RU2025036C1 - Способ управления скоростью взаимосвязанных приводов - Google Patents

Способ управления скоростью взаимосвязанных приводов Download PDF

Info

Publication number
RU2025036C1
RU2025036C1 SU4771888A RU2025036C1 RU 2025036 C1 RU2025036 C1 RU 2025036C1 SU 4771888 A SU4771888 A SU 4771888A RU 2025036 C1 RU2025036 C1 RU 2025036C1
Authority
RU
Russia
Prior art keywords
speed
input
drive
actuator
signal
Prior art date
Application number
Other languages
English (en)
Inventor
О.В. Веселов
О.П. Михайлов
Original Assignee
Московский государственный технологический университет "СТАНКИН"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Московский государственный технологический университет "СТАНКИН" filed Critical Московский государственный технологический университет "СТАНКИН"
Priority to SU4771888 priority Critical patent/RU2025036C1/ru
Application granted granted Critical
Publication of RU2025036C1 publication Critical patent/RU2025036C1/ru

Links

Images

Landscapes

  • Control Of Position Or Direction (AREA)

Abstract

Использование: в электроприводах станкостроения и робототехники. Сущность изобретения заключается в том, что обеспечивается повышение точности управления взаимосвязанными приводами. Задают закон изменения скорости движения исполнительного механизма, измеряют действительное положение и текущую скорость ведущего привода на основе функциональной зависимости между ведомо и ведущей координатами объекта управления, рассчитывают текущее положение ведомой координаты и сигнал управления подают на вход регулятора положения, рассчитывают текущее значение скорости ведомой координаты, вычисляют соотношение скоростей ведущей и ведомой координат и сигнал разности скоростей, полученную разность подают на вход регулятора скорости ведомой координаты. 2 ил.

