KR930006292B1 - Cupper alloy for electronic articles and its making process - Google Patents

Cupper alloy for electronic articles and its making process Download PDF

Info

Publication number
KR930006292B1
KR930006292B1 KR1019890004455A KR890004455A KR930006292B1 KR 930006292 B1 KR930006292 B1 KR 930006292B1 KR 1019890004455 A KR1019890004455 A KR 1019890004455A KR 890004455 A KR890004455 A KR 890004455A KR 930006292 B1 KR930006292 B1 KR 930006292B1
Authority
KR
South Korea
Prior art keywords
copper
copper alloy
weight
phosphorus
silicon
Prior art date
Application number
KR1019890004455A
Other languages
Korean (ko)
Other versions
KR890016194A (en
Inventor
소노겐지 구보
다까시 나까지마
다게후미 이또
기미오 하시쯔메
신이찌 이와세
Original Assignee
미쯔비시덴끼 가부시끼가이샤
시기 모리야
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP63089383A external-priority patent/JPH01263243A/en
Priority claimed from JP63288041A external-priority patent/JPH0733563B2/en
Application filed by 미쯔비시덴끼 가부시끼가이샤, 시기 모리야 filed Critical 미쯔비시덴끼 가부시끼가이샤
Publication of KR890016194A publication Critical patent/KR890016194A/en
Application granted granted Critical
Publication of KR930006292B1 publication Critical patent/KR930006292B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/4383Reworking
    • H01L2224/43847Reworking with a mechanical process, e.g. with flattening of the connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

내용 없음.No content.

Description

전자기기용 동합금 및 그의 제조방법Copper alloy for electronic device and manufacturing method thereof

제1도 내지 제3도는 각각 본 발명의 제조방법을 도시한 공정도.1 to 3 are each a process diagram showing a manufacturing method of the present invention.

본 발명은 집적회로의 리이드 프레임 재료나 커넥터등에 사용되는 전자기기용 동합금 및 그의 제조방법에 관한 것이다. 전자기기에 사용되는 재료는 부품의 소형화나 고신뢰성의 요구에 따라 고강도, 고전도성에 부가하여 내식성이나 내열성이 보다 우수한 것이 요망되고 있다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to copper alloys for electronic devices used in lead frame materials, connectors, and the like of integrated circuits, and methods of manufacturing the same. Materials used for electronic devices are required to be more excellent in corrosion resistance and heat resistance in addition to high strength and high conductivity in accordance with miniaturization of components and high reliability.

종래, 집적회로의 리이드 프레임 재료의 예로서는 철계의 42합금(Fe-42% Ni)과 구리계로 크게 구별되지만, 최근에는 고집적도화에 의한 발열에서 열을 없애기 위해 구리계 재료로의 변경이 진행되고 있다. 그러나, 한편에서는 소형화의 진행에 따라 재료자체도 박판화가 진행되어 종래의 동합금의 강도수준으로는 불충분하므로, GFP(Q uard Feat Package)형의 IC패키지에서는 42합금이 여전히 사용되고 있다.Conventionally, as an example of a lead frame material of an integrated circuit, it is largely divided into an iron-based alloy (Fe-42% Ni) and a copper-based material, but in recent years, a change has been made to a copper-based material to remove heat from heat generation due to high integration. . However, on the other hand, as the miniaturization progresses, the material itself is also thinned and insufficient in the strength level of the conventional copper alloy. Therefore, 42 alloys are still used in the GFP (Q uard Feat Package) type IC package.

이들의 동향중에서 광범위한 요구에 보답할 수 있는 수준의 기준으로서 42합금과 동등한 강도, 즉 인장강도로 70kgf/㎟ 상당의 강도, 전기전도율로서는 30% IACS 이상을 함께 갖는 재료가 요망되고 있다.Among these trends, a material having a strength equivalent to 42 alloys, that is, a strength equivalent to 70 kgf / mm 2 in tensile strength, and an electrical conductivity of 30% or more is required as a standard that can satisfy a wide range of demands.

또 한편, 커넥터등의 일부에는 소형화에 의한 소재의 박판화에 대해서 더욱 스프링 특성이 높은 것이 요망되고 있으며, 인청동보다 높은 전기전도율을 갖고, 강도수준은 더욱 높은 것도 요망되고 있다.On the other hand, some of the connectors and the like are desired to have a higher spring characteristic for thinning the material by miniaturization, and have higher electrical conductivity than phosphor bronze and higher strength levels.

종래의 전자기기용 동합금으로서는 CDA(Copper Development Association) C19400합금이나 Cu-0.1% Sn, Cu-0.1% Fe 등의 고전도형(인장강도로는 약 50kgf /㎟ 정도이하이지만, 전기전도율은 60% IACS 이상) 또는 인청동과 같은 고강도형(강도는 42합금수준이지만, 전기전도율은 20% IACS이하)이 주로 사용되었고, 또한, 고강도재로서는 고가인 베릴륨 동합금등이 있다.Conventional copper alloys for electronic devices include CDA (Copper Development Association) C19400 alloys and high-conductivity types such as Cu-0.1% Sn and Cu-0.1% Fe (tensile strength is about 50kgf / mm2 or less, but the electrical conductivity is 60% IACS or more). ) Or high-strength type such as phosphor bronze (strength level is 42 alloy, but electrical conductivity is less than 20% IACS), and high-strength materials include expensive beryllium copper alloy.

그러나, 리이드 프레임이나 커넥터등의 분야에서 요구되는 전기전도율, 강도수준 및 가격의 점에서 각각 일장일단이 있어 충분하게 만족할 수 있는 상황은 아니다.However, in terms of electrical conductivity, strength level, and price, which are required in fields such as lead frames and connectors, there is a single piece, which is not a satisfactory situation.

본 발명의 목적은 상기의 문제점을 해결하기 위해 이루어진 것으로, 강도와 전기전도율 양쪽에 우수한 특성을 갖는 전자기기용 동합금 및 그의 제조방법을 제공하는 것이다.An object of the present invention is to solve the above problems, to provide a copper alloy for an electronic device having excellent properties in both strength and electrical conductivity and a method of manufacturing the same.

