RO116964B1 - Procedeu de preparare a acidului n-fosfonometiliminodiacetic - Google Patents
Procedeu de preparare a acidului n-fosfonometiliminodiacetic Download PDFInfo
- Publication number
- RO116964B1 RO116964B1 RO97-02294A RO9702294A RO116964B1 RO 116964 B1 RO116964 B1 RO 116964B1 RO 9702294 A RO9702294 A RO 9702294A RO 116964 B1 RO116964 B1 RO 116964B1
- Authority
- RO
- Romania
- Prior art keywords
- acid
- source
- process according
- formaldehyde
- reaction mixture
- Prior art date
Links
- AZIHIQIVLANVKD-UHFFFAOYSA-N N-(phosphonomethyl)iminodiacetic acid Chemical compound OC(=O)CN(CC(O)=O)CP(O)(O)=O AZIHIQIVLANVKD-UHFFFAOYSA-N 0.000 title claims abstract description 59
- 238000004519 manufacturing process Methods 0.000 title abstract description 12
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims abstract description 106
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical compound OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 claims abstract description 88
- 239000002253 acid Substances 0.000 claims abstract description 40
- 239000011541 reaction mixture Substances 0.000 claims abstract description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 claims abstract description 14
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 49
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 40
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 20
- 239000000376 reactant Substances 0.000 claims description 16
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 12
- -1 alkali metal salt Chemical class 0.000 claims description 11
- 239000011707 mineral Substances 0.000 claims description 11
- 239000007864 aqueous solution Substances 0.000 claims description 10
- 239000011574 phosphorus Substances 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 claims description 4
- 229930040373 Paraformaldehyde Natural products 0.000 claims description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical class [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052783 alkali metal Inorganic materials 0.000 claims description 2
- 229920002866 paraformaldehyde Polymers 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 39
- 238000006243 chemical reaction Methods 0.000 description 38
- 230000015572 biosynthetic process Effects 0.000 description 20
- 239000006227 byproduct Substances 0.000 description 13
- 239000000047 product Substances 0.000 description 12
- XWSGEVNYFYKXCP-UHFFFAOYSA-N 2-[carboxymethyl(methyl)amino]acetic acid Chemical compound OC(=O)CN(C)CC(O)=O XWSGEVNYFYKXCP-UHFFFAOYSA-N 0.000 description 10
- GTTBQSNGUYHPNK-UHFFFAOYSA-N hydroxymethylphosphonic acid Chemical compound OCP(O)(O)=O GTTBQSNGUYHPNK-UHFFFAOYSA-N 0.000 description 10
- 238000010992 reflux Methods 0.000 description 9
- 239000002994 raw material Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- FUXALCGRSSRCQE-UHFFFAOYSA-N 2-(2,3-dihydro-1-benzofuran-7-yl)ethanamine Chemical compound NCCC1=CC=CC2=C1OCC2 FUXALCGRSSRCQE-UHFFFAOYSA-N 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- BSRDNMMLQYNQQD-UHFFFAOYSA-N iminodiacetonitrile Chemical compound N#CCNCC#N BSRDNMMLQYNQQD-UHFFFAOYSA-N 0.000 description 3
- 239000012452 mother liquor Substances 0.000 description 3
- WRHZVMBBRYBTKZ-UHFFFAOYSA-N pyrrole-2-carboxylic acid Chemical compound OC(=O)C1=CC=CN1 WRHZVMBBRYBTKZ-UHFFFAOYSA-N 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 1
- 239000005562 Glyphosate Substances 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 238000010960 commercial process Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- QFWPJPIVLCBXFJ-UHFFFAOYSA-N glymidine Chemical compound N1=CC(OCCOC)=CN=C1NS(=O)(=O)C1=CC=CC=C1 QFWPJPIVLCBXFJ-UHFFFAOYSA-N 0.000 description 1
- 229940097068 glyphosate Drugs 0.000 description 1
- 159000000011 group IA salts Chemical class 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000010413 mother solution Substances 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/38—Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/38—Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
- C07F9/3804—Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)] not used, see subgroups
- C07F9/3808—Acyclic saturated acids which can have further substituents on alkyl
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Inventia descrie un procedeu pentru prepararea acidului N-fosfonometiliminodiacetic prin combinarea intr-un amestec de reactie a apei, a unei surse de acid iminodiacetic, a unei surse de formaldehida, a unei surse de acid fosforos si a unei surse de acid tare, care se desfasoara intr-o singura etapa, in care sursa de acid fosforos si sursa de formaldehida se alimenteaza concomitent in amestecul de reactie, care este mentinut la o temperatura peste temperatura mediului ambiant si la o presiune mai mare sau cu cea a mediului ambiant.
Description
Invenția se referă la un procedeu pentru prepararea acidului N-fosfonometiliminodiacetic pentru utilizarea în industria chimică de sinteză.
Se cunoaște utilizarea acidului N-fosfonometiliminodiacetic (NPMIDA) în calitate de intermediar la sinteza n-fosfonometilglicinei (glifosat), care este un erbicid cu spectru larg important. Structura NPMIDA este redată de formula I:
Literatura de specialitate descrie obținerea NPMIDA pornind de la o sursă a acidului iminodiacetic (IDA) printr-un procedeu în mai multe etape. De regulă, la început se realizează hidroliza iminodiacetonitrilului (IDAN) cu o bază alcalină, pentru obținerea sării dialcaline a acidului iminodiacetic (IDA). Atât sărurile alcaline ale IDA, cât și IDA ca atare, se folosesc pentru obținerea NPMIDA. De regulă, IDA este izolat din hidrolizatul de IDAN prin acidulare cu un acid mineral (în general, acid sulfuric sau acid clorhidric), cristalizarea IDA și filtrarea, în scopul separării IDA. în continuare, IDA se folosește pentru prepararea NPMIDA. De exemplu, US 3288846 descrie în primul rând obținerea clorhidratului IDA, pornind de la IDA, după care urmează fosfometilarea cu acid fosforos și formaldehidă.
