KR100257204B1 - High strength copper alloy for electric and electric component and method for preparing the same - Google Patents

High strength copper alloy for electric and electric component and method for preparing the same Download PDF

Info

Publication number
KR100257204B1
KR100257204B1 KR1019970037251A KR19970037251A KR100257204B1 KR 100257204 B1 KR100257204 B1 KR 100257204B1 KR 1019970037251 A KR1019970037251 A KR 1019970037251A KR 19970037251 A KR19970037251 A KR 19970037251A KR 100257204 B1 KR100257204 B1 KR 100257204B1
Authority
KR
South Korea
Prior art keywords
copper alloy
cold rolling
electric
content
weight
Prior art date
Application number
KR1019970037251A
Other languages
Korean (ko)
Other versions
KR19990015268A (en
Inventor
권오철
이형곤
황인철
육점국
송승현
Original Assignee
정정원
주식회사엘지금속
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정정원, 주식회사엘지금속 filed Critical 정정원
Priority to KR1019970037251A priority Critical patent/KR100257204B1/en
Publication of KR19990015268A publication Critical patent/KR19990015268A/en
Application granted granted Critical
Publication of KR100257204B1 publication Critical patent/KR100257204B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Abstract

PURPOSE: A method for manufacturing high strength copper alloy for use in electric/electronic components such as connector/terminal is provided to solve problems arising from high Sn content in phosphor bronze. The present invention set the Sn content in phosphor bronze lower so that electric conductivity is increased above 15% IACS. Also, both Ni and Si are added in the copper alloy to compensate strength decline level. CONSTITUTION: The manufacturing method of the high strength copper alloy comprises the processes of preparing an ingot comprising Sn 3.0-6.0wt.%, Ni 0.5-2.0wt.%. Si 0.1-1.0wt.%, Fe 0.5-2.0wt.%, Nd 0.05-0.5wt.%, P 0.01-0.15wt.%, 0.001-2.0wt.% of at least one element selected from Zn, B, Al, Ca, Co, Ti, Zr, Mg, Pd, Mn, REM, a balance of Cu, and other inevitable impurities; quenching the ingot after hot rolling in the temperature range of 700 to 950deg.C; cold rolling in a reduction ratio of 50 to 80% and then heat treating in the temperature range of 300 to 800deg.C for 15-240min wherein above cold rolling and heat treating are performed twice or three times repeatedly; final cold rolling in a reduction ratio of 30 to 60%; and then annealing in the temperature range of 200 to 500deg.C for 0.5-60min.

Description

전기 및 전자부품용 고강도 동합금 및 그 제조방법High strength copper alloy for electric and electronic parts and manufacturing method

본 발명은 전기 및 전자부품용 동합금 및 그 제조방법에 관한 것으로, 보다 상세하게는 전기전도도를 떨어뜨리지 않으면서 기계적 특성을 향상시키는 것에 관한 것이다.The present invention relates to a copper alloy for electrical and electronic parts and a method of manufacturing the same, and more particularly, to improving mechanical properties without lowering the electrical conductivity.

반도체 IC, LSI 등과 같은 전자부품용 리드프레임 재료나 커넥터, 접촉스프링, 릴레이, 컨택터 및 스위치 등과 같은 고강도 전기재료에 사용되는 동합금은 부품의 소형화, 고집적도화 및 고신뢰성이 요구됨에 따라 연성, 내구성, 내열성 및 전기전도성이 보다 우수한 것이 요구되고 있다.Copper alloys used in leadframe materials for electronic components such as semiconductor ICs, LSIs, and high-strength electrical materials such as connectors, contact springs, relays, contactors, and switches are required to reduce ductility and durability as components are required to be miniaturized, highly integrated, and highly reliable. More excellent heat resistance and electrical conductivity are required.

구리(Cu)는 전, 연성이 좋고 전기전도도가 높아 전기 및 전자재료로서 널리 사용되어 왔으나, 구리 자체로는 높은 강도를 얻을 수 없으므로 구리에 다양한 원소를 첨가하고, 가공공정을 변화시킴으로써 높은 강도를 얻고자 하였다.Copper (Cu) has been widely used as an electrical and electronic material because of its high electrical conductivity and high electrical conductivity. However, copper itself does not provide high strength, so various elements may be added to copper to change the processing process. To obtain.

그러나 첨가원소의 수와 양이 많아질수록 전기전도도가 급격하게 감소하게 되어 전기 및 전자재료로서의 사용을 제한받아 왔다.However, as the number and amount of added elements increase, the conductivity decreases rapidly, and thus the use as an electric and electronic material has been restricted.

따라서 이와 같은 문제점을 해결하기 위한 연구가 여러 선진국에서 수행되어 왔으며, 현재까지도 활발한 연구가 진행되고 있다.Therefore, researches to solve such problems have been conducted in various developed countries, and active research is being conducted to this day.

기존에 사용되고 있는 대표적인 커넥터로는 Cu-Sn 계의 C5210(Cu-8%Sn-0.1P)이 있는데 75kgf/㎟의 인장강도, 10% 이상의 연신율과 13%IACS 정도의 전기전도도를 나타내고 있다.Representative connectors used in the past include Cu-Sn-based C5210 (Cu-8% Sn-0.1P), which has a tensile strength of 75kgf / mm2, elongation of more than 10%, and electrical conductivity of about 13% IACS.

그러나 전자기기의 경박단소화 및 고밀도 실장화가 추세에 따라 커넥터, 단자 등의 제품도 협피치화, 표면실장화, 고밀도화가 요구되고 있으며 이에 따라 소재의 고강도화, 고전기전도도화 및 고스프링화 요구가 계속되고 있다.However, due to the trend of thin and short and high density mounting of electronic devices, products such as connectors and terminals are also required to have narrow pitch, surface mount, and high density. It is becoming.

지금까지 커넥터 및 단자용으로 사용되는 대표적인 동합금으로는 황동(Cu-Zn계), 인청동(Cu-Sn-P계), 베릴륨동(Cu-Be계) 등이 있으나, 각각 문제점을 내포하고 있다.Representative copper alloys used for connectors and terminals so far include brass (Cu-Zn-based), phosphor bronze (Cu-Sn-P-based), and beryllium copper (Cu-Be-based), but each has problems.

베릴륨동은 동합금 중에서 가장 높은 강도와 경도를 얻을 수 있으나, 값이 비싸고 산화하기 쉬우며 경도가 너무 커서 가공하기 곤란하다는 단점이 있다.Beryllium copper has the highest strength and hardness among copper alloys, but has the disadvantage of being expensive, easy to oxidize, and difficult to process because of its high hardness.

황동은 저가이면서도 성형성과 가공성이 있어서 뛰어난 특성을 나타내지만, 강도가 낮고 내응력부식균열성이 매우 불량하여 제품신뢰성이 떨어진다.Although brass is inexpensive and has excellent moldability and workability, it shows excellent characteristics.

따라서, 황동은 신뢰성의 관점에서 재고되고 있으며, 그 대체물로서 인청동의 수요가 증가하고 있다.Therefore, brass is being reconsidered in terms of reliability, and the demand for phosphor bronze is increasing as a substitute.

인청동은 신뢰성, 강도, 스프링성 등에서 우수한 특성을 나타내는 반면, 전기전도가 낮고, 고가의 주석 함량이 높아 값이 비싸고, 응고중에 생기는 주석의 편석을 최소화시켜야 하며, 압연시 균열방지를 위해 압연조건이 엄밀히 조절되어야 하는 등의 문제점이 있다.Phosphor Bronze has excellent properties in reliability, strength, springability, etc., while it has low electrical conductivity, high tin content, high price, and minimizes segregation of tin during solidification. There are problems such as being strictly controlled.

최근에 새로운 합금이 다수 개발되고는 있으나, 특수용에만 적합하거나 제조상의 어려움을 포함하고 있으며, 더욱이 경제성 측면에서 실용가능한 재료는 극히 드문 형편이다.Recently, a number of new alloys have been developed, but they are suitable only for special applications or include manufacturing difficulties, and in addition, economically practical materials are extremely rare.

한편, 일본국 특허공보(소) 60∼45698호에서는 반도체기기용 리드재로써 Ni, Si, Cu가 주성분이고, Sn, Fe 등 14종을 부성분으로 하고 있으나, 이때 Sn은 1.0% 이하로써 인청동 범위에 해당되지 않음과 함께 인장강도가 거의 70kg/㎟ 이하이다.On the other hand, Japanese Patent Publication Nos. 60-45698 have Ni, Si, Cu as main components, and 14 kinds of Sn, Fe, etc. as sub-components as lead materials for semiconductor devices, but Sn is 1.0% or less. In addition, the tensile strength is almost 70kg / mm2 or less.

본 발명은 향후수요가 지속적으로 증대될 것으로 예상되는 인청동 소재의 문제점을 해결하기 위해 안출한 것으로, 주석(Sn) 함량을 낮게 설정하여 전기전도도를 15% IACS 이상으로 향상시키고, 열간압연이 가능하도록 설계하여 균질화 처리공정을 생략할 수 있도록 하였고, 여기에 Ni와 Si를 첨가함으로써 Sn의 첨가량 감소로 인한 강도저하를 방지하였으며, 탈산제로 사용되고 있는 P와 화합물을 형성하는 것으로 알려진 Fe를 첨가함으로써 인장강도를 75kgf/㎟이상으로 유지할 수 있도록 하였다.The present invention has been made to solve the problem of phosphor bronze material is expected to continue to increase in the future, by setting the tin (Sn) content to improve the electrical conductivity to 15% IACS or more, so that hot rolling It was designed to omit the homogenization process, and the addition of Ni and Si prevented the decrease in strength due to the reduction of Sn addition amount, and the tensile strength by adding Fe, which is used as a deoxidizer, to form a compound. It was possible to maintain more than 75kgf / ㎜.

또한 Nd를 첨가함으로써, 기첨가된 Ni, Si, Fe, P와 미세석출물을 형성, 결정립성장 억제 효과로 작용하여 인장감도 및 연신율이 향상된 고강도 합금 및 그 제조방법을 제공하고자 하는데 그 목적이 있다.In addition, by adding Nd, the addition of Ni, Si, Fe, P and fine precipitates to form, and to act as a grain growth inhibiting effect to provide a high-strength alloy with improved tensile sensitivity and elongation and its manufacturing method.

상기 목적 달성을 위한 본 발명을 중량% 로써, Sn : 3.0∼6.0%, Ni : 0.5∼ 2.0%, Si : 0.1∼1.0%, Fe : 0.5∼2.0t%, Nd : 0.05∼0.5%, P : 0.01∼0.15% 이고, 나머지는 Cu 및 불가피한 불순물이 포함된 합금조성으로 이루어진다.As the weight% of the present invention for achieving the above object, Sn: 3.0 to 6.0%, Ni: 0.5 to 2.0%, Si: 0.1 to 1.0%, Fe: 0.5 to 2.0t%, Nd: 0.05 to 0.5%, P: 0.01 to 0.15%, and the rest consists of an alloy composition containing Cu and unavoidable impurities.

또한 본 발명은 상기한 성분에 부가적으로 Zn, B, Al, Ag, Ca, Co, Ti, Zr, Mg, Pb, Mn, REM 중에서 선택한 1종 또는 2종 이상을 0.001∼2.0 중량% 첨가할 수도 있다.In addition, the present invention can add 0.001 to 2.0% by weight of one or two or more selected from Zn, B, Al, Ag, Ca, Co, Ti, Zr, Mg, Pb, Mn, and REM in addition to the above components. It may be.

상기 조성물에서 Sn은 기지에 고용되어 인장강도와 탄성한도를 향상시키는 원소이다.Sn in the composition is an element that is dissolved in the matrix to improve the tensile strength and elastic limit.

Sn의 함량이 3.0 중량% 미만이면 고강도(75kgf/㎟의 특성을 얻을 수 없으며, 반면에 6.0 중량%를 초과하면 전기전도도가 15%IACS 이하로 감소하고, 열간취성이 생겨 열간압연이 어렵게 된다.If the content of Sn is less than 3.0% by weight, high strength (75kgf / mm2) characteristics can not be obtained, whereas if the content of more than 6.0% by weight, the electrical conductivity is reduced to 15% IACs or less, and hot brittleness occurs, making hot rolling difficult.

따라서 Sn 의 함량은 3.0 내지 6.0중량% 이어야 한다.Therefore, the content of Sn should be 3.0 to 6.0% by weight.

Ni는 Si와 결합하여 Ni2Si, P와 결합하여 Ni3P 등의 금속간화합물을 형성하여 전기전도도를 감소시키지 않으면서 강도와 내열성을 향상시키는 원소이다.Ni is an element that combines with Si to form an intermetallic compound such as Ni 2 Si and P to form an intermetallic compound such as Ni 3 P to improve strength and heat resistance without reducing electrical conductivity.

Ni 함량이 0.5 중량% 미만이면 강도향상에 효과를 나타내지 못하며, Ni 함량이 2.0 중량%를 초과하면 첨가량 증가에 따른 석출강화 효과가 떨어지므로 비경제적이다.If the Ni content is less than 0.5% by weight does not show the effect of improving the strength, when the Ni content is more than 2.0% by weight is uneconomical because the precipitation strengthening effect of the addition amount is reduced.

따라서 Ni 함량은 0.5 내지 2.0 중량% 이어야 한다.Therefore the Ni content should be 0.5 to 2.0% by weight.

Si 함량이 0.1 중량% 미만이면 Ni가 0.5 내지 2.0 중량% 함유되어 있어도 강도 및 내열성에 아무런 개선이 없으며, 1.0 중량% 이상이면 석출될 수 있는 양을 초과하게 되어 기지내에 고용체로 존재하게되어 전기전도도를 감소시킨다.If the Si content is less than 0.1% by weight, there is no improvement in strength and heat resistance even if Ni is contained in 0.5 to 2.0% by weight. If it is 1.0% by weight or more, the amount that can be precipitated exceeds the amount that can be precipitated, and thus exists as a solid solution in the base. Decreases.

따라서 Si 함량은 0.1 내지 1.0중량% 이어야 한다.Therefore, Si content should be 0.1 to 1.0 weight%.

Fe는 기지에 고용되어 강도를 향상시키는 원소이다.Fe is an element that is dissolved in the base and improves strength.

또한 Fe는 Ni와 결합하지 못한 잔류 P와 결합하여 Fe3P, Fe2P 등의 금속간화합물을 형성하여 전도도를 감소시키지 않으면서 강도와 내열성을 향상시킨다.In addition, Fe forms an intermetallic compound, such as Fe 3 P or Fe 2 P, by combining with residual P which is not bonded with Ni, thereby improving strength and heat resistance without reducing conductivity.

Fe 함량이 0.5 중량% 미만이면 첨가효과가 거의 나타나지 않으며, 반면에 2.0 중량%를 초과하면 전기전도도가 크게 감소하게 된다.If the Fe content is less than 0.5% by weight almost no additive effect, while the content of more than 2.0% by weight significantly reduces the electrical conductivity.

따라서 Fe의 함량은 0.5 내지 2.0 중량% 이어야 한다.Therefore, the content of Fe should be 0.5 to 2.0% by weight.

P 함량이 0.01 중량% 미만이면 Fe가 0.5 내지 2.0 중량%, Ni가 0.5 내지 2.0 중량% 함유되어 있어도 강도와 내열성에 개선효과가 없으며, 잉여의 Fe와 Ni에 의하여 전기전도도가 감소한다.If the P content is less than 0.01% by weight, even if it contains 0.5 to 2.0% by weight of Fe and 0.5 to 2.0% by weight of Ni, there is no improvement in strength and heat resistance, and the electrical conductivity is reduced by the excess Fe and Ni.

P 함량이 0.15 중량%를 초과하면 전기전도도가 급격히 감소하고 열간가공성이 저하된다.If the P content exceeds 0.15% by weight, the electrical conductivity is sharply reduced and the hot workability is lowered.

따라서 P의 함량은 0.01 내지 0.1 중량% 이어야 한다.Therefore, the content of P should be 0.01 to 0.1% by weight.

Nd 함량이 0.05 중량% 미만이면 강도 및 연신율 향상에 개선효과가 없으며, Nd 함량이 0.5 중량%를 초과하면 용탕의 산화가 심하여 주괴의 결함을 발생시키고 전기전도도를 감소시킨다.If the Nd content is less than 0.05% by weight, there is no improvement effect in improving the strength and elongation. If the Nd content is more than 0.5% by weight, the oxidation of the molten metal is severe, causing defects in the ingot and reducing electrical conductivity.

따라서 Nd 함량은 0.05 내지 0.5중량% 이어야 한다.Therefore, Nd content should be 0.05 to 0.5 weight%.

상기 주성분에 부가적으로 첨가되는 부성분으로써, Zn, B, Al, Ag, Ca, Co, Ti, Zr, Mg, Pb, Mn, REM중 1종 이상을 0.001∼2.0 중량%로 함에 있어, 0.001 중량% 이하에서는 고강도 및 내식성 합금을 얻을 수 없고, 2.0 중량%를 초과하면 도전성의 저하등이 우려된다.As a subcomponent additionally added to the main component, at least one of Zn, B, Al, Ag, Ca, Co, Ti, Zr, Mg, Pb, Mn, and REM is 0.001 to 2.0 wt%, and 0.001 wt% If it is% or less, a high strength and corrosion resistant alloy cannot be obtained, and when it exceeds 2.0 weight%, there exists a possibility of the fall of electroconductivity.

또한 본 발명 그 제조방법에서는, 상기 합금 조성이 되게 용해하여 주괴를 얻는다.Moreover, in this manufacturing method of this invention, it melt | dissolves so that it may become the said alloy composition, and an ingot is obtained.

이 주괴를 700∼950℃에서 열간압연한후에 급냉하여 용체화처리하고, 50~80%의 압하를 갖는 냉간압연과 300∼800℃에서 15분 ∼4시간의 열처리를 실시하되, 이러한 냉가압연 및 열처리를 반복적으로 2∼3회 처리한 후 30∼60%의 압하율로 최종 냉간압연하고, 200∼500℃ 온도에서 30초∼1시간 동안 소둔처리하는 제조공정으로 구성된다.The ingot is hot rolled at 700 to 950 ° C. and then quenched to solution treatment. Cold rolling is performed at 50 to 80%, followed by heat treatment at 300 to 800 ° C. for 15 minutes to 4 hours. After repeated 2 to 3 times, the final cold rolling at a reduction ratio of 30 to 60%, and an annealing treatment for 30 seconds to 1 hour at a temperature of 200 ~ 500 ℃.

상기한 공정에서 열간압연은 용체화 처리와 두께감소를 도모하며, 석출물 형성을 위한 것으로, 950℃ 초과 및 700℃ 미만에서는 석출물의 형성이 저하되므로 적정한 온도범위는 700∼950℃이다.In the above process, hot rolling is intended for solution treatment and thickness reduction, and for the formation of precipitates, the formation of precipitates is lowered above 950 ° C. and below 700 ° C., so that an appropriate temperature range is 700 to 950 ° C.

상기 열간압연에 이어서 급냉처리(용체화처리 : 고온조직을 급냉에 의하여 상온에서도 균이한 조직을 얻은 처리)한다.The hot rolling is followed by a quenching treatment (solution treatment: treatment of obtaining a homogeneous structure even at room temperature by quenching the high temperature structure).

상기 처리에 있어서 50∼80%의 압하율을 적용하여 냉간압연한후 300∼800℃에서 15분∼4시간 소둔열처리하는데, 이러한 냉간압연 및 소둔열처리를 2∼3회 반복실시한다.In the treatment, cold rolling is performed by applying a reduction ratio of 50 to 80%, followed by annealing heat treatment at 300 to 800 ° C. for 15 minutes to 4 hours. The cold rolling and annealing heat treatment are repeated two to three times.

냉간가공시 가공율(압하율)은 열처리온도와 밀접한 관계를 가지는 것으로, 높은 가공율은 전체조직의 균질화와 열처리시의 석출물 형성을 촉진시키는 역할을 한다.The cold working rate (pressure reduction rate) has a close relationship with the heat treatment temperature, and the high working rate promotes homogenization of the entire structure and formation of precipitates during heat treatment.

실제 냉간가공에 의해 감소되는 전기전도도의 저하보다는 냉간가공에 의한 소둔시의 석출물 형성촉진에 따르는 전기전도도의 증가가 더 크다고 할 수 있으며, 동시에 강도와 경도의 향상을 도모하고 있다.The increase in electrical conductivity due to the promotion of precipitate formation during annealing by cold working is greater than the decrease in electrical conductivity actually reduced by cold working, and at the same time, the strength and hardness are improved.

냉간압연에 의한 슬립밴드(Slip band)상에 치밀하게 분포되는 석출물의 양은 소둔 이전의 냉간가공의 양이 많을수록 더욱 커지므로 1차 냉간가공시 가공률 50∼80%에 이어서 적정 소둔온도는 300∼800℃이다.The amount of precipitates that are densely distributed on the slip band due to cold rolling increases as the amount of cold working before annealing increases, so that the optimum annealing temperature is 300 to 80% after the first cold working. 800 ° C.

소둔 온도가 800℃를 초과할 경우 강도에 직접적인 영향을 미치며 높은 온도에서는 오히려 전기 전도도가 감소하는 현상을 나타내고 있으며, 300℃미만에서는 높은 가공에 의한 석출물의 형성이 상당히 늦게 진행됨으로 장시간 소둔을 행하여야 함으로 공업적으로 경제성이 없다.When the annealing temperature exceeds 800 ℃, it has a direct effect on the strength. At high temperatures, the electrical conductivity decreases. On the other hand, when the annealing temperature is lower than 300 ℃, the formation of precipitates by high processing proceeds considerably later. There is no industrial economics.

이와 같은 냉간가공률과 열처리온도는 밀접한 관계를 가지고 있으므로 이러한 냉간가공 및 열처리를 반복실시함으로써 상기 작용이 증대된다.Since the cold working rate and the heat treatment temperature have a close relationship, the above-mentioned action is increased by repeating the cold working and heat treatment.

상기 열처리 시간이 15분 미만일 경우는 석출물의 형성이 불안정하며, 4시간 초과시는 오히려 전기전도도를 감소시킬 수 있다.When the heat treatment time is less than 15 minutes, the formation of precipitates is unstable, and when more than 4 hours, the electrical conductivity may be reduced.

상기 처리에 이어서 30∼60%의 가공률로 최종 냉간압연하여 필요두께를 얻은 후 200∼500℃에서 30초∼1시간 동안 소둔처리한다.Following the treatment, final cold rolling at a processing rate of 30 to 60% to obtain the required thickness is followed by annealing at 200 to 500 ° C. for 30 seconds to 1 hour.

냉간압연 조직의 미세화에 따른 상기 소둔처리(시효처리)단계에서 충분한 석출상의 출현에 의한 경화현상이 나타나므로 필요한 경도를 얻을 수 있는데, 상기 온도 및 시간범위를 벗어나면 필요로하는 특성을 얻을 수 없다.In the annealing (aging treatment) step according to the miniaturization of the cold rolled structure, hardening occurs due to the appearance of sufficient precipitated phase, so that the required hardness can be obtained. If the temperature and time range are exceeded, the required characteristics cannot be obtained. .

이상의 제조공정에 따른 본 발명의 소재는 전기전도도 IACS 15% 이상, 인장강도 73∼79 kg/㎟, 연신율 10.6∼14.2% 정도를 나타냄으로써 전기, 전자부품 특히 커넥터 및 단자용 소재로서는 아주 적합한 특성을 나타내고 있다.According to the above manufacturing process, the material of the present invention exhibits an electric conductivity of IACS of 15% or more, a tensile strength of 73 to 79 kg / mm2, and an elongation of 10.6 to 14.2%, thereby being very suitable for electric and electronic parts, especially connectors and terminals. It is shown.

다음은 실시예에 따라 설명한다.The following is described according to the embodiment.

표 1과 같은 조성의 합금을 목탄 피복하에 대기 중에는 용해한 후 1200∼1300℃에서 그라파이트 몰드(Graphite mold)에 주입하여 50mmT×50mmW×130mmL 주괴를 얻는다.The alloy of the composition shown in Table 1 is melt | dissolved in air | atmosphere under charcoal coating, and then inject | poured into a graphite mold at 1200-1300 degreeC, and obtain 50 mmT x 50 mmW x 130 mmL ingot.

주괴의 4면을 각 2mm씩 면삭한 뒤 700 내지 950℃에서 1 내지 4시간 가열한 후 열간압연을 실시하고, 급냉하였다.The four sides of the ingot were faced 2 mm each, heated at 700 to 950 ° C. for 1 to 4 hours, followed by hot rolling and quenching.

표면의 산화스케일을 면삭으로 제거한 후 냉간압연, 중간열처리 및 표면 산세과정을 반복 실행하여 0.2∼0.3mm 두께의 시편을 제작하였다.After removing the oxide scale of the surface by surface, cold rolling, intermediate heat treatment, and surface pickling were repeated to prepare 0.2-0.3 mm thick specimens.

냉간압연의 압하율은 50% 이상으로 실시하였으며, 중간열처리는 300 내지 800℃에서 15 내지 240분간 실시하였으며, 열처리후 표면에 생기는 산화스케일은 묽은 황산으로 제거하였다.Cold rolling was carried out at 50% or more, and the intermediate heat treatment was performed at 300 to 800 ° C. for 15 to 240 minutes, and the scale of oxide formed on the surface after heat treatment was removed with dilute sulfuric acid.

최종 냉간압연 후에는 200 내지 500℃에서 30초 내지 60분간 저온소둔을 실시하여 연신율을 향상시켰다.After the final cold rolling, low temperature annealing was performed at 200 to 500 ° C. for 30 seconds to 60 minutes to improve elongation.

이렇게 하여 얻어진 시편의 시험결과를 표 2에 나타내었다.Table 2 shows the test results of the specimen thus obtained.

사용된 시험방법에서 인장강도 및 연신율은 압연방향에 평행하게 자른 시편을 사용하여 측정하고, 전기전도도는 저항법으로 측정한 값을 %IACS로 환산하였으며, 경도는 마이크로비커스 경도계를 사용하여 500g의 하중으로 15초동안 측정하였다.In the test method used, the tensile strength and elongation were measured using a specimen cut parallel to the rolling direction, the electrical conductivity was converted into% IACS by the resistance method, and the hardness was 500g using a micro-Vickers hardness tester. Was measured for 15 seconds.

그리고, 연화온도는 시편을 온도구간별로 5분간 가열하여 최초 경도의 80%를 나타내는 온도를 측정함으로써 평가하였고, 도금밀착성 여부를 도금한 시편을 내경이 0.5mm인 봉으로 180° 굽힘시험을 한 후 도금면을 관찰하여 도금의 부풀음이나 박리가 일어났는지를 살펴봄으로써 도금층의 밀착성을 테스트하였다.In addition, the softening temperature was evaluated by heating the specimen for 5 minutes for each temperature section and measuring the temperature indicating 80% of the initial hardness. The adhesion of the plating layer was tested by observing the plating surface to see if swelling or peeling of the plating occurred.

Figure kpo00001
Figure kpo00001

Figure kpo00002
Figure kpo00002

이상에서와 같이 본 발명은 기존의 인청동 소재의 문제점을 해결하기 위해 주석(Sn) 함량을 낮게 설정하면서 Ni, Si, P, Fe, Nd 원소등을 적절히 조절하여 첨가함과 함께 제조공정을 통하여 전기전도도 향상을 비롯한 경도, 특히 고강도 특성을 갖는 전기, 전자부품소재, 바람직하게는 커넥터 및 단자용에 적합한 특성을 갖는 소재를 얻을 수 있다.As described above, in order to solve the problem of the conventional phosphor bronze material, the tin (Sn) content is set low, and Ni, Si, P, Fe, Nd elements, etc. are added as appropriately adjusted and added through the manufacturing process. It is possible to obtain a material having properties suitable for electric and electronic component materials, preferably connectors and terminals, having hardness, particularly high strength, including conductivity enhancement.

Claims (2)

중량%로서, Sn : 3.0∼6.0%, Ni : 0.5∼2.0%, Si : 0.1∼1.0%, Fe : 0.5∼2.0%, Nd : 0.05∼0.5%, P : 0.01∼0.15%, Zn, B, Al, Ca, Co, Ti, Zr, Mg, Pd, Mn, REM 중에서 선택한 1종 또는 각종 이상 0.01∼2.0%이고, 나머지는 Cu 및 불가피한 불순물로 조성됨을 특징으로 하는 전기 및 전자부품용 고강도 동합금.As the weight%, Sn: 3.0 to 6.0%, Ni: 0.5 to 2.0%, Si: 0.1 to 1.0%, Fe: 0.5 to 2.0%, Nd: 0.05 to 0.5%, P: 0.01 to 0.15%, Zn, B, Al, Ca, Co, Ti, Zr, Mg, Pd, Mn, REM is one or more selected from 0.01 to 2.0% of the high strength copper alloy for electric and electronic parts, characterized in that the composition is composed of Cu and unavoidable impurities. 중량%로서, Sn : 3.0∼6.0%, Ni : 0.5∼2.0%, Si : 0.1∼1.0%, Fe : 0.5∼2.0%, Nd : 0.05∼0.5%, P : 0.01∼0.15%, Zn, B, Al, Ca, Co, Ti, Zr, Mg, Pd, Mn, REM 중에서 선택한 1종 또는 1종 이상 0.001∼2.0%이고, 나머지는 Cu 및 불가피한 불순물로 조성되게 용해하여 주괴를 얻는 단계, 상기 주괴를 700∼950℃에서 열간압연한 후 급냉처리하는 단계, 50∼80%의 압하율을 적용하여 냉간압연하고 300∼800℃에서 15분∼4시간 열처리하되, 상기 냉간압연 및 열처리를 2∼3회에 걸쳐 반복적으로 실시하는 단계, 30∼60%의 압하율을 적용하여 최종냉간압연후 200∼500℃에서 30초 ∼1시간 동안 소둔처리함을 특징으로 하는 전기 및 전자부품용 고강도 동합금의 제조방법.As the weight%, Sn: 3.0 to 6.0%, Ni: 0.5 to 2.0%, Si: 0.1 to 1.0%, Fe: 0.5 to 2.0%, Nd: 0.05 to 0.5%, P: 0.01 to 0.15%, Zn, B, At least one selected from Al, Ca, Co, Ti, Zr, Mg, Pd, Mn, and REM or 0.001 to 2.0%, and the remainder is dissolved in a composition composed of Cu and unavoidable impurities to obtain an ingot. Hot rolling at 700 to 950 ° C., followed by quenching, cold rolling at 50 to 80%, and heat treatment at 300 to 800 ° C. for 15 minutes to 4 hours, wherein the cold rolling and heat treatment are performed two to three times. Repeatedly carried out over, applying a reduction ratio of 30 to 60%, annealing for 30 seconds to 1 hour at 200 to 500 ℃ after the final cold rolling, characterized in that the manufacturing method of high-strength copper alloy for electrical and electronic parts .
KR1019970037251A 1997-08-04 1997-08-04 High strength copper alloy for electric and electric component and method for preparing the same KR100257204B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970037251A KR100257204B1 (en) 1997-08-04 1997-08-04 High strength copper alloy for electric and electric component and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970037251A KR100257204B1 (en) 1997-08-04 1997-08-04 High strength copper alloy for electric and electric component and method for preparing the same

Publications (2)

Publication Number Publication Date
KR19990015268A KR19990015268A (en) 1999-03-05
KR100257204B1 true KR100257204B1 (en) 2000-05-15

Family

ID=19516857

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970037251A KR100257204B1 (en) 1997-08-04 1997-08-04 High strength copper alloy for electric and electric component and method for preparing the same

Country Status (1)

Country Link
KR (1) KR100257204B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441368B1 (en) * 2002-05-08 2004-07-23 주식회사 엘지이아이 High Conductivity Copper Alloys for Semi-solid Forming and Manufacturing Method Thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365038A (en) * 1986-09-08 1988-03-23 Furukawa Electric Co Ltd:The Copper alloy for electronic and electrical equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365038A (en) * 1986-09-08 1988-03-23 Furukawa Electric Co Ltd:The Copper alloy for electronic and electrical equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441368B1 (en) * 2002-05-08 2004-07-23 주식회사 엘지이아이 High Conductivity Copper Alloys for Semi-solid Forming and Manufacturing Method Thereof

Also Published As

Publication number Publication date
KR19990015268A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
US4822560A (en) Copper alloy and method of manufacturing the same
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JPH0741887A (en) Copper alloy for electric and electronic part and its preparation
JPS63149344A (en) High strength copper alloy having high electrical conductivity
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
EP0189637A1 (en) Copper alloy and production of the same
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
KR960010816B1 (en) Copper alloy lead frame material for semiconductor devices
JPS63143230A (en) Precipitation strengthening high tensile copper alloy having high electrical conductivity
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
JP2521880B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPS62182240A (en) Conductive high-tensile copper alloy
KR100257204B1 (en) High strength copper alloy for electric and electric component and method for preparing the same
JPH032341A (en) High strength and high conductivity copper alloy
JPS6250426A (en) Copper alloy for electronic appliance
JPS61264144A (en) High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JP2870780B2 (en) High-strength copper alloy for lead frames
WO2023167230A1 (en) Copper alloy material and method for manufacturing copper alloy material
JP2576853B2 (en) Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPH0830233B2 (en) High strength and high conductivity copper alloy
JPS63192835A (en) Lead material for ceramic package

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20031229

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee