KR910003449B1 - 조셉슨 소자를 사용한 자속계 - Google Patents

조셉슨 소자를 사용한 자속계 Download PDF

Info

Publication number
KR910003449B1
KR910003449B1 KR1019880001259A KR880001259A KR910003449B1 KR 910003449 B1 KR910003449 B1 KR 910003449B1 KR 1019880001259 A KR1019880001259 A KR 1019880001259A KR 880001259 A KR880001259 A KR 880001259A KR 910003449 B1 KR910003449 B1 KR 910003449B1
Authority
KR
South Korea
Prior art keywords
optical
signal
superconducting
optical signal
amplifying
Prior art date
Application number
KR1019880001259A
Other languages
English (en)
Other versions
KR880010333A (ko
Inventor
히데아기 나가네
도시가즈 니시노
하루히로 하세가와
Original Assignee
가부시기가이샤 히다찌세이사꾸쇼
미다 가쓰시게
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시기가이샤 히다찌세이사꾸쇼, 미다 가쓰시게 filed Critical 가부시기가이샤 히다찌세이사꾸쇼
Publication of KR880010333A publication Critical patent/KR880010333A/ko
Application granted granted Critical
Publication of KR910003449B1 publication Critical patent/KR910003449B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/035Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/035Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
    • G01R33/0354SQUIDS
    • G01R33/0356SQUIDS with flux feedback
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/842Measuring and testing
    • Y10S505/843Electrical
    • Y10S505/845Magnetometer
    • Y10S505/846Magnetometer using superconductive quantum interference device, i.e. squid

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

내용 없음.