în US 4724103 și 47754S8 se descriu procedee care folosesc drept materie primă pentru fosfometilare, sarea disodică a IDA (DSIDA). DSIDA se supune succesiv reacției cu acid clorhidric pentru obținerea sării clorhidrat a IDA (IDA.HCI), după care se supune fosfometilării cu acid fosforos și formaldehidă pentru obținerea NPMIDA. Triclorura de fosfor este materia primă pentru acidul clorhidric, cât și pentru acidul fosforos.
în prima etapă, cea de hidroliză, triclorura de fosfor este hidrolizată la acid fosforos în timp ce concomitent DSIDA este transformată în IDA.HCI și clorură de sodiu, conform următoarelor scheme de reacție:
I. PCI3 + 3H2Q^ H3P03 + 3HCI
II. NaJDA + 2HCI -> IDA + 2NaCI
III. IDA + HCI - IDA.HCI în etapa a doua, de fosfometilare se adaugă formaldehidă la amestecul de reacție, pentru realizarea fosfometilării IDA.HCI, conform schemei de reacție:
IV. H3P03 + CH20 + IDA.HCI -* (H0)2-P(0)CH2N(CH2C00H)2 + H20 + HCI în cele 2 brevete citate mai sus, în exemplul 2, procedeul în două etape a fost modificat prin amestecarea, în prima etapă, a unei porțiuni din DSIDA cu tot PCI3, după care, în cea de-a doua etapă se adaugă formalina pentru fosfometilare și, de asemenea, Na2IDA suplimentar, astfel ca cel puțin o parte din formarea de IDA.HCI să se producă în cel de al doilea amestec de reacție, concomitent cu reacția de fosfometilare. în schimb, odată cu DSIDA și formalină nu s-a mai introdus deloc Pcl3.
RO 116964 Bl în procedeele discontinui existente de obținere a NPMIDA, tot acidul fosforos și catalizatorul pe bază de acid tare și mare parte din IDA este prezentă dinaintea adăugării de formalină și a restului de IDA. Această soluție, descrisă în US 4724103 și 4775498, ca și soluția prezentată în US 3288846, au determinat dezvoltarea procedeelor comerciale care realizează fosfometilarea dorită a IDA la NPMIDA cu 50 minimizarea reacțiilor secundare care conduc la acid N-metiliminodiacetic (NMIDA) și acid hidroximetilfosfonic (HMPA). Totuși, procedeul cunoscut necesită a fi perfecționat prin elaborarea unui procedeu într-o singură etapă, în care toate materiile prime se adaugă într-un singur amestec de reacție. Un astfel de procedeu, poate fi adaptat pentru realizarea unei sinteze continue de NPMIDA și poate conduce la simplificarea 55 producerii de NPMIDA și reducerea costurilor, a consumului energetic și a volumului și complexității utilajului de fabricație, în condițiile unei valori ridicate a randamentului de produs și a unor cantități minime de produse și a unor cantități minime de produse secundare, nedorite.
Problema, pe care o rezolvă invenția, este de a realiza un procedeu simplificat 60 de obținere a acidului N-fosfonometiliminodiacetic, într-o singură etapă.
Procedeul pentru prepararea acidului N-fosfonometiliminodiacetic, conform invenției, prin combinarea într-un amestec de reacție a apei, a unei surse de acid iminodiacetic, a unei surse de formaldehidă, a unei surse de acid fosforos și a unei surse de acid tare, cuprinde o singură etapă, în care sursa de acid fosforos și sursa 65 de formaldehidă se alimentează concomitent în amestecul de reacție, care este menținut la o temperatură peste temperatura mediului ambiant și la o presiune mai mare sau egală cu presiunea mediului ambiant.
Prin aplicarea invenției se obțin următoarele avantaje:
- simplificarea procedeului prin obținerea produsului într-o singură etapă; 70
- formarea unor cantități minime de produse secundare;
- creșterea randamentului în produs;
- posibilitatea utilizării mai multor produse ca surse de IDA.
Acest procedeu simplificat, într-o singură etapă, asigură realizarea reacției de fosfometilare dorite cu randamente ridicate și cu formarea unor cantități minime de 75 produse secundare. Introducerea sursei de acid fosforos, practic la aceeași proporție cu a sursei de formaldehidă introdusă reduce cantitatea de acid fosforos prezentă în amestecul de reacție, comparativ cu cea din procedeul în două etape cunoscut. Concentrația redusă de acid fosforos din amestecul de reacție, conform invenției, are drept urmare scăderea cantităților de acid hidroximetilfosfonic(HMPA) și acid N- 8 o metiliminodiacetic (NMIDA) care se formează ca produse secundare nedorite.
Ca surse de IDA se pot folosi sarea disodică a IDA, sarea monosodică a IDA, IDA ca atare sau o sare a IDA cu un acid mineral tare.
De asemenea, procedeul, conform invenției, poate fi utilizat într-un proces continuu, în care NPMIDA se evacuează continuu din amestecul de reacție în timp ce 8 5 reactanții se alimentează continuu în amestecul de reacție. Astfel, printre multiplele avantaje conferite de procedeul, conform invenției, se pot enumera: punerea la dispoziție a unui procedeu de sinteză a NPMIDA într-o singură etapă, care este mai eficient din punct de vedere al costurilor de producție și al consumului energetic; punerea la dispoziție a unui procedeu de sinteză a NPMIDA care este mai simplu și necesită mai 90 puține utilaje de producere; punerea la dispoziție a unui procedeu de sinteză cu
RO 116964 Bl randamente ridicate a NPMIDA, fără a rezulta cantități semnificative de produse secundare și punerea la dispoziție a unui procedeu de sinteză continuă a NPMIDA.
în procedeul, conform invenției, o amină primară sau secundară se supune fosfometilării folosind un amestec de apă, acid fosforos, un acid tare, formaldehidă și amină primară sau secundară. în particular, se poate obține acidul N-fosfonometiliminodiacetic prin aducerea într-un amestec de reacție a apei, unei surse de acid fosforos, unei surse de acid tare, unei surse de acid iminodiacetic și unei surse de formaldehidă, în care sursa de formaldehidă și sursa de acid fosforos se introduc simultan în amestecul de reacție.
Reacțiile au loc după cum se arată în ecuațiile prezentate mai sus, HV, folosind drept materii prime apa, DSIDA, formaldehidă și PCI3, care servește ca sursă de acid fosforos și o sursă de acid tare. Acești reactanți sunt prezentați doar ca exemple, dar nu reprezintă o limitare. în plus, deși în continuare procedeul, conform invenției, este prezentat în general, utilizând DSIDA, pot fi utilizate și alte surse de IDA.
Unul din scopurile realizate prin procedeul prezentat de invenție este obținerea de NPMIDA cu randamente ridicate în condițiile minimizării cantității de produse secundare nedorite.
Un produs secundar nedorit este HMPA, care se formează prin reacția dintre acidul fosforos și formaldehidă. Cantitatea de HMPA formată scade prin micșorarea cantității relative de acid fosforos prezent. Procedeul, conform invenției, poate realiza reducerea formării de HMPA, prin menținerea unei concentrații scăzute de acid fosforos în desfășurarea reacțiilor.
De asemenea, procedeul conform invenției, reduce producerea relativă a HMPA prin creșterea cantității de HCI liber prezent ca reactant în amestecul de reacție. Procedeul, conform invenției, asigură introducerea treptată fie a HCI, fie a PCI3 ca sursă de HCI, pe parcursul aceleași perioade de timp, în care se adaugă și ceilalți reactanți. în acest fel este posibil să se evite producerea imediată și să se micșoreze pierderea excesului de HCI format. Ca urmare, pe toată durata reacției se menține o concentrație mai mare de HCI liber. Aceasta, la rândul ei, favorizează formarea de NPMIDA. O astfel de creștere a producției de NPMIDA mărește producerea relativă a NPMIDA în raport cu produsul secundar HMPA.
în anumite condiții, IDA și formaldehidă pot reacționa cu formarea unui alt produs secundar nedorit, NMIDA. Formarea NMIDA este minimizată prin menținerea unei concentrații suficient de ridicate de acid mineral tare, de preferință HCI, în amestecul de reacție. Acidul mineral tare îndeplinește mai multe funcțiuni. în primul rând, așa cum se poate vedea din ecuația II prezentată anterior în schemele de reacție, acidul tare, de preferință acidul clorhidric, formează sarea acidă a IDA, atunci când în calitate de materie primă sursa de IDA este o sare de metal alcalin a IDA. în al doilea rând, acidul tare transformă IDA în sarea IDA a acidului mineral tare, așa cum acest lucru este ilustrat în ecuația III, atunci când drept materie primă se folosește, fie sarea cu metal alcalin a IDA, fie IDA ca atare. A treia funcțiunea acidului mineral tare este cea de minimizare a formării de produs secundar nedorit - acidul Nmetiliminodiacetic (NMIDA). Autorii au descoperit că toate cele trei funcțiuni ale acidului tare se manifestă cel mai avantajos dacă alimentarea halogenurii de fosfor sau a amestecului de acid tare și halogenură de fosfor se realizează concomitent cu cea a sursei de IDA și a formaldehidei.
RO 116964 Bl
140
Utilizând în calitate de acid mineral tare HCI,concentrația de acid clorhidric liber din amestecul de reacție este în intervalul, de la aproximativ O la aproximativ 20%, de preferința de cel puțin aproximativ 5% în greutate, calculat numai pe bază de HCI și apă. Așa cum s-a arătat anterior, procedeul conform invenției, asigură menținerea unei concentrații ridicate de acid clorhidric liber în amestecul de reacție, ca rezultat a alimentării acidului clorhidric pe parcursul întregii perioade de timp în care se adaugă ceilalți reactanți. Prin această menținere a unei concentrații ridicate de acid se realizează reducerea formării de produs secundar, NMIDA.
Prin alimentarea sursei de acid fosforos este posibil să se evite formarea de concentrații ridicate de acid fosforos în amestecul de reacție. Aceasta reduce cantitatea de produse secundare formate, în particular HMPA și NMIDA.
Prin urmare, procedeul, conform invenției, asigură randamente ridicate de NPMIDA și formarea de cantități mici de produse secundare, în condițiile aplicării eficiente a unui procedeu într-o singură etapă. Randamentele se calculează ca raport între numărul de moli produși și cantitatea de moli din sursa inițială de IDA minus numărul de moli de IDA recuperat la terminarea reacției. Prin aplicarea procedeului conform invenției se pot realiza randamente mai mari, de 90% NPMIDA.
Este de dorit ca acidul fosforos și acidul tare să se alimenteze în amestecul de reacție dintr-o singură sursă, de preferință, o halogenură de fosfor. Mai preferată este PCI3 care conduce la formarea de acid fosforos și acid clorhidric prin reacție cu apa, conform ecuației I din schema anterioară. Ca alternativă, se pot adăuga concomitent acid fosforos și un acid tare, cum ar fi, acidul sulfuric sau acidul clorhidric, pentru a asigura formarea unei sări acide a IDA și pentru fosfometilare (ecuațiile ll-IV].
Termenii de “acid tare” sau “acid mineral tare”, așa cum se folosesc aceștia în prezenta descriere, includ acizii minerali anorganici având pXa mai mic, de aproximativ 2. în mod reprezentativ astfel de acizi includ acidul sulfuric, acidul clorhidric, acidul bromhidric, acidul iodhidric ș.a.m.d. Sursa de acid tare preferată este acidul clorhidric, deși, se poate recomanda orice alt acid mineral tare adecvat.
Așa cum s-a menționat anterior, procedeul, conform invenției, poate utiliza mai multe materii prime în calitate de sursă de IDA, cum ar fi, de exemplu, sarea disodică a IDA (DSIDA), sarea monosodică a IDA, IDA ca atare sau o sare a IDA cu un acid mineral tare. Sursa de formaldehidă poate cuprinde formaldehida gazoasă, o soluție apoasă a formaldehidei gazoase (formalina) sau paraformaldehida. Sursa de formaldehidă preferată este formalina.
în general, procedeul, conform invenției, poate fi realizat la o temperatură cuprinsă în intervalul, de la 85 până la aproximativ 200°C și la o presiune, de la aproximativ O până la aproximativ 60 psig peste presiunea ambiantă. Cele mai preferate sunt presiunile, de la aproximativ 15 (1,05 at) până la aproximativ 30 psig (2,1 atmosfere). Prin creșterea temperaturii de reacție și creșterea presiunii peste presiunea ambiantă se obține un randament mai ridicat de NPMIDA în condițiile producerii unor cantități mai mici de produs secundar, NMIDA.
în cazul, în care în calitate de sursă de acid fosforos se folosește PCI3, hidroliza acesteia, conform ecuației I, este o reacție exotermă. Prin urmare, reacția de hidroliză poate reprezenta o sursă de căldură pentru menținerea temperaturii de reacție dorite. Aceasta permite o reducere a costurilor de producție întrucât se poate reduce cantitatea de căldură obținută de la o sursă termică exterioară.
145
150
155
160
165
170
175
180
RO 116964 Bl
Alimentarea concomitentă a reactanților în amestecul de reacție asigură o conversie cu randamente ridicate a IDA în NPMIDA cu formarea de cantități minime de produse secundare nedorite. Prin alimentarea sau introducerea simultană se înțelege că adăugarea reactanților se realizează aproximativ în același interval de timp. Un specialist în domeniu poate să aprecieze ușor că aceasta se poate realiza printr-o alimentare continuă a reactanților sau prin adăugarea reactanților în cantități alternante și repetate sau în orice altă modalitate adecvată, care permite adăugarea reactanților în amestecul de reacție pe parcursul reacției de fosfometilare.
în general, este de dorit ca debitul de alimentare al fiecărui reactant să fie substanțial același, calculat ca număr de moli raportați la unitatea de timp. Prin substanțial același debit se înțelege, de exemplu, că dacă toți reactanții se adaugă concomitent, atunci sursa de acid fosforos, sursa de acid tare și sursa de formaldehidă se introduc în amestecul de reacție, fiecare la un debit, exprimat în moli pe unitatea de timp, care poate fi independent, de la aproximativ 80 până la aproximativ 140% din debitul de alimentare a sursei de IDA.
într-o formă de realizare preferată, vasul de reacție poate fi inițial încărcat cu aproximativ 25% până la aproximativ 75% din cantitatea totală de sursă de IDA ce trebuie introdusă în vasul de reacție. în cazul, în care, în vasul de reacție se adaugă o cantitatea inițială de sursă de IDA, debitul de alimentare al sursei de IDA poate fi, de la aproximativ 25 până la aproximativ 125% din debitul de alimentare al sursei de acid fosforos sau al sursei de formaldehidă, calculat pe bază de moli. într-o variantă a acestei realizări, vasul de reacție poate fi încărcat cu o cantitate inițială de sursă de acid fosforos. într-o altă variantă a acestei forme de realizare, vasul de reacție poate fi inițial încărcat cu un acid tare.
După reacție, din amestecul de reacție se recuperează NPMIDA. Precipitarea NPMIDA poate fi favorizată prin răcire. Pentru a recupera din amestecul de reacție cantități suplimentare de produs, la amestecul de reacție se poate adăuga o bază diluată, de exemplu hidroxid de sodiu, pentru a aduce pH-ul la valoarea de solubilitate minimă a NPMIDA. Apa din soluția diluată de bază are rolul de a dizolva NaCI produsă prin reacția bazei. Cantitatea necesară de bază este aproximativ egală cu cea de HCI din amestecul de reacție și poate fi ușor calculată de un specialist în domeniu.
Procedeul, conform invenției, poate fi realizat în orice sistem de reactoare cunoscut în stadiul tehnicii, incluzând reactoare discontinue, reactoare continue sau semicontinue. într-un reactor discontinuu se introduc toți reactanții și pe tot timpul desfășurării reacției nu se face evacuarea nici unui produs. într-un reactor continuu, se realizează concomitent introducerea reactanților și evacuarea continuă a produselor. într-un reactor semicontinuu, unii dintre reactanți pot fi încărcați de la început, iar restul se alimentează continuu pe măsură ce se desfășoară reacția.
Procedeul, conform invenției, poate fi aplicat în mod avantajos într-un sistem de reactoare continue sau discontinue, cum ar fi, de exemplu, într-un reactor tanc, într-un astfel de sistem reactorul poate fi, opțional, încărcat inițial cu DSIDA (sau altă sursă de IDA) și PCI3, urmată de introducerea continuă de DSIDA (sau altă sursă de IDA), PCI3 formaldehidă și apă. După ce se lasă să reacționeze pentru o perioadă de timp inițială, o fracțiune din amestecul de reacție se evacuează din reactorul tanc sub forma unui efluent continuu. Efluentul poate fi răcit și, opțional, se poate ajusta pH-ul pentru precipitarea în continuare a compusului din lichid. Precipitatul se separă apoi
RO 116964 Bl
230 și se recuperează din lichidul mumă. Pentru un specialist în domeniu este evident că se pot folosi diferite metode cunoscute de recuperare a precipitatului de NPMIDA. De exemplu, precipitatul poate fi separat din soluția mumă prin filtrare continuă (Chemical Engineers’Handbook, 6th Ed., Perry and Green, eds., McGraw-Hill, NewYork, cap. 19, pp.1-108, 1984). Dacă în calitate de materie primă se folosește DSIDA sau dacă pentru a facilita precipitarea se adaugă o bază cum ar fi, hidroxidul de sodiu, în lichidul mumă se formează o sare care trebuie ulterior eliminată. Dimpotrivă, dacă în calitate de materie primă se folosește IDA și nu se adaugă o bază în scopul recuperării de NPMIDA dizolvat, lichidul mumă poate fi recirculatîn reactor. Astfel, se recirculă tot NPMIDA rămas în lichidul mumă înapoi în amestecul de reacție, ceea ce conduce în final, la o recuperare mai mare a NPMIDA din proces.
Se prezintă, în continuare, 5 exemple în legătură cu invenția.
Exemplul 1. Obținerea acidului N-fosfonometiliminodiacetic din DSIDA, PCI3, formaldehidă și apă la presiune și temperatură ridicată, în condițiile încărcării prealabile a reactorului de reacție cu DSIDA și PCI3 într-un reactor de 2 I, cu manta, prevăzut cu condensator și agitator mecanic s-au introdus 512 g soluție apoasă (41,5%) sare disodică a acidului iminodiacetic. Reactorul s-a încălzit, până la o temperatură interioară, de 85°C și s-a adăugat PCI3 (173 g) printr-un tub imersat, pe parcursul a 28 min. Amestecul rezultat s-a transferat într-un reactor, de 2 I cu control de temperatură și presiune și s-a încălzit, la 85°C. în completare s-a adăugat în reactor o cantitate suplimentară de 65 g PCI3. Temperatura din reactor s-a ridicat, la 13O°C (12,5 psig) și s-a alimentat concomitent PCI3(199 g, timp, de 44 min), soluție apoasă 43,3 % de formaldehidă (219 g, timp, de 60 min) și soluție apoasă 41,5% de sare disodică a acidului iminodiacetic (769 g, timp, de 54 min). în timpul acestei faze de reacție temperatura din reactor atinge maximul,de 131°C, iar presiunea s-a lăsat să se ridice până la 25 psig și s-a menținut la această valoare. După terminarea alimentării tuturor componentelor, reacția s-a continuat 60 min, apoi s-a răcit și s-a filtrat, obținându-se 596 g acid N-fosfonometiliminodiacetic 99,6%. Filtratul mai conține 25 g acid N-fosfonometiliminodiacetic și 27 g acid iminodiacetic. Aceasta reprezintă un randament de 97% de acid N-fosfonometiliminodiacetic raportat la sarea disodică a acidului iminodiacetic nerecuperat.
Exemplul 2. Obținerea NPMIDA din DSIDA, PCI3, formaldehidă și apă la presiune ambiantă și la temperatura de reflux, în condițiile unei încărcări prealabile a vasului de reacție cu DSIDA și PCI3 într-un reactor de 21, prevăzut cu manta, condensator și agitare mecanică s-au introdus 501 g soluție apoasă (42,4%) sare disodică a acidului iminodiacetic. Reactorul s-a încălzit, până la o temperatură interioară, de 85°C și, pe parcursul a 30 min s-a adăugat PCI3 (175 g) printr-un tub imersat. Temperatura din reactor s-a ridicat la valoarea de reflux (aproximativ 110°C) și s-a început alimentarea concomitentă cu PCI3 (116 g, timp, de 24 min), soluție apoasă 43,6% de formaldehidă (165 g, timp, de 62 min) și soluție apoasă 42,4% de sare disodică a acidului iminodiacetic (334 g, timp, de 56 min). în timpul acestei faze de reacție, temperatura din reactor s-a menținut la valoarea temperaturii de reflux. După terminarea alimentării tuturor componentelor și menținerea reacției încă 60 min, amestecul de reacție s-a răcit și s-a filtrat obținându-se 377 g acid N-fosfonometiliminodiacetic 98,3%. Filtratul mai conține 30 g acid N-fosfonometiliminodiacetic și 12 g acid iminodiacetic. Aceasta reprezintă un randament de 95% de acid N-fosfonometiliminodiacetic raportat la sarea disodică a acidului iminodiacetic nerecuperat.
235
240
245
250
255
260
265
270
275
RO 116964 Bl
Exemplul 3. Obținerea NPMIDA din DSIDA, PCI3 formaldehidă și apă, în condițiile unei Încărcări prealabile a reactorului cu HCI într-un reactor de 2 I, cu manta, prevăzut cu condensator și agitator mecanic s-au încărcat 50 g acid clorhidric 37%. Soluția s-a încălzit, până la temperatura de reflux și s-a început alimentarea concomitentă cu sare disodică a acidului iminodiacetic (832,5 g soluție apoasă 42,5%), formalină (140,5 g produs de concentrație 47%) și PCI3 (283 g). Sarea disodică a acidului iminodiacetic s-a alimentat pe parcursul a 64 min, PCI3 pe durata a 53 min, iar formalina.timp, de 63 min. După terminarea alimentării tuturor componentelor și menținerea reacției, încă 60 min, la temperatura de reflux, amestecul de reacție s-a răcit și s-a filtrat, obținându-se 361 g acid N-fosfonometiliminodiacetic și 27 g acid iminodiacetic. Aceasta reprezintă un randament de 93% în acid N-fosfonometiliminodiacetic, raportat la sarea disodică a acidului iminodiacetic nerecuperat.
Exemplul 4. Obținerea NPMIDA din DSIDA, PCI3 formaldehidă și apă, în condițiile unei Încărcări prealabile a reactorului cu HCI într-un reactor de 2 I, cu manta, prevăzut cu condensator și agitator mecanic s-au încărcat 50 g acid clorhidric 37%. Soluția s-a încălzit, până la temperatura de reflux și s-a început alimentarea concomitentă cu sare disodică a acidului iminodiacetic (832,5 g soluție apoasă 42,5%), formalină (140,5 g, produs de concentrație 47%) și PCI3 (283 g). Sarea disodică a acidului iminodiacetic s-a alimentat pe parcursul a 64 min, PCI3 pe durata a 53 min, iar formalina, timp, de 63 min. După terminarea alimentării tuturor componentelor și menținerea reacției, încă 60 min, la temperatura de reflux, amestecul de reacție s-a răcit și s-a filtrat obținându-se 361 g acid N-fosfonometiliminodiacetic 98,5%. Filtratul mai conține 19 g acid N-fosfonometiliminodiacetic și 27 g acid iminodiacetic. Aceasta reprezintă un randament de 93% în acid N-fosfonometiliminodiacetic raportat la sarea disodică a acidului iminodiacetic nerecuperat.
Exemplul 5. Obținerea repetată a NPMIDA în apă din IDA, PCI3 și formaldehidă, cu încărcarea prealabilă a vasului de reacție cu IDA, HCI și apă; îndepărtarea NPMIDA după reacție și reșarjarea lichidului mumă cu IDA într-un reactor de 2 I, cu manta, prevăzut cu condensator și agitator mecanic s-au încărcat 266 g acid iminodiacetic, 194 g acid clorhidric concentrat și 358 g apă. Soluția s-a încălzit, până la temperatura, de 13O°C și s-a început alimentarea concomitentă cu PCI3 și formalină. PCI3 (291 g) s-a încărcat pe durata a 50 min, iar formalina (153 g, de concentrație 47%) s-a alimentat, timp, de 60 min. După terminarea alimentării componentelor și menținerea reacției, încă 60 min la reflux, amestecul de reacție s-a răcit și s-a filtrat obținându-se o masă solidă reprezentând acid fosfonometiliminodiacetic. Filtratul obținut a fost completat cu o cantitate suplimentară de 266 g acid iminodiacetic după care s-a alimentat în modul și cantitățile anterioare PCI3și formalina. După terminarea alimentării componentelor și menținerea reacției, încă 60 min, la temperatura de reflux, amestecul de reacție s-a răcit și s-a filtrat. Masa de pastă obținută în cele două reacții reprezintă împreună 678 g acid Nfosfonometiliminodiacetic 98% în greutate. Lichidele mumă de mai sus conțin 123 g acid N-fosfonometiliminodiacetic și 34 g acid iminodiacetic. Aceasta reprezintă un randament de 94% acid N-fosfonometiliminodiacetic raportat la sarea disodică a acidului iminodiacetic nerecuperat.
Prin urmare, procedeul conform invenției, asigură, conform exemplelor prezentate, randamente,de la 93 până la 97%, folosind un procedeu într-o singură etapă.
Claims (14)
1. Procedeu pentru prepararea acidului N-fosfonometiliminodiacetic prin combinarea într-un amestec de reacție a apei, a unei surse de acid iminodiacetic, a unei surse de formaldehidă, a unei surse de acid fosforos și a unei surse de acid tare, caracterizat prin aceea că, cuprinde o singură etapă, în care sursa de acid fosforos și sursa de formaldehidă se alimentează concomitent în amestecul de reacție, care este menținut, la o temperatură, peste temperatura mediului ambiant și la o presiune mai mare sau egală cu presiunea mediului ambiant.
2. Procedeu, conform revendicării 1, caracterizat prin aceea că acidul Nfosfonometiliminodiacetic rezultat se îndepărtează continuu din amestecul de reacție.
3. Procedeu, conform revendicării 1, caracterizat prin aceea că sursa de acid iminodiacetic, sursa de formaldehidă, sursa de acid fosforos și sursa de acid tare se alimentează concomitent, la același debit, reprezentând independent 80... 140% față de debitul de alimentare al sursei de acid iminodiacetic.
4. Procedeu, conform revendicării 1, caracterizat prin aceea că sursa de acid iminodiacetic se adaugă înaintea alimentării celorlalți reactanți.
5. Procedeu, conform revendicării 1, caracterizat prin aceea că acidul tare și/sau sursa de acid fosforos și acid tare se adaugă înaintea alimentării celorlalți reactanți.
6. Procedeu, conform revendicării 1, caracterizat prin aceea că sursa de acid iminodiacetic este aleasă din grupul constând în acid iminodiacetic, o sare a acidului iminodiacetic cu un acid mineral tare, o sare de metal alcalin a acidului iminodiacetic sau amestecuri ale acestora.
7. Procedeu, conform revendicării 6, caracterizat prin aceea că sursa de acid iminodiacetic este sarea monosodică a acidului iminodiacetic.
8. Procedeu, conform revendicării 6, caracterizat prin aceea că sursa de acid iminodiacetic este sarea disodică a acidului iminodiacetic.
9. Procedeu, conform revendicării 1, caracterizat prin aceea că sursa de formaldehidă este aleasă din grupul constând în formaldehidă gazoasă, o soluție apoasă de formaldehidă și paraformaldehidă.
10. Procedeu, conform revendicării 9, caracterizat prin aceea că sursa de formaldehidă preferată este o soluție apoasă de formaldehidă.
11. Procedeu, conform revendicării 1, caracterizat prin aceea că sursa de acid fosforos este aleasă din grupul constînd în acidul fosforos și o halogenură de fosfor, de preferință, triclorura de fosfor.
12. Procedeu, conform revendicării 1, caracterizat prin aceea că sursa de acid tare este aleasă din grupul constând într-un acid tare și o halogenură de fosfor, de preferință, triclorura de fosfor.
13. Procedeu, conform revendicării 1, caracterizat prin aceea că presiunea la care este menținut amestecul de reacție variază, între 1,05...2,1 at.
14. Procedeu, conform revendicării 1, caracterizat prin aceea că temperatura la care este menținut amestecul de reacție variază, între 1O5...145°C.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US47484795A | 1995-06-07 | 1995-06-07 | |
PCT/US1996/008443 WO1996040698A1 (en) | 1995-06-07 | 1996-06-03 | Process for preparing n-phosphonomethyliminodiacetic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
RO116964B1 true RO116964B1 (ro) | 2001-08-30 |
Family
ID=23885186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RO97-02294A RO116964B1 (ro) | 1995-06-07 | 1996-06-03 | Procedeu de preparare a acidului n-fosfonometiliminodiacetic |
Country Status (16)
Country | Link |
---|---|
US (1) | US5688994A (ro) |
EP (1) | EP0833831B1 (ro) |
JP (1) | JP3126033B2 (ro) |
KR (1) | KR100266127B1 (ro) |
AT (1) | ATE213249T1 (ro) |
AU (1) | AU690854B2 (ro) |
BR (1) | BR9609090A (ro) |
CA (1) | CA2223287C (ro) |
DE (1) | DE69619237T2 (ro) |
DK (1) | DK0833831T3 (ro) |
ES (1) | ES2172660T3 (ro) |
HU (1) | HUP9900664A3 (ro) |
NZ (1) | NZ310008A (ro) |
PT (1) | PT833831E (ro) |
RO (1) | RO116964B1 (ro) |
WO (1) | WO1996040698A1 (ro) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6232494B1 (en) | 1998-02-12 | 2001-05-15 | Monsanto Company | Process for the preparation of N-(phosphonomethyl)glycine by oxidizing N-substituted N-(phosphonomethyl)glycine |
US6417133B1 (en) * | 1998-02-25 | 2002-07-09 | Monsanto Technology Llc | Deeply reduced oxidation catalyst and its use for catalyzing liquid phase oxidation reactions |
US6238637B1 (en) * | 1998-02-26 | 2001-05-29 | Monsanto Company | Process and apparatus for preparation of phosphorus oxyacids from elemental phosphorus |
IES980552A2 (en) | 1998-07-09 | 1999-08-11 | Agritech Chemical Ltd | Improved process for preparing N-phosphonomethyl iminodiacetic acid |
AU2003200725B2 (en) * | 1998-08-12 | 2005-07-21 | Monsanto Company | Preparation of N-substituted N-(phosphonomethyl)glycine or a salt thereof |
US6118022A (en) * | 1998-09-08 | 2000-09-12 | Hampshire Chemical Corp. | Synthesis of phosphonomethyliminodiacetic acid with reduced effluent |
DE19914375A1 (de) * | 1999-03-30 | 2000-10-05 | Sueddeutsche Kalkstickstoff | Verfahren zur Herstellung von N-Phosphonomethyliminodiessigsäure |
ES2253383T3 (es) * | 2000-05-22 | 2006-06-01 | Monsanto Technology Llc | Sistemas de reaccion para fabricar compuestos n-(fosfonometil)glicina. |
SI1353930T1 (en) | 2001-01-12 | 2005-02-28 | Basf Aktiengesellschaft | Method for producing n-phosphonomethyl iminodiacetic acid |
CN1296376C (zh) * | 2004-07-15 | 2007-01-24 | 四川贝尔实业有限责任公司 | 双甘膦的制备方法 |
AR051926A1 (es) * | 2004-09-15 | 2007-02-21 | Monsanto Technology Llc | Catalizadores de oxidacion, procedimientos de preparacion de dichos catalizadores y proceso para la elaboracion de n-( fosfonometil)glicina o una sal de la misma |
EP1681295A1 (en) * | 2005-01-17 | 2006-07-19 | Solutia Europe N.V./S.A. | Process for the manufacture of aminoakylenephosphonic acid compounds in the presence of a heterogeneous catalyst |
EP1681294A1 (en) * | 2005-01-17 | 2006-07-19 | Solutia Europe N.V./S.A. | Process for the manufacture of aminopolyalkylene-phosphonic acid compounds |
AR056660A1 (es) * | 2005-04-25 | 2007-10-17 | Monsanto Technology Llc | Alteracion de la distribucion de tamanos de cristales de acido n-(fosfonometil) iminodiacetico para mejorar la filtracion y la calidad del producto |
CN100400543C (zh) * | 2006-09-08 | 2008-07-09 | 四川贝尔实业有限责任公司 | 亚氨基二乙腈水解制备双甘膦的方法 |
ES2533731T3 (es) | 2008-04-25 | 2015-04-14 | Straitmark Holding Ag | Procedimiento para la fabricación de ácido aminoalquilenfosfónico |
EP2112156A1 (en) | 2008-04-25 | 2009-10-28 | Thermphos International B.V. | Method for the Manufacture of Aminoalkylene Phosphonic Acid |
US8252953B2 (en) | 2008-05-01 | 2012-08-28 | Monsanto Technology Llc | Metal utilization in supported, metal-containing catalysts |
US20120136171A1 (en) | 2009-05-28 | 2012-05-31 | Straitmark Holding Ag | Method for the manufacture ofamino alkylene phosphonic acids |
BR112012009780B1 (pt) | 2009-10-27 | 2018-04-17 | Straitmark Holding Ag | Método para a fabricação de ácido fosfonoalquil iminodiacético |
WO2012009860A1 (zh) * | 2010-07-23 | 2012-01-26 | 重庆紫光化工股份有限公司 | N-膦酰基甲基亚氨基二乙酸的制备方法 |
BR112015000988A2 (pt) | 2012-07-17 | 2017-06-27 | Straitmark Holding Ag | método para a síntese de ácido n-fosfonometiliminodiacético ou derivados do mesmo |
IN2015DN01079A (ro) | 2012-07-17 | 2015-06-26 | Straitmark Holding Ag | |
WO2014012990A1 (en) | 2012-07-17 | 2014-01-23 | Straitmark Holding Ag | Method for the synthesis of alpha-aminoalkylenephosphonic acid |
BR112015000995B1 (pt) | 2012-07-17 | 2020-04-28 | Monsanto Technology Llc | método para a síntese de n-(fosfonometil)glicina ou um de seus derivados selecionados a partir do grupo que consiste em seus sais, seus ésteres de fosfonato e seus sais de éster de fosfonato |
KR101246278B1 (ko) | 2012-09-18 | 2013-03-22 | 주식회사 천보 | 이미노디아세트산의 합성방법 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL285361A (ro) * | 1961-11-13 | 1900-01-01 | ||
GB1142294A (en) * | 1966-02-08 | 1969-02-05 | Albright & Wilson Mfg Ltd | Improvements in production of amino alkylene phosphonic acids |
DE2021148A1 (de) * | 1970-04-30 | 1971-11-11 | Benckiser Gmbh Joh A | Verfahren und Anlage zur kontinuierlichen Herstellung von Aminoalkylenphosphonsaeuren |
US3954848A (en) * | 1972-05-31 | 1976-05-04 | Monsanto Company | Process for producing N-phosphonomethyl glycine |
US3950402A (en) * | 1972-05-31 | 1976-04-13 | Monsanto Company | Process for producing N-phosphonomethyl glycine |
GB2154588B (en) * | 1984-02-20 | 1987-10-07 | Sunlead Chemical Industry Co L | A process for preparation of n-phosphonomethyl glycine |
US4724103A (en) * | 1984-02-27 | 1988-02-09 | Monsanto Company | Process for preparing N,N-diacetic acid aminomethylenephosphonic acid |
US4775498A (en) * | 1984-12-05 | 1988-10-04 | Monsanto Company | Process for preparing N,N-diacetic acid aminomethylenephosphonic acid |
HU200780B (en) * | 1988-02-08 | 1990-08-28 | Nitrokemia Ipartelepek | Process for producing n-phosphonomethyl iminodiacetic acid from double salt of iminodiacetic acid |
GB9300641D0 (en) * | 1993-01-14 | 1993-03-03 | Zeneca Ltd | Process |
US5312973A (en) * | 1993-03-25 | 1994-05-17 | Finchimica S.P.A. | Process for producing n-phosphono-methyl-imino-diacetic acid |
-
1996
- 1996-06-03 DE DE69619237T patent/DE69619237T2/de not_active Expired - Fee Related
- 1996-06-03 NZ NZ310008A patent/NZ310008A/xx unknown
- 1996-06-03 DK DK96917941T patent/DK0833831T3/da active
- 1996-06-03 AU AU60319/96A patent/AU690854B2/en not_active Ceased
- 1996-06-03 AT AT96917941T patent/ATE213249T1/de not_active IP Right Cessation
- 1996-06-03 ES ES96917941T patent/ES2172660T3/es not_active Expired - Lifetime
- 1996-06-03 JP JP09501044A patent/JP3126033B2/ja not_active Expired - Fee Related
- 1996-06-03 WO PCT/US1996/008443 patent/WO1996040698A1/en active IP Right Grant
- 1996-06-03 CA CA002223287A patent/CA2223287C/en not_active Expired - Fee Related
- 1996-06-03 RO RO97-02294A patent/RO116964B1/ro unknown
- 1996-06-03 BR BR9609090A patent/BR9609090A/pt not_active IP Right Cessation
- 1996-06-03 EP EP96917941A patent/EP0833831B1/en not_active Expired - Lifetime
- 1996-06-03 HU HU9900664A patent/HUP9900664A3/hu unknown
- 1996-06-03 PT PT96917941T patent/PT833831E/pt unknown
- 1996-06-03 KR KR1019970709043A patent/KR100266127B1/ko not_active IP Right Cessation
- 1996-12-17 US US08/768,334 patent/US5688994A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
ES2172660T3 (es) | 2002-10-01 |
PT833831E (pt) | 2002-07-31 |
HUP9900664A2 (hu) | 1999-06-28 |
HUP9900664A3 (en) | 2000-04-28 |
WO1996040698A1 (en) | 1996-12-19 |
US5688994A (en) | 1997-11-18 |
DK0833831T3 (da) | 2002-03-18 |
NZ310008A (en) | 1999-03-29 |
AU690854B2 (en) | 1998-04-30 |
CA2223287A1 (en) | 1996-12-19 |
KR19990022562A (ko) | 1999-03-25 |
DE69619237T2 (de) | 2002-10-24 |
JPH10508876A (ja) | 1998-09-02 |
DE69619237D1 (de) | 2002-03-21 |
EP0833831B1 (en) | 2002-02-13 |
EP0833831A1 (en) | 1998-04-08 |
AU6031996A (en) | 1996-12-30 |
KR100266127B1 (ko) | 2000-09-15 |
BR9609090A (pt) | 1999-06-29 |
ATE213249T1 (de) | 2002-02-15 |
CA2223287C (en) | 2001-05-15 |
JP3126033B2 (ja) | 2001-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RO116964B1 (ro) | Procedeu de preparare a acidului n-fosfonometiliminodiacetic | |
US4724103A (en) | Process for preparing N,N-diacetic acid aminomethylenephosphonic acid | |
US4775498A (en) | Process for preparing N,N-diacetic acid aminomethylenephosphonic acid | |
AU675490B2 (en) | Process for the manufacture of N-phosphonomethyliminodiacetic acid | |
JPH0931043A (ja) | クレアチン又はクレアチン−1水和物の製造法 | |
US5312973A (en) | Process for producing n-phosphono-methyl-imino-diacetic acid | |
CN1062855C (zh) | 羟甲基-亚氨基二乙酸的碱金属盐的制备方法 | |
EP0792277A1 (en) | Process for the manufacture of n-phosphonomethylglycine | |
GB2025916A (en) | Preparation of potassium magnesium phosphate | |
WO2000014093A1 (en) | Synthesis of phosphonomethyliminodiacetic acid with reduced effluent | |
JPH11158140A (ja) | メチオニンの製造方法 | |
US4113771A (en) | Process for the purification of citric acid | |
JPH0244472B2 (ro) | ||
US3770796A (en) | Cyanohydrin compounds | |
US3617297A (en) | Process for the production of dl-methionine composition | |
USRE29458E (en) | Potassium phosphate manufacture | |
US3501263A (en) | Process for the manufacture of germanium-(ii)-phosphite | |
US4552737A (en) | Method to improve yields of sodium hypophosphite | |
SU1062210A1 (ru) | Способ получени @ -фосфонометилглицина | |
MXPA97009878A (en) | Process for preparing n-fosfonometiliminodiacet acid | |
US4397832A (en) | Manufacture of calcium hypochlorite | |
SU734212A1 (ru) | Способ получени низших триалкилфосфатов |