RU2023783C1 - Способ изготовления бумаги - Google Patents

Способ изготовления бумаги Download PDF

Info

Publication number
RU2023783C1
RU2023783C1 SU874203473A SU4203473A RU2023783C1 RU 2023783 C1 RU2023783 C1 RU 2023783C1 SU 874203473 A SU874203473 A SU 874203473A SU 4203473 A SU4203473 A SU 4203473A RU 2023783 C1 RU2023783 C1 RU 2023783C1
Authority
RU
Russia
Prior art keywords
sol
aluminum
pulp
silicic acid
dehydration
Prior art date
Application number
SU874203473A
Other languages
English (en)
Inventor
Руне Андерссон Челл
Барла Павол
Ирчанс Джонни
Original Assignee
Ека Нобель Актиеболаг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ека Нобель Актиеболаг filed Critical Ека Нобель Актиеболаг
Application granted granted Critical
Publication of RU2023783C1 publication Critical patent/RU2023783C1/ru

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • D21H17/375Poly(meth)acrylamide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • D21H17/455Nitrogen-containing groups comprising tertiary amine or being at least partially quaternised

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paper (AREA)
  • Making Paper Articles (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Steroid Compounds (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

Сущность изобретения: в способе изготовления бумаги, включающем введение в бумажную массу, содержащую целллюзное волокно и, возможно, наполнитель, связующего, содержащего катионоактивный реагент и анионоактивный золь силиката алюминия или золь модифицированной алюминием кремниевой кислоты, формование бумажного полотна и сушку, в качестве катионоактивного реагента используют полиакриламид в количестве 0,025 - 1,5% от массы сухого сырья. Анионоактивный золь используют в количестве 0,025 - 1,5% от массы сухого сырья. Анионоактивный золь используют в количестве 0,025 - 1,5% от массы сухого сырья. Используют бумажную массу с pH 4 - 10. 2 з.п. ф-лы, 13 табл.

Description

Изобретение относится к целлюлозно-бумажной промышленности.
Известен способ изготовления бумаги, включающий введение в водную бумажную массу, содержащую целлюлозное волокно и, возможно, наполнитель, связующего, содержащего катионоактивный реагент и анионоактивный золь силиката алюминия или золь модифицированной алюминием кремниевой кислоты с соотношением атомов кремния и алюминия в поверхностных группах этих частиц от 9,5:0,5 до 7,5:2,5, формование бумажного полотна и сушку. В качестве катионоактивного реагента используют катионный крахмал, амилопектин или камедь рожкового дерева.
Недостатком указанного способа является недостаточно эффективная обезвоживаемость бумажной массы.
Целью изобретения является повышение степени обезвоживания бумажной массы.
Сущность изобретения заключается в том, что в способе в качестве катионного реагента используют полиакриламид в количестве 0,025-1,5% от массы сухого сырья. Золь силиката алюминия или модифицированной алюминием кремниевой кислоты используют в количестве 0,025-1,5% от массы сухого сырья. Бумажную массу используют с рН 4-10.
Частицы золя преимущественно должны иметь площадь поверхности примерно 50-1000 м2/г, а более преимущественно примерно 200-1000 м2/г, наилучшие результаты наблюдаются, когда площадь поверхности составляет примерно 300-700 м2/г. Золь преимущественно должен быть стабилизирован щелочью. Если золь содержит модифицированную алюминием кремниевую кислоту, то стабилизация щелочью должна осуществляться со щелочью, имеющей молярное соотношение SiO2: M2O от примерно 10:1 до 300:1, преимущественно от 15:1 до 100:1 (М представляет собой ион, выбранный из группы, включающей натрий, калий, литий и аммоний). Установлено, что частицы коллоидального золя должны иметь размер меньший, чем 20 нм, а преимущественно средний размер частиц должен находиться в диапазоне от 10 до 1 нм (коллоидальные частицы модифицированной алюминием кремниевой кислоты, имеющие площадь поверхности примерно 550 м2/г, соответствует среднему размеру частиц примерно 5,5 нм).
Если коллоидальные частицы содержат золь чистого силиката алюминия, то он может быть получен обычным способом посредством осаждения водного стекла алюминатом натрия. Такой золь имеет гомогенные частицы, так что поверхности частиц содержат атомы кремния и алюминия в соотношении 7,5:2.5. В противоположность этому можно использовать золь модифицированной алюминием кремниевой кислоты, т.е. такой золь, в котором только поверхностный слой на поверхностях частиц золя содержит атомы и кремния, и алюминия. Такой золь модифицированной алюминием кремниевой кислоты образуют посредством модификации поверхности золя кремниевой кислоты ионами алюмината, что возможно в основном потому, что и алюминий, и кремний при определенных условиях образуют координацию атомов 4 или 6 относительно кислорода, и, кроме того, потому, что оба атома имеют примерно одинаковый атомный диаметр. Поскольку ион алюмината Al/OH/-1 геометрически идентичен иону Si/OH/4, то этот ион может быть вставлен или может быть замещен на поверхности SiO2, таким образом создавая место для силиката алюминия, имеющего определенный отрицательный заряд. Такой золь модифицированной алюминием кремниевой кислоты значительно более стабилен относительно образования геля в диапазоне рН 4-6, в котором немодифицированные кремниевые кислоты быстро желируются, и, кроме того, этот гель менее чувствителен к солям. Производство золей модифицированной алюминием кремниевой кислоты хорошо известно и описано в литературе, например, в книге Химия окиси кремния, Ral ph. K.Her, Jonh Wiley and sons, Нью-Йорк, 1979, с.407-410.
Для модификации золя кремниевой кислоты требуется, чтобы заданное количество алюмината натрия вступало в реакцию при высоких значениях рН (примерно 10) с коллоидальной кремниевой кислотой. Это подразумевает, что коллоидальные частицы будут иметь поверхностные группы, которые включают Al-OH-1. При низких значениях рН (4-6) эти группы имеют сильно анионный характер. Это противоположно характеру золя чистой немодифицированной кремниевой кислоты, для которой никакой сильный анионный характер недостижим при низких значениях рН, поскольку кремниевая кислота является слабой кислотой с рН примерно 7.
Было найдено, что рН бумажного сырья в процессе бумажного производства в соответствии с изобретением не особенно критично и может лежать в диапазоне 3,5-10. Значения рН большие, чем примерно 10, и меньшие, чем 3,5 не пригодны. Если в соответствии с известными процессами использовать немодифицированную кремниевую кислоту в качестве неорганического коллоида, то хорошие результаты могут быть получены только при высоких значениях рН в этом интервале, в то время как в изобретении, где используется золь силиката алюминия или модифицированной алюминием кремниевой кислоты, удовлетворительные результаты достигаются во всем диапазоне рН. Особые преимущества изобретения, таким образом, относятся к низким значениям рН - ниже 7 или 6.
Другие химические вещества для обработки бумаги, такие как аппреты, квасцы и им подобные, также могут использоваться, но необходимо обратить внимание, чтобы общее содержание этих веществ не становилось настолько значительным, чтобы они отрицательно воздействовали на достигаемые эффекты улучшения характеристик обезвоживания и сохранения, достигаемые в соответствии с изобретением.
Изобретение иллюстрируется следующими примерами.
В примерах используют следующие химические вещества:
ORGANO SORB® - представляет собой бентонитную глину, полученную от Allied Chem, Великобритания.
ORGANOPOL® - представляет собой анионный полиакриламид, полученный от Allied Chem, Великобритания.
Различные продукты крахмала:
ВМВ-190 - катионный крахмал, имеющий N содержание 0,35%, получен от Raisio АВ, Швеция.
ВМВ-165 - катионный крахмал, имеющий N содержание 0,2%, полученный от Raisio AB, Швеция.
HKS - высококатионный крахмал, имеющий N содержание 1,75%.
SP-190 - амфотерный крахмал, полученный от Raisio AВ, Швеция.
SOLVITOSE® -N- - катионный крахмал, имеющий N содержание 0,2, полученный от АВ Stadex, Malmo, Швеция.
SOLVITOSE® D9, катионный крахмал, имеющий содержание 0,75%, полученный от АВ Stadex, Malmo, Швеция.
Амилопиктин
САТО 210 - амилопиктиновый продукт, имеющий N содержание 0,23%, полученный от Lyckeby-National AВ, Швеция.
WAXI Maire - амилопиктиновый продукт, имеющий содержание 0,31%, полученный от Lading National, Великобритания.
Полиимин
POLYIMIN SK, полученный от BASF, Западная Германия.
POLYIMIN SN, полученный от BASF, Западная Германия.
Кизельгур
MEYPROBOND® 120, амфотерный кизельгур, полученный от Meyhall АВ, Швейцария.
MEYPROID® 9801 - катионный кизельгур, имеющий N содержание 2%, полученный от Meyhall AG, Швейцария.
GENDRIV® 158 - катионный кизельгур, имеющий N содержание 1,43%, полученный от Henkel Corporation, Миннеаполис, Миннесота, США.
GENDRIV® 162 - катионный кизельгур, имеющий N содержание 1,71%, полученный от Henkel Corporation, Миннеаполис, Миннесота, США.
Полиакриламидные продукты
РАМ I - полиакриламид, обозначаемый XZ 87431, получаемый от DOW Chemical Rheinwerk Рейнмунстер, Западная Германия, и имеющий катионную активность 0,22 мегом/г и приблизительную молекулярную массу 5 миллионов.
РАМ П - полиакриламид, обозначенный XZ 87409, получаемый от DOW Chemical Rheinwerk Gm64 Рейнмунстер, Западная Германия, и имеющий катионную активность 0,50 мегом/г и приблизительную молекулярную массу 5 миллионов.
РАМ III - полиакриламид, обозначенный XZ 87410, получаемый от DOW Chemical Rheinwerk, Рейнмунстер, Западная Германия, и имеющий катионную активность 0,83 мегом/г и приблизительную молекулярную массу 5 миллионов.
РАМ IV - полиакриламид, обозначенный XZ 87407, получаемый от DOW Chemical Rheinwerk, Рейнмунстер, Западная Германия, и имеющий катионную активность 2,20 мегом/г и приблизительную молекулярную массу 5 миллионов.
Полиэтиленоксил
POLYOX COAGULANT - коагулянт, полученный от Union Carbide Corporation, США.
POLYOX WSR 301 - полиэтиленоксид, полученный от Union Carbide Corporation, США.
Другие продукты
ВИВОND60, низкомолекулярный продукт, обладающий высокой катионной активностью и полученный от Buckman Laborator, США.
ВИВОND171 - низкомолекулярный продукт, обладающий высокой катионной активностью и полученный от Buckman Labor, США.
ВИВОND65 - продукт с высоким молекулярным весом, обладающий высокой катионной активностью и полученный от Buckman Laboratories, США.
П р и м е р 1. Относится к испытанию на обезвоживание с использованием канадского анализатора степени помола. Сорт используемой бумаги представляет собой суперколандрированную журнальную бумагу. Сырье содержит 76% волокон и 24% наполнителя (С - глина из English China).
Фракция волокон в сырье имеет следующий состав:
22% полностью беленная сульфатная сосновая целлюлоза,
15-% термомеханическая масса, отбеленная дитионитом,
35% древесная масса,
28% отходы.
Сырье берут из промышленной машины для изготовления журнальной бумаги и разводят очищенной от волокнистых составляющих водой из той же машины до концентрации сырья 3 г/л. Очищенная от волокнистых составляющих вода имеет удельную проводимость 85 мс/м и общее содержание органики ТОС = 270 мг/л. рН сырья устанавливают на уровне 5,5 с помощью разведенного раствора гидроксида натрия. Для различных химических добавок обезвоживаемость сырья определяют в соответствии с SCAN-С-21/65 в канадском анализаторе степени помола.
В качестве неорганического золя используют золь 15% Al-кремниевой кислоты, имеющей площадь поверхности примерно 500 м2/г и соотношение SiO2:Na2O примерно 40 и 9% атомов алюминия на поверхности частиц золя, что дает 0,46% от общего количества твердых веществ в золе.
Были проведены опыты как с различными полимерами, взятыми поодиночке, так и с различными полимерами, совмещенными с 0,3% неорганического золя по отношению к сухому материалу. В этих опытах 1000 мл суспензии сырья помещают в химический стакан, в котором имеется мешалка, вращающаяся со скоростью 800 об/мин ("Brittgar"). В опытах с различными полимерами, используемыми в единственном числе, используется следующая последовательность операций:
1, Добавление полимера, улучшающего обезвоживание и удерживание, к суспензии сырья при перемешивании.
2. Перемешивание в течение 45 с.
3. Обезвоживание.
В опытах с использованием комбинации полимера и золя используется следующая последовательность операций:
1. Добавление полимера, улучшающего обезвоживание и удерживание, при перемешивании.
2. Перемешивание в течение 30 с.
3. Добавление неорганического золя при перемешивании.
4. Перемешивание в течение 15 с.
5. Обезвоживание.
В табл.1 даны результаты влияния химических добавок на достижение максимальной обезвоживаемости, выраженной в миллилитрах CSF. Как видно из данных табл. 1, значительное улучшение обезвоживаемости при использовании комбинации неорганического золя и полиакриламида (опыты 5-8), и наилучшие из известных предшествовавших систем, использующие катионный крахмал вместе с неорганическим золем (опыты 18-20 и 22-26), а также комбинацию неорганического золя и кизельгура (опыты 15-17). Вредное воздействие веществ отходов, растворимых из термомеханической массы, из древесной массы, наглядно видно в этих известных системах при сравнении с системой в соответствии с изобретением.
В другой серии экспериментов с использованием аналогичного сырья концентрация неорганического золя поддерживалась постоянной на уровне 0,3%, но изменялись добавляемые количества крахмала, кизельгура или полиакриламида. Результаты этих экспериментов приведены в табл.2. Как видно из табл.2, обезвоживание улучшается в двух известных процессах, а также в процессе в соответствии с изобретением.
П р и м е р 2. Относится к испытанию обезвоживания с использованием механических пульп, а именно пульпы из древесной массы, химико-термомеханической массы (СТМР) и термомеханической массы, отбеленной перекисью (ТМР). Используют такой же неорганический золь, как в примере 1.
Пульпу из древесной массы (ель) и ТМР берут из двух бумагоделательных машин для журнальной бумаги. Обе пульпы концентрируют до содержания приблизительно 30% сухих твердых веществ с помощью центрифугирования. Термомеханическую массу сушат при комнатной температуре до содержания примерно 90% сухих твердых. Химико-термомеханическую массу (еловая) отбирают в сухом состоянии из целлюлозного завода. Она имеет содержание сухих твердых приблизительно 95%.
Пульпы помещают на достаточное время в деионизированную воду, после чего обрабатывают в мокром скрепере (в соответствии с SCAN M2:64). После обработки суспензию пульпы разводят до 0,3% (3 г/л) с помощью деионизированной воды. В полученное в результате сырье добавляют 1,5 г/л NaSO4˙10H2O, что соответствует удельной проводимости приблизительно 85 мс/с, так что удельную проводимость поддерживают на том же уровне, что в примере 1, в котором используют очищенную от волокнистой массы воду из бумагоделательной машины.
рН Суспензии сырья устанавливают на значение 4 или 8 с помощью разведенных растворов NaOH и H2SO4. Испытания на обезвоживание в соответствии с SCAN-C 21:65 осуществляют с различными продуктами РАМ, взятыми по одному и в комбинации с другими РАМ и золем при тех же условиях испытаний, что в примере 1. Результаты опытов приведены в табл.3-7.
Из этих результатов наглядно видно, что комбинация полиакриламида и неорганического золя дает более высокий эффект обезвоживания, чем при использовании одного полиакриламида. Уровень технического эффекта зависит от рН сырья, катионной активности полиакриламида, химического характера пульпы, а также от химического состава водной фазы. Во всех случаях наглядно видны улучшения, достигаемые при добавлении полиакриламида.
В опытах, описанных в табл.7, показано достижение предельных величин добавления модифицированной алюминием кремниевой кислоты. Концентрация добавляемого золя изменялась от 0,025 до 1%. При добавлении 0,025% золя улучшение в обезвоживаемости примерно 40-50 мл CSF достигается по сравнению с использованием одного полиакриламида. Такой же эффект возникает при более низких значениях добавок золя, но улучшение не было настолько значительно. Верхний предел был изучен при добавлении как максимум 1% (10 кг/т бумаги), но ничего не показывает, что эффект будет потерян при более высоких уровнях добавления. Таким образом, практическим верхним пределом будет 1,5%, исходя из практических соображений, а нижним пределом будет 0,025% для этих химических веществ. Такие же величины применимы для полиакриламидных веществ.
П р и м е р 3. Относится к испытанию обезвоживания с использованием неотбеленной сульфатной целлюлозы с числом Каппа 53 при применении канадского анализатора степени помола в соответствии с SCAN-С 21:65. Использовался такой же золь, как в примере 1.
В этом опыте 360 г сухой пульпы размещают в 5 л деионизированной воды на примерно 20 ч. Пульпу затем размалывают в соответствии с SCAN-C 25:76 до степени помола примерно 90 мл CSF. Время размельчения составляет примерно 75 мин. Размельченную пульпу разводят деионизированной водой до концентрации примерно 3 г/л (0,3%). Затем к ней добавляют 1,5 г/л Na2SO4˙10 H2O и рН волокнистой суспензии устанавливают до величины 4 или 8 с помощью H2SO4 или NaOH.
Другие условия опытов были такими же, как в примерах 1 и 2 (порядок и время добавления химических веществ, скорость и время перемешивания).
Полученные результаты приведены в табл.8. Эффект изобретения виден из этих результатов. Эффект зависит, во-первых, от рН пульпы и химического состава водной фазы (содержание соли и наличие растворенных органических веществ).
П р и м е р 4. Относится к испытаниям обезвоживания для определения удержания золы. Используют такое же сырье, как в примере 1. В этом примере также используют такой же неорганический золь, что в примере 1.
Для измерения удерживания используют так называемый динамический обезвоживающий встряхивающий сосуд ("Britt-gar"). Первые 100 мл фильтрата собирают в мерном стакане. При измерениях используют сетку, имеющую размер сетки 76 мкм. Способ добавления химических веществ и техника перемешивания такие же, как в примерах 1-3, а общее время перемешивания после введения химических веществ составляет 45 с. Скорость вращения мешалки - 800 об/мин. Добавление коллоидной модифицированной алюминием кремниевой кислоты осуществляют в течение 30 с, после добавления полиакриламида.
Способ измерения удерживания описан в К.Britt и J.E.Unbehend в исследовательском отсчете 75, 1/10, 1981, опубликованном Empire State paper Research Institute, Сиракуза, Нью-Йорк, 13210, США.
Из результатов, приведенных в табл.9 видно, что более высокое удержание золы достигается при использовании комбинации полиакриламида и золя модифицированной алюминием кремниевой кислоты, а не при использовании одного полиакриламида.
П р и м е р 5. Относится к испытаниям обезвоживания с использованием древесной массы. В опыте используют два типа золей, а именно золю алюминиево-кремниевой кислоты, как в примере 1, и для сравнения золь чистой кремниевой кислоты в форме 15%-ного золя, имеющего площадь поверхности примерно 500 м2/г и соотношение SiO2:Na2O примерно 40.
Пульпу из древесной массы (ель) отбирают из бумагоделательной машины для журнальной бумаги. С помощью центрифугирования пульпу концентрируют до примерно 30% сухих твердых. После этого пульпу размещают на достаточное время в деионизированную воду, а затем размалывают в мокром скрепере (в соответствии с SCAN М 2:64). После обработки в скрепере суспензию пульпы разводят до 0,3% (3 г/л) деионизированной водой. К таким образом полученному сырью добавляют 1,5 г/л Na2SO4˙10H2O, что соответствует удельной проводимости примерно 85 мс/м, т.е. удельная проводимость была такой же, как в примере 1, в котором использовалась вода, очищенная от волокнистой массы, из бумагоделательной машины.
Величину рН суспензии сырья устанавливают на значении 8 с помощью разведенного раствора гидроксида натра. Испытания на обезвоживаемость в соответствии с SCAN-C 21:65 проводят с использованием РАМ как в единственном количестве, так и в смесях РАМ и золя немодифицированной алюминием кремниевой кислоты, при тех же условиях опытов, что и в примере 1. Результаты опытов приведены в табл.10.
Из этих результатов ясно видно, что совместное присутствие полиакриламида и неорганического золя дает улучшенную обезвоживаемость по сравнению с одним полиакриламидом и что золь, модифицированный алюминием, дает значительно улучшенные результаты по сравнению с золем чистой немодифицированной кремниевой кислоты.
П р и м е р 6. К упомянутым испытаниям было проведено сравнение между опытами по обезвоживанию с использованием экстремально высоких уровней добавления полиакриламида (РАМ Ш) и таким же неорганическим золем, как в примере 1, и при экстремальных значениях рН. Эти испытания обезвоживания проводят таким же способом, как описано в примере 1, в обоих случаях на суспензии сырья из древесной массы, описанной в примере 5, а также на химической пульпе (беленой сульфатной целлюлозы). Результаты приведены в табл.11 и 12.
П р и м е р 7. Следующие испытания обезвоживания проводят на сырье из размолотой древесной пульпы (3 г/л). Это сырье содержит 30% глины и 2 г/л сульфата натрия и имеет рН около 4,0. Эффект обезвоживания оценивают с помощью Тестера Канадиан Фринесс, который является обычным средством для характеристики обезвоживающей способности согласно SCAN-C 21:65. Все добавленные химреагенты рассчитаны в кг на 1 т сухого сырья. Использованный во всех испытаниях силиказоль представляет собой модифицированную алюминием кремниевую кислотy, которая описана в примере 1. Было сделано сопоставление между комбинацией этого силиказоля и катионного крахмала (КК) в соответствии с прототипом и комбинацией этого силиказоля и катионного полиакриламида (КПАА) согласно изобретению. Также сделаны испытания с добавлением только КК и только катионного полиакриламида соответственно. Обезвоживание охарактеризовано в мл CSF. Сырье, использованное в этом испытании без добавления силиказоля или катионного полимера, имеет значение CSF 4,0. Результаты эксперимента представлены в табл.13.
Из pезультатов таблицы видно, что сочетание силиказоля, модифицированного алюминием, с катионным полиакриламидом в качестве катионного полимера дает повышенное увеличение эффекта обезвоживания при меньших количествах катионного полимера по сравнению с использованием катионного крахмала в качестве катионного полимера вместе с силиказолем, модифицированным алюминием. Значение дельта CSF являются различием в единицах CSF (мл CSF при сравнении эффекта сочетания силиказоля модифицированного и катионного полимера в таких же количествах, что и в сочетаниях.
Для этого трудного сырья было получено существенное улучшение в мл CSF при использовании сочетания с катионным полиакриламидом и золем по сравнению с только катионным полиакриламидом и гораздо большее улучшение, чем с катионным крахмалом и золем по сравнению с только катионным крахмалом.

Claims (3)

1. СПОСОБ ИЗГОТОВЛЕНИЯ БУМАГИ, включающий введение в водную бумажную массу, содержащую целлюлозное волокно и, возможно, наполнитель, связующего, содержащего катионоактивный реагент и анионоактивный золь силиката алюминия или золь модифицированной алюминием кремниевой кислоты с соотношением атомов кремния и алюминия в поверхностных группах этих частиц от 9,5:0,5 до 7,5:2,5, формование бумажного полотна и сушку, отличающийся тем, что, с целью повышения степени обезвоживания бумажной массы, в качестве катионного реагента используют полиакриламид в количестве 0,025-1,5% от массы сухого волокна.
2. Способ по п. 1, отличающийся тем, что золь силиката алюминия или модифицированной алюминием кремниевой кислоты используют в количестве 0,025-1,5% от массы сухого волокна.
3. Способ по п.1, отличающийся тем, что используют бумажную массу с pH 4-10.
SU874203473A 1985-04-03 1987-10-02 Способ изготовления бумаги RU2023783C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE8501652A SE451739B (sv) 1985-04-03 1985-04-03 Papperstillverkningsforfarande och pappersprodukt varvid som avvattnings- och retentionsforbettrande kemikalie anvends katjonisk polyakrylamid och en speciell oorganisk kolloid
SE8501652-5 1985-04-03
PCT/SE1986/000152 WO1986005826A1 (en) 1985-04-03 1986-04-02 Papermaking process

Publications (1)

Publication Number Publication Date
RU2023783C1 true RU2023783C1 (ru) 1994-11-30

Family

ID=20359755

Family Applications (1)

Application Number Title Priority Date Filing Date
SU874203473A RU2023783C1 (ru) 1985-04-03 1987-10-02 Способ изготовления бумаги

Country Status (16)

Country Link
US (1) US4980025A (ru)
EP (1) EP0218674B1 (ru)
JP (1) JPS63500190A (ru)
CN (1) CN1003799B (ru)
AT (1) ATE40841T1 (ru)
AU (1) AU579729B2 (ru)
BR (1) BR8607094A (ru)
CA (1) CA1276413C (ru)
DE (2) DE218674T1 (ru)
FI (1) FI87672C (ru)
NO (1) NO166958C (ru)
NZ (1) NZ215658A (ru)
RU (1) RU2023783C1 (ru)
SE (1) SE451739B (ru)
WO (1) WO1986005826A1 (ru)
ZA (1) ZA862475B (ru)

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913775A (en) * 1986-01-29 1990-04-03 Allied Colloids Ltd. Production of paper and paper board
GB8602121D0 (en) * 1986-01-29 1986-03-05 Allied Colloids Ltd Paper & paper board
GB8621680D0 (en) * 1986-09-09 1986-10-15 Du Pont Filler compositions
SE8701252D0 (sv) * 1987-03-03 1987-03-25 Eka Nobel Ab Sett vid framstellning av papper
US4795531A (en) * 1987-09-22 1989-01-03 Nalco Chemical Company Method for dewatering paper
DE3738830C1 (de) * 1987-11-16 1989-02-09 Thyssen Industrie Einrichtung zur UEberwachung des Schliesszustands eines Verschlussorgans
US5176891A (en) * 1988-01-13 1993-01-05 Eka Chemicals, Inc. Polyaluminosilicate process
US4927498A (en) * 1988-01-13 1990-05-22 E. I. Du Pont De Nemours And Company Retention and drainage aid for papermaking
SE462721B (sv) * 1988-03-08 1990-08-20 Eka Nobel Ab Saett vid framstaellning av papper genom formning och avvattning av en suspension av cellulosainnehaallande fibrer
US4798653A (en) * 1988-03-08 1989-01-17 Procomp, Inc. Retention and drainage aid for papermaking
SE461156B (sv) * 1988-05-25 1990-01-15 Eka Nobel Ab Saett foer framstaellning av papper varvid formning och avvattning aeger rum i naervaro av en aluminiumfoerening, ett katjoniskt retentionsmedel och en polymer kiselsyra
US5221436A (en) * 1988-06-29 1993-06-22 Ecc International Limited Pitch control using clay coated with an inorganic gel
SE467627B (sv) * 1988-09-01 1992-08-17 Eka Nobel Ab Saett vid framstaellning av papper
SE500387C2 (sv) * 1989-11-09 1994-06-13 Eka Nobel Ab Silikasoler, förfarande för framställning av silikasoler samt användning av solerna i pappersframställning
SE500367C2 (sv) * 1989-11-09 1994-06-13 Eka Nobel Ab Silikasoler och förfarande för framställning av papper
US5098520A (en) * 1991-01-25 1992-03-24 Nalco Chemcial Company Papermaking process with improved retention and drainage
US5194120A (en) * 1991-05-17 1993-03-16 Delta Chemicals Production of paper and paper products
US5221435A (en) * 1991-09-27 1993-06-22 Nalco Chemical Company Papermaking process
US5695609A (en) * 1992-01-20 1997-12-09 Kemira Oy Process for producing paper
SE501216C2 (sv) * 1992-08-31 1994-12-12 Eka Nobel Ab Vattenhaltig, stabil suspension av kolloidala partiklar samt framställning och användning av densamma
SE9404201D0 (sv) * 1994-12-02 1994-12-02 Eka Nobel Ab Sizing dispersions
US5571494A (en) * 1995-01-20 1996-11-05 J. M. Huber Corporation Temperature-activated polysilicic acids
SE9501769D0 (sv) * 1995-05-12 1995-05-12 Eka Nobel Ab A process for the production of paper
US5846384A (en) * 1995-06-15 1998-12-08 Eka Chemicals Ab Process for the production of paper
SE9502522D0 (sv) * 1995-07-07 1995-07-07 Eka Nobel Ab A process for the production of paper
US5595630A (en) * 1995-08-31 1997-01-21 E. I. Du Pont De Nemours And Company Process for the manufacture of paper
SE9504081D0 (sv) * 1995-11-15 1995-11-15 Eka Nobel Ab A process for the production of paper
AU7387398A (en) 1997-05-19 1998-12-11 Sortwell & Co. Method of water treatment using zeolite crystalloid coagulants
US5900116A (en) * 1997-05-19 1999-05-04 Sortwell & Co. Method of making paper
KR100372358B1 (ko) 1997-06-09 2003-02-17 악조 노벨 엔.브이. 폴리실리케이트 마이크로겔과 실리카 기초물질
ATE477213T1 (de) 1997-06-09 2010-08-15 Akzo Nobel Nv Polysilikat-mikrogele
KR100403840B1 (ko) 1998-04-27 2003-11-01 악조 노벨 엔.브이. 제지 방법
US7306700B1 (en) 1998-04-27 2007-12-11 Akzo Nobel Nv Process for the production of paper
US7169261B2 (en) 1999-05-04 2007-01-30 Akzo Nobel N.V. Silica-based sols
BRPI0010239B1 (pt) 1999-05-04 2016-10-25 Akzo Nobel Nv sols baseados em sílica
US6764726B1 (en) 1999-05-12 2004-07-20 Sen Yang Ink jet recording sheet with improved image waterfastness
US6379501B1 (en) 1999-12-14 2002-04-30 Hercules Incorporated Cellulose products and processes for preparing the same
CN1199856C (zh) 1999-12-20 2005-05-04 阿克佐诺贝尔公司 含水氧化硅基溶胶及其制备方法和用途
NO311713B1 (no) * 2000-03-22 2002-01-14 Stig Ovar Keller Fellingskjemikalie samt fremgangsmåte ved, og anvendelse av, fellingskjemikaliet
AU2001288175A1 (en) 2000-09-20 2002-04-02 Akzo Nobel N.V. A process for the production of paper
FR2819246B1 (fr) * 2000-12-27 2003-10-03 Rhodia Chimie Sa Suspensions de silice precipitee, dopee et de faible granulometrie et leur application comme charge pour papier
EP1500745A1 (en) 2002-04-03 2005-01-26 Seiko PMC Corporation Method for producing paper and agent for improving yield
US20040138438A1 (en) * 2002-10-01 2004-07-15 Fredrik Solhage Cationised polysaccharide product
US20040104004A1 (en) * 2002-10-01 2004-06-03 Fredrik Solhage Cationised polysaccharide product
BR0316393A (pt) * 2002-11-19 2005-09-27 Akzo Nobel Nv Produto celulósico e processo para a sua produção
US7303654B2 (en) * 2002-11-19 2007-12-04 Akzo Nobel N.V. Cellulosic product and process for its production
US7244339B2 (en) * 2003-05-05 2007-07-17 Vergara Lopez German Retention and drainage system for the manufacturing of paper
MXPA04003942A (es) * 2003-05-05 2007-06-29 German Vergara Lopez Un sistema de retencion y drenaje recomendado para la fabricacion de papel, cartulina, carton y otros productos similares.
CN1784525A (zh) * 2003-05-09 2006-06-07 阿克佐诺贝尔公司 一种造纸方法
US6906404B2 (en) * 2003-05-16 2005-06-14 Ballard Power Systems Corporation Power module with voltage overshoot limiting
AU2005206565A1 (en) * 2004-01-23 2005-08-04 Buckman Laboratories International Inc Process for making paper
US7732495B2 (en) 2004-04-07 2010-06-08 Akzo Nobel N.V. Silica-based sols and their production and use
US7629392B2 (en) 2004-04-07 2009-12-08 Akzo Nobel N.V. Silica-based sols and their production and use
US20050257909A1 (en) * 2004-05-18 2005-11-24 Erik Lindgren Board, packaging material and package as well as production and uses thereof
ATE457457T1 (de) * 2004-12-08 2010-02-15 Gert Horstmeyer Testmedium zur schnellanalyse von motorölen in verbrennungsmotoren
US7955473B2 (en) * 2004-12-22 2011-06-07 Akzo Nobel N.V. Process for the production of paper
US20060254464A1 (en) 2005-05-16 2006-11-16 Akzo Nobel N.V. Process for the production of paper
DE602005008442D1 (de) * 2005-10-20 2008-09-04 Agfa Graphics Nv Verfahren zum Herstellen eines Lithographiedruckformvorläufers
US8273216B2 (en) * 2005-12-30 2012-09-25 Akzo Nobel N.V. Process for the production of paper
CN101351595B (zh) 2005-12-30 2011-09-21 阿克佐诺贝尔股份有限公司 纸的制造方法
US10087082B2 (en) 2006-06-06 2018-10-02 Florida State University Research Foundation, Inc. Stabilized silica colloid
US8728274B2 (en) * 2006-09-22 2014-05-20 Akzo Nobel N.V. Treatment of pulp
PL2087171T3 (pl) * 2006-12-01 2012-04-30 Akzo Nobel Nv Produkt celulozowy
WO2008076071A1 (en) * 2006-12-21 2008-06-26 Akzo Nobel N.V. Process for the production of cellulosic product
AU2008219820B2 (en) * 2007-02-26 2013-01-10 Akzo Nobel N.V. Pigment composition
FI122734B (fi) * 2007-05-21 2012-06-15 Kemira Oyj Prosessikemikaali käytettäväksi paperin tai kartongin valmistuksessa
RU2496936C2 (ru) * 2007-05-23 2013-10-27 Акцо Нобель Н.В. Способ получения целлюлозного продукта
AR066831A1 (es) 2007-06-07 2009-09-16 Akzo Nobel Nv Soles a base de silice
CL2008002019A1 (es) * 2007-07-16 2009-01-16 Akzo Nobel Chemicals Int Bv Composicion de carga que comprende una carga, un compuesto inorganico cationico, un compuesto organico cationico y un polisacarido anionico; metodo para preparar dicha composicion; uso como aditivo para una suspension celulosica acuosa; procedimiento para producir papel; y papel.
US20100330366A1 (en) * 2009-06-30 2010-12-30 Keiser Bruce A Silica-based particle composition
EP2402503A1 (en) 2010-06-30 2012-01-04 Akzo Nobel Chemicals International B.V. Process for the production of a cellulosic product
CA2803904C (en) 2010-07-26 2014-01-28 Sortwell & Co. Method for dispersing and aggregating components of mineral slurries and high-molecular weight multivalent anionic polymers for clay aggregation
CN102154938A (zh) * 2011-05-04 2011-08-17 南京林业大学 聚氧化乙烯-硅溶胶双元助留助滤体系
US8721896B2 (en) 2012-01-25 2014-05-13 Sortwell & Co. Method for dispersing and aggregating components of mineral slurries and low molecular weight multivalent polymers for mineral aggregation
ES2700776T3 (es) 2013-08-23 2019-02-19 Akzo Nobel Chemicals Int Bv Sol de sílice
CN104947499B (zh) 2013-12-18 2018-01-19 艺康美国股份有限公司 硅溶胶、制备其的设备和方法和其在造纸中的应用
CN109518521A (zh) * 2018-12-25 2019-03-26 昆山裕锦环保包装有限公司 一种用于纸浆模塑包装制品防掉屑处理的浆内助剂

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309247A (en) * 1976-03-15 1982-01-05 Amf Incorporated Filter and method of making same
SE419236B (sv) * 1979-06-01 1981-07-20 Eka Ab Ytmodifierat pigment av naturligt kaolinmaterial, samt for dess framstellning
SE432951B (sv) * 1980-05-28 1984-04-30 Eka Ab Pappersprodukt innehallande cellulosafibrer och ett bindemedelssystem som omfattar kolloidal kiselsyra och katjonisk sterkelse samt forfarande for framstellning av pappersprodukten
FI67736B (fi) * 1981-04-10 1985-01-31 Kasvioeljy Vaextolje Oy Ab Aemneskomposition foer limning av papper
FI67735B (fi) * 1981-09-16 1985-01-31 Kasvioeljy Vaextolje Oy Ab Foerfarande foer limning av papper eller liknande produkt
SE8107078L (sv) * 1981-11-27 1983-05-28 Eka Ab Forfarande for papperstillverkning
US4578150A (en) * 1982-07-23 1986-03-25 Amf Inc. Fibrous media containing millimicron-sized particulates
SE8403062L (sv) * 1984-06-07 1985-12-08 Eka Ab Forfarande vid papperstillverkning

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Патент СССР N 1607691, кл. D 21H 21/16, 23/14, 1984. *

Also Published As

Publication number Publication date
FI87672C (fi) 1993-02-10
SE8501652L (sv) 1986-10-04
EP0218674B1 (en) 1989-02-15
NO166958B (no) 1991-06-10
ZA862475B (en) 1986-12-30
FI874295A0 (fi) 1987-09-30
NZ215658A (en) 1988-08-30
ATE40841T1 (de) 1989-03-15
AU579729B2 (en) 1988-12-08
US4980025A (en) 1990-12-25
NO864847D0 (no) 1986-12-02
NO864847L (no) 1986-12-02
FI87672B (fi) 1992-10-30
CN1003799B (zh) 1989-04-05
AU5696086A (en) 1986-10-23
DE3662113D1 (en) 1989-03-23
SE8501652D0 (sv) 1985-04-03
BR8607094A (pt) 1988-01-19
NO166958C (no) 1991-09-18
CN86102961A (zh) 1986-12-17
DE218674T1 (de) 1987-08-13
JPH0327676B2 (ru) 1991-04-16
CA1276413C (en) 1990-11-20
WO1986005826A1 (en) 1986-10-09
FI874295A (fi) 1987-09-30
EP0218674A1 (en) 1987-04-22
JPS63500190A (ja) 1988-01-21
SE451739B (sv) 1987-10-26

Similar Documents

Publication Publication Date Title
RU2023783C1 (ru) Способ изготовления бумаги
CA1334325C (en) Process for the production of paper
AU635365B2 (en) A process for the production of silica sols and their use
KR960015749B1 (ko) 시이트나 웨브(web)형 세룰로오스 섬유함유 제품의 제조방법
FI76392C (fi) Foerfarande foer framstaellning av papper.
EP0304463B1 (en) A process for the production of paper
EP0500770B1 (en) A process for the production of paper
JP2521539B2 (ja) 製紙方法
SE502464C2 (sv) Silikabaserade soler, framställning och användning av solerna
NZ228206A (en) Production of paper by forming on a wire mesh a pulp suspension, characterised by the pulp containing cationic silica-based sol and cationic polymeric retention agent
CA1337732C (en) Process for the production of paper
MXPA01010726A (en) Silica-based sols
MXPA01010727A (en) Silica-based sols