RU2024471C1 - Способ получения диметилтетралина - Google Patents

Способ получения диметилтетралина

Info

Publication number
RU2024471C1
RU2024471C1 SU904743270A SU4743270A RU2024471C1 RU 2024471 C1 RU2024471 C1 RU 2024471C1 SU 904743270 A SU904743270 A SU 904743270A SU 4743270 A SU4743270 A SU 4743270A RU 2024471 C1 RU2024471 C1 RU 2024471C1
Authority
RU
Russia
Prior art keywords
catalyst
ene
zeolite
pent
mixture
Prior art date
Application number
SU904743270A
Other languages
English (en)
Inventor
Ли Сиккенга Дэвид
Дейл Лэмб Джойс
Клейтон Зейнджер Ян
Скотт Вилльямс Грегори
Original Assignee
Амоко Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/316,308 external-priority patent/US4950825A/en
Application filed by Амоко Корпорейшн filed Critical Амоко Корпорейшн
Application granted granted Critical
Publication of RU2024471C1 publication Critical patent/RU2024471C1/ru

Links

Images

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Использование: в нефтехимии, в частности в качестве сырья в синтезе нафталиндикарбоновых кислот. Сущность изобретения: продукт-диметилтетралин (ДМТ). Реагент 1: 5-(о-, м- или п-толил)пент-1 или 2-ен, или 5-фенилгекс-1 или 2-ен, с содержанием воды не более 0,5 мас.%. Условия реакции: нагревание при 148-250°С, давление, обеспечивающее жидкофазность процесса, в присутствии катализатора-ультрастабильного кристаллического цеолита типа Y, имеющего молярное отношение SiO2/Al2O3, равное (4-10):1, размер пор, соответствующий 12-членному кислородсодержащему циклу и размер элементарной ячейки

Description

Изобретение относится к области получения диметилтетралина (ДМТ) из 5(о-, м- или п-толил)-пент-1- или-2-ена, или 5-фенил-гекс-1- или-2-ена, используемых в качестве промежуточных для получения нафталиндикарбоновых кислот.
Нафталиндикарбоновые кислоты используют как мономеры для получения разнообразных полимеров. Например, поли(этилен-2,6-нафталат), полученный из 2,6-нафталиндикарбоновой кислоты и этиленгликоля, имеет лучшую термическую стабильность и механические свойства, чем полиэтилентерефталат, и полезен в производстве пленок и каучуков.
Диметилнафталины - это необходимые исходные соединения для получения соответствующих нафталиндикарбоновых кислот при окислении. Известный удобный процесс получения нафталиндикарбоновых кислот включает окисление диметилнафталина кислородом в жидкой фазе в растворе уксусной кислоты при повышенной температуре и давлении, в присутствии катализатора, включающего компоненты кобальта, марганца и брома.
Обычно диметилнафталины (ДМН) получают при очистке газов от переработки угля в виде смеси всех десяти возможных изомеров. Однако разделение этих изомеров является очень трудоемким и дорогим. Следовательно, метод получения индивидуальных изомеров диметилнафталина или смеси двух или трех изомеров диметилнафталина высокой частоты и качества является весьма желательным. Одним из таких методов является многостадийный синтез, включающий (1) образование алкенилбензола при реакции о- или п-ксилола с бутадиеном, (2) циклизацию полученного алкенилбензола с образованием одного или более диметилтетралинов, относящихся к одной или двум из трех групп изомерных диметилтетралинов, так, группа А содержит 1,5-, 1,6-, 2,5- и 2,6-диметилтетралины; группа Б содержит 1,7-, 1,8-, 2,7- и 2,8-диметилтетралины и группа С содержит 1,3-, 1,4-, 2,3-, 5,7-, 5,8- и 6,7-диметилтетралины, (3) дегидрирование диметилтетралинов с образованием соответствующих диметилнафталинов и (4) изомеризацию полученных диметилнафталинов до желаемого изомера диметилнафталина.
Например, в [1-4] описаны процессы циклизации изомеров алкенилбензола в один или более изомеров диметилтетралина при 200-450оС в присутствии любого подходящего твердого кислотного катализатора циклизации, такого как кислотные кристаллические цеолиты, такие как кремний-алюминиевый, кремний-магниевый и кремний-алюминий-циркониевый и фосфорная кислота, за которой следует дегидрирование полученных диметилтетралинов в паровой фазе до соответствующих диметилнафталинов в атмосфере водорода при 300-500оС и в присутствии таких твердых катализаторов дегидрирования как благородные металлы на носителях и оксиды хромоалюминия, и после этого изомеризацию каждого вышеупомянутого диметилнафталина в желаемый изомер в той триаде диметилнафталинов, к которой этот изомер принадлежал при 275-500оС в присутствии твердого кислородного катализатора изомеризации, такого же типа, как описанные для циклизации. С другой стороны, и циклизация, и изомеризация могут быть проведены в жидкой фазе, в этом случае циклизацию проводят при 200-275оС с твердым фосфорнокислотным катализатором, при 70-140оС с кислотной ионообменной смолой, кислотным кристаллическим цеолитом, плавиковой или серной кислотой в качестве катализатора либо кремниевым пористым катализатором.
В частности в [1] описана циклизация 5-(м-толил)пент-2-ена до 1,6- и 1,8-диметилтетралинов, которые затем дегидрируют до 1,6- и 1,8-диметилнафталинов, которые в свою очередь изомеризуют в 2,6- и 2,7-диметилнафталины соответственно.
В [2] описана циклизация 5-фенил-гексена-2 до 1,4-диметилтетралина, который дегидрируют до 1,4-диметилнафталина, который, в свою очередь, изомеризуют в 2,3-диметилнафталин.
В [3] описана циклизация 5-(о-толил)-пентена-2 до 1,5-диметилтетралина, который затем дегидрируют до 1,5-диметилнафталина, который в свою очередь изомеризуют в 2,6-диметилнафталин.
В [4] описана циклизация 5-(п-толил)-пентена-2 до 1,7-диметилтетралина, который дегидрируют до 1,7-диметилнафталина, который в свою очередь изомеризуется в 2,7-диметилнафталин.
Проблема известных способов состоит в присутствии других изомеров диметилнафталина, непрореагировавшего диметилтетралина и алкенилбензола в качестве примесей и побочных продуктов в получаемом конечном желаемом специфическом изомере диметилнафталина. Присутствие этих примесей и побочных продуктов заметно снижает полезность и коммерческую ценность необходимого изомера диметилнафталина, особенно, в качестве исходного для получения нафталиндикарбоновой кислоты для использования в качестве мономера в производстве полимеров. К тому же при высоких температурах, применяемых в газофазных процессах, катализаторы имеют тенденцию относительно быстро дезактивироваться. Таким образом, весьма желательно использовать жидкофазные процессы при относительно низкой температуре и повысить полноту и селективность каждой стадии многостадийного процесса, в частности стадии циклизации.
Целью данного изобретения является создание улучшенного метода с повышенным выходом и селективностью получения специфического изомера диметилтетралина или ряда изомеров диметилтетралина путем циклизации соответствующего алкенилбензола, который удовлетворяет вышеупомянутым требованиям по селективности, полноте и каталитической активности.
Цель изобретения достигается при использовании предлагаемого улучшенного способа получения диметилтетралина из 5-(о-, м- или п-толил)пент-1- или-2-ена или 5-фенил-гекс-1- или-2-ена в качестве исходного сырья, включающего контактирование в жидкой фазе исходного сырья с катализатором циклизации, включающим кристаллический алюмосиликатный цеолит Y типа молекулярное сито, который в значительной мере свободен от адсорбированной воды в температурном интервале от 148оС до 250оС и при довольно высоком давлении для поддержания исходного вещества в жидкой фазе от 0,3 до 5 ати, предпочтительно 1,3 ати. При этом исходное сырье, если оно содержит воду, то концентрация воды в нем не превышает 0,5% по массе.
Когда в качестве исходного сырья используют 5-(о-толил)-пент-1- или-2-ен, то получают жидкую смесь диметилтетралинов, содержащую по крайней мере 80 мас. % 1,5-, 1,6-, 2,5- или 2,6-диметилтетралина или их смеси, используемую для получения 2,6-диметилнафталинов в многостадийном синтезе.
Когда в качестве исходного сырья используют 5-(м-толил)-пент-1- или-2-ен, то получают жидкую смесь диметилтетралинов, содержащую по крайней мере, 80 мас. % 1,5-, 1,6-, 1,7-, 1,8-, 2,5-, 2,6-, 2,7- или 2,8-диметилтетралина или их смеси, используемую для получения 2,6- и 2,7-диметилнафталинов.
Когда в качестве исходного сырья используют 5-(п-толил)-пент-1- или-2-ен, то получают жидкую смесь диметилтетралинов, содержащую по крайней мере 80 мас. % 1,7-, 1,8-, 2,7- или 2,8-диметилтетралина или их смеси, используемую для получения 2,7-диметилнафталина.
Когда в качестве исходного сырья используют 5-фенил-гекс-1- или-2-ен, то получают жидкую смесь диметилтетралинов, содержащую по крайней мере 1,3-, 1,4-, 2,3-, 5,7-, 5,8- или 6,7-тетралин или их смесь, используемую для получения 2,3-диметилнафталина.
Реакция циклизации может быть проведена с растворителем или без растворителя для соответствующего исходного. Предпочтительно не использовать растворитель. Если растворитель все же используется, он должен быть инертен в условиях процесса и может включать такой парафин, как тетрадекан, или такой ароматический углеводород, как антрацен, или их смесь, которая кипит предпочтительно около 270оС. На стадии циклизации, если присутствует вода, ее концентрация менее 0,5%, предпочтительно менее 0,1% от массы алкенилбензола. Более предпочтительно в реакционной среде на стадии циклизации вода отсутствует.
Процесс циклизации может проводиться периодически или непрерывно.
Процесс может проводиться в реакторе с неподвижным слоем, с подвижным слоем, с псевдоожиженным слоем, со слоем катализатора, суспендированного в жидкой фазе, либо с перемешиванием твердых частиц в жидкости в сосуде. Вообще, однако, использование аппаратов с неподвижным слоем коммерчески предпочтительно для дальнейших операций.
Увеличение конверсии исходного и селективности образования желаемого продукта или ряда продуктов на стадии циклизации - это результат выбранных условий температуры и давления, а также высокой активности и селективности применяемого катализатора, что в свою очередь позволяет использовать менее жесткие условия, т.е. более низкие температуры и давления, и при этом может быть достигнута повышенная селективность и снижена дизактивация катализатора.
Катализатор, применяемый для процесса циклизации в методе данного изобретения, содержит кислотный ультрастабильный, т.е. термически стабилизированный или деалюминированный, кристаллический алюмосиликатный цеолит Y типа, имеющий мольное соотношение двуокиси кремния к окиси алюминия от 4 : 1, предпочтительно от 5 : 1 до 10 : 1, предпочтительно 6 : 1, и имеющий размеры пор, соответствующие двенадцатичленному кислородсодержащему циклу, и ражзмеры элементарной ячейки от 24,2, предпочтительно от 24,3, до 24,7, предпочтительно 24,6
Figure 00000003
. Таким подходящим цеолитом является продукт Юнион Карбайд под названием LZ-y72 или LZ-y20.
Предпочтительно цеолит свободен от адсорбированной воды. Если же вода присутствует, она может быть удалена при нагревании цеолита в инертной атмосфере при 250оС в течение 0,5-1 ч. В качестве альтернативы, и менее предпочтительно, присутствие воды в концентрации до 15% от массы цеолита может быть допустимо, если температура реакции из вышеназванного интервала составляет по меньшей мере 180оС.
Вышеназванный цеолит, применяемый в качестве катализатора на стадии циклизации в методе данного изобретения находится в Н-форме и содержит около 0,05-3,5% по массе натрия, считая на элементарный натрий к массе цеолита. Если стадию циклизации проводят в периодическом варианте, то катализатор предпочтительно содержит 1-3,5% натрия, считая на элементарный натрий к массе цеолита. Если стадию циклизации осуществляют непрерывно, катализатор циклизации предпочтительно содержит 0,05-0,5% натрия, считая на элементарный натрий к массе цеолита. Предпочтительно, катализатор содержит от 0,01, предпочтительно от 0,05-3, предпочтительно 1,5 мас. % компонента, включающего первый металл, выбранный из группы, состоящей из платины, палладия, иридия и родия, считая на элементарный натрий к массе цеолита. Наиболее предпочтительным металлическим компонентом является платина.
Наиболее предпочтительно, если реакцию циклизации проводят в непрерывном варианте, то катализатор циклизации также содержит от 0,01, предпочтительно 1-5, предпочтительно 3 мас. % компонента, включающего второй металл, выбранный из группы, состоящей из меди, олова, золота, свинца и серебра, считая на элементарный металл к массе катализатора. Более предпочтительно, когда этот второй металлический компонент включает медь, олово или золото.
Вышеназванный цеолит может применяться как без носителя, так и нанесенным на пористую тугоплавкую неорганическую окись, который инертен в условиях применения как, например, окиси кремния, алюминия, кремний-алюминия, магния бентонита и им подобных. Если носитель применяется, предпочтительными являются окиси кремния, алюминия и кремний-алюминия. Если носитель применяется, то содержание цеолита составляет от примерно 10, предпочтительно от 20, до примерно 90, предпочтительно до 80%, относительно массы катализатора.
Если циклизацию проводят периодически, то катализатор берут в количестве от примерно 5, предпочтительно до 3%, из расчета цеолитного компонента катализатора, считая на массу алкенилбензольного исходного, и время реакции составляет от примерно 0,5, предпочтительно от 2, до примерно 10, предпочтительно 6 ч. Если циклизацию проводят на непрерывной основе, объемная скорость находится в интервале от примерно 0,1, предпочтительно от 1, до примерно 10, предпочтительно до 5 ч. алкенилбензольного исходного на 1 ч. цеолитного компонента катализатора в час.
Данное изобретение будет более понятным из следующих отдельных примеров.
П р и м е р ы 1 - 8. В каждом из примеров 1-8 20-1000 г алкенилбензола помещают в стеклянный реактор с мешалкой в атмосфере сухого азота для предохранения реакционной среды от влаги. Используемые алкенилбензолы - это 5-(о-толил)-пент-2-ен в примерах 1-6, 5-(п-толил)-пент-2-ен в примере 7 и 4-фенил-гекс-2-ен в примере 8. Ультрастабильный кристаллический алюмосиликатный катализатор Y типа без носителя, молекулярное сито (Union Carbid LZ-y72), имеющий размеры элементарной ячейки 24,15
Figure 00000004
и содержащий 2,5 мас. % натрия (считая на окись натрия), медленно прибавляют к алкенилбензолу в реактор при температуре ниже начала циклизации алкенилбензола. Катализатор представляет собой порошок без носителя в примерах 1-4, 7 и 8 и гранулы, содержащие 80 мас. % того же сита, нанесенные на 20 мас. % алюминиевого носителя в примерах 5 и 6. Катализатор выдерживают в сухой свободной от влаги атмосфере до использования в примерах 1-3 и 5-8, но позволяли адсорбировать влагу из насыщенного ею при 30-60оС воздуха в примере 4. Катализатор, использованный в примере 4, содержал 10-20 мас. % воды.
Температуру реакционной смеси затем быстро поднимают на желаемое время реакции. Образцы полученных продуктов отбирают из реактора после различных промежутков времени и анализируют, чтобы следить за ходом реакции. Желаемым продуктом циклизации был 1,5-диметилтетралин в примерах 1-6, 1,7-диметилтетралин в примере 7 и 1,4-диметилтетралин в примере 8. Условия эксперимента, состав исходных и полученных продуктов, содержащих до 13 атомов углерода, % конверсии исходного алкенилбензола и селективность образования желаемого продукта из общего количества прореагировавшего алкенилбензола для каждого из примеров 1-8 представлены в табл. 1.
При вычислении % селективности желаемыми продуктами считались сумма 1,5-диметилтетралина (1,5-ДМТ) и 1,5-диметилнафталина в примерах 1-6, сумма 1,7-диметилтетралина и 1,7-диметилнафталина в примере 7 и сумма 1,4-диметилтетралина и 1,4-диметилнафталина в примере 8.
Сравнение результатов примеров 2 и 4 показывает, что даже при низком соотношении исходное:катализатор в примере 4 большое количество воды в нем существенно снижает степень конверсии, даже при времени реакции около 12 ч.
П р и м е р ы 9 - 23. В каждом из примеров 9-23 катализатор циклизации помещают в реактор из нержавеющей стали и погружают реактор в песчаную баню с псевдоожиженным слоем при желаемой температуре реакции. Через реактор непрерывно пропускают смесь 5-о-толилпентена-2 в жидкой фазе и азоте. По крайней мере один раз в одном каталитическом цикле полученные продукты отбираются из потока и анализируются. Условия эксперимента, состав исходного и конечных продуктов, содержащих до 13 атомов углерода, % конверсии исходного алкенилбензола и селективность образования целевых продуктов из общего количества прореагировавшего алкенилбензола для каждого из опытов 9-23 представлены в табл. 2.
Каталитический цикл заключается в периодической подаче 5-о-толилпентена-2 в реактор и продувании его азотом при температуре реакции для удаления углеводородов. Затем реактор нагревают до 500оС и продувают воздухом до тех пор, пока содержание СО2 в выходящем потоке не станет меньше 0,1 мас. %. Эта процедура приводит к регенерации катализатора. Затем реактор охлаждают до желаемой температуры реакции и непрерывно пропускают смесь 5-о-толил-2-пентена в жидкой фазе и азоте.
В каждом из примеров 9-12 и 19-23 реактор имеет внешний диаметр 0,25 дюйма, внутренний диаметр 0,18 и длину 5,5, в него загружается 1 г катализатора.
В каждом из примеров 13-18 реактор имеет внешний диаметр 0,375 дюйма, внутренний 0,28 и длину 5. В реактор загружают 2,5 г катализатора.
В каждом из примеров 9-14 ультрастабильное Y-сито без носителя содержит компоненты платины и меди. Этот катализатор готовят смешением 30 г промышленного ультрастабильного Y сита (Union Carbid LZ-y20), 15 мл дистиллированной воды и 30 г водного раствора, содержащего 1 мас. % H2PtCl6 . 6H2O, считая на платину, и 2 мас. % меди в форме нитрата меди, считая на элементарную медь. Полученную смесь перемешивают до однородного состояния и затем сушат. Полученный продукт прокаливают при 500оС на воздухе 4 ч, измельчают и просеивают, получая частицы 0,0164-0,0278 дюйма (24-40 мкм).
В каждом из примеров 15-18 применяют ультрастабильное Y-сито, содержащее платиновый и медный компоненты. Этот катализатор получается при измельчении и просеивании промышленного образца, частицы которого содержат 80 мас. % Union Carbid LZ-y20, нанесенного на 20 мас. % окиси алюминия, получая частицы с размерами 24-40 меш. 10 г сита на носителе прибавляют к 11 мл 0,9% раствора Н2РtCl6, считая на платину, и 1,8 мас. % меди в форме нитрата меди, считая на элементарную медь. Полученный состав перемешивают до однородного состояния и затем сушат. Полученный твердый продукт прокаливают на воздухе при 500оС 4 ч. Результаты процесса и условия приведены в табл. 2.
В каждом из примеров 19-23 применялся аппарат и методика примеров 9-12, температура реакции 154оС и объемный расход исходного алкенилбензола 1,1. Газом-разбавителем служит гелий в примерах 19 и 20, водород - в примерах 21-22 и азот - в примере 23. Молярное соотношение газа к 5-о-толилпентену-2 составляло 1,3 в примере 19 и 2,1 в примерах 20-23. Катализатор в каждом примере применялся без носителя, в примере 19 - ультрастабильное Y сито (Union Carbid LZ-y20) и в каждом из примеров 20 и 21 - ультрастабильное Y сито, содержащее 2 мас. % меди в форме нитрата меди, считая на элементарную медь в примере 22 - ультрастабильное Y-сито обработанное SiCl4 и в примере 23 - ультрастабильное Y-сито, содержащее 2 мас. % меди в форме нитрата меди, и 1 мас. % платины в форме H2PtCl6. В каждом из примеров 19-23 образцы потока продуктов отбирались и анализировались несколько раз после начала каталитического цикла. Из этих измерений вычисляли выход 1,5-диметилтетралина и наносили его на график (см. чертеж) против количества часов, начиная от момента, когда соответствующий катализатор был регенерирован.
Результаты свидетельствуют, что добавка меди к ситу или обработка его тетрахлоридом кремния повышает селективность катализатора, но каталитическая акти- вность со временем снижается. Однако добавка и платины, и меди к ситу приводит к существенно повышенной селективности при поддержании высокой активности катализатора.

Claims (5)

1. СПОСОБ ПОЛУЧЕНИЯ ДИМЕТИЛТЕТРАЛИНА путем контактирования 5-(о-, м- или п -толил)-пент-1- , или -2-ена, или 5-фенил-гекс-1-, или -2-ена с твердым кислотным кристаллическим алюмосиликатным цеолитным катализатором при повышенной температуре и давлении, обеспечивающем жидкофазное состояние исходного сырья и его циклизацию, с образованием жидкой смеси диметилтетралинов, содержащей по крайней мере 80 мас.% 1,5-, 1,6-, 2,5- или 2,6-диметилтетралина или их смеси в случае, когда в качестве исходного сырья используют 5-(0-тотил)-пент-1 или -2-ен, или образованием жидкой смеси диметилтетралинов, содержащей по крайней мере 80 мас.% 1,5-, 1,6-, 1,7-, 1,8-, 2,5-, 2,7- или 2,8-диметилтетралина или их смеси в случае, когда в качестве исходного сырья используют 5-(м-тотил)-пент-1- или 2-ен, или образованием жидкой смеси диметилтетралинов, содержащей по крайней мере 80 мас.% 1,7-, 1,8-, 2,7- или 2,8-диметилтетралина или их смеси в случае, когда в качестве исходного сырья используют 5-(п-толил)-пент-1 или -2-ен, или образованием жидкой смеси диметилтетралинов, содержащей по крайней мере 80 мас.% 1,3-, 1,4-, 2,3-, 5,7-, 5,8- или 6,7-диметилтетралина или их смеси в случае, когда в качестве исходного сырья используют 5-фенил-гекс-1- или -2-ен, отличающийся тем, что в качестве катализатора используют ультрастабильный кристаллический цеолит типа Y, по существу свободный от адсорбированной воды и имеющий молярное соотношение двуокиси кремния и окиси алюминия от 4:1 до 10: 1 и размер пор, соответствующий двенадцатичленному кислородсодержащему циклу, и размер элементарной ячейки 24,2 - 24,7
Figure 00000005
и содержащий 0,05-3,5% натрия в расчете на элементарный натрий от массы цеолита, и процесс проводят при 148-250oС, причем используют исходное сырье, концентрация воды в котором, если она присутствует, менее 0,5% от массы сырья.
2. Способ по п.1, отличающийся тем, что используют цеолитный катализатор в водородной форме, содержащий 0,05-3% компонента благородного металла, выбранного из группы, состоящей из платины, палладия, иридия и родия, считая на элементарный металл, к массе катализатора.
3. Способ по п.2, отличающийся тем, что используют цеолитный катализатор, дополнительно содержащий 0,01-5% компонента переходного металла, выбранного из группы, состоящей из меди, олова, золота, свинца и серебра, считая на элементарный металл, к массе катализатора.
4. Способ по пп.1-3, отличающийся тем, что используют цеолитный катализатор, нанесенный на инертную пористую тугоплавкую неорганическую окись в качестве носителя.
5. Способ по пп.1-4, отличающийся тем, что используют цеолитный катализатор, содержащий менее 15% адсорбированной воды, считая на массу цеолита.
SU904743270A 1988-06-24 1990-02-23 Способ получения диметилтетралина RU2024471C1 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US21100088A 1988-06-24 1988-06-24
US211000 1988-06-24
US07/316,308 US4950825A (en) 1988-06-24 1989-02-27 Preparation of a dimethyltetralin
US316308 1989-02-27
PCT/US1989/002436 WO1989012612A1 (en) 1988-06-24 1989-06-05 Preparation of a dimethyltetralin

Publications (1)

Publication Number Publication Date
RU2024471C1 true RU2024471C1 (ru) 1994-12-15

Family

ID=27376156

Family Applications (1)

Application Number Title Priority Date Filing Date
SU904743270A RU2024471C1 (ru) 1988-06-24 1990-02-23 Способ получения диметилтетралина

Country Status (1)

Country Link
RU (1) RU2024471C1 (ru)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
1. Патент США N 3775496, кл. C 07C 15/24, 1973. *
2. Патент США N 3775497, кл. C 07C 15/24, 1973. *
3. Патент США N 3775498, кл. C 07C 15/24, 1973. *
4. Патент США N 3775500, кл. C 07C 15/24, 1973. *

Similar Documents

Publication Publication Date Title
KR0145694B1 (ko) 디메틸테트랄린의 제조방법
JP2008537944A (ja) アセチレンのエチレンへの選択的水素化方法
US3781375A (en) Process for preparation of 1,5-dimethyl naphthalene and/or 1,6-dimethyl naphthalene and catalyst composition to be used for said process
RU2024471C1 (ru) Способ получения диметилтетралина
JP2921541B2 (ja) ジメチルナフタレンの異性化方法
JP2885260B2 (ja) ジメチルナフタレンの異性化方法
US5073670A (en) Preparation of a dimethyltetralin
RU2126783C1 (ru) Способ получения диметилнафталина
JP3013867B2 (ja) ジメチルナフタレンの製造方法
US5118892A (en) Preparation of a dimethylnaphthalene
JP2007277216A (ja) 脱アルミニウム処理したゼオライトベータ触媒を用いる1,5−ジメチルテトラリンの製造方法
KR100870674B1 (ko) 탈알루미늄화된 제올라이트 베타 촉매를 이용한1,5-디메틸테트랄린의 제조 방법
JP2900970B2 (ja) ジメチルテトラリンの脱水素方法
JP2970324B2 (ja) 1,5−ジメチルテトラリンの製造法
JP2982845B2 (ja) ジメチルナフタレンの製造法
JP3019707B2 (ja) ジメチルナフタレンの異性化方法
JP3175744B2 (ja) ジメチルナフタレンの製造方法
JP2921546B2 (ja) モノアルケニルベンゼン類の精製法
JPH07509451A (ja) 不飽和炭化水素の芳香族生成物への脱水素環化
JP2921542B2 (ja) モノアルケニルベンゼン類の精製法
JPH05140005A (ja) アルケニルベンゼン及びその誘導体の製造方法
JPH1067691A (ja) ジメチルナフタレンの異性化方法
JP2980760B2 (ja) アルケニルベンゼン及びその誘導体の製造方法
JPH05140006A (ja) モノアルケニルベンゼン及びその誘導体の製造方法
JPH05194284A (ja) アルケニルベンゼン及びその誘導体の製造方法