JPH0733563B2 - Manufacturing method of copper alloy strip for electronic equipment - Google Patents

Manufacturing method of copper alloy strip for electronic equipment

Info

Publication number
JPH0733563B2
JPH0733563B2 JP63288041A JP28804188A JPH0733563B2 JP H0733563 B2 JPH0733563 B2 JP H0733563B2 JP 63288041 A JP63288041 A JP 63288041A JP 28804188 A JP28804188 A JP 28804188A JP H0733563 B2 JPH0733563 B2 JP H0733563B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy strip
minute
copper
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63288041A
Other languages
Japanese (ja)
Other versions
JPH02133555A (en
Inventor
健治 久保薗
孝司 中島
武文 伊藤
公男 橋爪
晋一 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63288041A priority Critical patent/JPH0733563B2/en
Priority to KR1019890004455A priority patent/KR930006292B1/en
Priority to DE3911874A priority patent/DE3911874C2/en
Publication of JPH02133555A publication Critical patent/JPH02133555A/en
Priority to US07/835,082 priority patent/US5248351A/en
Publication of JPH0733563B2 publication Critical patent/JPH0733563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、集積回路のリードフレーム材、コネクタスイ
ッチ、リレー等の電子機器用銅合金条、特にCu−Ni−P
−SiまたはCu−Ni−P−Si−Zn合金からなる電子機器用
銅合金条の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a copper alloy strip for electronic devices such as lead frame materials for integrated circuits, connector switches, relays, etc., particularly Cu-Ni-P.
The present invention relates to a method for producing a copper alloy strip for electronic devices, which is made of a -Si or Cu-Ni-P-Si-Zn alloy.

〔従来の技術〕[Conventional technology]

電子機器に使用される材料は、部品の小型化や高信頼性
の要求に伴い、高強度、高電導性に加え、耐食性や耐熱
性のより優れたものが望まれている。
Materials used for electronic devices are required to have high strength and high electrical conductivity, as well as excellent corrosion resistance and heat resistance, along with demands for miniaturization of parts and high reliability.

従来の電子機器用の銅合金としては、CDA(Copper Deve
lopment Association)C19400合金や、Cu−0.1%Sn、Cu
−0.1%Feなどの高電導型の合金、あるいはりん青銅の
ような高強度型の合金が主に使われてきている。
Conventional copper alloys for electronic devices include CDA (Copper Deve
lopment Association) C19400 alloy, Cu-0.1% Sn, Cu
Highly conductive alloys such as -0.1% Fe or high strength alloys such as phosphor bronze have been mainly used.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、これらの合金は、電子機器に使用される
材料の小型化や高信頼性の要求に伴う高強度、高電導性
を伴せもつことができないという問題点があった。
However, these alloys have a problem in that they cannot be accompanied by high strength and high electrical conductivity due to the demand for miniaturization and high reliability of materials used in electronic devices.

本発明は、強度と電気伝導率の両方に優れた特性をも
ち、近来の電子機器用材に求められる性能を満足する優
れ電子機器用銅合金条の製造方法を提供することを目的
とする。
It is an object of the present invention to provide a method for producing an excellent copper alloy strip for electronic devices, which has excellent properties in both strength and electrical conductivity and which satisfies the performance required of materials for recent electronic devices.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、次の電子機器用銅合金条の製造方法である。 The present invention is the following method for manufacturing a copper alloy strip for electronic devices.

(1)重量%にて、1.0〜8%のニッケル、0.1〜0.8%
の燐、0.06〜1%のシリコンを含有し、残部が銅および
不可避の不純物からなる銅合金条を、最終仕上圧延前に
750〜950℃の温度範囲で1分間以上加熱し、水または油
中で急冷する工程と、その後冷間加工の有無にかかわら
ず350〜500℃の温度範囲で10分間以上の加熱を施す工程
を1回以上行う電子機器用銅合金条の製造方法(製造方
法(1))。
(1) 1.0 to 8% nickel, 0.1 to 0.8% by weight
Before the final finish rolling, a copper alloy strip containing phosphorus of 0.06 to 1% and the balance of copper and unavoidable impurities is contained.
A process of heating in the temperature range of 750 to 950 ° C for 1 minute or more and quenching in water or oil, and then a process of heating for 10 minutes or more in the temperature range of 350 to 500 ° C regardless of whether cold working is performed or not. A method for producing a copper alloy strip for electronic devices, which is performed one or more times (production method (1)).