본 발명의 목적은 다음의 전자기기용 동합금에 의해 달성된다. 즉,The object of the present invention is achieved by the following copper alloy for electronic equipment. In other words,

(1) 중량%로 니켈 1.0~8%, 인 0.1~0.8% 및 실리콘 0.06~1%를 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 전자기기용 동합금.(1) Copper alloys for electronic equipment containing 1.0-8% nickel, 0.1-0.8% phosphorus and 0.06-1% silicon by weight, with the remainder being copper and unavoidable impurities.

즉, 여기서 불가피한 불순물이라함은 원재료로써 사용하는 Cu, Ni, P, Si, Zn 등 모두 공업적으로 100% 순도를 갖는 것은 아니고, 미량의 불순물이 섞여 있는 것이다. 이 때문에, 의도적인 첨가없이 혼입하는 물질을 나타낸다.In other words, the inevitable impurities here do not industrially have 100% purity such as Cu, Ni, P, Si, and Zn used as raw materials, but are mixed with trace amounts of impurities. For this reason, the substance which mixes without intentional addition is shown.

(2) 중량%로 니켈 1.0~8%, 인 0.1~0.8% 및 실리콘 0.06~1%를 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되며, 산소함유량이 20ppm이하인 전자기기용 동합금.(2) Copper alloys for electronic equipment containing 1.0 to 8% nickel, 0.1 to 0.8% phosphorus and 0.06 to 1% silicon, the remainder being copper and unavoidable impurities, and oxygen content of 20 ppm or less.

(3) 중량%로 니켈 1.0~8%, 인 0.1~0.8%, 실리콘 0.06~1% 및 아연 0.03~0.5 %를 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 전자기기용 동합금.(3) Copper alloys for electronic equipment containing 1.0 to 8% nickel, 0.1 to 0.8% phosphorus, 0.06 to 1% silicon and 0.03 to 0.5% zinc, with the remainder being copper and unavoidable impurities.

(4) 중량%로 니켈 1.0~8%, 인 0.1~0.8%, 실리콘 0.06~1% 및 아연 0.03~0.5 %를 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되며, 산소함유량이 20ppm이하인 전자기기용 동합금에 의해 달성된다.(4) For electronic devices with 1.0% to 8% nickel, 0.1% to 0.8% phosphorus, 0.06% to 1% silicon and 0.03% to 0.5% zinc, the remainder being copper and unavoidable impurities, and oxygen content of 20ppm or less Achieved by copper alloy.

또, 본 발명의 목적은 다음의 전자기기용 동합금의 제조방법에 의해 달성된다. 즉,Moreover, the objective of this invention is achieved by the following manufacturing method of the copper alloy for electronic devices. In other words,

(5) 중량%로 1.0~8%의 니켈, 0.1~0.8%의 인, 0.06~1%의 실리콘을 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 동합금을 최종 마무리 압연전에 750~950℃의 온도범위에서 1분 이상 가열하여 물 또는 기름속에서 급냉하는 공정과 그후 냉간가공의 유무에 관계없이 350~500℃의 온도범위에서 10분 이상의 가열을 실행하는 공정을 1회 이상 실행하는 전자기기용 동합금의 제조방법.(5) A copper alloy containing 1.0 to 8% nickel, 0.1 to 0.8% phosphorus, and 0.06 to 1% silicon by weight, the remainder being copper and unavoidable impurities, before Copper alloy for electronic devices that performs at least one time heating in the temperature range or quench in water or oil, and then at least one time heating process in the temperature range of 350 ~ 500 ℃ for at least one time regardless of cold processing. Manufacturing method.

(6) 중량%로 1.0~8%의 니켈, 0.1~0.8%의 인, 0.06~1%의 실리콘을 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 동합금을 최종 마무리 압연전에 750~ 950℃의 온도범위에서 1분 이상 가열하고, 그후 4℃/분 이하에서 서서히 냉각하는 전자기기용 동합금의 제조방법.(6) A copper alloy containing 1.0 to 8% nickel, 0.1 to 0.8% phosphorus, and 0.06 to 1% silicon by weight, the remainder being copper and unavoidable impurities, before the final finish rolling at 750-950 ° C. A method of manufacturing a copper alloy for an electronic device which is heated at a temperature range for at least 1 minute and then gradually cooled at 4 ° C / min or less.

(7) 중량%로 1.0~8%의 니켈, 0.1~0.8%의 인, 0.06~1%의 실리콘을 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 동합금을 최종 마무리 압연전에 750~ 950℃의 온도범위에서 1분 이상 가열한 후, 500℃까지는 1℃/분 이상에서 냉각하고, 500~350℃ 사이에서는 적어도 1시간 이상 유지 또는 서서히 냉각하는 전자기기용 동합금의 제조방법.(7) A copper alloy containing 1.0-8% nickel by weight, 0.1-0.8% phosphorus, 0.06-1% silicon by weight, and the remainder being copper and unavoidable impurities, before the final finishing rolling at 750-950 ° C. After heating for 1 minute or more in the temperature range, to 500 ℃ to cool at 1 ℃ / min or more, 500 to 350 ℃ is maintained for at least 1 hour or more, the manufacturing method of the copper alloy for electronic devices.

(8) 중량%로 1.0~8%의 니켈, 0.1~0.8%의 인, 0.06~1%의 실리콘, 0.03~0.5%의 아연을 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 동합금을 최종 마무리 압연전에 750~950℃의 온도범위에서 1분 이상 가열하여 물 또는 기름속에서 급냉하는 공정과 그후 냉간가공의 유무에 관계없이 350~500℃의 온도범위에서 10분 이상의 가열을 실행하는 공정을 1회이상 실행하는 전자기기용 동합금의 제조방법.(8) Final finishing of a copper alloy containing 1.0 to 8% nickel, 0.1 to 0.8% phosphorus, 0.06 to 1% silicon, 0.03 to 0.5% zinc, and the remainder being copper and unavoidable impurities in weight percent Process of quenching in water or oil by heating at least 1 minute in the temperature range of 750 ~ 950 ℃ before rolling and then heating at least 10 minutes in the temperature range of 350 ~ 500 ℃ regardless of cold processing. A method of manufacturing a copper alloy for an electronic device that is executed more than once.

(9) 중량%로 1.0~8%의 니켈, 0.1~0.8%의 인, 0.06~1%의 실리콘, 0.73~0.5%의 아연을 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 동합금을 최종 마무리 압연전에 750~950℃의 온도범위에서 1분 이상 가열하고, 그후 4℃/분 이하에서 서서히 냉각하는 전자기기용 동합금의 제조방법.(9) Final finishing copper alloy containing 1.0-8% nickel, 0.1-0.8% phosphorus, 0.06-1% silicon, 0.73-0.5% zinc, the remainder being copper and unavoidable impurities in weight percent A method for producing a copper alloy for electronic equipment, which is heated at a temperature range of 750 ° C. to 950 ° C. for at least 1 minute, and then gradually cooled at 4 ° C./min or less before rolling.

(l0) 중량%로 1.0~8%의 니켈, 0.1~0.8%의 인, 0,06~1%의 실리콘, 0.03~0 .5%의 아연을 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 동합금을 최종 마무리 압연전에 750~950℃의 온도범위에서 1분 이상 가열한 후, 500℃까지는 1℃/분 이상에서 냉각하고, 570~350℃ 사이에서는 적어도 1시간 이상 유지 또는 서서히 냉각하는 전자기기용 동합금의 제조방법에 의해 달성된다.(l0) wt% 1.0-8% nickel, 0.1-0.8% phosphorus, 0,06-1% silicon, 0.03-0.5% zinc, the remainder being copper and inevitable impurities After heating the copper alloy for 1 minute or more in the temperature range of 750 ~ 950 ℃ before final finishing rolling, it is cooled to 1 ℃ / min up to 500 ℃, and maintained or gradually cooled at least 1 hour between 570 ~ 350 ℃. It is achieved by a method for producing a copper alloy.

다음에, 본 발명의 전자기기용 동합금을 구성하는 합금성분의 첨가이유와 그 조성범위의 한정이유에 대하여 설명한다.Next, the reason for the addition of the alloy component constituting the copper alloy for an electronic device of the present invention and the reason for limiting the composition range will be described.

니켈, 인 및 실리콘은 이들의 원소가 금속간의 화합물을 효율좋게 생성하여 강도의 향상과 도전율의 저하가 적은 범위로 하고, 니켈의 하한 1.0%는 이것 미만에서 금속간 화합물이 적고 강도의 향상이 적기 때문이고, 8%를 넘으면 강도 수준의 향상이 배합량에 비해서 효과가 적게되고, 또 가공성의 저하와 함께 전기 전도율의 저하와 땜납도금의 내열성이 저하하는 경향이 있기 때문이다. 니켈, 인 및 실리콘량의 범위의 관계는 중량비적으로 Ni : P가 약 5 : 1, Ni : Si가 약 4 : 1에 있을때, 강도 및 전기전도율의 수준이 가장 우수하고, 이것은 금속간 화합물로서 Ni5P2나 Ni2Si에 거의 해당하고 있다. 따라서, 인, 실리콘의 양은 이 중량비에서 범위를 정하였다.Nickel, phosphorus, and silicon are within a range in which their elements efficiently form intermetallic compounds to improve the strength and lower the conductivity, and the lower limit of nickel is less than this and the intermetallic compound is less and the strength is less improved. This is because, if it exceeds 8%, the improvement of the strength level is less effective than the compounding amount, and there is a tendency that the electrical conductivity is lowered and the heat resistance of the solder plating is lowered along with the decrease in workability. The relationship between the ranges of nickel, phosphorus and silicon amounts is that when Ni: P is about 5: 1 and Ni: Si is about 4: 1 by weight, the level of strength and electrical conductivity is the best, and this is an intermetallic compound. It is almost equivalent to Ni 5 P 2 or Ni 2 Si. Therefore, the amounts of phosphorus and silicon ranged from this weight ratio.

첨가원소인 아연은 납정 또는 땜납도금후의 고온환경에 있어서의 땜납층의 박리등의 신뢰성 저하를 억제하는 효과가 인정되어 그 최소 필요량의 0.03%를 하한으로 하고, 상한에 대해서는 응력부식성의 점에서 0.5%로 하였다.Zinc, an additive element, is effective in suppressing the deterioration of reliability such as peeling of the solder layer in a high temperature environment after lead crystal or solder plating, and the lower limit is 0.03% of the minimum required amount. 0.5% was set.

산소함유량에 대해서는 소재로의 Ag도금 밀착성의 평가에서 Ag 도금후 가열테스트(450℃×5min)에 의해 도금부풀어오름의 발생이 인정되지 않는 범위로서 상한을 20ppm으로 하였다.As for the oxygen content, the upper limit was set to 20 ppm as a range in which the occurrence of plating swelling was not recognized by the heating test (450 ° C. × 5 min) after Ag plating in the evaluation of Ag plating adhesion to the material.

다음에 제조방법에 대해서 도면을 참조하여 설명한다.Next, a manufacturing method is demonstrated with reference to drawings.