Description

Изобретение относится к электроприводу и может использоваться в станкостроении и робототехнике.
Известен способ, в котором управление соотношением скоростей достигается за счет измерения напряжений, пропорциональных углам поворота электродвигателей, и их фазового сравнения, а скорость вращения двигателей должна быть кратной периодам сигнала, формируемого функциональным преобразователем [1].
Отсутствие контроля за изменением параметров регуляторов электрических машин, за изменением скорости на заданном промежутке движения и функциональным измененем скорости снижает точность. Так, напримеp, изменение скорости ведущего привода приводит к изменению скорости ведомого в заданном соотношении, которое может отличаться от заданного, что может быть вызвано изменением питающих напряжений или изменением коэффициента усиления прямого тракта и т.д.
Известен способ, в котором используются две системы автоматического регулирования: одна цифровая, вторая аналоговая. Каждая из них имеет датчик и они установлены на одном валу. С помощью счетчиков и устройств сравнения анализируется отклонение от заданного значения скорости и через устройство преобразования, после сравнения сигналов с тахогенератора и обработанного с цифрового датчика скорости, вырабатывается сигнал коррекции, который подается на вход ведомого привода [2].
Недостатки способа заключаются в предварительном запуске с целью достижения заданных в цифровой САР величин скоростей; наличии двух датчиков и двух задатчиков напряжения: отсутствии контроля за значением скорости ведомого привода; возможности регулирования скорости только двух электрических машин.
Цель изобретения - повышение точности регулирования положения и скорости взаимосвязанных приводов.
Поставленная цель достигается тем, что на вход ведущего привода задают закон изменения скорости движения исполнительного механизма, измеряют действительное положение исполнительного механизма ведущего привода, вычисляют по функциональной зависимости Y=Кх значение сигнала положения исполнительного механизма ведомого привода и подают вычисленное значение сигнала положения на вход регулятора положения ведомого привода, измеряют текущее значение сигнала скорости U1 исполнительного механизма ведущего привода и вычисляют значение скорости U2=U1˙К исполнительного механизма ведомого привода и разность значения сигналов скоростей исполнительных механизмов ведущего и ведомого приводов, полученную разность сигналов скоростей подают на вход регулятора скорости ведомого привода, формирующего указанное управляющее воздействие на силовой преобразователь, где х - входной сигнал датчика положения ведущего привода, К - заданный коэффициент.
Отличительные особенности и новизна предлагаемого способа заключаются в реализации функционального взаимодействия между ведомой и ведущей координатами, причем каждый предыдущий привод становится ведущим для каждого последующего. Наличие регулятора положения и устройства расчета положения обеспечивает движение во взаимосвязи по траекториям в пространстве координат со стабилизацией скорости относительно ведущей координаты. Обеспечивается расчет скорости и ее коррекция в каждый момент времени во всех точках траектории движения относительно ведущей координаты.
На фиг.1 и 2 изображено устройство, реализующее предлагаемый способ.
Устройство состоит из N приводов. Первый привод 1 представлен схемой регулятора скорости, остальные 2,...,N - следящие по положению приводы. Все приводы связаны с исполнительными механизмами объекта 3, в качестве которого могут выступать многокоординатный станок, робот-манипулятор, прокатный стан, копировальный станок и т.д. Первый привод состоит из первого сумматора 5, первого регулятора 7 скорости, первого силового преобразователя 8, первого двигателя 9 с встроенным или пристроенным тахогенератором 6. Приводы 2, ...,N соответственно состоят из последовательно включенных вторых сумматоров 5, регулятора 13 положения, третьих сумматоров 5, вторых регуляторов 7 скорости, силовых преобразователей 8, двигателей 9 и тахогенераторов 6. Связь между приводами осуществляется с использованием блока 11 вычисления положения, блока 13 вычисления скорости и четвертого сумматора 5. Каждый из приводов оснащен датчиком 10 положения соответственно.
Взаимосвязанное движение исполнительных механизмов в представленной схеме осуществляется следующим образом.
В исходном состоянии на всех входах приводов сигнал управления отсутствует и связанные с ними исполнительные механизмы объекта 3 неподвижны. На вход первого привода 1 с задатчика 4 подается сигнал задания скорости, который может изменяться во времени по любому закону. В качестве задатчика скорости может использоваться любой функциональный генератор. Сигнал с задатчика 4 поступает на вход сумматора 5, на второй вход которого подается сигнал с тахогенератора 6. Полученная разность сигналов подается на регулятор скорости 7, а с него на силовой пpеобразователь 8, выход которого подключен к двигателю 9. Двигатель начинает отрабатывать воздействие и исполнительный механизм соответствующей координаты объекта управления приводится в движение. При этом начинает вращаться датчик положения, механически связанный с исполнительным механизмом. Сигнал с датчика 10 положения подается на вход блока 11 вычисления положения и на первый вход блока 12 вычисления скорости, на второй вход блока вычисления скорости подается с тахогенератора 6, а на третий - с выхода блока 11 вычисления положения. Выход блока 12 вычисления скорости соединен с первым входом четвертого сумматора 5. Связь между приводами осуществляется по линейному закону и на вход привода 2 подается сигнал, вычисленный по формуле Y=Кх, а реализация этого блока представлена на фиг.2а. Блок вычисления положения содержит блок 14 уставки коэффициента и первого блока 15 перемножения. В блоке перемножения вычисляется произведение текущего значения с датчика положения первой координаты и постоянного значения, величина которого определяет тангенс угла наклона воспроизводимого движения. Выход блока вычисления положения связан с регулятором 13 положения через второй сумматор 5. На второй вход второго сумматора 5 подается сигнал с второго датчика 10 положения этой же координаты и одновременно сигнал с датчика положения поступает на второй блок 11 вычисления положения. Полученная разность сигналов с второго сумматора 5 поступает на вход регулятора положения, а с его выхода сигнал поступает на второй вход четвертого сумматора 5 и на вход третьего сумматора 5. В блоке 12 вычисляется значение соотношения скоростей по следующему соотношению:
U2=U1˙K , , где К=tgarctgy/х или К=y/х. Блок вычисления скорости ведомой координаты реализуется по схеме, представленной на рис.2б, и состоит из делителя 16 и второго блока 15 умножения. В блоке деления определяется соотношение координат, получаемых с датчика положения ведущей координаты и вычисленного положения в блоке 11. Полученное частное умножается на значение текущей скорости первой (ведущей) координаты.
В четвертом сумматоре 5 вычисляется разность скоростей с регулятора 13 положения и вычисленного значения скорости в блоке 12 вычисления скорости. Полученная разность сигналов в виде корректирующего сигнала поступает на вход третьего сумматора 5, на третий вход которого поступает сигнал с датчика скорости этой же координаты и далее на вход второго регулятора 7 скорости, а затем через второй силовой преобразователь 8 на второй двигатель 9, приводя в движение исполнительный механизм второй координаты объекта 3.
Аналогично работают следующие координаты. Окончание процесса управления обеспечивается отключением задатчика по истечении, например, заданного интервала времени, который формируется в самом задатчике.

Claims (1)

  1. СПОСОБ УПРАВЛЕНИЯ СКОРОСТЬЮ ВЗАИМОСВЯЗАННЫХ ПРИВОДОВ, при котором измеряют напряжение, пропорциональные углам поворота валов исполнительных двигателей, и формируют управляющее воздействие на силовой преобразователь ведомого двигателя, отличающийся тем, что, с целью повышения точности, на вход ведущего привода задают закон изменения скорости движения исполнительного механизма, измеряют действительное положение исполнительного механизма ведущего привода, вычисляют по функциональной зависимости Y=Kx значение сигнала положения исполнительного механизма ведомого привода и подают вычисленное значение сигнала положения на вход регулятора положения ведомого привода, измеряют текущее значение сигнала скорости U1 исполнительного механизма ведущего привода и вычисляют значение скорости U2=U1 · K исполнительного механизма ведомого привода и разность значения сигналов скоростей исполнительных механизмов ведущего и ведомого приводов, полученную разность сигналов скоростей подают на вход регулятора скорости ведомого привода, формирующего указанное управляющее воздействие на силовой преобразователь, где x - входной сигнал датчика положения ведущего привода, K - заданный коэффициент.
SU4771888 1989-12-20 1989-12-20 Способ управления скоростью взаимосвязанных приводов RU2025036C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4771888 RU2025036C1 (ru) 1989-12-20 1989-12-20 Способ управления скоростью взаимосвязанных приводов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4771888 RU2025036C1 (ru) 1989-12-20 1989-12-20 Способ управления скоростью взаимосвязанных приводов

Publications (1)

Publication Number Publication Date
RU2025036C1 true RU2025036C1 (ru) 1994-12-15

Family

ID=21486049

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4771888 RU2025036C1 (ru) 1989-12-20 1989-12-20 Способ управления скоростью взаимосвязанных приводов

Country Status (1)

Country Link
RU (1) RU2025036C1 (ru)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Авторское свидетельство СССР N 1339867, кл. H 02P 7/74, 1987. *
2. Патент ГДР N 238294, кл.H 02P 5/50, 1986. *

Similar Documents

Publication Publication Date Title
US6566835B1 (en) Nc machine tool, and method of controlling nc machine tool
EP0460224A4 (en) Servo motor control method
EP0208788A1 (en) Speed control system for servo motors
JPH063994B2 (ja) 複数台デイジタルサーボの制御方法
JPH08179831A (ja) フルクローズド・ループ方式における象限突起補正方法
US5194790A (en) Control device for controlling a servo motor
JPS61214002A (ja) 追従誤差制御装置
JPH06339292A (ja) 外乱負荷推定による力制御方法
RU2025036C1 (ru) Способ управления скоростью взаимосвязанных приводов
EP0095924B1 (en) Measurement method, and apparatus therefor
JP2907164B2 (ja) 数値制御装置
JPH04352012A (ja) ロボットの位置制御方法
JP2778159B2 (ja) サーボモータの送り補正方法
JPS61193204A (ja) 工業用ロボツト
JPH05337729A (ja) モーションコントローラ
JP2000175473A (ja) 任意補間を可能としたモータのパルス列制御方式
CN114281018A (zh) 一种数控机床倾斜进给系统反向跃冲误差峰值离线预测方法
SU1406565A1 (ru) След щий электропривод с переменным моментом инерции
JPH0792701B2 (ja) ディジタルサーボ装置の制御方法
JPS61249726A (ja) 射出成形機の混練制御方法
JPH0222098Y2 (ru)
SU772818A1 (ru) Система управлени копированием
JP2816045B2 (ja) 位置決め制御装置
SU541144A1 (ru) Электромашинный след щий привод
SU1734185A1 (ru) Многодвигательный электропривод