(2)重量%にて、1.0〜8%のニッケル、0.1〜0.8%
の燐、0.06〜1%のシリコンを含有し、残部が銅および
不可避の不純物からなる銅合金条を、最終仕上圧延前に
750〜950℃の温度範囲で1分間以上加熱し、この後4℃
/分以下で徐冷する電子機器用銅合金条の製造方法(製
造方法(2))。
(2) 1.0 to 8% nickel, 0.1 to 0.8% by weight
Before the final finish rolling, a copper alloy strip containing phosphorus of 0.06 to 1% and the balance of copper and unavoidable impurities is contained.
Heat in the temperature range of 750-950 ℃ for 1 minute or more, then 4 ℃
A method for producing a copper alloy strip for electronic devices that is gradually cooled at a rate of not more than 1 minute (production method (2)).

(3)重量%にて、1.0〜8%のニッケル、0.1〜0.8%
の燐、0.06〜1%のシリコンを含有し、残部が銅および
不可避の不純物からなる銅合金条を、最終仕上圧延前に
750〜950℃の温度範囲で1分間以上加熱した後、500℃
までは1℃/分以上で冷却し、500〜350℃の間では少な
くとも1時間以上保持または徐冷する電子機器用銅合金
条の製造方法(製造方法(3))。
(3) 1.0 to 8% nickel, 0.1 to 0.8% by weight
Before the final finish rolling, a copper alloy strip containing phosphorus of 0.06 to 1% and the balance of copper and unavoidable impurities is contained.
After heating for 1 minute or more in the temperature range of 750-950 ℃, 500 ℃
To 1 ° C./minute or more, and at 500 to 350 ° C., holding or gradual cooling for at least 1 hour or more, a method for manufacturing a copper alloy strip for electronic devices (manufacturing method (3)).

(4)重量%にて、1.0〜8%のニッケル、0.1〜0.8%
の燐、0.06〜1%のシリコン、0.03〜0.5%の亜鉛を含
有し、残部が銅および不可避の不純物からなる銅合金条
を、最終仕上圧延前に750〜950℃の温度範囲で1分間以
上加熱し、水または油中で急冷する工程と、その後冷間
加工の有無にかかわらず350〜500℃の温度範囲で10分間
以上の加熱を施す工程を1回以上行う電子機器用銅合金
条の製造方法(製造方法(4))。
(4) 1.0 to 8% nickel, 0.1 to 0.8% by weight
Of phosphorus, 0.06 to 1% of silicon, 0.03 to 0.5% of zinc, and the balance consisting of copper and unavoidable impurities, the copper alloy strip is 750 to 950 ℃ for 1 minute or more before final finishing rolling. A copper alloy strip for electronic equipment, in which the step of heating and quenching in water or oil, and then the step of heating for 10 minutes or more in the temperature range of 350 to 500 ° C with or without cold working are performed once or more. Manufacturing method (manufacturing method (4)).

(5)重量%にて、1.0〜8%のニッケル、0.1〜0.8%
の燐、0.06〜1%のシリコン、0.03〜0.5%の亜鉛を含
有し、残部が銅および不可避の不純物からなる銅合金条
を、最終仕上圧延前に750〜950℃の温度範囲で1分間以
上加熱し、この後4℃/分以下で徐冷する電子機器用銅
合金条の製造方法(製造方法(5))。
(5) 1.0 to 8% nickel, 0.1 to 0.8% by weight
Of phosphorus, 0.06 to 1% of silicon, 0.03 to 0.5% of zinc, and the balance consisting of copper and unavoidable impurities, the copper alloy strip is 750 to 950 ℃ for 1 minute or more before final finishing rolling. A method for producing a copper alloy strip for electronic equipment, which comprises heating and then gradually cooling at 4 ° C./minute or less (production method (5)).