제1도는 상기 제조방법(5) 및 (8)을 도시한 공정도이다. 제조방법(5)에서는 중량%로 1.0~8%의 니켈, 7.01~0.8%의 인, 0.06~1%의 실리콘을 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 동합금(W)에 대해서 냉간가공과 열처리를 반복하고, 또 제조방법 (8)에서는 중량%로 1.0~8%의 니켈, 0.1~0.7%의 인, 0.06~1%의 실리콘, 0.03~0.5%의 아연을 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 동합금(W)에 대해서 냉간가공과 열처리를 반복한다. 이때 최종 마무리 압연전에 (A)공정에서 750-950℃의 온도에서 1분 이상 가열하고, 다음에 (B)공정에서 물 또는 기름속에서 급냉한다. 이 냉각한 것을 (C)공정의 냉간가공을 실행하던가 또는 실행하지 않고, (D)공정에서는 350-500℃ 온도범위에서 10분이상 가옅처리를 실행하고, 필요에 따라 (E)공정인 냉간가공을 실행해서 전자기기용 동합금을 제조한다. 이 (D)공정인 가열처리 및 필요에 따라 실행되는 (E)공정인 냉간가공은 2회이상 실행하여도 좋다.1 is a process chart showing the manufacturing methods (5) and (8). In the manufacturing method (5), cold working is performed on copper alloy (W) containing 1.0-8% nickel, 7.01-0.8% phosphorus, 0.06-1% silicon by weight, and the remainder being copper and unavoidable impurities. And the heat treatment was repeated, and in the manufacturing method (8), 1.0 to 8% nickel, 0.1 to 0.7% phosphorus, 0.06 to 1% silicon, 0.03 to 0.5% zinc, Cold processing and heat treatment are repeated for copper alloy (W) which is made of copper and unavoidable impurities. At this time, before final finishing rolling, it heats more than 1 minute at the temperature of 750-950 degreeC in process (A), and then quenches in water or oil in process (B). The cooled product is subjected to cold working in step (C) or not, and in step (D), at a temperature range of 350-500 ° C. for 10 minutes or more, and if necessary, cold working in step (E). To produce a copper alloy for electronic devices. The heat treatment as the step (D) and the cold working as the step (E) to be carried out as necessary may be performed two or more times.

제2도는 상기 제조방법(6) 및 (9)를 나타내는 공정도이다. 제조방법(6)에서는 중량%로 1.0~8%의 니켈, 0.01~0.8%의 인, 7.06~1%의 실리콘을 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 동합금(W)에 대해서 냉간가공과 열처리를 반복하고, 또 제조방법(9)에서는 중량%로 1.0~8%의 니켈, 0.1~0.8%의 인, 0.06~1%의 실리콘, 0.03~0.5%의 아연을 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 동합금(W)에 대해서 냉간가공과 열처리를 반복한다. 이때 최종 마무리 압연전에 (A )공정에서 750~950℃의 온도에서 1분 이상 가열한다. 다음에 (B2)공정에서 4℃/분 이하의 냉각속도로 서서히 냉각하여 전자기기용 동합금을 제조한다.2 is a process chart showing the manufacturing methods (6) and (9). In the manufacturing method (6), cold work is performed on copper alloy (W) containing 1.0-8% nickel by weight, 0.01-0.8% phosphorus, 7.06-1% silicon, and the remainder being copper and unavoidable impurities. And heat treatment was repeated, and in the manufacturing method (9), 1.0 to 8% nickel, 0.1 to 0.8% phosphorus, 0.06 to 1% silicon, 0.03 to 0.5% zinc, Cold processing and heat treatment are repeated for copper alloy (W) which is made of copper and unavoidable impurities. At this time, before the final finishing rolling (A) step is heated at a temperature of 750 ~ 950 ℃ for 1 minute or more. Subsequently, in step (B2), the copper alloy is gradually cooled at a cooling rate of 4 ° C./min or less.

제3도는 상기 제조방법(7) 및 (10)의 제조방법을 도시한 공정도이다. 제조방법 (7)에서는 중량%로 1.0~8%의 니켈, 0.1~0.8%의 인, 0.06~1%의 실리콘을 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 동합금(W)에 대해서 냉간가공과 열처리를 반복하고, 또 제조방법 (10)에서는 중량%로 1.0~8%의 니켈, 0.1~0.8%의 인, 0.06~0.1%의 실리콘, 0.03~0.5%의 아연을 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 동합금(W)에 대해서 냉간가공과 열처리를 반복한다. 이때 최종 마무리 압연전에 (A)공정에서 750~950℃의 온도에서 1분 이상 가열한다. 이 가열처리한 것을 (B3)공정에서 500℃까지는 1℃/분 이상에서 냉각하고, 다음에 (C3)공정에서 500 -350℃의 온도범위에서는 적어도 1시간 이상 소정온도를 유지 또는 서서히 냉각하여 전자기기용 동합금을 제조한다.3 is a process chart showing the manufacturing method of the manufacturing method (7) and (10). In the manufacturing method (7), cold work is performed on copper alloy (W) containing 1.0-8% nickel by weight, 0.1-0.8% phosphorus, 0.06-1% silicon, and the remainder being copper and inevitable impurities. And heat treatment was repeated, and in the manufacturing method (10), 1.0 to 8% nickel, 0.1 to 0.8% phosphorus, 0.06 to 0.1% silicon, 0.03 to 0.5% zinc, Cold processing and heat treatment are repeated for copper alloy (W) which is made of copper and unavoidable impurities. At this time, before the final finish rolling (A) step is heated for 1 minute or more at a temperature of 750 ~ 950 ℃. The heat treated product was cooled to 500 ° C. or more at 1 ° C./min or more in the step (B 3 ), and then maintained or gradually cooled to a predetermined temperature for at least 1 hour in the temperature range of 500 to 350 ° C. in the step (C 3). Manufacture copper alloys for electronic devices.

이하 본 발명의 1실시예에 대해서 설명한다.Hereinafter, an embodiment of the present invention will be described.

먼저, 시료 No.1~11을 제조하기 위해서, 각 성분을 고주파 전기로에서 용해한 후 두께 20㎜의 주조틀에 부어넣고, 표면을 깎은 후 냉간압연과 열처리를 반복하고, 최종 50%의 냉간가공을 해서 두께 0.25㎜의 판형상으로 마무리 했다. 최종 마무리 압연전의 열처리는 800℃에서 30분 가열한 후, 물속에 담금질하고, 또 그후 450℃에서 2시간 동안 다시 굽는 처리를 실행하였다.First, in order to manufacture Sample Nos. 1 to 11, each component was dissolved in a high frequency electric furnace, poured into a casting mold having a thickness of 20 mm, the surface was cut, repeated cold rolling and heat treatment, and the final 50% cold working was performed. To a plate shape having a thickness of 0.25 mm. The heat treatment before final finishing rolling was performed at 800 ° C. for 30 minutes, then quenched in water, and then baked again at 450 ° C. for 2 hours.

표 1에 본 발명의 재료와 비교재료의 여러가지 특성의 예를 나타낸다.Table 1 shows examples of various properties of the material of the present invention and the comparative material.

[표 1]TABLE 1

Figure kpo00001
Figure kpo00001

1) 내암모니아 응력부식성 실험에 의해 파괴될때까지의 시간을 측정하였다.1) The time until fracture was measured by ammonia stress corrosion resistance test.

[시험조건 ][Exam conditions ]

최대구부림응력 : 30kfg/㎟, 시험온도 : 40℃Bending stress: 30kfg / ㎠, Test temperature: 40 ℃

분위기 : 시판하는 암모니아 시약 1급을 같은량의 물로 희석하여 데시케이터 건조기의 밑바닥에 넣고, 시약상의 분위기에 시료를 노출Atmosphere: A commercially available ammonia reagent grade 1 is diluted with the same amount of water and placed in the bottom of the desiccator dryer, exposing the sample to the reagent atmosphere.

2) 용융한 9/1 땜납속에 시료를 침지하고, 납땜한후 150℃의 고온으로 유지하고, 그후 납땜부분에 대해서 밀착 구부림을 실행하여 박리등이 발생할때까지의 시간을 측정했다.2) The sample was immersed in the molten 9/1 solder, and after soldering, the sample was kept at a high temperature of 150 DEG C. Then, the time until the peeling or the like occurred by closely bending the soldered portion was measured.

3) 두께 8㎛의 Ag도금을 실시한 후 350℃에서 5분간의 가열을 실행하고, 도금의 박리에 의한 부풀어오름의 발생의 유무를 조사하였다.3) After 8-micrometer-thick Ag plating was performed, heating was performed at 350 ° C. for 5 minutes, and the presence or absence of swelling due to peeling of the plating was examined.

표 1의 결과에서, Cu-Ni-P만으로 조성한 것과 비교해서 Si를 첨가한 쪽이 더욱 높은 강도수준이 얻어지고, Ni, P, Si의 배합량이 많을수록 강도의 향상이 현저하다.As a result of Table 1, compared with the composition composed only of Cu-Ni-P, a higher strength level is obtained when Si is added, and the higher the amount of Ni, P, and Si blended, the more significant the improvement in strength is.

그러나, 한편으로 배합량이 중대함에 따라 전기전도율의 저하가 인정된다. 이 때문에 이들의 강도와 전기 전도율의 관계에 의해 상기 범위에서 Ni, P, Si의 양을 결정했다.However, on the other hand, the fall of electric conductivity is recognized as a compounding quantity is great. For this reason, the quantity of Ni, P, and Si was determined in the said range by the relationship of these intensity | strength and electrical conductivity.

O2함유량에 관해서는 20ppm을 넘은 시료 No.7과 No.10에 대해서 Ag도금후 가열시험에서 도금의 부풀어오름이 인정되므로, 상한을 20ppm으로 하였다.Regarding the O 2 content, the swelling of the plating was recognized in the heating test after Ag plating for samples No. 7 and No. 10 exceeding 20 ppm, so the upper limit was set to 20 ppm.

땜납의 내열성은 Ni, P, Si의 함유량이 증가함에 따라 저하하는 경향이 인정되지만, 시료 No.5와 No.11을 비교한 결과 Zn을 0.15% 함유한, No.11쪽이 땜납내열성이 향상하여 Zn에 의한 개선효과가 인정된다. 한편, Zn 함유량이 많은 시료 No.9에서는 응력부식균열이 일어나기 쉽게 되기 때문에 Zn의 함유량을 0.03-0.5%으로 제한하였다.It is recognized that the heat resistance of the solder decreases as the content of Ni, P, and Si increases, but as a result of comparing the samples No. 5 and No. 11, No. 11 containing 0.15% of Zn improved the solder heat resistance. Therefore, the improvement effect by Zn is recognized. On the other hand, in sample No. 9 having a high Zn content, stress corrosion cracking easily occurred, so the content of Zn was limited to 0.03-0.5%.

응력부식균열(stress corrosion cracking)이라함은 응력과 부식의 공동작용에 의해서 생기는 합금재료의 균열이며, 응력으로 부식이 촉진되기 쉬운 재료가 인장응력을 받고 있고, 그의 재료에 특유의 부식환경에 있을때, 이 균열이 일어난다. 이러한 균열은 염소이온을 포함하는 액체중에 오스테나이트계 스테레스 강철, 암모니아가 존재할때의 동합금(주로 황동), 습한 대기중의 강력 알루미늄합금등에 대해서 실용상의 문제로 된다.Stress corrosion cracking is the cracking of alloying materials caused by the joint action of stress and corrosion, and when the material is prone to corrosion due to stress under tensile stress and its material is in a unique corrosive environment. , This crack occurs. Such cracking becomes a practical problem for austenitic stainless steels, copper alloys (mainly brass) when ammonia is present in a liquid containing chlorine ions, and strong aluminum alloys in a humid atmosphere.

본 발명의 동합금은 니켈, 인, 실리콘을 함유하므로, 강도수준이 높고, 전기전도율도 우수하여 전자기기용 부품의 소형화에 매우 유효한 특성을 갖고 있으며, 집적회로의 리이드 프레임 재료에 한정되지 않고 커넥터, 릴레이, 스위치등의 광범위한 용도에 적용할 수 있을 뿐만 아니라 저렴한 동합금으로써 유용하다.Since the copper alloy of the present invention contains nickel, phosphorus and silicon, it has high strength level and excellent electrical conductivity, which is very effective for miniaturization of electronic component parts, and is not limited to the lead frame material of the integrated circuit. It is not only applicable to a wide range of applications such as switches and switches, but also useful as an inexpensive copper alloy.

또, 아연을 함유하는 동합금은 내열성의 저하가 적으므로 강도수준을 더욱 높일 수가 있다.In addition, since the copper alloy containing zinc has little decrease in heat resistance, the strength level can be further increased.

다음에 본 발명의 제조방법의 실시예에 대하여 설명한다.Next, the Example of the manufacturing method of this invention is described.

표 2에 표시하는 성분비율의 Cu-Ni-P-Si합금 및 Cu-Ni-P-Si-Zn합금을 기본으로 하여 본 발명과 비교예의 제조방법에 의해 전자기기용 동합금을 제조하였다.Based on the Cu-Ni-P-Si alloy and the Cu-Ni-P-Si-Zn alloy of the component ratio shown in Table 2, the copper alloy for electronic devices was manufactured by the manufacturing method of this invention and a comparative example.

시료 No.12~23를 제조하기 위해서, 각 성분을 고주파 전기로에서 용해한 후, 두께 20㎜의 주조틀에 부어넣고, 표면을 깎은 후 냉간압연과 열처리를 반복하고, 최종 50%의 냉간가공을 해서 0.25㎜의 판형상으로 마무리했다.In order to manufacture Sample Nos. 12 to 23, each component was dissolved in a high frequency electric furnace, poured into a casting mold having a thickness of 20 mm, and the surface was shaved, followed by cold rolling and heat treatment, followed by cold working at the final 50%. It finished in the plate shape of 0.25 mm.

열처리등의 조건에 대해서는 표 1에 표시한 바와 같고, 시료 No.12, 시료 No .14, 시료 No.17 및 시료 No.18은 두께 0.5㎜의 것을 800℃에서 30분간 가열한 후, 물속에서 급냉하여 두께 0.25㎜로 냉간가공한 후 450℃에서 2시간 가열한 후 노중에서 서서히 냉각하였다. 시료 No.13은 시료 No.12와 마찬가지로 가열해서 급냉한 후, 450 ℃에서 2시간 가열하여 노중에서 서서히 냉각한 후 두께 0.25㎜로 냉간가공하였다.The conditions such as heat treatment are as shown in Table 1, and Sample No. 12, Sample No. 14, Sample No. 17 and Sample No. 18 were 0.5 mm thick and heated at 800 ° C. for 30 minutes, and then After quenching and cold working to a thickness of 0.25 mm, the mixture was heated at 450 ° C. for 2 hours and then slowly cooled in a furnace. Sample No. 13 was heated and quenched in the same manner as Sample No. 12, and then heated at 450 ° C. for 2 hours, gradually cooled in a furnace, and cold worked to a thickness of 0.25 mm.

시료 Ne.15 및 시료 No.27은 시료 No.12와 마찬가지로 가열한 후, 노중에서 냉각속도의 최대값이 2.5℃/분으로 되도록 서서히 냉각하여 두께 0.25㎜로 냉간가공하였다. 시료 No.16은 시료 No.12와 마찬가지로 가열한 후 450℃까지 30분간 냉각하고, 그 상태에서 450℃에서 2시간 유지하여 노중에서 서서히 냉각한 후, 두께 0.25㎜로 냉간가공하였다. 시료 No.19는 두께 1.5㎜의 것을 30분간 가열한 후 물속에서 급냉하고, 두께 0.5㎜로 냉간가공한 후 450℃에서 2시간 가열하고, 노중에서 서서히 냉각한 후 0.25㎜로 냉간가공 하였다.Sample Ne.15 and Sample No. 27 were heated similarly to Sample No. 12, and then gradually cooled in a furnace such that the maximum value of the cooling rate was 2.5 ° C./minute, and cold worked to 0.25 mm in thickness. Sample No. 16 was heated in the same manner as Sample No. 12, and then cooled to 450 ° C. for 30 minutes, held at 450 ° C. for 2 hours in this state, gradually cooled in a furnace, and cold worked to a thickness of 0.25 mm. Sample No. 19 was heated for 30 minutes after heating 1.5 mm thick for 30 minutes, cold working to 0.5 mm thick, then heating at 450 ° C. for 2 hours, and slowly cooling in a furnace to cold working 0.25 mm.

비교예로서, 시료 No.22는 두께 0.5㎜의 것을 700℃에서 1시간 가열한 후 물속에서 급냉하고, 두께 0.25㎜로 냉간가공하였다. 또, 시료 No.23은 시료 No.22와 마찬가지로 가열, 급냉, 냉간가공후 450℃ 에서 2시간 가열하여 노중에서 서서히 냉각하였다.As a comparative example, Sample No. 22 was 0.5 mm thick, heated at 700 ° C. for 1 hour, quenched in water, and cold worked to 0.25 mm thick. In addition, sample No. 23 was heated at 450 ° C. for 2 hours after heating, quenching, and cold working similarly to sample No. 22, and was gradually cooled in the furnace.

이상에 의해 얻어진 시료에 대해서 인장강도 및 전기전도율을 측정한 결과를 표 2에 나타낸다.Table 2 shows the results obtained by measuring the tensile strength and the electrical conductivity of the sample obtained as described above.

[표 2]TABLE 2

Figure kpo00002
Figure kpo00002

표 2의 결과에서, 본 발명에 의한 제조방법의 채택에 의해 비교예의 시료 No.22 및 No.23보다 높은 강도가 얻어지는 것이 명백하다. 또, 시료 No.12,13,15,16의 실시예의 비교예에서, 제조방법(5)~(7)중에서는 제조방법(5)가 강도적으로 더욱 우수하다는 것을 나타내고 있다.From the results in Table 2, it is clear that the strength higher than the samples No. 22 and No. 23 of the comparative example is obtained by adopting the production method according to the present invention. Moreover, in the comparative example of the Example of sample No.12,13,15,16, it shows that the manufacturing method (5) is more excellent in intensity | strength among manufacturing methods (5)-(7).

또, 최종압연이 끝난것에 압연시의 내부 왜곡을 제거하기 위해 왜곡제거 저온굽기로서 150~450℃에서 3분이상 가열하는 것은 스프링 특성 및 가공성 향상으로서 더욱 유효하다.In addition, heating at 150 to 450 ° C. for at least 3 minutes as a distortion freezing bake to remove the internal distortion during rolling after the final rolling is more effective for improving the spring characteristics and workability.

본 발명에 의하면, Cu-Ni-P-Si 합금 및 Cu-Ni-P-Si-Zn합금에 특정한 열처리를 실행하는 것에 의해 고강도와 고전기전도율을 함께 갖는 전자기기용 동합금을 얻을 수가 있어서 전자기기용 부품의 소형화에 매우 유용하다.According to the present invention, by performing specific heat treatment on a Cu-Ni-P-Si alloy and a Cu-Ni-P-Si-Zn alloy, a copper alloy for electronic devices having both high strength and high conductivity can be obtained. Very useful for miniaturization.

Claims (10)

중량%로 니켈 1.0~8%, 인 0.1~0.8% 및 실리콘 0.06~1%를 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 것을 특징으로 하는 전자기기용 동합금.A copper alloy for electronic equipment containing 1.0-8% nickel, 0.1-0.8% phosphorus and 0.06-1% silicon by weight, with the remainder being copper and inevitable impurities. 중량%로 니켈 1.0~8%, 인 0.1~0.8% 및 실리콘 0.06~1%를 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되며, 산소함유량이 20ppm이하인 것을 특징으로 하는 전자기기용 동합금.A copper alloy for electronic equipment containing 1.0-8% nickel, 0.1-0.8% phosphorus and 0.06-1% silicon by weight, the remainder being copper and unavoidable impurities, and having an oxygen content of 20 ppm or less. 중량%로 니켈 1.0~8%, 인 0.1~0.8%, 실리콘 0.06~1% 및 아연 0.03~0.5%를 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 것을 특징으로 하는 전자기기용 동합금.A copper alloy for electronic equipment containing 1.0 to 8% by weight, 0.1 to 0.8% phosphorus, 0.06 to 1% silicon, and 0.03 to 0.5% zinc, and the remainder being copper and unavoidable impurities. 중량%로 니켈 1.0~8%, 인 0.1~0.8%, 실리콘 0.06~1% 및 아연 0.03~0.5%를 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되며, 산소함유량이 20ppm이하인 것을 특징으로 하는 전자기기용 동합금.Electromagnetic characterized by containing 1.0 to 8% by weight of nickel, 0.1 to 0.8% of phosphorus, 0.06 to 1% of silicon and 0.03 to 0.5% of zinc, the remainder being copper and unavoidable impurities, and oxygen content of 20 ppm or less Copper alloy for use. 중량%로 1.0~8%의 니켈, 0.1~0.8%의 인, 0.06~1%의 실리콘을 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 동합금을 최종 마무리 압연전에 750~950℃의 온도범위에서 1분 이상 가열하여 물 또는 기름속에서 급냉하는 공정과 그후 350~500℃의 온도범위에서 10분 이상의 가열을 실시하는 공정을 실행하는 것을 특징으로 하는 전자기기용 동합금의 제조방법.A copper alloy containing 1.0-8% nickel by weight, 0.1-0.8% phosphorus and 0.06-1% silicon by weight, the remainder being copper and unavoidable impurities, in the temperature range of 750-950 ° C. before final finishing rolling. A method of manufacturing a copper alloy for an electronic device, characterized by performing a step of quenching in water or oil by heating for 1 minute or more, and then heating for 10 minutes or more in a temperature range of 350 to 500 ° C. 중량%로 1.0~8%의 니켈, 0.1~0.8%의 인, 0.06~1%의 실리콘을 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 동합금을 최종 마무리 압연전에 750~950℃와 온도범위에서 1분 이상 가열하고, 그후 4℃/분 이하에서 서서히 냉각하는 것을 특징으로 하는 전자기기용 동합금의 제조방법.A copper alloy containing 1.0-8% nickel by weight, 0.1-0.8% phosphorus and 0.06-1% silicon by weight, with the remainder being copper and unavoidable impurities, at 750-950 ° C and temperature range before final finishing rolling A method of producing a copper alloy for electronic equipment, characterized by heating at least 1 minute and then gradually cooling at 4 ° C / minute or less. 중량%로 1.0~8%와 니켈, 0.1~0.8%의 인, 0.06~1%의 실리콘을 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 동합금을 최종 마무리 압연전에 750~950℃의 온도범위에서 1분 이상 가열한 후, 500℃까지는 1℃/분 이상에서 냉각하고, 500~350℃ 사이에서는 적어도 1시간 이상 유지 또는 서서히 냉각하는 것을 특징으로 하는 전자기기용 동합금의 제조방법.A copper alloy containing 1.0-8% by weight, nickel, 0.1-0.8% phosphorus and 0.06-1% silicon by weight, the remainder being copper and unavoidable impurities, in the temperature range of 750-950 ° C. before final finishing rolling. After heating for 1 minute or more, it cools to 1 degree-C / min or more to 500 degreeC, and maintains or cools gradually at least 1 hour between 500-350 degreeC, The manufacturing method of the copper alloy for electronic devices. 중량%로 1.0~8%의 니켈, 0.1~0.8%의 인, 0.06~1%의 실리콘, 0.03~0.5%의 아연을 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 동합금을 최종 마무리 압연전에 750~950℃의 온도범위에서 1분 이상 가열하여 물 또는 기름속에서 급냉하는 공정과 그후 350~500℃의 온도범위에서 10분 이상의 가열을 실시하는 공정을 실행하는 것을 특징으로 하는 전자기기용 동합금의 제조방법.A copper alloy containing 1.0 to 8% nickel, 0.1 to 0.8% phosphorus, 0.06 to 1% silicon, 0.03 to 0.5% zinc, the remainder being copper and inevitable impurities, by weight 750 before final finishing rolling Manufacture of copper alloy for electronic equipment, characterized in that the step of quenching in water or oil by heating at least 1 minute in the temperature range of ~ 950 ℃ and then heating at least 10 minutes in the temperature range of 350 ~ 500 ℃. Way. 중량%로 1.0~8%의 니켈, 0.1~0.8%의 인, 0.06~1%의 실리콘, 0.03~0.5%의 아연을 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 동합금을 최종 마무리 압연전에 750~950℃의 온도범위에서 1분 이상 가열하고, 그후 4℃/분 이하에서 서서히 냉각하는 것을 특징으로 하는 전자기기용 동합금의 제조 방법.A copper alloy containing 1.0 to 8% nickel, 0.1 to 0.8% phosphorus, 0.06 to 1% silicon, 0.03 to 0.5% zinc, the remainder being copper and inevitable impurities, by weight 750 before final finishing rolling A method of manufacturing a copper alloy for an electronic device, characterized by heating at least 1 minute in a temperature range of ˜950 ° C. and then gradually cooling at 4 ° C./min or less. 중량%로 1.0~8%의 니켈, 0.1~0.8%의 인, 0.06~1%의 실리콘, 0.03~0.5%의 아연을 함유하고, 나머지 부분이 구리 및 불가피한 불순물로 되는 동합금을 최종 마무리 압연전에 750~950℃의 온도범위에서 1분 이상 가열한 후, 500℃까지는 1℃/분 이상에서 냉각하고, 500~350℃ 사이에서는 적어도 1시간 이상 유지 또는 서서히 냉각하는 것을 특징으로 하는 전자기기용 동합금의 제조방법.A copper alloy containing 1.0 to 8% nickel, 0.1 to 0.8% phosphorus, 0.06 to 1% silicon, 0.03 to 0.5% zinc, the remainder being copper and inevitable impurities, by weight 750 before final finishing rolling After heating for 1 minute or more in the temperature range of ~ 950 ℃, to 500 ℃ to cool at 1 ℃ / min or more, 500 ~ 350 ℃ to maintain or gradually cool the copper alloy for electronic equipment, characterized in that for at least 1 hour Way.
KR1019890004455A 1988-04-12 1989-04-04 Cupper alloy for electronic articles and its making process KR930006292B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP89383 1988-04-12
JP63089383A JPH01263243A (en) 1988-04-12 1988-04-12 Copper alloy for electronic equipment
JP63-89383 1988-04-12
JP63288041A JPH0733563B2 (en) 1988-11-15 1988-11-15 Manufacturing method of copper alloy strip for electronic equipment
JP288041 1988-11-15
JP63-288041 1988-11-15

Publications (2)

Publication Number Publication Date
KR890016194A KR890016194A (en) 1989-11-28
KR930006292B1 true KR930006292B1 (en) 1993-07-12

Family

ID=26430800

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890004455A KR930006292B1 (en) 1988-04-12 1989-04-04 Cupper alloy for electronic articles and its making process

Country Status (2)

Country Link
KR (1) KR930006292B1 (en)
DE (1) DE3911874C2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950570B2 (en) * 2014-04-21 2021-03-16 Nippon Steel Chemical & Material Co., Ltd. Bonding wire for semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2155405A (en) * 1938-04-28 1939-04-25 Chase Brass & Copper Co Electrical conductor
US2155407A (en) * 1938-04-28 1939-04-25 Chase Brass & Copper Co Electrical conductor
DE3417273C2 (en) * 1984-05-10 1995-07-20 Poong San Metal Corp Copper-nickel alloy for electrically conductive material for integrated circuits

Also Published As

Publication number Publication date
DE3911874C2 (en) 1994-01-27
KR890016194A (en) 1989-11-28
DE3911874A1 (en) 1989-10-26

Similar Documents

Publication Publication Date Title
KR100515804B1 (en) Titanium copper alloy having high strength and method for producing the same, and terminal?connector using the titanium copper alloy
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP4068626B2 (en) Cu-Ni-Si-Co-Cr-based copper alloy for electronic materials and method for producing the same
KR950004935B1 (en) Copper alloy for electronic instruments
KR100689687B1 (en) Cu-Ni-Si-Mg SYSTEM COPPER ALLOY STRIP
JPS63262448A (en) Production of copper alloy having excellent peeling resistance of tin or tin alloy plating
KR960010816B1 (en) Copper alloy lead frame material for semiconductor devices
CN117551910A (en) Cu-Ni-Si copper alloy strip and method for producing same
KR930006292B1 (en) Cupper alloy for electronic articles and its making process
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPH0718356A (en) Copper alloy for electronic equipment, its production and ic lead frame
JPH0987814A (en) Production of copper alloy for electronic equipment
US5248351A (en) Copper Ni-Si-P alloy for an electronic device
KR100553511B1 (en) High strength and high electrical conductivity copper alloy having excellent fatigue property and intermediate temperature property
JPH11323463A (en) Copper alloy for electrical and electronic parts
JPH02190431A (en) Copper alloy for connecting apparatus
KR20160043674A (en) Copper alloy material for connectors with high strength, high thermal resistance and high corrosion resistance, and excellent bending processiblity, and method for producing same
JPS63125631A (en) High-tensile high-conductivity copper alloy
KR930006293B1 (en) Cupper alloys for electronic articles and its making process
JPH03199357A (en) Manufacture of high strength and high conductivity copper alloy for electronic equipment
JP3519888B2 (en) Copper alloy for electronic equipment and method for producing the same
JP2576853B2 (en) Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JPH03191043A (en) Manufacture of high strength and high conductivity copper alloy for electronic equipment
KR100257204B1 (en) High strength copper alloy for electric and electric component and method for preparing the same
JPH02133555A (en) Manufacture of copper alloy bar for electronic apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19990705

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee