 56, помещают между лицевыми поверхностями вафель, на которых находятся измерительные ячейки 10А и 10В.
Поверхности 43С возвращаются к своей плоской конфигурации, как показано на фиг. 4, за счет подачи равных давлений через соответствующие отверстия 46 на стеклянных дисках, образующих основания для обеих половинок ячейки. Как показано на фиг. 6, поверхности 43С удерживаются плоскими и параллельными с материалом 56 стеклянного фритта между поверхностями. Обе вафли 40 могут удерживаться вместе в соответствующей обойме (не показана), зажимающей вафли на месте с усилием, показанным буквой F, тогда как материал стеклянного фритта находится между лицевыми поверхностями. Давление подается на диафрагму с подходящим кожухом, который накидывается на отверстия 46, а равные управляемые давления от источников 57 и 58 предназначены для сгибания частей диафрагмы так, что до того, как произойдет закрепление, лицевые наружные поверхности 43С оказываются плоскими на всех диафрагмах на вафле. Стеклянный фритт используется для прикрепления лицевых поверхностей вместе пока поверхности 43С остаются плоскими. Таким образом, управление давлением от источников 57 и 58 (это может быть и один источник) важно, когда происходит сцепление.
После установки скрепляющего материала давление от источников 57 и 58 сбрасывается на диафрагмы 43. Скрепляющий материал 56 удерживает диафрагмы 43 вафель для образования для каждой ячейки одиночной единой диафрагмы 63, которая имеет поверхности 43А, удерживаемые в вогнутом виде, обращенные к соответствующим плоским опорным слоями 50. Вогнутая форма соответствует изогнутой форме диафрагмы 63. Давление, используемое для изгибания диафрагменных сечений 43 во время изгибания, должно выбираться с учетом того, что одиночная диафрагма 63 имеет двойную толщину после сборки. Вогнутая часть диафрагмы окружена мелкой бороздкой на торцах полости 42 в центральных частях диафрагмы.
Затем вырезают вафли и стеклянные диски для получения отдельных измерительных ячеек 10. Зазоры диафрагмы относительно поддерживающего основания или плоского элемента 50 показаны увеличенными в измерительной ячейке на фиг. 6, но когда давление на одной из сторон ячейки измерения оказывается слишком большим, противоположная сторона 43А пойдет в сторону соответствующего опорного основания 50 и обкладки 47 конденсатора, образованной на нем. Тогда диафрагмы 63 оказываются опирающимися на плоскую поверхность опорных оснований, и поверхности 43 оказываются плоскими под действием номинальных избыточных давлений. Напряжение в диафрагме 63 не превышает допустимое напряжение и диафрагма 63 оказывается полностью поддержанной по всей поверхности.
Формы диафрагмы и изгибы на фиг. 3-6 являются сильно преувеличенными с целью иллюстрации, но диафрагмы выполняются такими, как описано так, что они имеют вогнутые поверхности, обращенные к обоим опорным основаниям 50 для диафрагмы, которые являются идентичными изогнутой форме диафрагмы при заданном давлении так, что когда такое давление подается к противоположной поверхности диафрагмы 63, поверхность 43С обращенная к соответствующей опоре 50, оказывается по существу параллельной опорному основанию и остается плоским, когда прикасается к опорному основанию. Диафрагмы соприкасаются с опорным основанием для предотвращения избыточного напряжения в диафрагме 63 под действием избыточных давлений.
Давления, показанные стрелкой 51, и источники 57 и 58 выбираются такими, чтобы они могли деформировать диафрагму 63 немного больше, чем максимальный практический диапазон давления измерительной диафрагмы 63. Тогда вогнутые формы поверхностей 43С будут соответствующими так, что диафрагма 63 будет работать во всем заданном диапазоне давления, но станет по существу плоской и прикоснется к соответствующему элементу 50 опорного основания перед избыточным напряжением. И снова зазор диафрагменной поверхности относительно опорного основания показан на рисунках преувеличенным. Обкладки 47 конденсатора и центральная часть диафрагмы оказываются по существу электропроводными, что позволяет осуществлять емкостное измерение.
На фиг. 7 и 8 показана модифицированная измерительная ячейка. Половинная ячейка показана на фиг. 7, а половинные ячейки изготавливают в серийном производстве с использованием кремниевой вафли 40 и стеклянного диска 45, выполненных, как это описано относительно фиг. 3. Половинная ячейка содержит опорную пластину или основание 75, выполненное из подходящего стекла, и чувствительную диафрагму 76, выполненную из вафли 40. Диафрагменная конструкция 76 содержит изгибающуюся чувствительную к давлению часть 77 диафрагмы, выполненную формованием выемки 78 с использованием известной технологии типа травления. Окружной ободок 79 предназначен для поддержания изгибающейся диафрагмы по ее торцам. У опорного основания 75 имеется обкладка 82 конденсатора, нанесенная на него, а проход 83 открыт в полость 78 под изгибающейся диафрагмой 77.
Проход 83 покрыт металлом и слой металла 84 выполнен на противоположной стороне стеклянного диска 75 со стороны обкладки 82 конденсатора.
При таком построении изобретения стеклянная опорная пластина или основание 75 и кремниевая диафрагма 76 согнуты вместе у ободка 79 и перед выделением отдельных частей половинных ячеек, которые показаны на фиг. 7, силиконовая вафля притирается или шлифуется для удаления показанного в пунктирной части 85 фиг. 7 материала так, что часть 77 диафрагмы должна уменьшиться до заданной толщины.
Две силиконовые вафли и стеклянные диски имеют каждая множество половинных ячеек, образованных, как показано на фиг. 7, на них и, они помещены с перекрытием со слоем изгибающего материала между ними. Отдельные идентичные половинные ячейки затем размещены в определенном порядке, как показано позициями 87А и 87В на фиг. 8. Вафли и стеклянные диски удерживаются в подходящей обойме, а половинные ячейки 87А и 87В помещены под давлением от источников 89 и 90, соответственно, сообщающихся через отверстия 83 в половинных ячейках, что вызывает изгибание частей 77 изгибающихся диафрагм под действием давления и нажатие на сцепляющий слой 91, который представляет собой упругий или текучий материал типа расплавленного стеклянного фритта или упругий материал, который затвердевает и становится жестким после отверждения. Крепление, создающее удерживающее усилие F, подходит для зажима вафель и блоков стеклянных дисков вместе с помощью сцепляющего материала 91 между обеими половинными ячейками 87А и 87В. Давление от источников 89 и 90 (которое должно поддерживаться равным) сохраняется на заданном уровне.
Ввиду того, что каждая прогибающаяся диафрагменная часть 77 является независимой от другой противостоящей прогибающейся диафрагменной части 77, диафрагменные части прогибаются навстречу друг другу. Материал 91 растекается, приспосабливаясь к этому прогибу или изгибанию, а затем доводится до застывания или затвердения, сцепляя вместе диафрагменные узлы 76 и прогибаемые диафрагменные части 77, находящиеся в своем изогнутом виде, как показано на фиг. 8, образуя одиночную чувствительную диафрагму 93.
Поверхности 77С, которые противостоят плоской поверхности соответствующих опорных оснований 75, имеют вогнутую форму, то есть форму изогнутой диафрагмы, находясь под давлением, обеспечивающим заданную форму. Во время работы, когда давления на половинные ячейки являются неравными, например, когда давление от источника 90, действующее на половинную ячейку 87В понижено, а давление 89 повышено относительно заданного уровня давления, дифференциальное давление окажется на уровне таком, что диафрагменный узел 93 прогнется, а поверхность 77С половинной ячейки 87В будет прогнута, оставаясь напротив поверхности опорного основания 75 для половинной ячейки 87В. Поверхность 77С будет опираться на противостоящую поверхность опорного основания 75 и будет по существу плоской, когда ляжет на опорное основание. Таким образом, чувствительная диафрагма 93 будет полностью опираться всей своей поверхностью под действием избыточного давления, когда диафрагменные поверхности имеют показанную форму.
Диафрагменный узел 93 образован из двух диафрагменных частей 77, сцепленных вместе, поэтому увеличенная жесткость узла принимается во внимание, когда выбирают давления 89 и 90 для прогибания диафрагменных частей 77 перед их сцеплением друг с другом.
Необходимо отметить, что хотя измеренная разность давления на диафрагме может оказаться в относительно небольшом диапазоне, общее статическое линейное давление, подаваемое через изолирующие диафрагмы и обозначенное как Р1 и Р2 на фиг. 1 и 2, может быть довольно высоким и составлять на практике величины порядка нескольких сотен кг/см2.
Как показано на фиг. 8, узел 87 ячеек, который имеет единственную (но составную) диафрагму с отводами 94 и 95, идущими от соответствующих обкладок 82 конденсатора и прогибающихся частей 77 диафрагмы. Прогибающаяся диафрагма является по существу проводящей или, по меньшей мере, она имеет проводящие части, достаточные для емкостного измерения прогиба. Обкладки и части диафрагмы обеспечивают получение емкостных сигналов, указывающих на зазор между обкладками 82 и смежной поверхностью диафрагменной части. Может использоваться известное схемное решение. Когда диафрагменные части 77 обеих половинных ячеек отделены изолирующим сцепляющим слоем, отводы 95 могут использоваться для индивидуальной индикации емкости соответствующих половинных ячеек относительно обкладок 82 конденсатора, который находится под диафрагменной частью 77.
И снова диафрагменные части образуют одиночную диафрагменную конструкцию 93 для измерения разностей давления, действующих на противоположные поверхности. Поверхности, противостоящие опорным основаниям 75, имеют такую форму, чтобы поверхности соответствовали изогнутой форме конструкции 93 измерительной диафрагмы при заданном давлении. Когда диафрагма 93 находится под избыточным давлением, поверхность, находящаяся на соответствующем опорном основании 75, будет по существу плоской относительно плоской поверхности опорного основания 75.
Модифицированная измерительная ячейка типа показанной позицией 10, описана в связи с фиг. 9-14. При этом варианте реализации изобретения снова используют серийную обработку, но этапы изготовления немного отличаются.
Как показано на фиг. 9, силиконовая вафля, обозначенная позицией 100, изготавливается путем создания выемок или полостей 101 в заданных местах, за счет чего получается более тонкое сечение 102 диафрагмы, совпадающее с этими выемками. Выемки также образуют ободки 103, окружающие каждое из сечений диафрагмы. Ободочные части 103 разделяются, когда отдельные измерительные ячейки вырезаются из вафли, как показано пунктирными линиями 104. После разделения вдоль линии 104 получаются диафрагменные узлы 105, имеющие ободок, поддерживающий изгибающиеся диафрагменные части 102 на кромках. Диафрагменные части могут быть квадратными или круглыми в плане.
У силиконовой вафли 100 имеется несколько диафрагменных секций 102, выполненных на ней, и она устанавливается на металлической пластине 110, которая имеет множество достаточно больших отверстий 111. Каждое отверстие 111 располагается в линию с одной из соответствующих полостей 101, выполненных за диафрагменными секциями 102 на силиконовой вафле. Парафиновый слой располагается между поверхностью кремния и металлом, создавая уплотнение. Затем на поверхность 115 металлической пластины помещают коллектор 116 и уплотняют уплотнением 116А, обеспечивая подачу давления от источника 116В в каждой из полостей 101 через отверстия 111, за счет чего осуществляется прогибание диафрагменных частей, как показано пунктирными линиями 102 на фиг. 9. Металлическая пластина и вафли удерживаются вместе с коллектором за счет подходящего фиксатора. Наружная поверхность силиконовой вафли 100 затем притирается или полируется до плоского состояния, тогда как в полостях 101 поддерживается давление. Толщина силиконовой вафли, обозначенной стрелкой 117, составляет около 0,3 мм. Когда давление от источника 116В сбрасывается, диафрагменные части 102 принимают конфигурацию, показанную на фиг. 10, при этом верхняя поверхность имеет части 102А с вогнутой поверхностью, каждая из которых образует более тонкую секцию диафрагмы. Поверхность 102Д отполирована для уменьшения глубины полостей 102А, а также для создания полированной поверхности, к которой может прикрепляться стекло. В этом случае вогнутая форма по существу совпадает с изогнутой формой диафрагмы под давлением, которое подается во время операции притирки. Диапазон давления от источника 116В в основном должен быть в пределах 3,5 кг/см2 для задатчика дифференциального давления на 0,7 кг/см2.
После притирки и полирования поверхности 102Д силиконовая вафля 100 имеет размер, показанный позицией 118, порядка 0,28 мм. Вафлю удаляют с металлической пластинки 110, а предварительно отполированная поверхность 102Д вафли 100 анодируется к диску 120 из Пирекса, который образует отдельное опорное основание датчика, когда слои разрезаются на отдельные измерительные ячейки, как показано пунктирными линиями 104 на фиг. 11. Каждая из измерительных ячеек показана позицией 121. Вогнутые поверхности 102А находятся над отверстиями 122, которые выполнены в стеклянном диске 120. Отверстия 122 окружены мелкими выемками 122А на поверхности стеклянного диска, обращенной к силиконовой вафле. Выемка гарантирует, что вафля не прикрепится к стеклянному диску в области, где образована диафрагма. Однако, за счет анодированного закрепления поверхность 102Д ободочных секций 103, прикрепленных к стеклянному диску 120, удерживается на месте так, что полости 124 за каждой из поверхностей 102А образуют герметичную полость.
На следующем этапе выемки 101, которые первоначально были выполнены в вафле 100, удаляются за счет стирания части ободочных частей 103 между полостями 101. Конструкция вафель 100 и стеклянного диска 120 показана на фиг. 12 с плоской наружной поверхностью 126 на силиконовой вафле 100, и поэтому силиконовая вафля значительно уменьшена по толщине, что показано размером 125, например, в районе 0,125 мм по всей толщине с минимальной толщиной в диафрагменных частях 102 над полостями 124 порядка 0,120 мм.
Скрепленная конструкция силиконовой вафли 100 и Пирексного или стеклянного диска 120 затем обрабатывается дальше за счет подачи давления на каждое из отверстий 121 (используя коллектор 116), прогибающего более тонкие диафрагменные части 102 наружу, как показано пунктирными линиями 102Е на фиг. 12. Поверхность 126 притирают или полируют до плоскости, при этом в полостях 124 поддерживается давление. Это давление меньше, чем давление, использованное на первом этапе, потому что диафрагменные части тоньше после шлифования и притирки до заданной толщины перед подачей давления в отверстия 122 в стеклянном диске 120.
Когда после этого снимается давление с отверстий 122 и полостей 124, изгибающиеся части 102 диафрагмы отойдут назад в свое первоначальное положение. За счет этого вогнутые поверхности 102С останутся на противоположной стороне секции 102 диафрагмы со стороны поверхностей 102А. Поверхности 102С также существенно совпадают с формой изогнутой диафрагмы, когда изогнутая диафрагма подвергается воздействию давления. Как показано на фиг. 13, поверхность 126 полируется до толщины порядка 0, 0,120 мм, что показано размером 128. Окись алюминия может использоваться в качестве притирочного или полировочного вещества.
Таким образом, части 102 прогибающейся диафрагмы имеют искривленные поверхности с противоположных сторон, образуя центральную секцию уменьшенной толщины.
На окончательном этапе формирования измерительных ячеек при таком серийном процессе второй стеклянный диск 130 прикрепляется анодированием к поверхности 126 вафли 100. Этот второй стеклянный диск 130 также имеет отверстия 132, ведущие к каждой из поверхностей 102С, и когда диск 130 закреплен на месте, можно заметить, что имеется полость 134, образованная на противоположной стороне силиконовой вафли относительно полостей 124. Это мелкие выемки 132А, окружающие отверстия 132 для того, чтобы поверхность 102С не прикрепилась к стеклянному диску 130.
Затем измерительные ячейки нарезают вдоль пунктирных линий 135, образуя отдельные стеклянные основания 131 и 121, между которыми оказывается диафрагменный узел 105. Диафрагменные узлы 105 имеют изгибающиеся части 102, поддерживаемые ободочными элементами 103.
Давление, используемое для притирки или полирования изогнутых поверхностей, должно управляться так, чтобы изогнутая поверхность не просто поджималась до плоскости. Усилие притирки контролируют относительно давления, действующего на диафрагму так, чтобы чистая сила была надлежащей. Если надавливающая среда, действующая на диафрагму, является жидкой и улавливается на месте (запаяна герметично) при соответствующем давлении, то больше не надо беспокоиться об усилии притирки, потому что жидкость не позволит диафрагме выгнуться.
Отдельные измерительные ячейки 136 после отрезания вдоль линии 135 формуются на квадратные секции и измерительные ячейки аналогично ячейкам 10. Ячейки 136 могут прокладываться между опорными или оправочными цилиндрами 11 и 12, как показано на фиг. 1, для измерения дифференциальных давлений.
В этом случае также фигурные диафрагменные поверхности 102А и 102С являются такими, что они имеют по существу вогнутую форму изогнутой диафрагмы, обращенной к соответствующему опорному основанию 121 или 131 так, что, когда подается дифференциальное давление, например, в полость 134, и оно достигает максимально заданного избыточного давления, поверхность 102А' окажется по существу плоской, поскольку она остается на противостоящей поверхности соответствующего опорного основания 121.
Противоположное действие происходит, если давление в камере 124 больше, чем максимально допустимое избыточное давление в камере 134, потому что тогда поверхность 102С останется плоской на опорном блоке 131. Изменение изгибов диафрагмы может в случае необходимости измеряться. Поверхность 102А имеет тензометрические резисторы 137, нанесенные на нее, для измерения этих изгибов. Обе поверхности 102А и 102С могут иметь такие тензометрические резисторы, или на стеклянные опорные основания могут наноситься обкладки конденсатора для емкостного измерения, если это необходимо.
На фиг. 15 показан предпочтительный вариант зажима каждой отдельной измерительной ячейки типа показанных позицией 10. Другие измерительные ячейки, показанные на предыдущих рисунках, пронумерованы отдельно, но ячейка 10 должна представлять вообще формы описанных ячеек. Измерительные ячейки закреплены между цилиндрическими 11 и 12 так, чтобы сохранялось единство и жесткость измерительных ячеек за счет однозначной опоры и, как будет показано, установка может производиться для обеспечения компенсации разностей напряжений на диафрагму измерительной ячейки при различных условиях статического линейного давления.
Поскольку физические пропорции измерительных ячеек, показанных на фиг. 15 и 16, не соответствуют другим рисункам, немасштабные рисунки служат лишь для иллюстрации и пояснения. Необходимо уяснить, что размер (площадь) измерительной ячейки 10 примерно составляет 1,3 см2 (1,1х1,1 см), а вся длина измерительной конструкции, показанной на фиг. 15, может быть в пределах 2,5 см, хотя иллюстрации схематичны лишь для показа.
В первой форме кожуха измерительная ячейка 10 показана расположенной между цилиндрами или блоками 11 и 12, как показано на фиг. 1. Схематическое изображение фиг. 2 является аналогичным. Трубки 27 и 34 входного давления проходят через торцевые колпачки 150 и 152 соответственно, и трубки 27 и 34 установлены с уплотнением для создания отверстий или каналов давления в установочных цилиндрах 11 и 12 из Пирекса или стекла. Давление полностью передается по каналу в Пирексе. Подходящие уплотнительные элементы для входных трубок давления могут использоваться, как показано на позиции 151 и 153.
Измеряемое давление передается на противоположные стороны измерительных ячеек 10 через стеклянные установочные цилиндры или блоки 11 и 12 и через сделанные в измерительной ячейке отверстия, например, отверстия 46 в основаниях 50 опор датчиков в первом примере реализации.
При такой форме реализации изобретения стеклянные установочные цилиндры 11 и 12 зажимают измерительную ячейку 10 по ее периферии с использованием уплотнения и передающих усилиях опорных колец 155, 155 с противоположных сторон ячейки, которые создают зажимное усилие Fc. Уплотнения 155 образуют небольшие очень тонкие камеры 156 и 157 между наружными поверхностями ячейки 10 и соответствующими торцами установочных цилиндров 11 и 12. Давление в трубках 27 и 34 соответственно будет присутствовать в камерах 156 и 157 по противоположным сторонам измерительной ячейки и, таким образом, давления действуют на стеклянные опорные основания 50 ячейки (или стеклянное опорное основание другого вида ячеек, которые также показаны). Зазор между опорными основаниями 50 и соответствующим установочным блоком является достаточно небольшим, что при воздействии избыточного дифференциального давления стеклянные основания будут поддерживаться на конце смежного установочного цилиндра 11 и 12 для предотвращения повреждения под действием высоких избыточных давлений.
Опорные или оправочные цилиндры 11 и 12 (изготовленные из пирексного стекла) имеют тот же самый коэффициент теплового расширения, что и опорные стеклянные основания 50, а это помогает при поддержании стабильности при различных температурных режимах.
Торцевой колпачок 150 действует на основание цилиндра 11 с помощью пружины Бельвиля 160 с подходящим усилием пружины. Торцевой колпачок 152 может действовать посредством подходящей прокладки 162, удерживающей установочные цилиндры и ячейку 10 в рабочем положении. Зажим устанавливается на уровне, при котором измерительная ячейка во время работы находится под прижимом.
Затяжные болты 163 выполнены для удержания торцевых колпачков 150 и 152 вместе для обеспечения необходимого зажимного усилия. Полупроводниковый чип 164 может устанавливаться на одном из установочных стеклянных цилиндров и может содержать емкостную измерительную схему, соединенную с датчиком отводами 165.
Модифицированный вариант измерительной конструкции показан на фиг. 16 и в этом случае установлены торцевые колпачки 150А и 152А и они удерживаются вместе посредством втулки 170, которая приваривается к торцевым колпачкам с помощью сварочного шва 171 с каждого конца. Втулка 170 устанавливается с напряжением предварительной нагрузкой перед сваркой и удерживается под напряжением при сварке для сжатия торцевых колпачков к установочным цилиндрам 11 и 12, когда снимается натягивающее напряжение втулки 170 после сварки. Сжатие действует на измерительную ячейку во время работы. Сварочные швы 171 создают герметичное уплотнение по периферии торцевых колпачков 150А и 152А.
Стеклянные цилиндры 11 и 12, как показано на фиг. 16, поддерживают стеклянные опорные основания 50 ячейки 10 по всей поверхности стеклянным фриттом 173, располагающимся на опорных основаниях 50, создавая зажимное усилие из-за напряжения в трубке 170 /или других зажимных элементов/ по всем открытым противоположным поверхностям измерительной ячейки 10. Аналогично, может использоваться пайка 174 по всей торцевой поверхности стеклянного цилиндра 12 для удержания цилиндра 12 на месте.
Трубка 170 может иметь подходящий сквозной ствол 175 для передачи электрических сигналов от полупроводникового чипа 176, прикрепленного к одному из стеклянных установочных цилиндров, в котором может применяться емкостная измерительная схема. Чип подсоединяется к отводам 177 от измерительной ячейки 10. Отводы на измерительной ячейке соединяются со схемой на чипе 176 обычным путем.

Claims (8)

1. Дифференциальный датчик давления жидкости, содержащий измерительную ячейку в виде двух боковых опорных элементов с центральным отверстием, между которыми закреплен чувствительный диафрагменный модуль, причем каждый опорный элемент имеет отверстие для соединения источников давления с диафрагменным модулем, при этом диафрагменный модуль имеет периферийный опорный ободок, через который диафрагменный модуль прикреплен к боковому опорному элементу с образованием первой и второй полостей между диафрагменным модулем и каждым боковым опорным элементом, связанных с источниками давления через центральное отверстие в соответствующем боковом опорном элементе, а диафрагменный модуль выполнен из хрупкого неметаллического материала и включает преобразователи перемещений с емкостной или резистивной зависимостью от деформации, отличающийся тем, что диафрагменный модуль имеет переменное сечение и включает по меньшей мере одну вогнутую поверхность.
2. Дифференциальный датчик давления жидкости, содержащий измерительную ячейку в виде двух боковых опорных элементов с центральным отверстием, между которыми закреплен чувствительный диафрагменный модуль, образованный из двух диафрагменных элементов и центрального элемента между ними, жестко соединенных друг с другом, отличающийся тем, что боковые поверхности диафрагменного модуля, обращенные к поверхностям боковых опорных элементов, выполнены вогнутыми.
3. Датчик по п. 2, отличающийся тем, что в диафрагменном модуле центральный элемент является плоским, при этом оба диафрагменных элемента имеют переменное сечение.
4. Датчик по п. 2, отличающийся тем, что в диафрагменном модуле оба диафрагменных элемента имеют равномерную толщину, при этом центральный элемент между ними имеет вогнутые боковые поверхности.
5. Способ изготовления диафрагменного элемента из хрупкого неметаллического материала равномерного сечения, при котором получают диафрагменный элемент с периферийным опорным ободком для крепления диафрагменного элемента к боковому опорному элементу с центральным отверстием, отличающийся тем, что на поверхность диафрагменного элемента подают избыточное давление, вызывая изгиб центральной поверхности диафрагменного элемента и образуя выпучивание на наружной поверхности диафрагменного элемента, затем удаляют часть диафрагменного материала, образующую выпучивание, получая плоскую поверхность, а затем снимают избыточное давление.
6. Способ изготовления диафрагменного модуля, в котором изготавливают два диафрагменных элемента с периферийным опорным ободком, с помощью которого каждый диафрагменный элемент прикрепляют к отдельному боковому опорному элементу с центральным отверстием, а между диафрагменными элементами размещают центральный элемент, отличающийся тем, что используют диафрагменный элемент переменного сечения, а центральный элемент размещают в размягченном состоянии между двумя диафрагменными элементами так, чтобы их вогнутые поверхности были обращены к нему, затем через центральные отверстия боковых опорных элементов в полости между ними и плоскими поверхностями диафрагменных элементов подают избыточные давления равной величины до полного контакта поверхностей обоих диафрагменных элементов, и поддерживают давления постоянными до затвердевания материала центрального элемента и неразъемного соединения с поверхностями обоих диафрагменных элементов, после чего снимают избыточные давления.
7. Способ изготовления диафрагменного модуля, в котором изготавливают два диафрагменных элемента с периферийным опорным ободком, с помощью которого каждый диафрагменный элемент прикрепляют к отдельному боковому опорному элементу с центральным отверстием, а между диафрагменными элементами размещают центральный элемент, отличающийся тем, что центральный элемент размещают в размягченном состоянии между двумя диафрагменными элементами равномерной толщины, затем подают избыточные давления равной величины через центральные отверстия боковых опорных элементов в полости между ними и обращенными к ним поверхностями диафрагменных элементов до максимального прогиба диафрагменных элементов с обеих сторон центрального элемента и поддерживают эти давления постоянными до затвердевания материала центрального элемента и его неразъемного соединения с поверхностями обоих диафрагменных элементов, после чего снимают избыточные давления.
8. Способ изготовления диафрагменного модуля, в котором диафрагменный элемент изготавливают с периферийным опорным ободком, с помощью которого диафрагменный элемент прикрепляют к отдельному боковому опорному элементу с центральным отверстием, отличающийся тем, что берут диафрагменный элемент, имеющий с одной стороны вогнутую поверхность, а с другой плоскую, на вогнутую поверхность диафрагменного элемента подают избыточное давление, воздействуя таким образом на центральную поверхность диафрагменного элемента, образуя выпуклость на его поверхности с другой стороны, затем удаляют часть диафрагменного материала, образующую выпуклость, получая плоскую поверхность, а затем снимают избыточное давление.
SU874613103A 1986-06-30 1987-06-12 Дифференциальный датчик давления жидкости и способ изготовления его чувствительного элемента RU2069328C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US06/879,938 US4833920A (en) 1986-06-30 1986-06-30 Differential pressure sensor
PCT/US1987/001374 WO1988000335A1 (en) 1986-06-30 1987-06-12 Differential pressure sensor
US879938 1992-05-08

Publications (1)

Publication Number Publication Date
RU2069328C1 true RU2069328C1 (ru) 1996-11-20

Family

ID=25375194

Family Applications (1)

Application Number Title Priority Date Filing Date
SU874613103A RU2069328C1 (ru) 1986-06-30 1987-06-12 Дифференциальный датчик давления жидкости и способ изготовления его чувствительного элемента

Country Status (24)

Country Link
US (1) US4833920A (ru)
EP (1) EP0312532B1 (ru)
JP (1) JP2750303B2 (ru)
KR (1) KR950013298B1 (ru)
CN (2) CN1013712B (ru)
AR (1) AR241235A1 (ru)
AT (1) ATE128548T1 (ru)
AU (1) AU610070B2 (ru)
BR (1) BR8707739A (ru)
CA (1) CA1296917C (ru)
DE (1) DE3751546T2 (ru)
DK (1) DK172354B1 (ru)
ES (1) ES2006189A6 (ru)
FI (1) FI96991C (ru)
HK (1) HK6396A (ru)
HU (1) HU207160B (ru)
IL (2) IL82960A0 (ru)
IN (1) IN169797B (ru)
MX (1) MX163905B (ru)
NO (1) NO173074C (ru)
RU (1) RU2069328C1 (ru)
WO (1) WO1988000335A1 (ru)
YU (1) YU126287A (ru)
ZA (1) ZA874355B (ru)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4905575A (en) * 1988-10-20 1990-03-06 Rosemount Inc. Solid state differential pressure sensor with overpressure stop and free edge construction
US5060520A (en) * 1989-06-15 1991-10-29 Texas Instruments Incorporated Hermetic pressure sensor
FI893874A (fi) * 1989-08-17 1991-02-18 Vaisala Oy Kontaktfoersedd givare med skiktstruktur samt foerfarande foer utfoerande av kontakteringen.
US5134887A (en) * 1989-09-22 1992-08-04 Bell Robert L Pressure sensors
US5157972A (en) * 1991-03-29 1992-10-27 Rosemount Inc. Pressure sensor with high modules support
US5829665A (en) * 1992-12-09 1998-11-03 Nippondenso Co., Ltd. Fluxless soldering process
DE19513007A1 (de) * 1994-04-14 1995-10-19 Merck Patent Gmbh Hexafluorpropylether und flüssigkristallines Medium
US5454270A (en) * 1994-06-06 1995-10-03 Motorola, Inc. Hermetically sealed pressure sensor and method thereof
JP3319912B2 (ja) * 1995-06-29 2002-09-03 株式会社デンソー 半導体センサ用台座およびその加工方法
EP0762088A3 (de) * 1995-09-11 1997-11-05 Georg Fischer Rohrleitungssysteme AG Verfahren und Vorrichtung zur Grenzstanderfassung von Flüssigkeiten und Schüttgütern
JP3147778B2 (ja) * 1996-07-01 2001-03-19 富士電機株式会社 静電容量式差圧検出器
DE69922727T2 (de) * 1998-03-31 2005-12-15 Hitachi, Ltd. Kapazitiver Druckwandler
GB0015500D0 (en) * 2000-06-23 2000-08-16 Randox Lab Ltd Production of silicon diaphragms by precision grinding
EP1332106A2 (de) * 2000-11-07 2003-08-06 Gesim Gesellschaft für Silizium-Mikrosysteme mbH Verfahren zum herstellen von glas-silizium-glas sandwichstrukturen
WO2002046802A2 (en) * 2000-12-04 2002-06-13 The University Of Vermont And State Agricultural College Stiction-based chuck for bulge tester and method of bulge testing
JP3847281B2 (ja) * 2003-08-20 2006-11-22 株式会社山武 圧力センサ装置
EP1677852A4 (en) * 2003-09-16 2009-06-24 Cardiomems Inc WIRELESS IMPLANTABLE DETECTOR
US8026729B2 (en) 2003-09-16 2011-09-27 Cardiomems, Inc. System and apparatus for in-vivo assessment of relative position of an implant
WO2007002185A2 (en) * 2005-06-21 2007-01-04 Cardiomems, Inc. Method of manufacturing implantable wireless sensor for in vivo pressure measurement
JP4258504B2 (ja) * 2005-08-24 2009-04-30 セイコーエプソン株式会社 圧力センサ
US7415886B2 (en) * 2005-12-20 2008-08-26 Rosemount Inc. Pressure sensor with deflectable diaphragm
DE102006058301B4 (de) * 2006-12-11 2016-12-29 Robert Bosch Gmbh Luftdrucksensor für eine Seitenaufprallerkennung
US7624642B2 (en) * 2007-09-20 2009-12-01 Rosemount Inc. Differential pressure sensor isolation in a process fluid pressure transmitter
US8322225B2 (en) 2009-07-10 2012-12-04 Honeywell International Inc. Sensor package assembly having an unconstrained sense die
US8371175B2 (en) * 2009-10-01 2013-02-12 Rosemount Inc. Pressure transmitter with pressure sensor mount
DE102009046229A1 (de) 2009-10-30 2011-05-12 Endress + Hauser Gmbh + Co. Kg Drucksensor, insbesondere Differenzdrucksensor
DE102009046228A1 (de) * 2009-10-30 2011-05-19 Endress + Hauser Gmbh + Co. Kg Drucksensor, insbesondere Differenzdrucksensor und ein Verfahren zum Präparieren eines Membranbetts für einen solchen Sensor
DE102010028504A1 (de) * 2010-05-03 2011-11-03 Endress + Hauser Gmbh + Co. Kg Drucksensor
US8230743B2 (en) 2010-08-23 2012-07-31 Honeywell International Inc. Pressure sensor
EP2975375B1 (de) 2010-12-27 2019-12-04 TDK Electronics AG Drucksensor mit kompressiblem element
EP2659249B1 (de) * 2010-12-27 2015-06-24 Epcos AG Drucksensor mit kompressiblem element
DE102011006517A1 (de) 2011-03-31 2012-10-04 Endress + Hauser Gmbh + Co. Kg Druckfest gekapselter Differenzdrucksensor
KR101203415B1 (ko) 2011-09-08 2012-11-21 두온 시스템 (주) 물결 형상 격리 다이어프램을 갖는 차압 센서의 제조 방법 및 그에 의해 제조된 차압 센서
DE102012113033A1 (de) * 2012-12-21 2014-06-26 Endress + Hauser Gmbh + Co. Kg Mechanische Stabilisierung und elektrische sowie hydraulische Adaptierung eines Silizium Chips durch Keramiken
DE102014005399A1 (de) * 2013-04-24 2014-10-30 Marquardt Mechatronik Gmbh Anordnung zur Füllstandsmessung
DE102013113594A1 (de) 2013-12-06 2015-06-11 Endress + Hauser Gmbh + Co. Kg Differenzdrucksensor
US9316552B2 (en) * 2014-02-28 2016-04-19 Measurement Specialties, Inc. Differential pressure sensing die
CN103868641A (zh) * 2014-03-21 2014-06-18 刘剑飚 一种微压差传感器
DE102014104831A1 (de) * 2014-04-04 2015-10-08 Endress + Hauser Gmbh + Co. Kg Differenzdrucksensor
DE102014109491A1 (de) 2014-07-08 2016-02-11 Endress + Hauser Gmbh + Co. Kg Differenzdruckmesszelle
US10197462B2 (en) * 2016-05-25 2019-02-05 Honeywell International Inc. Differential pressure sensor full overpressure protection device
DE102017125333A1 (de) * 2017-10-27 2019-05-02 Samson Ag Drucksensoranordnung
US11371899B2 (en) 2018-05-17 2022-06-28 Rosemount Inc. Measuring element with an extended permeation resistant layer
DE102018215851B3 (de) * 2018-09-18 2019-09-26 Siemens Aktiengesellschaft Druck- oder Durchflussmesszelle

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8572C (de) * C. A. ROSCHFR in Markersdorf bei Burgstädt in Sachsen, und J. KÖHLER in Limbach bei Chemnitz Vorrichtung an Kettelmaschinen zur Herstellung sehr langer Maschen
US3079576A (en) * 1961-02-01 1963-02-26 Rosemount Eng Co Ltd Integral strain transducer
GB1088723A (en) * 1964-03-18 1967-10-25 Ether Eng Ltd Improvements in and relating to transducers
BE666463A (ru) * 1965-07-06 1965-11-03
US3566750A (en) * 1969-03-10 1971-03-02 Foxboro Co Differential pressure cell with keystone structure
US3618390A (en) * 1969-10-27 1971-11-09 Rosemount Eng Co Ltd Differential pressure transducer
US3800413A (en) * 1969-10-27 1974-04-02 Rosemount Inc Differential pressure transducer
US3650181A (en) * 1970-03-27 1972-03-21 Thompson Wendell L Controller responsive to variation in pressure in one source for varying pressure in another source
US3962921A (en) * 1972-02-04 1976-06-15 The Garrett Corporation Compensated pressure transducer
US3793885A (en) * 1972-09-05 1974-02-26 Rosemount Inc Diaphrgam construction for differential pressure transducer
US4064550A (en) * 1976-03-22 1977-12-20 Hewlett-Packard Company High fidelity pressure transducer
US4064549A (en) * 1976-08-31 1977-12-20 Metrolology General Corporation Cylindrical capacitive quartz transducer
JPS5697842A (en) * 1980-01-07 1981-08-06 Yokogawa Hokushin Electric Corp Differential pressure detector of single capacity type
JPS5730923A (en) * 1980-08-01 1982-02-19 Hitachi Ltd Capacitor type pressure difference transmitter
US4389895A (en) * 1981-07-27 1983-06-28 Rosemount Inc. Capacitance pressure sensor
US4442474A (en) * 1981-12-14 1984-04-10 Sperry Corporation Capacitive pressure transducer
JPS58180927A (ja) * 1982-04-16 1983-10-22 Toshiba Corp 半導体感圧素子の保護装置
DE3238430A1 (de) * 1982-10-16 1984-04-19 Philips Patentverwaltung Gmbh, 2000 Hamburg Differenzdrucksensor
US4572000A (en) * 1983-12-09 1986-02-25 Rosemount Inc. Pressure sensor with a substantially flat overpressure stop for the measuring diaphragm
US4603371A (en) * 1984-10-12 1986-07-29 Rosemount Inc. Capacitive sensing cell made of brittle material
US4578735A (en) * 1984-10-12 1986-03-25 Knecht Thomas A Pressure sensing cell using brittle diaphragm

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Патент США N 4578735, кл. G 01L 9/12, 1986. 2. Патент США N 4257274, кл. G 01L 9/12, 1981. *

Also Published As

Publication number Publication date
DE3751546T2 (de) 1996-02-22
IL82960A (en) 1990-03-19
AU610070B2 (en) 1991-05-16
NO880675L (no) 1988-02-16
MX163905B (es) 1992-06-30
HK6396A (en) 1996-01-19
KR950013298B1 (ko) 1995-11-02
HU207160B (en) 1993-03-01
CN87104418A (zh) 1988-02-24
CN1013712B (zh) 1991-08-28
ES2006189A6 (es) 1989-04-16
FI885292A (fi) 1988-11-16
CN1018478B (zh) 1992-09-30
WO1988000335A1 (en) 1988-01-14
CA1296917C (en) 1992-03-10
IL82960A0 (en) 1987-12-20
DK172354B1 (da) 1998-04-06
YU126287A (en) 1991-02-28
NO880675D0 (no) 1988-02-16
AU7544587A (en) 1988-01-29
NO173074B (no) 1993-07-12
NO173074C (no) 1993-10-20
KR880701372A (ko) 1988-07-26
DK106088A (da) 1988-02-29
JP2750303B2 (ja) 1998-05-13
CN1050440A (zh) 1991-04-03
HUT52243A (en) 1990-06-28
FI885292A0 (fi) 1988-11-16
ZA874355B (ru) 1987-12-23
US4833920A (en) 1989-05-30
DE3751546D1 (de) 1995-11-02
FI96991C (fi) 1996-09-25
EP0312532B1 (en) 1995-09-27
EP0312532A4 (en) 1990-09-26
AR241235A1 (es) 1992-02-28
JPH01503084A (ja) 1989-10-19
ATE128548T1 (de) 1995-10-15
IN169797B (ru) 1991-12-21
BR8707739A (pt) 1989-08-15
DK106088D0 (da) 1988-02-29
EP0312532A1 (en) 1989-04-26
FI96991B (fi) 1996-06-14

Similar Documents

Publication Publication Date Title
RU2069328C1 (ru) Дифференциальный датчик давления жидкости и способ изготовления его чувствительного элемента
US5134887A (en) Pressure sensors
US4458537A (en) High accuracy differential pressure capacitive transducer
CA1280291C (en) Differential pressure transducer
EP0164413B2 (en) Pressure transducer
EP0041886B1 (en) Capacitive pressure transducer
US3739315A (en) Semiconductor transducers having h shaped cross-sectional configurations
EP0451193B1 (en) Multimodulus pressure sensor
US5157972A (en) Pressure sensor with high modules support
EP0061488B1 (en) Capacitive pressure transducer with isolated sensing diaphragm
US20080006092A1 (en) Stress isolated pressure sensing die
JPS61500632A (ja) 測定ダイアフラムのための平担な過圧停止手段を有する圧力センサ
US4862317A (en) Capacitive pressure transducer
US4080830A (en) Pressure transducer
US4501051A (en) High accuracy differential pressure capacitive transducer and methods for making same
EP0080186B1 (en) Semiconductor pressure transducer
JPS6055672A (ja) 圧力電気変換器の構造
EP0115908A2 (en) Transducer
JPH04331337A (ja) 差圧測定装置