(6)重量%にて、1.0〜8%のニッケル、0.1〜0.8%
の燐、0.06〜1%のシリコン、0.03〜0.5%の亜鉛を含
有し、残部が銅および不可避の不純物からなる銅合金条
を、最終仕上圧延前に750〜950℃の温度範囲で1分間以
上加熱した後、500℃までは1℃/分以上で冷却し、500
〜350℃の間では少なくとも1時間以上保持または徐冷
する電子機器用銅合金条の製造方法(製造方法
(6))。
(6) 1.0% to 8% nickel, 0.1% to 0.8% by weight
Of phosphorus, 0.06 to 1% of silicon, 0.03 to 0.5% of zinc, and the balance consisting of copper and unavoidable impurities, the copper alloy strip is 750 to 950 ℃ for 1 minute or more before final finishing rolling. After heating, cool up to 500 ° C at 1 ° C / min or more, 500
A method for producing a copper alloy strip for electronic equipment, which is maintained or gradually cooled for at least 1 hour or more at a temperature of up to 350 ° C (production method (6)).

次に本発明の電子機器用銅合金を構成する合金成分の添
加理由と、その組成範囲の限定理由について説明する。
Next, the reason for adding the alloy components that constitute the copper alloy for electronic devices of the present invention and the reason for limiting the composition range will be described.

ニッケル、燐およびシリコンは、これらの元素がNi5P2
やNi2Si等の金属間化合物を効率よく生成し、強度の向
上と導電率の低下の少ない範囲とし、ニッケルの下限1.
0%は、これ未満では金属間化合物が少なく、強度の向
上が少ないためであり、8%を超えると強度水準の向上
が、配合量に比して効果が少なくなり、また加工性が劣
化するとともに、電気伝導率の低下とはんだめっきの耐
熱性が劣化する傾向にあるためである。ニッケルの燐、
およびニッケルとシリコンの金属間化合物を効率的に生
成させるためには、重量比的にNi:Pが約5:1、Ni:Siが約
4:1にあるときに、強度、電気伝導率の水準が最も優れ
ており、これは金属間化合物として、Ni5P2やNi2Siにほ
ぼ相当している。従って燐、シリコンの量は、この重量
比より範囲を定めた。
Nickel, phosphorus and silicon have these elements as Ni 5 P 2
The lower limit of nickel is 1.The efficiency of intermetallic compounds such as Ni 2 Si and Ni 2 Si is efficiently generated, and the range is such that the strength is improved and the conductivity is not decreased.
If it is less than 0%, the amount of intermetallic compound is small and the improvement of strength is small, and if it exceeds 8%, the improvement of the strength level is less effective than the compounding amount, and the workability is deteriorated. At the same time, the electric conductivity tends to decrease and the heat resistance of the solder plating tends to deteriorate. Nickel phosphorus,
In order to efficiently generate the intermetallic compound of nickel and silicon, Ni: P is about 5: 1 and Ni: Si is about 5: 1 by weight ratio.
When the ratio is 4: 1, the strength and electric conductivity levels are the highest, which is almost equivalent to Ni 5 P 2 and Ni 2 Si as intermetallic compounds. Therefore, the amounts of phosphorus and silicon are determined by this weight ratio.

製造方法(4)〜(6)における添加元素の亜鉛につい
ては、亜鉛ははんだ付けあるいははんだめっき後の高温
環境におけるはんだ層の剥離等の信頼性劣化を抑える効
果が認められ、その最少必要量の0.03%を下限とし、上
限については応力腐食性の点で0.5%とした。
Regarding the additive element zinc in the manufacturing methods (4) to (6), zinc is recognized to have an effect of suppressing reliability deterioration such as peeling of the solder layer in a high temperature environment after soldering or solder plating, and the minimum required amount of zinc is required. The lower limit was 0.03% and the upper limit was 0.5% in terms of stress corrosion.

次に製造方法について、図面を参照して説明する。Next, a manufacturing method will be described with reference to the drawings.

第1図は、上記製造方法(1)および(4)を示す工程
図である。製造方法(1)では重量%にて、1.0〜8%
のニッケル、0.1〜0.8%の燐、0.06〜1%のシリコンを
含有し、残部が銅および不可避の不純物からなる銅合金
条(W)を、また製造方法(4)では重量%にて、1.0
〜8%のニッケル、0.1〜0.8%の燐、0.06〜1%のシリ
コン、0.03〜0.5%の亜鉛を含有し、残部が銅および不
可避の不純物からなる銅合金条(W)に対して、冷間加
工と熱処理をくり返えす。このとき最終仕上圧延前に、
(A)工程において、750〜950℃の温度で1分間以上加
熱し、次に(B)工程において、水または油中で急冷す
る。この冷却したものを(C)工程の冷間加工を施す
か、あるいは施すことなく、(D)工程において、350
〜500℃の温度範囲で10分間以上加熱処理を施し、必要
により(E)工程の冷間加工を行って電子機器用銅合金
条を製造する。この(D)工程の加熱処理および必要に
より行われる(E)工程の冷間加工は2回以上行っても
よい。
FIG. 1 is a process drawing showing the manufacturing methods (1) and (4). In the manufacturing method (1), 1.0 to 8% in weight%
Of nickel, 0.1 to 0.8% of phosphorus, 0.06 to 1% of silicon, the balance being copper alloy strip (W) consisting of copper and unavoidable impurities, and in the production method (4), 1.0% by weight.
-8% nickel, 0.1-0.8% phosphorus, 0.06-1% silicon, 0.03-0.5% zinc, with the balance being copper and unavoidable impurities. Repeat hot working and heat treatment. At this time, before final finishing rolling,
In step (A), heating is performed at a temperature of 750 to 950 ° C. for 1 minute or more, and then in step (B), quenching is performed in water or oil. This cooled product is subjected to the cold working in the step (C) or is not subjected to the cold working in the step (D), and is subjected to 350
A heat treatment is performed for 10 minutes or more in a temperature range of up to 500 ° C., and if necessary, cold working in the step (E) is performed to manufacture a copper alloy strip for electronic devices. The heat treatment in the step (D) and the cold working in the step (E), which is performed if necessary, may be performed twice or more.

第2図は、上記製造方法(2)および(5)を示す工程
図である。製造方法(2)では、重量%にて、1.0〜8
%のニッケル、0.1〜0.8%の燐、0.06〜1%のシリコン
を含有し、残部が銅および不可避の不純物からなる銅合
金条(W)を、また製造方法(5)では、重量%にて、
1.0〜8%のニッケル、0.1〜0.8%の燐、0.06〜1%の
シリコン、0.03〜0.5%の亜鉛を含有し、残部が銅およ
び不可避の不純物からなる銅合金条(W)に対して、冷
間加工と熱処理をくり返えす。このとき最終仕上圧延前
に(A)工程において、750〜950℃の温度で1分間以上
加熱する。次に、(B2)工程において、4℃/分以下の
冷却速度で徐冷し、電子機器用銅合金条を製造する。
FIG. 2 is a process drawing showing the manufacturing methods (2) and (5). In the manufacturing method (2), 1.0 to 8% by weight.
% Nickel, 0.1-0.8% phosphorus, 0.06-1% silicon, the balance being copper alloy strips (W) consisting of copper and unavoidable impurities, and in the production method (5), in% by weight. ,
For a copper alloy strip (W) containing 1.0 to 8% nickel, 0.1 to 0.8% phosphorus, 0.06 to 1% silicon, 0.03 to 0.5% zinc, and the balance copper and unavoidable impurities, Repeat cold working and heat treatment. At this time, in the step (A) before final finish rolling, heating is performed at a temperature of 750 to 950 ° C. for 1 minute or more. Next, in the step (B 2 ), the copper alloy strip for electronic devices is manufactured by gradually cooling at a cooling rate of 4 ° C./min or less.