Description

조셉슨 소자를 사용한 자속계
제 1 도는 본 발명의 1실시예를 도시한 도면.
제 2 도는 DC-SQUID의 쇄교자속과 출력전압의 관계를 도시한 도면.
제 3 도 및 제 4 도는 본 발명의 다른 실시예를 도시한 도면.
제 5 도는 초전도 광 트랜지스터의 전압-전류특성을 도시한 도면.
제 6 도는 초전도 광 트랜지스터의 단면도.
제 7 도 및 제 8 도는 본 발명의 또다른 실시예를 도시한 도면.
본 발명은 자속계에 관하여 특히 미소자계 검출에 알맞는 조셉슨 소자를 사용한 자속계에 관한 것이다.
조셉슨 소자를 사용한 자속계는 해당 기술분야에서는 SQUID(Superconducting Quantum Interference Device) 자속계로 알려져 있다. 종래의 자속계는 DC-SQUID 자속계, rf-SQUID 자속계로 대표된다. DC-SQUID 자속계는 2개의 조셉슨 접합과 인덕터로 되는 초전도 루프에 쇄교하는 자속을 초전도 루프로 흐르는 최대 초전도 전류의 변화로서 직류로 관측하는 장치이다(예를 들면 미국 특허 No. 4,389, 612, 미국 특허 No. 4,567, 438). AC-SQUID 자속계는 1개의 조셉슨 접합과 인덕터로 된 초전도 루프에 쇄교하는 자속을 초던도 루프로 흐르는 최대 초전도 전류의 변화로서 교류로 관측하는 장치이다. 종래 기술에 의한 어떤 SQUID 자속계도, 그 주가되는 SQUID는 초전도 루프에 쇄교하는 자속을 검지하는 수동소자이고, 조셉슨 접합을 사용하는 SQUID는 액체 헬륨속에 담겨져, 출력신호는 배선 케이블을 거쳐서 실온중의 측정회로 데이타 처리회로로 보내지는 구성이다. SQUID는 상당히 빈약한 자속을 측정하는 것이고 그 귀에 조셉슨 데이타 처리회로로 보내지는 구성이다. SQUID는 상당히 빈약한 자속을 측정하는 것이고 그 위에 조셉슨 소자의 출력신호도 그것자체가 미약한 신호이다. 그 때문에 SQUID에서 실온에서 있는 측정회로로 보내지는 신호는 예를 들면 1μV 정도의 극히 미약한 신호이다. 이 때문에 종래 SQUID 자속계의 감도는 실온의 열잡음에 따라 제한되어 있었다.
또 미소자계 검출용 자속계에 대해서는 IEEE. Trans. Electron Devices, ED27, No.10(1980)pp1896~1908에 있어서 거론되어 있다. 이것은 자계검출 디바이스(예를 들면 dC· SQUID)에서의 전압신호를 증폭하고 나서 록인엠프에서 동기검파하여 점파출력을 검출 디바이스로 귀환하고 있다.
상기의 종래 기술은 자속계 회로의 접지 배선을 통해서 회로나 검출 디바이스에 인가된 잡음의 영향에 대해서 배려되어 있지 않고 특히 자속계 회로를 교류 전원으로 동작시키면 교류전원에서의 잡음으로 오동작하다는 문제가 있었다.
이와 같은 문제를 해결하기 위해 잡음에 민감한 자속검출 디바이스와 그 주변회로의 사이를 포토아이리레이터를 사용하여 접속하고 양자간을 전기적으로 절연한 것이 일본국 특허공개공보 소화 60-82872호, 일본국 특허공개공보 소화 61-35378호, 일본국 특허공개공보 소화 61-77772호에 기재되어 있다.
이들 종래 기술은 전기신호를 빛으로 변환할 때 펄스폭 변조 방식(PWM)을 채용하고 있다. 그렇지만 그것은 PWM 방식 변조부에서 발생하는 펄스성 노이즈가 자속검출 디바이스에 주는 영향 즉 오동작 문제에 대해서 배려되어 있지 않다.
또, 이들 종래 기술은 귀환회로에 광 파이버 등을 사용하고 있기 때문에, 그 부분에서의 응답속도에 관해서는 아무런 문제가 없다. 그렇지만 광 파이버 양끝에 마련된 광-전기 변환장치 및 전기-광 변환장치에는 각각 전기적 소자가 접속되어 있기 때문에 광 파이버의 고속 전송이라는 특징이 이 전기적 소자에 의해 충분하게 발휘할 수 없다는 문제가 있다.
본 발명의 제 1 목적은 전기-광 변환부 및 광-전기 변화부에서 발생하는 노이즈를 저감하여 오동작이 없는 조셉슨 소자를 사용한 자속계를 제공하는 것에 있다.
본 발명의 제 2 목적은 응답속도가 빠른 귀환회로를 갖는 조셉슨 소자를 사용한 자속계를 제공하는데 있다.
상기 제 1 목적은 신호자속을 검출하는 센서 코일과 상기 센서 코일에 자기적으로 결합되어 상기 센서 코일에서의 쇄교자석에 따른 주기전압을 발생하는 초전도 루프, 상기 초전도 루프는 인덕터와 적어도 1개의 조셉슨 접합으로 구성되고, 상기 초전도 루프에서의 상기 주기전압을 증폭하는 수단, 상기 증폭수단으로 증폭된 주기전압의 소정주파수 성분을 증폭하는 동기검파 증폭수단, 상기 동기검파 증폭수단으로 증폭된 신호를 광신호로 변화하는 제 1 전기-광 변환수단, 상기 제 1 전기-광 변화수단에서의 광신호를 전송하는 제 1 광 전송수단, 상기 제 1 광 전송수단에서의 광신호를 입력하고 그것을 전기신호로 변환하는 초전도 광 트랜지스터, 상기 초전도 광 프랜지스터에서의 전기 신호에 따른 자속을 상기 초전도 루프에 쇄교시킨 귀환코일로 되고 상기 센서 코일, 상기 초전도 루프 및 상기 초전도 광 트랜지스터는 극저온속에 마련되어 있는 것을 포함하는 조셉슨 소자를 사용한 자속계에 의해 달성된다.
초전도 광 트랜지스터에 의한 광-전기 변환부부은 액체 헬륨중의 4.2K인 극저온중에서 광입력에 따라서 초전도 임계전류 및 소자자체의 저항이 변화하도록 동작한다. 따라서 광-전기 변환시에 발생하는 노이즈는 소자자체 및 바이어스 저항의 4.2K에 있어서의 열잡음만 된다. 이때문에 종래의 광-전기 변환부에서 발생하고 있던 펄스노이즈 및 300K에 있어서 열잡음 또는 반도체에서의 노이즈를 방지할 수 있다. 또 자속계로서의 기능이 이를 노이즈의 영향을 받지 않기 때문에 오동작의 문제도 없어진다.
상기 제 2 목적은 신호자속을 검출하는 센서 코일과 상기 센서 코일에 자기적으로 결합되어 상기 센서 코일에서의 쇄교자속에 따른 주기전압을 발생하는 초전도 루프, 상기 초전도 루프는 인덕터와 적어도 1개의 조셉슨 접합으로 구성되어 상기 초전도 루프에서의 주기전압을 증폭하는 수단, 상기 증폭수단으로 증폭된 주기전압을 광신호호 변환하는 전기-광 변환수단, 상기 전기-광 변환수단에서의 광신호를 소정 주파수에 따라 광신호대로 동기검파를 행하는 동기검파수단, 상기 동기검파수단에서의 광신호를 전송하는 제 2 광 전송수단, 상기 제 2 광 전송수단에서의 광신호를 입력하고 그것을 전기신호로 변환하는 초전도 광 트랜지스터, 상기 초전도 광 트래지스터에서의 전기 신호에 따른 자속을 상기 초전도 루프에 쇄교시킨 귀환 코일로 되어 상기 센서 코일, 상기 초전도 루프 및 상기 초전도 광 트랜지스터는 극저온중에 마련되어 있는 것을 포함하는 조셉슨 소자를 사용한 자속계에 의해 달성된다.
본 발명은 외부회로에 있어서 신호처리를 모두 광신호로 행하고 있기 때문에 외부회로에서의 전원노이즈등의 잡음을 막을 수 있다. 또 광신호에 의해 귀환 동작을 행하고 있기 때문에 응답속도가 현저하게 고속으로 된다.
본 발명의 상기 또는 그외의 목적과 새로운 특징은 본 명세서의 기술과 첨부도면에 의해서 명확하게 될 것이다.
이하 본 발명을 실시예를 들어 간단하게 설명한다.
[실시예 1]
본 실시예는 자속계는 귀환회로 포토 아이솔레이터 즉 광 파이버 108로 접속한 것이다.
본 실시예에서는 귀환회로중 포토 아이솔레이터의 저온부분에 마련되는 광-전기 변환부분을 초전도 광 트랜지스터 106으로 사용하고 있다. 따라서 이 변화부에 있어서 발생하는 노이즈를 저감할 수 있고 자속계의 오동작을 방지할 수 있다. 즉 초전도 광 트랜지스터로 구성된 광-전기 변환부는 액체 헬륨중 4.2K인 극저온중에서 광입력에 따라서 초전도 임계전류 및 소자의 저항이 변화하도록 동작한다. 이때 발생하는 노이즈는 소자 및 바이어스 저항의 4.2K에 있어서의 열잡음만 된다. 이때문에 300K에 있어서 열잡음 및 300K 중의 반도체에서의 노이즈등을 방지할 수 있기 때문에 자속계로서의 기능이 노이즈에 의해 오동작하는 일이 없다.
제 1 도에 도시한 바와 같이 신호자속을 검출하는 센서 코일 104와 DC-SQUID103은 자기적으로 결합되어 있다. 극저온중 101의 센서 코일 104에 쇄교한 신호자속은 DC-SQUID103에 입력된다. DC-SQUID103은 정전류원에 의해 일정전류에 바이어스되어 있다. 이때 바이어스 저항 123에서도 열잡음이 발생하기 때문에 그것을 저감하기 위해 바이어스 저항 123도 극저온중 101에 마련하고 있다. 일정전류도 바이어스된 DC-SQUID103은 쇄교한 자속에 따라서 주기전압을 발생한다. 그 주기전압의 주기가 양자화 자속ψ0(2.07×10-15Wb)로 되어 있다. 쇄교자속과 SQUID의 출력전압의 출력전압의 관계를 제 2 도에 도시한다. 이 주기전압신호는 전지로 구동되는 전치증폭기 107로 증폭되어 동기검과 증폭기(109)로 출력된다. 동기검파 증폭기 109는 증폭된 주기전압 신호의 주파수 f의 성분을 증폭한다. 동기검파 증폭기 109에는 발진기 111에서 주파수 f의 신호가 공급된다. 이 증폭된 신호는 적분기 112에 입력되어 적분되다. 발광다이오드 또는 반도체 레이저로된 전기-광 변환부분 110은 적분기112에서의 신호를 빛으로 변환한다. 이와 같이 변환된 광신호는 광 파이버 108을 지나서 극저온중의 초전도 광 트랜지스터 106에 의해 광-전기 변환부로 인도된다. 초전도 광 트랜지스터 106은 제 6 도에 도시한 바와 같이 반도체 333 찬넬위에 초전도체의 소오스 131과 드레인 전극 132를 마련한 구조이고 찬넬 부분에 빛을 조사하는 것에 의해 소오스-드레인 사이의 초전도 임계전류 및 전극간의 저항을 변화시키는 소자이다.
제 5 도는 초전도 광 트랜지스터의 특성의 1예이고 (1)은 광조사를 하지 않은 경우이며 (2)는 광조사한 경우의 특성이다. 이 소자에 적당한 전류를 바이어스하면 조사광의 강도에 비례해서 저항값이 변화하여 전류를 제어할 수 있다. 초전도 광 트랜지스터에서 광신호가 전기신호로 변환되어 귀환코일 105로 귀환전류를 인가하여 자속을 DC-SQUID103에 쇄교시킨다. 제 2 도의 쇄교자속과 출력전압의 관계에 있어서 만약 DC-SQUID103에 대해서 외부에서의 쇄교자속이 0일때에는 제 2 도중에 a점에 머물러 있다. 외부에서의 쇄교자속이 있으면 a점에서 벗어나며 이경우는 출력전압이 증가한다. 이와 같은 출력전압의 변화를 동기검파 증폭기 109에서 검출해서 출력전압의 변화분을 전기-광 변환부 110, 광-전기 변환부 106을 지나서 귀환코일 105에 의해 DC-SQUID103에 자속으로서 귀환시켜 a점에서의 어긋남을 보정시킨다. 이와 같이하면 출력단자 124에 쇄교자속과 비례한 전압을 얻을 수 있다. 본 실시예에 의하면 종래의 귀환회로와 달리 노이즈의 발생원을 DC-SQUID103의 부근에서 제외하고 또 열잡음의 발생원이 되는 저항도 극저온중에 설치되어 있기 때문에 노이즈가 적은 고감도 자속계로서 이용할 수 있다는 효과가 있다.
제 3 도에 제 1 도의 변형예로서 전치증폭기 107에서 동기검파 증폭기 109로의 신호전달을 귀환회로와 마찬가지로 빛으로 행하는 것을 도시한다. 전치증폭기 107의 출력은 발광다이오드 또는 반도체 레이저로 된 전기-광 변환부 110'에 의해 빛으로 변환되어 광 파이버 108'을 거쳐서 광 트랜지스터로 된 광-전기 변환부분 113에 입력된다. 광-전기 변환부분 113으로 변환된 전기신호는 동기검파 증폭기 109로 입력된다. 제 3 도의 실시예에 의하면 DC-SQUID103의 출력전압을 도선으로 동기검파 증폭기 109에 인도하는 경우에 발생하였던 도선에서의 노이즈를 제거할 수 있고 또 노이즈를 저감해서 오동작을 방지할 수 있다는 효과가 있다.
[실시예 2]
제 4 도의 실시예에서는 변화해야할 적분기 112에서의 전기신호를 디지탈 신호로 변화하고 나서 전기-광 변환부 110, 110'에 의해 광신호로 변환해서 광 파이버 108, 108'를 통하여 광-전기 변환부 113 혹은 초전도 광 트랜지스터 106으로 전달하는 것이다. 제 4 도에서는 디지탈신호를 병렬로 전송하고 있지만 이 경우는 고속전송이 가능하고 그위에 다이나믹 레인지가 크다는 효과가 있다. 또 광 파이버 108을 1줄만 사용한 직렬 방식의 디지탈 전송에 있어서도 마찬가지이다. 특히 귀환전류를 발생하는 광-전기 변환부분에 초전도 광 트랜지스터 106을 사용하고 있기 때문에 노이즈의 발생이 적고 오동작을 방지할 수 있다느 효과가 있다. 본 실시예의 경우도 DC-SQUID103의 귀환호로와의 접속선을 광 파이버로 할 수 있기 때문에 도체의 배선재료와 비교해서 극저온 용기속의 열침입량을 작게 할수 있다는 효과가 있다.
[실시예 3]
제 7 도는 본 발명의 다른 실시예이다. DC-SQUID의 귀환회로의 동작을 광신호로 행하는 것이다. DC-SQUID103의 출력전압은 전치증폭기 107에서 증폭된 다음 발광다이오드 또는 반도체 레이저에 의해 광신호로 변환된다. 이점은 제 3 도의 실시예와 같다.
이하 본 실시예가 제 3 도의 것과 다른 점은 외부회로의 신호처리를 모두 광신호로 사용하는 점에 있다. 즉, 광 파이버 108에서 외부회로로 인도된 광신호는 광변조기 140에 출력된다. 광변조기 140은 발진기 111에서의 발진주파수 f의 신호에 따라서 광신호를 변조한다. 변조된 광신호는 광증폭기 141에 의해 증폭된다. 본 광증폭기 141에 대해서는 1st Opto Electronics Conferencs, OEC' 86 post deadline papers technical digest, D-11-2(1986)에 있어서 거론되어 있다. 광증폭기 141에서 증폭된 광신호는 광방향성 결합기 143에 출력된다. 이때, 광증폭기 141의 시정수를 변조주파수의 시정수보다 충분히 크게(1자리수 이상) 설정해 둔다. 이것에 의해 광증폭기 141은 적분동작을 행한다. 따라서 광변조기 140과 광증폭기 141에 의해 광신호의 위상 검파를 행할 수 있다. 이와 같이 위상검파된 광신호는 광방향성 결합기 143에 의해 그 일부를 광 트랜지스터 149에서 출력신호로서 꺼내진다. 또 나머지 일부는 광방향성 결합기 144에 입력된다. 발진기 111은 발광다이오드 또는 반도체 레이저 150을 구동하여 발진주파수 f의 광신호를 발생시킨다. 광방향성 결합기 144는 발광소자 150에서의 광신호와 광방향서 결합기 143에서의 광신호를 각각 중첩한 다음 광 파이버108을 거쳐서 저온부분인 초전도 광 트랜지스터 106으로 인도한다. 이하 저온부분 101중의 동작은 제 3 도의 것과 같다.
본 실시예에 의하면 외부회로에 있어서 신호처리를 모두 광신호를 행하고 있기 때문에 외부회로에서의 전원 노이즈 등의 잡음을 막을 수 있다. 또 광신호에 의해 귀환동작을 행하기 때문에 응답속도를 현저하게 고속으로 할 수 있다.
[실시예 4]
제 8 도의 실시예는 DC-SQUID103의 출력신호를 출력 검출소자 146에 인가한다. 출력검찰소자 146은 초전도 양자 간섭계로 구성되어 출력신호를 증폭한다. 출력검출소자 146에 공급되는 바이어스 전류는 초전도 광 트랜지스터 147에 의해 발진기 111에서의 주파수로 변조되어 있다. 초전도 광 트랜지스터 147에는 광 파이버 155를 거쳐서 광신호가 공급된다. 이것에 의해 출력검출소자 146의 출력은 펄스열이 되고 전치증폭기 107로 증폭된다. 이와 같이 DC-SQUIED103의 출력을 같은 초전도 양자 간섭계에 의한 출력검출소자 146에서 증폭하기 때문에 S/N 비의 향상을 꾀할 수 있다. 전치증폭기 107에서 증폭한 출력을 발광다이오드나 반도체 레이저의 발광소자 151에서 광신호로 전환한 다음 광 파이버 152에서 외부로 인도되어 광증폭기 145에 가해진다. 광증폭기 145는 전원을 발진기 111에서 취하고 있기 때문에 발진기111에 동기하고 있다. 이 때문에 제 7 도와 동기검파기 140으로서 동작하게 된다. 광증폭기 145의출력의 출력일부는 광방향성 결합기 144에서 꺼내져 광 검출기 153에서 전기신호로서 꺼내진다. 나머지의 광신호는 광 파이버 108로 저온부의 초전도 광 트랜지스터에 인도된다. 초전도 광 트랜지스터 106은 인도된 빛을 전기신호로 바꾸어서 귀환코일 105에 공급한다. 귀환코일 105는 초전도 광 트랜지스터의 전기신호를 자속으로서 DC-SQUID103에 귀환한다. 이상과 같이해서 귀환동작이 행해진다. 이와 같이하면 광신호로 직접 귀환하기 때문에 응답속도가 현저하게 고속으로 된다. 또 저온부와 외부회로와의 접속을 광 파이버로 행하고 있기 때문에 전원노이즈 등의 잡음을 방지할 수 있다.

Claims (9)

  1. 신호자속을 검출하는 센서 코일(104), 상기 센서 코일에 자기적으로 결합되어 상기 센서 코일에서의 쇄교자속에 따른 주기전압을 발생하고, 인덕터와 적어도 1개의 조셉슨 접합으로 구성되는 초전도 루프(103), 상기 초전도 루프에서의 상기 주기전압을 증폭하는 증폭수단(107), 상기 증폭수단에 의해 증폭된 주기저압의 소정주파수 성분을 증폭하는 동기검파 증폭수단(109), 상기 동기검파 증폭수단에 의해 증폭된 신호를 광신호로 변화하는 제 1의 전기-광 변화수단(110), 상기 제 1의 전기-광 변환수단에서의 광신호를 전송하는 제 1의 광 전송수단(108), 상기 제 1의 광 전송수단(108)에서의 광신호를 입력하고 그것을 전기신호로 변환하는 초전도 광 트랜지스터(106)과 상기 초전도 광 트랜지스터(106)에서의 전기신호에 따른 자속을 상기 초전도 루프(103)에 쇄교시키는 귀환 코일(105)로 되며, 상기 센서 코일(104), 상기 초전도 루프(103) 및 상기 초전도 광 트랜지스터(106)은 극저온중에 마련되어 있는 조셉슨 소자를 사용한 자속계.
  2. 특허청구의 범위 제 1 항에 있어서, 상기 증폭수단(107)과 상기 동기검과 증폭수단(109)와의 사이에, 상기 증폭수단(107)에 의해 증폭된 주기전압을 광신호로 변환하는 제 2 의 전기-광 변환수단(110'), 상기 제 2 의 전기-광 변환수단(110')에서의 광신호를 전송하는 제 2 의 광 전송수단(108')와 상기 제 2 의 광 전송수단(108')에서의 광신호를 입력하고 그것을 전기신호로 변환하여 상기 동기검파 증폭수단(109)로 출력하는 광-전기변환수단(113)을 갖는 조셉슨 소자를 사용한 자속계.
  3. 특허청구의 범위 제 1 항에 있어서, 상기 초전도 루프(103)은 인덕터와 2개의 조셉슨 접합으로 되고, 상기 극저온중에 놓여진 바이어스 저항을 거쳐서 일정전류로 바이어스되어 있는 조셉슨 소자를 사용한 자속계.
  4. 특허청구의 범위 제 2 항에 있어서, 상기 제 1의 전기-광 변환수단(110)에서 상기 초전도 광 트랜지스터(106)까지의 전송 및 상기 제 2의 전기-광 변화수단(110')에서 상기 광-전기변화수단(113)까지의 전송은 디지탈 신호로 실행되는 조셉슨 소자를 사용한 자속계.
  5. 신호 자속을 검출하는 센서 코일(104), 상기 센서 코일(104)에 자기적으로 결합되어 상기 센서 코일에서의 쇄교자속에 따른 주기전압을 발생하고, 인덕터와 적어도 1개의 조셉슨 접합으로 구성되는 초전도 루프(103), 상기 초전도 루프(103)에서의 주기전압을 증폭하는 증폭수단(107), 상기 증폭수단(107)에 의해 증폭 루프된 주기전압을 광신호로 변화하는 전기-광 변환수단(110') 상기 전기-광 변환수단(110')에서의 광신호를 소정 주파수에 따라 광신호대로 동기검파를 실행하는 동기검파수단(140, 141, 143, 144, 149, 150, 111), 상기 동기검파수단에서의 광신호를 전송하는 제 2의 광 전송수단(108), 상기 제 2의 광 전송수단(108)에서의 광신호를 입력하고 그것을 전기신호로 변환하는 초전도 광 트랜지스터(106)과 상기 초전도 광 트랜지스터(106)에서의 전기신호에 따른 자속을 상기 초전도 루프(103)에 쇄교시키는 귀환코일(105)로 되며, 상기 센서 코일(104), 상기 초전도 루프(103) 및 상기 초전도 광 트랜지스터(106)은 극저온중에 마련되어 있는 조셉슨 소자를 사용한 자속계.
  6. 특허청구의 범위 제 5 항에 있어서, 상기 초전도 루프(103)은 인덕터와 2개의 조셉슨 접합으로 되고, 상기 극저온중에 놓여진 바이어스 저항을 거쳐서 일정전류로 바이어스되어 있는 조셉슨 소자를 사용한 자속계.
  7. 특허청구의 범위 제 5 항에 있어서, 상기 동기검파수단(140, 141, 143, 144, 149, 150, 111)은 소정 주파수를 발진하는 발진수단(111), 상기 제 1의 광 전송수단(108')에서의 광신호를 입력하여 상기 소정 주파수에 따라 상기 광신호의 위상 검파를 실행하는 위상 검파수단(140), 상기 위상 검파수단(140)에서의 광신호를 입력하여 그 광신호를 2방향으로 분파하는 제 1의 광방향성 결합수단(143), 상기 제 1의 광방향성 결합수단(143)에서의 광신호의 한쪽을 전기신호로 변환하여 출력신호로서 출력하는 수단(149), 상기 발진수단(111)에 따라 구동되는 발광수단(150)과 상기 발과수단(150)에서의 광신호 및 상기 제 1의 광방향성 결합수단(143)에서의 광신호의 다른쪽을 각각 입력하고, 이들 두 광신호를 중첩하여 상기 제 2의 광 전송수단(108)로 출력하는 제2의 광방향성 결합수단(104)를 갖는 조셉슨 소자를 사용한 자속계.
  8. 특허청구의 범위 제 7 항에 있어서, 상기 초전도 루프(103)은 인덕터와 2개의 조셉슨 접합으로 되고, 상기 극저온중에 놓여진 바이어스 저항을 거쳐서 일정전류로 바이어스되어 있는 조셉슨 소자를 사용한 자속계.
  9. 특허청구의 범위 제 5 항에 있어서, 상기 초전도 루프(103)은 인덕터와 2개의 조셉슨 접합으로 되어 상기 극저온중에 놓여진 바이어스 저항을 거쳐서 일정전류로 바이어스되어 있고, 상기 초전도 루프(103)과 상기 증폭수단(107) 사이에 상기 초전도 루프(103)의 출력과 자기적으로 결합된 제 2의 초전도 루프(146)을 가지며, 상기 제 2의 초전도 루프(146)은 인덕터와 2개의 조셉슨 접합으로 되어, 상기 극저온중에 놓여진 바이어스 저항 및 제 2의 초전도 광 트랜지스터 (147)을 거쳐서 바이어스 되어 있고, 상기 동기검파수단은 소정 주파수를 발진하는 발진수단(111), 상기 제 1의 광 전송수단(152)에서의 광신호를 입력하여 상기 광신호를 상기 소정 주파수에 동기해서 증폭하는 광증폭수단(145), 상기 광 증폭수단(145)에서의 광신호를 입력하여 그 광신호를 2방향으로 분파하여, 분파된 광신호의 한쪽을 출력신호로서 출력하고 분파된 광신호의 다른쪽을 상기 제2의 광 전송수단(155)로 출력하는 광방향성 결합수단(144), 상기 제2의 광 전송수단(155)에 의해 공급된 광신호를 광-전기 변화하는 제 1의 초전도 광 트랜지스터(106)으로부터의 전기 신호에 따른 자속을 상기 초전도 루프(103)에 쇄교시키는 귀환 코일(105), 상기 발진수단(111)에 의해 구동되는 발광수단과 상기 발광수단에서의 광신호를 상기 제 2의 초전도 광 트랜지스터(147)에 전송하는 제 3의 광 전송수단(108)을 갖는 조셉슨 소자를 사용한 자속계.
KR1019880001259A 1987-02-27 1988-02-10 조셉슨 소자를 사용한 자속계 KR910003449B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-42552 1987-02-27
JP87-42552 1987-02-27
JP4255287 1987-02-27

Publications (2)

Publication Number Publication Date
KR880010333A KR880010333A (ko) 1988-10-08
KR910003449B1 true KR910003449B1 (ko) 1991-05-31

Family

ID=12639217

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019880001259A KR910003449B1 (ko) 1987-02-27 1988-02-10 조셉슨 소자를 사용한 자속계

Country Status (5)

Country Link
US (1) US4906930A (ko)
EP (1) EP0280282B1 (ko)
KR (1) KR910003449B1 (ko)
CN (1) CN1014933B (ko)
DE (1) DE3882551T2 (ko)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442289A (en) * 1989-07-31 1995-08-15 Biomagnetic Technologies, Inc. Biomagnetometer having flexible sensor
FI95628C (fi) * 1990-05-15 1996-02-26 Valtion Teknillinen Menetelmä ja laite pienikohinaisen anturin lähtösignaalin käsittelemiseksi
DE4030988A1 (de) * 1990-10-01 1992-04-09 Dornier Gmbh Supraleitender a/d-wandler
JP3058681B2 (ja) * 1990-11-30 2000-07-04 株式会社日立製作所 多チャンネルsquid磁束計
WO1996035972A1 (en) * 1995-05-08 1996-11-14 Testdesign Corporation Optical fiber interface for integrated circuit test system
US6263189B1 (en) * 1997-09-29 2001-07-17 The Regents Of The University Of California Narrowband high temperature superconducting receiver for low frequency radio waves
US8747515B2 (en) * 2003-12-27 2014-06-10 Advance Material Products, Inc Fully-dense discontinuously-reinforced titanium matrix composites and method for manufacturing the same
US7615385B2 (en) 2006-09-20 2009-11-10 Hypres, Inc Double-masking technique for increasing fabrication yield in superconducting electronics
US7962287B2 (en) * 2007-07-23 2011-06-14 Schlumberger Technology Corporation Method and apparatus for optimizing magnetic signals and detecting casing and resistivity
EP2476005B1 (en) * 2009-09-09 2013-06-26 Forschungszentrum Jülich GmbH Squid with a coil inductively coupled to the squid via a mutual inductance
US8571614B1 (en) 2009-10-12 2013-10-29 Hypres, Inc. Low-power biasing networks for superconducting integrated circuits
CN104297703B (zh) * 2013-07-19 2017-03-01 中国科学院上海微系统与信息技术研究所 超导量子干涉传感器及所适用的磁探测器
CN104345286B (zh) * 2013-08-06 2017-09-01 中国科学院上海微系统与信息技术研究所 积分电路及所适用的超导量子干涉传感器
US10222416B1 (en) 2015-04-14 2019-03-05 Hypres, Inc. System and method for array diagnostics in superconducting integrated circuit
US10097281B1 (en) 2015-11-18 2018-10-09 Hypres, Inc. System and method for cryogenic optoelectronic data link

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3924176A (en) * 1974-11-11 1975-12-02 Nasa Magnetometer using superconducting rotating body
JPS5577111A (en) * 1978-12-06 1980-06-10 Toshiba Corp Superconductive magnet device
US4389612A (en) * 1980-06-17 1983-06-21 S.H.E. Corporation Apparatus for reducing low frequency noise in dc biased SQUIDS
US4489274A (en) * 1980-12-10 1984-12-18 The United States Of America As Represented By The Secretary Of The Navy Rotating SQUID magnetometers and gradiometers
US4567438A (en) * 1983-04-04 1986-01-28 Sperry Corporation SQUID Canister with conical coupling cavity
JPS6082872A (ja) * 1983-10-12 1985-05-11 Yokogawa Hokushin Electric Corp Squid磁束計
JPS6135378A (ja) * 1984-07-27 1986-02-19 Yokogawa Hokushin Electric Corp Squid磁束計
JPS6135574A (ja) * 1984-07-27 1986-02-20 Hitachi Ltd 超電導ホトトランジスタ
JPS6177772A (ja) * 1984-09-26 1986-04-21 Yokogawa Hokushin Electric Corp Squid磁束計
GB2171509B (en) * 1985-02-23 1988-03-09 Stc Plc Magnetic field detection
US4663590A (en) * 1985-11-06 1987-05-05 Sperry Corporation Single frequency noise reduction circuit for squids
JP2540511B2 (ja) * 1986-02-27 1996-10-02 株式会社日立製作所 超電導ホトトランジスタ
JP2523517B2 (ja) * 1986-07-25 1996-08-14 株式会社日立製作所 超電導光検出素子

Also Published As

Publication number Publication date
EP0280282A2 (en) 1988-08-31
KR880010333A (ko) 1988-10-08
CN1014933B (zh) 1991-11-27
CN88101049A (zh) 1988-09-28
DE3882551T2 (de) 1993-11-18
DE3882551D1 (de) 1993-09-02
EP0280282A3 (en) 1990-06-13
EP0280282B1 (en) 1993-07-28
US4906930A (en) 1990-03-06

Similar Documents

Publication Publication Date Title
KR910003449B1 (ko) 조셉슨 소자를 사용한 자속계
JP2662903B2 (ja) 高感度磁場検出装置
JP2002148322A5 (ko)
JPH01476A (ja) 磁束計
US6323645B1 (en) Superconducting quantum interference device
JPH01199178A (ja) 超伝導磁力計
Podt et al. Digital squids based on smart dros
KR100403801B1 (ko) 초전도양자간섭소자
JPH09237923A (ja) 超電導回路
JP2018100946A (ja) 光子検出装置及び光子検出方法
JPH08220201A (ja) 超伝導量子干渉計
Ning et al. Low-cost robust electro-optic hybrid current sensors for the measurement of large currents in high-voltage locations
JPH0817251B2 (ja) Squid磁束計
JP2782901B2 (ja) スクイッド磁束計
JP2613559B2 (ja) Squid磁束計
JPH0675030A (ja) 磁場計測装置
Nakahara et al. Optical input/output interface system for Josephson junction integrated circuits
JPH04116480A (ja) 磁束ロック装置
JPH05323004A (ja) Squid磁束計
JP3013542B2 (ja) Dc−squid
JPH01199179A (ja) 超伝導磁力計
Maruyama et al. HTS sampler with optical signal input
JPH04232482A (ja) Dc−squid磁気検出装置
van Duuren et al. Multichannel SQUID magnetometry using double relaxation oscillation SQUID's
JP2609598B2 (ja) 信号検出方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19940520

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee