RU2005119166A - Миниатюрное реле и соответствующие варианты его использования - Google Patents

Миниатюрное реле и соответствующие варианты его использования Download PDF

Info

Publication number
RU2005119166A
RU2005119166A RU2005119166/28A RU2005119166A RU2005119166A RU 2005119166 A RU2005119166 A RU 2005119166A RU 2005119166/28 A RU2005119166/28 A RU 2005119166/28A RU 2005119166 A RU2005119166 A RU 2005119166A RU 2005119166 A RU2005119166 A RU 2005119166A
Authority
RU
Russia
Prior art keywords
relay according
conductive element
zone
capacitor plate
contact point
Prior art date
Application number
RU2005119166/28A
Other languages
English (en)
Other versions
RU2325722C2 (ru
Inventor
СИЛЬВЕСТРЕ Хосеп МОНТАНЬЯ (ES)
СИЛЬВЕСТРЕ Хосеп МОНТАНЬЯ
Original Assignee
Баолаб Микросистемс С.Л. (Es)
Баолаб Микросистемс С.Л.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Баолаб Микросистемс С.Л. (Es), Баолаб Микросистемс С.Л. filed Critical Баолаб Микросистемс С.Л. (Es)
Publication of RU2005119166A publication Critical patent/RU2005119166A/ru
Application granted granted Critical
Publication of RU2325722C2 publication Critical patent/RU2325722C2/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/5755Structural details or topology the devices having a single sensing mass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5726Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/093Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/13Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
    • G01P15/131Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position with electrostatic counterbalancing means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • H01H2036/0093Micromechanical switches actuated by a change of the magnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H2037/008Micromechanical switches operated thermally
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/02Switches operated by change of position, inclination or orientation of the switch itself in relation to gravitational field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/14Switches operated by change of acceleration, e.g. by shock or vibration, inertia switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/24Switches operated by change of fluid pressure, by fluid pressure waves, or by change of fluid flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding

Claims (33)

1. Миниатюрное реле, отличающееся тем, что содержит первую конденсаторную пластину (3), вторую конденсаторную пластину (9), обращенную к указанной первой конденсаторной пластине (3), причем вторая пластина меньше первой пластины или имеет такой же размер, промежуточное пространство (25), проводящий элемент (7), расположенный в указанном промежуточном пространстве (25), причем проводящий элемент (7) является независимой частью, способной осуществлять свободное перемещение через промежуточное пространство (25) и способной осуществлять свободное перемещение через промежуточное пространство (25) от первого конца промежуточного пространства (25), образующего первую зону, до второго конца промежуточного пространства (25), образующего вторую зону, и наоборот, причем движение зависит от напряжений, существующих в первой и второй конденсаторных пластинах, при этом первая конденсаторная пластина расположена в первой зоне, и вторая конденсаторная пластина расположена во второй зоне, третью конденсаторную пластину (11), расположенную во второй зоне и имеющую меньший размер, чем первая конденсаторная пластина (3), или равный ему, при этом вторая и третья конденсаторные пластины совместно имеют больший размер, чем первая конденсаторная пластина (3), первую точку (15) контакта электрической цепи, вторую точку (17) контакта указанной электрической цепи, которые образуют первые стопоры (13), при этом проводящий элемент (7) может входить в контакт с первыми стопорами (13), и предназначен для замыкания электрической цепи, когда он входит в контакт с первыми стопорами (13), при этом замыкание внешней электрической цепи гарантировано, даже если проводящий элемент остается под напряжением, в принципе неизвестным, которое может быть вызвано замкнутой внешней цепью.
2. Реле по п.1, отличающееся тем, что первая точка (15) контакта размещена между второй зоной и проводящим элементом (7).
3. Реле по любому из пп.1 или 2, отличающееся тем, что вторая точка (17) контакта также размещена во второй зоне.
4. Реле по п.1, отличающееся тем, что дополнительно содержит четвертую конденсаторную пластину (5), расположенную в первой зоне, причем первая конденсаторная пластина (3) и вторая конденсаторная пластина (9) имеют одинаковый размер, и третья конденсаторная пластина (11) и четвертая конденсаторная пластина (5) имеют одинаковый размер.
5. Реле по п.4, отличающееся тем, что первая, вторая, третья и четвертая конденсаторные пластины имеют одинаковый размер.
6. Реле по п.4, отличающееся тем, что дополнительно содержит пятую конденсаторную пластину (35), расположенную в первой зоне, и шестую конденсаторную пластину (37), расположенную во второй зоне, причем пятая конденсаторная пластина (35) и шестая конденсаторная пластина (37) имеют одинаковый размер.
7. Реле по п.6, отличающееся тем, что содержит шесть конденсаторных пластин, расположенных в первой зоне, и шесть конденсаторных пластин, расположенных во второй зоне.
8. Реле по п.1, отличающееся тем, что содержит второй стопор, расположенный между первой зоной и проводящим элементом (7).
9. Реле по п.1, отличающееся тем, что содержит третью точку (21) контакта, находящуюся между первой зоной и проводящим элементом (7), причем третья точка (21) контакта образует второй стопор таким образом, что проводящий элемент (7) замыкает вторую электрическую цепь, когда он входит в контакт со второй точкой (17) контакта и третьей точкой (21) контакта.
10. Реле по п.9, отличающееся тем, что проводящий элемент (7) содержит полую цилиндрическую часть (31), которая образует ось и внутри которой расположена вторая точка (17) контакта, и плоскую часть (33), которая отступает от одной стороны в радиальном направлении полой цилиндрической части (31) и которая имеет протяженность в направлении оси, причем плоская часть (33) имеет высоту, измеренную в направлении указанной оси, которая меньше высоты цилиндрической части (33), измеренной в направлении оси.
11. Реле по п.9, отличающееся тем, что проводящий элемент (7) содержит полую часть в форме параллелепипеда, которая образует ось и внутри которой расположена вторая точка (17) контакта, и плоскую часть (33), которая отступает от одной стороны в радиальном направлении полой части (31) в форме параллелепипеда и имеет протяженность в направлении указанной оси, причем плоская часть (33) имеет высоту, измеренную в направлении оси, которая меньше высоты части в форме параллелепипеда, измеренной в направлении оси.
12. Реле по п.1, отличающееся тем, что содержит третью точку (21) контакта и четвертую точку (23) контакта, находящиеся между первой зоной и проводящим элементом (7), причем третья точка (21) контакта и четвертая точка (23) контакта образуют вторые стопоры (19) таким образом, что проводящий элемент (7) замыкает вторую электрическую цепь, когда он входит в контакт с третьей точкой (21) контакта и четвертой точкой (23) контакта.
13. Реле по п.1, отличающееся тем, что каждый из узлов конденсаторных пластин, расположенных в каждой из первой и второй зон, имеет центральную симметрию относительно центра симметрии, который совмещен с центром масс проводящего элемента (7).
14. Реле по п.1, отличающееся тем, что узел конденсаторных пластин, расположенный в каждой из первой и второй зон, имеет центральную симметрию для генерирования момента сил относительно центра масс проводящего элемента (7).
15. Реле по п.12, отличающееся тем, что между первой зоной и второй зоной проходят две боковые стенки (29), между которыми и проводящим элементом (7) имеется зазор, который достаточно мал для предотвращения одновременного вхождения в контакт проводящего элемента (7) с точкой контакта группы, сформированной первой и второй точками (15, 17) контакта, и с точкой контакта группы, сформированной третьей и четвертой точками (21, 23) контакта.
16. Реле по п.1, отличающееся тем, что проводящий элемент (7) имеет закругленные внешние поверхности.
17. Реле по п.16, отличающееся тем, что проводящий элемент (7) имеет цилиндрическую форму.
18. Реле по п.16, отличающееся тем, что проводящий элемент (7) имеет сферическую форму.
19. Реле по п.1, отличающееся тем, что проводящий элемент (7) имеет верхнюю поверхность и нижнюю поверхность, причем верхняя и нижняя поверхности перпендикулярны направлению движения проводящего элемента (7), и по меньшей мере одну боковую поверхность, которая имеет небольшие выступы.
20. Реле по п.1, отличающееся тем, что проводящий элемент (7) полый.
21. Реле по п.1, отличающееся тем, что первая пластина (3) конденсатора имеет площадь поверхности, которая равна площади поверхности второй пластины (9) конденсатора или в два раза превышает ее.
22. Реле по п.1, отличающееся тем, что одна из пластин (3, 5, 9, 11, 35, 37) конденсатора одновременно является одной из указанных точек (15, 17, 21, 23) контакта.
23. Использование миниатюрного реле по любому из пп.1-22 в качестве акселерометра.
24. Использование миниатюрного реле по любому из пп.1-22 в качестве акселерометра в пневмоподушках безопасности.
25. Использование миниатюрного реле по любому из пп.1-22 в качестве наклономера.
26. Использование миниатюрного реле по любому из пп.1-22 в качестве датчика кориолисовых сил.
27. Использование миниатюрного реле по любому из пп.1-22 в качестве датчика давления.
28. Использование миниатюрного реле по любому из пп.1-22 в качестве микрофона.
29. Использование миниатюрного реле по любому из пп.1-22 в качестве датчика расхода.
30. Использование миниатюрного реле по любому из пп.1-22 в качестве датчика температуры.
31. Использование миниатюрного реле по любому из пп.1-22 в качестве вариантов применения в области акустики.
32. Использование миниатюрного реле по любому из пп.1-22 в качестве газового датчика.
33. Использование миниатюрного реле по любому из пп.1-22 в качестве датчика магнитного поля.
RU2005119166/09A 2002-11-19 2003-11-18 Миниатюрное реле и соответствующие варианты его использования RU2325722C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200202792 2002-11-19
ESP200202792 2002-11-19

Publications (2)

Publication Number Publication Date
RU2005119166A true RU2005119166A (ru) 2006-01-20
RU2325722C2 RU2325722C2 (ru) 2008-05-27

Family

ID=32695801

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005119166/09A RU2325722C2 (ru) 2002-11-19 2003-11-18 Миниатюрное реле и соответствующие варианты его использования

Country Status (13)

Country Link
US (2) US7876182B2 (ru)
EP (2) EP1564584B1 (ru)
JP (2) JP4372689B2 (ru)
KR (2) KR20050085065A (ru)
CN (2) CN100375921C (ru)
AT (2) ATE322033T1 (ru)
AU (2) AU2003279414A1 (ru)
BR (1) BR0316409A (ru)
CA (2) CA2506710A1 (ru)
DE (2) DE60320832D1 (ru)
ES (3) ES2258735T3 (ru)
RU (1) RU2325722C2 (ru)
WO (2) WO2004046807A1 (ru)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6882256B1 (en) * 2003-06-20 2005-04-19 Northrop Grumman Corporation Anchorless electrostatically activated micro electromechanical system switch
JP2007538483A (ja) * 2004-05-19 2007-12-27 バオラブ マイクロシステムズ エス エル レギュレータ回路及びその使用法
KR100599115B1 (ko) 2004-07-20 2006-07-12 삼성전자주식회사 진동형 멤스 스위치 및 그 제조방법
JP4601528B2 (ja) * 2005-09-15 2010-12-22 ドングク ユニバーシティ インダストリー−アカデミック コオペレーション ファウンデーション プルアップ型接触パッドを利用したマイクロマシーニングスイッチの製造法
ES2259570B1 (es) * 2005-11-25 2007-10-01 Baolab Microsystems S.L. Dispositivo para la conexion de dos puntos de un circuito electrico.
ES2288111B1 (es) * 2006-03-14 2008-10-16 Baolab Microsystems S.L. Conjunto electrooptico reflector miniaturizado para el procesado de una señal luminosa y procedimiento correspondiente.
WO2007104811A1 (es) * 2006-03-10 2007-09-20 Baolab Microsystems S.L. Dispositivo electroóptico reflector y procedimientos de actuación correspondientes
ES2281294B1 (es) * 2006-03-10 2008-09-16 Baolab Microsystems S.L. Dispositivo electrooptico reflector digital miniaturizado.
ES2288110B1 (es) * 2006-03-13 2008-10-16 Baolab Microsystems, S.L. Procedimiento de actuacion de un dispositivo electrooptico reflector miniaturizado y dispositivo correspondiente.
US8144125B2 (en) 2006-03-30 2012-03-27 Cypress Semiconductor Corporation Apparatus and method for reducing average scan rate to detect a conductive object on a sensing device
US8111243B2 (en) 2006-03-30 2012-02-07 Cypress Semiconductor Corporation Apparatus and method for recognizing a tap gesture on a touch sensing device
US8040142B1 (en) 2006-03-31 2011-10-18 Cypress Semiconductor Corporation Touch detection techniques for capacitive touch sense systems
US8059015B2 (en) 2006-05-25 2011-11-15 Cypress Semiconductor Corporation Capacitance sensing matrix for keyboard architecture
US8040321B2 (en) 2006-07-10 2011-10-18 Cypress Semiconductor Corporation Touch-sensor with shared capacitive sensors
US8547114B2 (en) 2006-11-14 2013-10-01 Cypress Semiconductor Corporation Capacitance to code converter with sigma-delta modulator
FR2911129A1 (fr) * 2007-01-08 2008-07-11 Microcomposants De Haute Secur Micro-relais de type mems et procede de fabrication associe
US8058937B2 (en) 2007-01-30 2011-11-15 Cypress Semiconductor Corporation Setting a discharge rate and a charge rate of a relaxation oscillator circuit
US8144126B2 (en) 2007-05-07 2012-03-27 Cypress Semiconductor Corporation Reducing sleep current in a capacitance sensing system
US9500686B1 (en) 2007-06-29 2016-11-22 Cypress Semiconductor Corporation Capacitance measurement system and methods
US8258986B2 (en) 2007-07-03 2012-09-04 Cypress Semiconductor Corporation Capacitive-matrix keyboard with multiple touch detection
US8570053B1 (en) 2007-07-03 2013-10-29 Cypress Semiconductor Corporation Capacitive field sensor with sigma-delta modulator
US8525798B2 (en) 2008-01-28 2013-09-03 Cypress Semiconductor Corporation Touch sensing
US8319505B1 (en) 2008-10-24 2012-11-27 Cypress Semiconductor Corporation Methods and circuits for measuring mutual and self capacitance
US8358142B2 (en) 2008-02-27 2013-01-22 Cypress Semiconductor Corporation Methods and circuits for measuring mutual and self capacitance
US9104273B1 (en) 2008-02-29 2015-08-11 Cypress Semiconductor Corporation Multi-touch sensing method
US8321174B1 (en) 2008-09-26 2012-11-27 Cypress Semiconductor Corporation System and method to measure capacitance of capacitive sensor array
ES2342872B1 (es) * 2009-05-20 2011-05-30 Baolab Microsystems S.L. Chip que comprende un mems dispuesto en un circuito integrado y procedimiento de fabricacion correspondiente.
TW201234527A (en) 2010-11-19 2012-08-16 Baolab Microsystems Sl Methods and systems for fabrication of MEMS CMOS devices
JP5950336B2 (ja) * 2012-03-22 2016-07-13 矢崎総業株式会社 電子部品モジュール
US11780725B2 (en) 2020-01-08 2023-10-10 Nanusens SL MEMS device built using the BEOL metal layers of a solid state semiconductor process
CN113782356B (zh) * 2021-07-23 2023-06-16 宁波金宸科技有限公司 一种基于液压传动的继电器
CN115355836B (zh) * 2022-08-18 2023-12-19 西安铁路信号有限责任公司 一种继电器绝对间隙的测量方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2218502A (en) * 1936-11-25 1940-10-22 Illinois Testing Laboratories Temperature controller
CA1307842C (en) * 1988-12-28 1992-09-22 Adrian William Alden Dual polarization microstrip array antenna
WO1997015092A1 (en) * 1995-10-13 1997-04-24 Peter Nielsen Method and system for communicating electromagnetic signals
GB2326284A (en) * 1997-06-11 1998-12-16 Siemens Plessey Electronic Wide bandwidth antenna arrays
US6751442B1 (en) * 1997-09-17 2004-06-15 Aerosat Corp. Low-height, low-cost, high-gain antenna and system for mobile platforms
DE19912669A1 (de) * 1999-03-20 2000-09-21 Abb Research Ltd Substratparallel arbeitendes Mikrorelais
US6428173B1 (en) * 1999-05-03 2002-08-06 Jds Uniphase, Inc. Moveable microelectromechanical mirror structures and associated methods
US6143997A (en) * 1999-06-04 2000-11-07 The Board Of Trustees Of The University Of Illinois Low actuation voltage microelectromechanical device and method of manufacture
JP2001076605A (ja) * 1999-07-01 2001-03-23 Advantest Corp 集積型マイクロスイッチおよびその製造方法
US6218911B1 (en) * 1999-07-13 2001-04-17 Trw Inc. Planar airbridge RF terminal MEMS switch
IL147475A0 (en) * 1999-07-20 2002-08-14 Memlink Ltd Microelectromechanincal device with moving element
US6229640B1 (en) * 1999-08-11 2001-05-08 Adc Telecommunications, Inc. Microelectromechanical optical switch and method of manufacture thereof
US6307452B1 (en) * 1999-09-16 2001-10-23 Motorola, Inc. Folded spring based micro electromechanical (MEM) RF switch
CA2323189A1 (en) 1999-10-15 2001-04-15 Cristian A. Bolle Dual motion electrostatic actuator design for mems micro-relay
EP1093143A1 (en) * 1999-10-15 2001-04-18 Lucent Technologies Inc. Flip-chip bonded micro-relay on integrated circuit chip
US6667724B2 (en) * 2001-02-26 2003-12-23 Time Domain Corporation Impulse radar antenna array and method
JP3651404B2 (ja) * 2001-03-27 2005-05-25 オムロン株式会社 静電マイクロリレー、並びに、該静電マイクロリレーを利用した無線装置及び計測装置
US6917268B2 (en) * 2001-12-31 2005-07-12 International Business Machines Corporation Lateral microelectromechanical system switch
US6621135B1 (en) * 2002-09-24 2003-09-16 Maxim Integrated Products, Inc. Microrelays and microrelay fabrication and operating methods
JP4066928B2 (ja) * 2002-12-12 2008-03-26 株式会社村田製作所 Rfmemsスイッチ
US6882256B1 (en) * 2003-06-20 2005-04-19 Northrop Grumman Corporation Anchorless electrostatically activated micro electromechanical system switch
US20070236307A1 (en) * 2006-04-10 2007-10-11 Lianjun Liu Methods and apparatus for a packaged MEMS switch
US7141989B1 (en) * 2006-04-10 2006-11-28 Freescale Semiconductor, Inc. Methods and apparatus for a MEMS varactor

Also Published As

Publication number Publication date
AU2003279415A1 (en) 2004-06-15
CN100375921C (zh) 2008-03-19
RU2325722C2 (ru) 2008-05-27
US7446300B2 (en) 2008-11-04
JP4351634B2 (ja) 2009-10-28
ES2239549A1 (es) 2005-09-16
CN100410165C (zh) 2008-08-13
WO2004046807A1 (es) 2004-06-03
ES2305527T3 (es) 2008-11-01
CN1729136A (zh) 2006-02-01
JP2006506674A (ja) 2006-02-23
ATE394344T1 (de) 2008-05-15
ES2258735T3 (es) 2006-09-01
AU2003279414A1 (en) 2004-06-15
ATE322033T1 (de) 2006-04-15
EP1564584B1 (en) 2006-03-29
DE60320832D1 (de) 2008-06-19
EP1564584A1 (en) 2005-08-17
US20060152739A1 (en) 2006-07-13
DE60304355T2 (de) 2006-10-19
BR0316409A (pt) 2005-10-11
CN1729425A (zh) 2006-02-01
KR20050083929A (ko) 2005-08-26
EP1564182A1 (en) 2005-08-17
DE60304355D1 (de) 2006-05-18
CA2506775A1 (en) 2004-06-03
JP2006506785A (ja) 2006-02-23
JP4372689B2 (ja) 2009-11-25
CA2506710A1 (en) 2004-06-03
ES2239549B1 (es) 2006-06-16
KR20050085065A (ko) 2005-08-29
WO2004046019A1 (es) 2004-06-03
US7876182B2 (en) 2011-01-25
US20060021864A1 (en) 2006-02-02
EP1564182B1 (en) 2008-05-07

Similar Documents

Publication Publication Date Title
RU2005119166A (ru) Миниатюрное реле и соответствующие варианты его использования
JP2006506785A5 (ru)
Liu et al. Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers
WO2015129442A1 (ja) 振動発電素子
Nemirovsky et al. A methodology and model for the pull-in parameters of electrostatic actuators
US10580605B2 (en) Very low power microelectromechanical devices for the internet of everything
US7944332B2 (en) Self-locking micro electro mechanical device
Liu et al. An in-plane approximated nonlinear MEMS electromagnetic energy harvester
US20090140443A1 (en) Microstructure with Enlarged Mass and Electrode Area for Kinetic to Electrical Energy Conversion
JP2006210843A (ja) 可変キャパシタ及びその製造方法
Song et al. An electrostatically actuated stacked-electrode MEMS relay with a levering and torsional spring for power applications
US7782026B2 (en) Regulator circuit and corresponding uses
Pawinanto et al. Fabrication and testing of electromagnetic mems microactuator utilizing pcb based planar micro-coil
Khan et al. Arc-shaped cantilever beam RF MEMS switch for low actuation voltage
JP2004181552A (ja) マイクロマシンキャパシタ
Yang et al. Modeling, fabrication and demonstration of an electrostatic actuator with a coplanar pre-charged electrode
Rocha et al. Pull-in dynamics: analysis and modeling of the transitional regime
Shmulevich et al. On the notion of a mechanical battery
Kumar et al. Pull-in voltage study of various structured cantilever and fixed-fixed beam models using COMSOL multiphysics
JP7268696B2 (ja) 物理量センサ装置
Chouhan et al. Actuation voltage analysis using FEM of RF MEMS switch design for low power consumption application
Jeong UV-LIGA micro-fabrication of inertia type electrostatic transducers and their application
Mian et al. Experimental analysis of out-of-plane Lorentz force actuated magnetic field sensor
Medina et al. Sub g Threshold Acceleration Sensor Incorporating Latched Bistable Beam
Li et al. Nonlinear feedback control to enhance stable performance of micromachined electrostatic parallel plate actuators