第3図は、上記製造方法(3)および(6)の製造方法
を示す工程図である。製造方法(3)では重量%にて、
1.0〜8%のニッケル、0.1〜0.8%の燐、0.06〜1%の
シリコンを含有し、残部が銅および不可避の不純物から
なる銅合金条(W)を、また製造方法(6)では、重量
%にて、1.0〜8%のニッケル、0.1〜0.8%の燐、0.06
〜1%のシリコン、0.03〜0.5%の亜鉛を含有し、残部
が銅および不可避の不純物からなる銅合金条(W)に対
して、冷間加工と熱処理をくり返えす。このとき最終仕
上圧延前に(A)工程において、750〜950℃の温度で1
分間以上加熱する。この加熱処理したものを、(B3)工
程において、500℃までは1℃/分以上で冷却し、次に
(C3)工程において、500〜350℃の温度範囲では少なく
とも1時間以上所定温度を保持または徐冷し、電子機器
用銅合金条を製造する。
FIG. 3 is a process drawing showing the manufacturing methods (3) and (6). In the manufacturing method (3), in% by weight,
A copper alloy strip (W) containing 1.0 to 8% of nickel, 0.1 to 0.8% of phosphorus, 0.06 to 1% of silicon, and the balance of copper and inevitable impurities, and the production method (6) has a weight of %, 1.0-8% nickel, 0.1-0.8% phosphorus, 0.06
Cold working and heat treatment are repeated for a copper alloy strip (W) containing ˜1% silicon, 0.03 to 0.5% zinc, and the balance copper and unavoidable impurities. At this time, before the final finish rolling, in the step (A), at a temperature of 750 to 950 ° C., 1
Heat for at least one minute. This heat-treated product is cooled at 1 ° C./minute or more up to 500 ° C. in the step (B 3 ) and then in the temperature range of 500 to 350 ° C. in the step (C 3 ) for at least 1 hour or more at a predetermined temperature. Hold or slowly cool to manufacture copper alloy strips for electronic devices.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

表1に示す成分割合のCu−Ni−P−Si合金およびCu−Ni
−P−Si−Zn合金を基地とし、本発明と比較例の製造方
法により電子機器用銅合金条を製造した。
Cu-Ni-P-Si alloy and Cu-Ni with the composition ratio shown in Table 1
A copper alloy strip for electronic devices was manufactured by using the -P-Si-Zn alloy as a base and by the manufacturing method of the present invention and the comparative example.

試料の作成は、各成分を高周波電気炉にて溶解後、厚さ
20mmの鋳型に鋳込み、表面を面削後、冷間圧延と熱処理
をくり返し、最終50%の冷間加工をして0.25mmの板状に
仕上げた。
Samples are prepared by melting each component in a high frequency electric furnace and then
It was cast into a 20 mm mold, the surface was chamfered, cold rolling and heat treatment were repeated, and final cold working was performed at 50% to finish into a 0.25 mm plate.

熱処理等の条件については表1に示すとおりであり、試
料No.1、試料No.3、試料No.6および試料No.7は厚さ0.5m
mのものを800℃で30分間加熱後水中で急冷し、厚さ0.25
mmに冷間加工した後、450℃で2時間加熱した後炉中で
徐冷した。試料No.2は試料No.1と同様に加熱して急冷
後、450℃で2時間加熱し、炉中で徐冷後厚さ0.25mmに
冷間加工した。試料No.4および試料No.9は試料No.1と同
様に加熱後炉中で冷却速度の最大値が2.5℃/minとなる
ように徐冷し、厚さ0.25mmに冷間加工した。試料No.5は
試料No.1と同様に加熱後450℃まで30分間冷却し、その
まま450℃で2時間保持し、炉中で徐冷した後、厚さ0.2
5mmに冷間加工した。試料No.8は厚さ1.5mmのものを800
℃で30分間加熱後水中で急冷し、厚さ0.5mmに冷間加工
した後450℃で2時間加熱し、炉中で徐冷した後0.25mm
に冷間加工した。
Conditions such as heat treatment are shown in Table 1. Sample No. 1, Sample No. 3, Sample No. 6 and Sample No. 7 have a thickness of 0.5 m.
After heating the m at 800 ° C for 30 minutes, it is rapidly cooled in water to a thickness of 0.25
After cold working to mm, it was heated at 450 ° C. for 2 hours and then gradually cooled in a furnace. Sample No. 2 was heated in the same manner as Sample No. 1, quenched, then heated at 450 ° C. for 2 hours, gradually cooled in a furnace, and then cold worked to a thickness of 0.25 mm. Similar to Sample No. 1, Sample No. 4 and Sample No. 9 were gradually cooled in the furnace after heating so that the maximum cooling rate was 2.5 ° C./min, and cold-worked to a thickness of 0.25 mm. Sample No. 5 was heated to 450 ° C for 30 minutes, heated at 450 ° C for 2 hours, gradually cooled in a furnace, and then heated to a thickness of 0.2 as in Sample No. 1.
Cold worked to 5 mm. Sample No. 8 has a thickness of 1.5 mm and is 800
After heating at ℃ for 30 minutes, quenching in water, cold working to a thickness of 0.5mm, then heating at 450 ℃ for 2 hours, and gradually cooling in a furnace, then 0.25mm
Cold worked.

比較例として、試料No.10は厚さ0.5mmのものを700℃で
1時間加熱後水中で急冷し、厚さ0.25mmに冷間加工し
た。また試料No.11は試料No.10と同様に加熱、急冷、冷
間加工後、450℃で2時間加熱し炉中で徐冷した。
As a comparative example, sample No. 10 having a thickness of 0.5 mm was heated at 700 ° C. for 1 hour, rapidly cooled in water, and cold-worked to a thickness of 0.25 mm. Similarly to sample No. 10, sample No. 11 was heated, rapidly cooled, cold-worked, then heated at 450 ° C for 2 hours and gradually cooled in a furnace.

以上により得られた試料について、引張強さおよび電気
伝導率を測定した結果を表1に示す。
Table 1 shows the results of measuring the tensile strength and the electrical conductivity of the sample obtained as described above.

表1の結果より、本発明による製造方法の採用により、
比較例の試料No.10およびNo.11より高い強度が得られる
ことが明らかである。また試料No.1、2、4、5の実施
例の比較より、製造方法(1)〜(3)の中では製造方
法(1)が強度的により優れていることを示している。
From the results of Table 1, by adopting the manufacturing method according to the present invention,
It is clear that higher strength can be obtained than the samples No. 10 and No. 11 of the comparative example. Further, comparison of the examples of sample Nos. 1, 2, 4, and 5 shows that the production method (1) is superior in strength among the production methods (1) to (3).

なお、最終圧延上りのものに圧延時の内部歪除去のため
歪取り低温焼鈍として150〜450℃で3分間以上加熱する
ことは、ばね特性および加工性向上の手段としてさらに
有効である。
In addition, it is more effective as a means for improving spring characteristics and workability to heat the final rolled product at 150 to 450 ° C. for 3 minutes or more as strain relief low temperature annealing for removing internal strain during rolling.

〔発明の効果〕〔The invention's effect〕

本発明によれば、Cu−Ni−P−Si合金およびCu−Ni−P
−Si−Zn合金に特定の熱処理を施すことにより、高強度
と高電気伝導率を併せもつ電子機器用銅合金条を得るこ
とができ、今後の電子機器用部品の小型化に非常に有用
である。
According to the present invention, Cu-Ni-P-Si alloys and Cu-Ni-P
-By subjecting the -Si-Zn alloy to a specific heat treatment, it is possible to obtain a copper alloy strip for electronic devices that has both high strength and high electrical conductivity, and it will be very useful for downsizing electronic device parts in the future. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第3図はそれぞれ本発明の製造方法を示す
工程図である。
1 to 3 are process diagrams showing the manufacturing method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋爪 公男 兵庫県尼崎市塚口本町8丁目1番1号 三 菱電機株式会社材料研究所内 (72)発明者 岩瀬 晋一 神奈川県相模原市宮下1丁目1番57号 三 菱電機エンジニアリング株式会社東京事業 所相模支所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kimio Hashizume 8-1-1 Tsukaguchihonmachi, Amagasaki-shi, Hyogo Sanryo Electric Co., Ltd. Materials Research Laboratory (72) Inventor Shinichi Iwase 1-1-1, Miyashita, Sagamihara-shi, Kanagawa No.57 Sanryo Electric Engineering Co., Ltd. Tokyo Office Sagami Branch

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】重量%にて、1.0〜8%のニッケル、0.1〜
0.8%の燐、0.06〜1%のシリコンを含有し、残部が銅
および不可避の不純物からなる銅合金条を、最終仕上圧
延前に750〜950℃の温度範囲で1分間以上加熱し、水ま
たは油中で急冷する工程と、その後350〜500℃の温度範
囲で10分間以上の加熱を施す工程を行うことを特徴とす
る電子機器用銅合金条の製造方法。
1. By weight percent, 1.0-8% nickel, 0.1-
A copper alloy strip containing 0.8% phosphorus, 0.06 to 1% silicon and the balance copper and unavoidable impurities is heated to a temperature range of 750 to 950 ° C for 1 minute or more before final finishing rolling, and then water or A method for producing a copper alloy strip for electronic equipment, which comprises performing a step of quenching in oil and a step of heating at a temperature range of 350 to 500 ° C for 10 minutes or more.
【請求項2】重量%にて、1.0〜8%のニッケル、0.1〜
0.8%の燐、0.06〜1%のシリコンを含有し、残部が銅
および不可避の不純物からなる銅合金条を、最終仕上圧
延前に750〜950℃の温度範囲で1分間以上加熱し、この
後4℃/分以下で徐冷することを特徴とする電子機器用
銅合金条の製造方法。
2. By weight percent, 1.0-8% nickel, 0.1-
A copper alloy strip containing 0.8% phosphorus, 0.06-1% silicon and the balance copper and unavoidable impurities is heated for 1 minute or more in the temperature range of 750 to 950 ° C. before the final finish rolling. A method for producing a copper alloy strip for electronic devices, which comprises slow cooling at 4 ° C / min or less.
【請求項3】重量%にて、1.0〜8%のニッケル、0.1〜
0.8%の燐、0.06〜1%のシリコンを含有し、残部が銅
および不可避の不純物からなる銅合金条を、最終仕上圧
延前に750〜950℃の温度範囲で1分間以上加熱した後、
500℃までは1℃/分以上で冷却し、500〜350℃の間で
は少なくとも1時間以上保持または徐冷することを特徴
とする電子機器用銅合金条の製造方法。
3. By weight%, 1.0-8% nickel, 0.1-
After heating a copper alloy strip containing 0.8% phosphorus, 0.06 to 1% silicon and the balance copper and unavoidable impurities in the temperature range of 750 to 950 ° C. for 1 minute or more before final finish rolling,
A method for producing a copper alloy strip for electronic equipment, which comprises cooling to 500 ° C at a rate of 1 ° C / minute or more, and holding or gradually cooling at a temperature of 500 to 350 ° C for at least 1 hour or more.
【請求項4】重量%にて、1.0〜8%のニッケル、0.1〜
0.8%の燐、0.06〜1%のシリコン、0.03〜0.5%の亜鉛
を含有し、残部が銅および不可避の不純物からなる銅合
金条を、最終仕上圧延前に750〜950℃の温度範囲で1分
間以上加熱し、水または油中で急冷する工程と、その後
350〜500℃の温度範囲で10分間以上の加熱を施す工程を
行うことを特徴とする電子機器用銅合金条の製造方法。
4. By weight percent, 1.0-8% nickel, 0.1-
A copper alloy strip containing 0.8% phosphorus, 0.06 to 1% silicon, 0.03 to 0.5% zinc and the balance copper and unavoidable impurities is used in a temperature range of 750 to 950 ° C before final finishing rolling. Heating for more than 1 minute, quenching in water or oil, and then
A method for producing a copper alloy strip for electronic devices, which comprises performing heating for 10 minutes or more in a temperature range of 350 to 500 ° C.
【請求項5】重量%にて、1.0〜8%のニッケル、0.1〜
0.8%の燐、0.06〜1%のシリコン、0.03〜0.5%の亜鉛
を含有し、残部が銅および不可避の不純物からなる銅合
金条を、最終仕上圧延前に750〜950℃の温度範囲で1分
間以上加熱し、この後4℃/分以下で徐冷することを特
徴とする電子機器用銅合金条の製造方法。
5. In weight%, 1.0-8% nickel, 0.1-
A copper alloy strip containing 0.8% phosphorus, 0.06 to 1% silicon, 0.03 to 0.5% zinc and the balance copper and unavoidable impurities is used in a temperature range of 750 to 950 ° C before final finishing rolling. A method for producing a copper alloy strip for electronic devices, comprising heating for at least 1 minute and then gradually cooling at 4 ° C./minute or less.
【請求項6】重量%にて、1.0〜8%のニッケル、0.1〜
0.8%の燐、0.06〜1%のシリコン、0.03〜0.5%の亜鉛
を含有し、残部が銅および不可避の不純物からなる銅合
金条を、最終仕上圧延前に750〜950℃の温度範囲で1分
間以上加熱した後、500℃までは1℃/分以上で冷却
し、500〜350℃の間では少なくとも1時間以上保持また
は徐冷することを特徴とする電子機器用銅合金条の製造
方法。
6. A weight percentage of 1.0-8% nickel, 0.1-
A copper alloy strip containing 0.8% phosphorus, 0.06 to 1% silicon, 0.03 to 0.5% zinc and the balance copper and unavoidable impurities is used in a temperature range of 750 to 950 ° C before final finishing rolling. A method for producing a copper alloy strip for electronic equipment, comprising heating at least 1 minute per minute up to 500 ° C. and holding or gradually cooling at least 1 hour or more between 500 and 350 ° C. after heating for at least 1 minute.
JP63288041A 1988-04-12 1988-11-15 Manufacturing method of copper alloy strip for electronic equipment Expired - Lifetime JPH0733563B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63288041A JPH0733563B2 (en) 1988-11-15 1988-11-15 Manufacturing method of copper alloy strip for electronic equipment
KR1019890004455A KR930006292B1 (en) 1988-04-12 1989-04-04 Cupper alloy for electronic articles and its making process
DE3911874A DE3911874C2 (en) 1988-04-12 1989-04-11 Copper alloy for electronic devices
US07/835,082 US5248351A (en) 1988-04-12 1992-02-18 Copper Ni-Si-P alloy for an electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63288041A JPH0733563B2 (en) 1988-11-15 1988-11-15 Manufacturing method of copper alloy strip for electronic equipment

Publications (2)

Publication Number Publication Date
JPH02133555A JPH02133555A (en) 1990-05-22
JPH0733563B2 true JPH0733563B2 (en) 1995-04-12

Family

ID=17725068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63288041A Expired - Lifetime JPH0733563B2 (en) 1988-04-12 1988-11-15 Manufacturing method of copper alloy strip for electronic equipment

Country Status (1)

Country Link
JP (1) JPH0733563B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6099080B2 (en) * 2012-10-18 2017-03-22 大塚テクノ株式会社 Non-energized breaker
KR101472348B1 (en) * 2012-11-09 2014-12-15 주식회사 풍산 Copper alloy material for electrical and electronic components and process for producing same

Also Published As

Publication number Publication date
JPH02133555A (en) 1990-05-22

Similar Documents

Publication Publication Date Title
JP4809602B2 (en) Copper alloy
JP4516154B1 (en) Cu-Mg-P copper alloy strip and method for producing the same
JP4851596B2 (en) Method for producing copper alloy material
JP4494258B2 (en) Copper alloy and manufacturing method thereof
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
WO2011104982A1 (en) Cu-mg-p-based copper alloy bar and method for producing same
JP5619389B2 (en) Copper alloy material
WO2012004868A1 (en) Cu-ni-si copper alloy plate with excellent deep-draw characteristics and production method thereof
JPH11335756A (en) Copper alloy sheet for electronic parts
JP4653240B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
JP2005060773A (en) Special brass and method for increasing strength of the special brass
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JPH10183276A (en) Beryllium-nickel-copper lean alloy having high electric conductivity and stress relaxation resistance
JP6927844B2 (en) Copper alloy plate material and its manufacturing method
KR20010062360A (en) copper alloy for electronic materials with excellent surface special and manufacturing method therefor
JP6858532B2 (en) Copper alloy plate material and its manufacturing method
JP2516622B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JP4166197B2 (en) Cu-Ni-Si-based copper alloy strips with excellent BadWay bending workability
WO2012160726A1 (en) Cu-ni-si copper alloy sheet with excellent deep drawability and process for producing same
JPH0718356A (en) Copper alloy for electronic equipment, its production and ic lead frame
JP2001262297A (en) Copper-base alloy bar for terminal, and its manufacturing method
JPH0733563B2 (en) Manufacturing method of copper alloy strip for electronic equipment
JP4653239B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
JP2005264337A (en) Copper-based alloy having excellent stress relaxation characteristic
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment