KR20240005196A - 유전자 조작된 미생물로부터 개선된 뮤콘산 생산 - Google Patents

유전자 조작된 미생물로부터 개선된 뮤콘산 생산 Download PDF

Info

Publication number
KR20240005196A
KR20240005196A KR1020237044654A KR20237044654A KR20240005196A KR 20240005196 A KR20240005196 A KR 20240005196A KR 1020237044654 A KR1020237044654 A KR 1020237044654A KR 20237044654 A KR20237044654 A KR 20237044654A KR 20240005196 A KR20240005196 A KR 20240005196A
Authority
KR
South Korea
Prior art keywords
gene
coli
muconic acid
ala
leu
Prior art date
Application number
KR1020237044654A
Other languages
English (en)
Inventor
라이언 실러스
미셸 스펜서
알. 로저스 요쿰
테론 헤르만
유다니 러셀
Original Assignee
피티티 글로벌 케미컬 퍼블릭 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피티티 글로벌 케미컬 퍼블릭 컴퍼니 리미티드 filed Critical 피티티 글로벌 케미컬 퍼블릭 컴퍼니 리미티드
Publication of KR20240005196A publication Critical patent/KR20240005196A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/11Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
    • C12Y113/11001Catechol 1,2-dioxygenase (1.13.11.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01001Transketolase (2.2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/010543-Deoxy-7-phosphoheptulonate synthase (2.5.1.54)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01063Protocatechuate decarboxylase (4.1.1.63)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/011183-Dehydroshikimate dehydratase (4.2.1.118)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/030043-Dehydroquinate synthase (4.2.3.4)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명의 주제는 발효에 의한 뮤콘산의 생물학적 생산의 수율 및 역가의 개선이다. 뮤콘산 경로에 관여하는 하나 이상의 효소의 증가된 활성은 뮤콘산의 생산 증가로 이어진다.

Description

유전자 조작된 미생물로부터 개선된 뮤콘산 생산 {Improved Muconic Acid Production From Genetically Engineered Microorganisms}
관련 출원에 대한 상호-참조
본 출원은 2016년 3월 2일에 출원된 미국 가출원 번호 제 62/302,558호의 우선권을 주장한다.
기술분야
본 발명은 중심 방향족 생합성 경로에서 유전자 조작된 생촉매를 이용한 재생 가능한 화학 원료를 생산하는 분야에 있다. 보다 구체적으로는, 본 발명은 유 전자 변형된 생촉매를 이용한 재생 가능한 탄소 자원으로부터 뮤콘산의 생산을 개선하는 방법을 제공한다.
아디프산은 주요 범용 화학물질이며, 나일론 6,6 및 폴리우레탄의 생산에 사용된다. 아디프산은 현재 석유화학 원료에서 유래된다. 아디프산의 현재 합성은 환경적으로 유해한 아질산(nitrous acid)을 방출한다 (Xie et al., 2014). 대안적으로, 아디프산은 화학적 수소화에 의해 뮤콘산의 3개의 이성질체 (시스, 시스; 시트, 트랜스; 트랜스, 트랜스 이성질체) 중 어느 것으로부터 제조될 수 있다. 미생물과 함께 발효에 의해 재생 가능한 자원으로부터 뮤콘산을 생산한 다음, 수소화 공정을 통해 아디프산을 생산하는 것이 바람직한데, 그 이유는 아디프산으로의 이러한 경로가 종래의 석유화학적 경로보다 더 환경 친화적이기 때문이다 (Niu, Draths and Frost, 2002; Frost and Draths, 1997). 많은 기타 화학물질은 1,6-헥산 디올, 3-헥센디카복실산, 1,6-헥산디아민, 및 테레프탈산을 포함하나 이에 한정되지 않는 하나 이상의 뮤콘산 이성질체의 화학적 전환에 의해 제조될 수 있다.
국제특허출원 공개번호 WO 2011/017560는 뮤코네이트 경로를 갖는 생촉매 및 이들 생촉매를 이용한 뮤콘산의 생산 방법을 주장한다. 요컨대, 이 공개된 특허 출원은 뮤콘산의 생산을 위한 4가지 상이한 경로를 개시한다. 뮤콘산 생산을 위한 제 1 경로는 석시닐-CoA 및 아세틸-CoA로 시작한다. 뮤콘산 생산을 위한 제 2 경로는 피루베이트 및 말로네이트 세미알데히드로 시작한다. 뮤콘산 생산을 위한 제 3 경로는 피루베이트 및 석시닉 세미알데히드로 시작한다. 뮤콘산 생산을 위한 제 4 경로는 리신으로 시작한다. 이 특허 출원에서 제안된 뮤콘산 생산을 위한 모든 이러한 경로는 컴퓨터 모델링에 기초하며, 이러한 생촉매가 뮤콘산에 대해 상업적으로 허용가능한 생산성 및 수율로 제조될 수 있는지 여부는 아직 밝혀지지 않았다.
유전자 조작된 E. coli 시스템을 이용한 시스, 시스-뮤콘산을 생산하는 발효 경로는 과학 문헌 (Niu et al., 2002; Frost and Draths, 1997) 및 특허 문헌 (US 5,487,987; US 5,616,496; WO 2011/085311 Al)에 기재되어 있다. 그러나, 뮤콘산 생산을 위한 선행기술 공정은 고가의 중간 성분 (방향족 아미노산 및 비타민) 및 화학 유도제와 같은 중요한 단점, 및 산업 생산에 요구되는 것보다 낮은 수율로 인해 어려움을 겪었다. 최근의 미국특허출원 공개번호 US2015/0044755는 관련 유전자의 항시성 발현, 개선된 이종 유전자 및 신규한 "누출성(leaky)" AroE 효소를 포함하는 뮤콘산 생산을 위한 개선된 생촉매를 제공하며, 전체 참조로 본 명세서에 포함된다. 본 발명은 미국특허출원 공개번호 US2015/0044755에 기재된 뮤콘산 생촉매의 추가 개선점을 제공한다.
본 명세서에 포함된 모든 특허, 특허출원, 간행물, 서열 및 기타 공개된 자료는 참고 문헌으로 포함된다.
미국특허 번호 4,480,034 미국특허 번호 4,535,059 미국특허 번호 4,588,688 미국특허 번호 4,608,338 미국특허 번호 4,681,852 미국특허 번호 4,753,883 미국특허 번호 4,833,078 미국특허 번호 4,968,612 미국특허 번호 5,168,056 미국특허 번호 5,272,073 미국특허 번호 5,487,987 미국특허 번호 5,616,496 미국특허 번호 6,600,077 미국특허 번호 6,180,373 미국특허 번호 6,210,937 미국특허 번호 6,472,169 미국특허 번호 6,613,552 미국특허 번호 6,962,794 미국특허 번호 7,244,593 미국특허 번호 7,638,312 미국특허 번호 7,790,431 미국특허 번호 8,871489 미국특허 번호 9,017,976 미국특허출원 공개번호 US 2009/0191610 A1 미국특허출원 공개번호 US 2010/0314243 A1 미국특허출원 공개번호 US 2013/0337519 A1 미국특허출원 공개번호 US. 2014/0234923A1 미국특허출원 공개번호 US 2015/0044755 A1 미국특허출원 공개번호 US2016/0017381 A1 유럽특허출원 번호 86300748.0 국제특허출원 공개번호 WO 2011/017560 국제특허출원 공개번호 WO 2011/085311 국제특허출원 공개번호 WO 2011/123154 국제특허출원 공개번호 WO2013/116244
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool, J Mol Biol 215, 403-410. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res 25, 3389-3402. Aussel, Laurent, Fabien Pierrel, Laurent Loiseau, Murielle Lombard, Marc Fontecave, and Frederic Barras. 2014. "Biosynthesis and Physiology of Coenzyme Q in Bacteria." Biochimica et Biophysica Acta - Bioenergetics 1837 (7): 1004-11. Baba, Tomoya, Takeshi Ara, Miki Hasegawa, Yuki Takai, Yoshiko Okumura, Miki Baba, Kirill A Datsenko, Masaru Tomita, Barry L Wanner, and Hirotada Mori. 2006. "Construction of Escherichia Coli K-12 in-Frame, Single-Gene Knockout Mutants: The Keio Collection." Molecular Systems Biology 2: 2006.0008. doi:10.1038/msb4100050. Barbe, V., Vallenet, D., Fonknechten, N., Kreimeyer, A., Oztas, S., Labarre, L., Cruveiller, S., Robert, C., Duprat, S., Wincker, P., Ornston, L. N., Weissenbach, J., Marliere, P., Cohen, G. N., and Medigue, C. (2004) Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium, Nucleic Acids Res 32, 5766-5779. Bird, J. A. and Cain, R. B. (1968) cis-cis-muconate, the product inducer of catechol 1,2-oxygenase in Pseudomonas aeruginosa. Biochem. J. 109, 479-481. Bongaerts, J., Kramer, M., Muller, U., Raven, L. and Wubbolts, M. (2001) Metabollic engineering for microbial producitnof aromatic acids and derived compunds. Met. Eng. 3, 289-300. Chandran, S. S., Yi, J., Draths, K. M., von Daeniken, R., Weber, W. and Frost, J. W. (2003) Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol. Prog. 19, 808-814. Chen, R., Hatzimanikatis, V., Yap, W. M. G. J., Potma, P. W. and Bailey, J. E. (1997) Metabolic consequences of phosphotransferase (PTS) mutation in a phenylalanie-producing recombinatn Escherichia coli. Biotechnol. Prog. 13, 768-775. Chen, K., Dou, J., Tang, S., Yang, Y., Wang, H., Fang, H. and Zhou, C. (2012) Deletion of the aroK gene is essential for high shikimic acid accumulation through the shikimate in E. coli. Bioresource Technol, 119, 141-147. Choi, W. J., Lee, E. Y., Cho, M. H., and Choi, C. Y. (1997) Enhanced production of cis, cis-muconate in a cell-recycle bioreactor. J. Fermentation and Bioengineering. 84, 70-76. Curran, Kathleen a., John M. Leavitt, Ashty S. Karim, and Hal S. Alper. 2013. "Metabolic Engineering of Muconic Acid Production in Saccharomyces Cerevisiae." Metabolic Engineering 15 (1): 55-66. de Berardinis, V., Vallenet, D., Castelli, V., Besnard, M., Pinet, A., Cruaud, C., Samair, S., Lechaplais, C., Gyapay, G., Richez, C., Durot, M., Kreimeyer, A., Le Fevre, F., Schachter, V., Pezo, V., Doring, V., Scarpelli, C., Medigue, C., Cohen, G. N., Marliere, P., Salanoubat, M., and Weissenbach, J. (2008) A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1, Mol Syst Biol 4, 174. Draths, K. M., Pompliano, D. L., Conley, D. L., Frost, J. W., Berry, A., Disbrow, G. L., Staversky, R. J., and Lievense, J. C. (1992) Biocatalytic Synthesis of Aromatics from D-Glucose - the Role of Transketolase, Journal of the American Chemical Society 114, 3956-3962. Draths, K. M., and Frost, J. W. (1995) Environmentally Compatible Synthesis of Catechol from D-Glucose, Journal of the American Chemical Society 117, 2395-2400. Elsemore, D. A., and Ornston, L. N. (1995) Unusual ancestry of dehydratases associated with quinate catabolism in Acinetobacter calcoaceticus, J Bacteriol 177, 5971-5978. Escalante, A., Calderon, R., Valdiva, A., de Anda, R., Hernandez, G., Ramirez, O. T., Gosset, G. and Boliver, F. (2010) Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyrvate: carbohydrate phosphotransferase system. Microbial Cell Factories 9, 21-33. Escalante, Adelfo, Rocio Calderon, Araceli Valdivia, Ramon de Anda, Georgina Hernandez, Octavio T Ramrez, Guillermo Gosset, and Francisco Bolvar. 2010. "Metabolic Engineering for the Production of Shikimic Acid in an Evolved Escherichia Coli Strain Lacking the Phosphoenolpyruvate: Carbohydrate Phosphotransferase System." Microbial Cell Factories 9 (Ccm): 21. doi:10.1186/1475-2859-9-21. Flores, N., Xiao, J., Berry, A., Bolivar, F. and Valle, F. (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nature Biotechn. 14, 620 - 623. Fox, D. T., Hotta, K., Kim, C. Y., and Koppisch, A. T. (2008) The missing link in petrobactin biosynthesis: asbF encodes a (-)-3-dehydroshikimate dehydratase, Biochemistry 47, 12251-12253. Ger, Y., Chen, S., Chiang, H., and Shiuan, D. (1994) A Single Ser-180 Mutation Desensitizes Feedback Inhibition of the Phyenylalanine-Sensitive 3-Deoxy-D-Arabino-Hepulosonate 7-Phosphate (DAHP) Synthetase in Eschericia coli, J Biochem 116, 986-990. Grant, D. J., and Patel, J. C. (1969) The non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes), Antonie Van Leeuwenhoek 35, 325-343. Hansen, E. H., Moller, B. L., Kock, G. R., Bunner, C. M., Kristensen, C., Jensen, O. R., Okkels, F. T., Olsen, C. E., Motawia, M. S., and Hansen, J. (2009) De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae), Appl Environ Microbiol 75, 2765-2774. Horwitz, Andrew A., Jessica M. Walter, Max G. Schubert, Stephanie H. Kung, Kristy Hawkins, Darren M. Platt, Aaron D. Hernday, et al. 2015. "Efficient Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas." Cell Systems. 1(1): 88-96. Hu, Changyun, Peihong Jiang, Jianfeng Xu, Yongqing Wu, and Weida Huang. 2003. "Mutation Analysis of the Feedback Inhibition Site of Phenylalanine-Sensitive 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase of Escherichia Coli." Journal of Basic Microbiology 43 (5): 399-406. Hu, C., Jiang, P., Xu, J., Wu, Y., and Huang, W. (2003) Mutation analysis of the feedback inhibition site of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of Escherichia coli, J Basic Microbiol 43, 399-406. Iwagami, S. G., Yang, K., and Davies, J. (2000) Characterization of the protocatechuic acid catabolic gene cluster from Streptomyces sp. strain 2065, Appl Environ Microbiol 66, 1499-1508. Jantama, K., Haupt, M. J., Svoronos, S. A., Zhang, X., Moore, J. C., Shanmugam, K. T., and Ingram, L. O. (2008a) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate, Biotechnol Bioeng 99, 1140-1153. Jantama, K., Zhang, X., Moore, J. C., Shanmugam, K. T., Svoronos, S. A., and Ingram, L. O. (2008b) Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C, Biotechnol Bioeng 101, 881-893. Jimenez, Natalia, Jose Antonio Curiel, Ines Reveron, Blanca de las Rivas, and Rosario Munoz. 2013. "Uncovering the Lactobacillus Plantarum WCFS1 Gallate Decarboxylase Involved in Tannin Degradation." Applied and Environmental Microbiology 79 (14): 4253-63. Johnson, C. W., Salvachua, D., Khanna, P., Peterson, D. J. and Beckham, G. (2016) Enhancing muconic acid production from glucose and lignin-derived aromatic compound via increased protocatechuate decarboxylase activity. Metabolic Engineering Communication. 3: 111-119. Kaneko, A., Ishii, Y., and Kirimura, K. (2011) High-yield production of cis, cis-muconic acid from catechol in aqueous solution by biocatalyst. Chem. Lett. 40, 381-383. Kikuchi, Y., Tsujimoto, K., and Kurahashi, O. (1997) Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli, Appl Environ Microbiol 63, 761-762. Kojima, Y., Fujisawa, H., Nakazawa, A., Nakazawa, T., Kanetsuna, F., Taniuchi, H., Nozaki, M., and Hayaishi, O. (1967) Studies on pyrocatechase. I. Purification and spectral properties, J Biol Chem 242, 3270-3278. Kramer, M., Bongaerts, J., Bovenberg, R., Kremer, S., Muller, U., Orf, S., Wubbolts, M. and Raeven, L. (2003) Metabolic engineering for microbial production of shikimic acid. Metabol. Eng. 5, 277-283. Lerner, C. G., and Inouye, M. (1990) Low copy number plasmids for regulated low-level expression of cloned genes in Escherichia coli with blue/white insert screening capability, Nucleic Acids Res 18, 4631. Li, K. and Frost, J.W. (1999) Microbial synthesis of 3-dehydroshikimic acid: A comparative analysis of D-xylose, L-arabinose, and D-glucose carbon sources. Biotechnol. Prog. 15, 876-883. Lin, H., Ravishankar V Vadali, R. V., George N Bennett,G. N. and San, K. Y. (2004) Increasing the Acetyl-CoA Pool in the Presence of Overexpressed Phosphoenolpyruvate Carboxylase or Pyruvate Carboxylase Enhances Succinate Production in Escherichia Coli. Biotechnology Progress 20 (5): 1599-1604. Lin, Fengming, Kyle L. Ferguson, David R. Boyer, Xiaoxia Nina Lin, and E. Neil G. Marsh. 2015. "Isofunctional Enzymes PAD1 and UbiX Catalyze Formation of a Novel Cofactor Required by Ferulic Acid Decarboxylase and 4-Hydroxy-3-Polyprenylbenzoic Acid Decarboxylase." ACS Chemical Biology 11(4): 1137-1144. Lu, J. L., and Liao, J. C. (1997) Metabolic engineering and control analysis for production of aromatics: Role of transaldolase, Biotechnol Bioeng 53, 132-138. Lupa, Boguslaw, Delina Lyon, Moreland D. Gibbs, Rosalind a. Reeves, and Juergen Wiegel. 2005. "Distribution of Genes Encoding the Microbial Non-Oxidative Reversible Hydroxyarylic Acid Decarboxylases/phenol Carboxylases." Genomics 86 (3): 342-51. Lutke-Eversloh, T., and Stephanopoulos, G. (2007) L-tyrosine production by deregulated strains of Escherichia coli, Appl Microbiol Biotechnol 75, 103-110. Mizuno, S., Yoshikawa, N., Seki, M., Mikawa, T., and Imada, Y. (1988) Microbial production of cis, cis- muconic acid from benzoic acid. Appl Microbiol Biotechnol. 28, 20-25. Nakazawa, A., Kojima, Y., and Taniuchi, H. (1967) Purification and properties of pyrocatechase from Pseudomonas fluorescens, Biochim Biophys Acta 147, 189-199. Neidhardt, F. C., and Curtiss, R. (1996) Escherichia coli and Salmonella : cellular and molecular biology, Vol. 22nd ed., ASM Press, Washington, D.C. Neidle, E. L., and Ornston, L. N. (1986) Cloning and expression of Acinetobacter calcoaceticus catechol 1,2-dioxygenase structural gene catA in Escherichia coli, J Bacteriol 168, 815-820. Niu, W., Draths, K. M., and Frost, J. W. (2002) Benzene-free synthesis of adipic acid, Biotechnol Prog 18, 201-211. Parker, C., Barnell, W. O., Snoep, J. L., Ingram, L. O., and Conway, T. (1995) Characterization of the Zymomonas mobilis glucose facilitator gene product (glf) in recombinant Escherichia coli: examination of transport mechanism, kinetics and the role of glucokinase in glucose transport, Mol Microbiol 15, 795-802. Parsek, M. R., Shinabarger, D. .L., Rithmel, R. K. and Chakrabarty, A. M. (1992) Roles of CatR and cis, cis-Muconate in activation of the catBC operson, which is involved in benzoate degradationin Pseudomonas putida. J. Bacteriol. 174, 7798-7806. Patnaik, R. and Liao, J. C. (1994) Engineering of Escherichia coli central metabolism for aromatic metabolite with near theoretical yield. App. Env. Microbiol. 60, 3903-3908. Payne, Karl a. P., Mark D. White, Karl Fisher, Basile Khara, Samuel S. Bailey, David Parker, Nicholas J. W. Rattray, et al. 2015. "New Cofactor Supports α,β-Unsaturated Acid Decarboxylation via 1,3-Dipolar Cycloaddition." Nature 522 (7557): 497-501. Pfleger, B. F., Kim, Y., Nusca, T. D., Maltseva, N., Lee, J. Y., Rath, C. M., Scaglione, J. B., Janes, B. K., Anderson, E. C., Bergman, N. H., Hanna, P. C., Joachimiak, A., and Sherman, D. H. (2008) Structural and functional analysis of AsbF: origin of the stealth 3,4-dihydroxybenzoic acid subunit for petrobactin biosynthesis, Proc Natl Acad Sci U S A 105, 17133-17138. Perez-Pantoja, D., De la Iglesia, R., Pieper, D. H., and Gonzalez, B. (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134, FEMS Microbiol Rev 32, 736-794. Perez-Pantoja, D., Donoso, R., Agullo, L., Cordova, M., Seeger, M., Pieper, D. H., and Gonzalez, B. (2011) Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales, Environ Microbiol. 14.5 (2012): 1091-1117. Pittard, J. and Wallace, B. J. (1966) Distribution and function of genes concerned with aromatic biosynthesis in Escherichia coli. J. Bacteriol. 91, 1494-1508. Polen, T., Spelberg, M. and Bott, M. (2013) Toward bitechnological produciton of adipic acid and precursors from biorenewables, J. Biotechnol. 167(2): 75-84. Rutledge, B. J. (1984) Molecular characterization of the qa-4 gene of Neurospora crassa, Gene 32, 275-287. Schirmer, F., and Hillen, W. (1998) The Acinetobacter calcoaceticus NCIB8250 mop operon mRNA is differentially degraded, resulting in a higher level of the 3' CatA-encoding segment than of the 5' phenolhydroxylase-encoding portion, Mol Gen Genet 257, 330-337. Shumilin, I. A., Kretsinger, R. H., and Bauerle, R. H. (1999) Crystal structure of phenylalanine-regulated 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli, Structure 7, 865-875. Shumilin, I. A., Zhao, C., Bauerle, R., and Kretsinger, R. H. (2002) Allosteric inhibition of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase alters the coordination of both substrates, J Mol Biol 320, 1147-1156. Shumilin, I. A., Bauerle, R., Wu, J., Woodard, R. W., and Kretsinger, R. H. (2004) Crystal structure of the reaction complex of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Thermotoga maritima refines the catalytic mechanism and indicates a new mechanism of allosteric regulation, J Mol Biol 341, 455-466. Shumkova, E. S., Solyanikova, I. P., Plotnikova, E. G. and Golovleva, L. A. (2009) Phenol degrdation by Rhodococcus opacus Strain 1G. App. Biocehm. Microbiol. 45, 43-49. Sietmann, R., Uebe, R., Boer, E., Bode, R., Kunze, G., and Schauer, F. (2010) Novel metabolic routes during the oxidation of hydroxylated aromatic acids by the yeast Arxula adeninivorans, J Appl Microbiol 108, 789-799. Smith, M. R. and Ratledge, C. (1989) Quantitative biotransformation of catechol to cis, cis-muconate. Biotech. Lett. 11, 105-110. Snoep, J. L., Arfman, N., Yomano, L. P., Fliege, R. K., Conway, T., and Ingram, L. O. (1994) Reconstruction of glucose uptake and phosphorylation in a glucose-negative mutant of Escherichia coli by using Zymomonas mobilis genes encoding the glucose facilitator protein and glucokinase, J Bacteriol 176, 2133-2135. Sonoki, Tomonori, Miyuki Morooka, Kimitoshi Sakamoto, Yuichiro Otsuka, Masaya Nakamura, Jody Jellison, and Barry Goodell. 2014. Enhancement of Protocatechuate Decarboxylase Activity for the Effective Production of Muconate from Lignin-Related Aromatic Compounds. Journal of Biotechnology 192 (Part A): 71-77. Sprenger, G. A. (1995) Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12, Arch Microbiol 164, 324-330. Sprenger, G. A., Schorken, U., Sprenger, G., and Sahm, H. (1995a) Transketolase A of Escherichia coli K12. Purification and properties of the enzyme from recombinant strains, Eur J Biochem 230, 525-532. Sprenger, G. A., Schorken, U., Sprenger, G., and Sahm, H. (1995b) Transaldolase B of Escherichia coli K-12: cloning of its gene, talB, and characterization of the enzyme from recombinant strains, J Bacteriol 177, 5930-5936. Stroman, P., Reinert, W. R., and Giles, N. H. (1978) Purification and characterization of 3-dehydroshikimate dehydratase, an enzyme in the inducible quinic acid catabolic pathway of Neurospora crassa, J Biol Chem 253, 4593-4598. Tang, J., Zhu, X., Lu, J. and Liu, P. (2012) Recruiting alternative glucose utilization pathways for improving succinate production. App Microbiol Biotechnol DOI 10, 1007/s00253-012-434.1. Tateoka, T., and Yasuda, I. (1995) 3-Dehydroshikimate dehydratase in mung hean cultured cells, Plant Cell Reports 15, 212-217. Vemuri, G. N., M. A. Eiteman, and E. Altman. 2002. "Effects of Growth Mode and Pyruvate Carboxylase on Succinic Acid Production by Metabolically Engineered Strains of Escherichia Coli." Applied and Environmental Microbiology 68 (4): 1715-27. Weaver, L. M., and Herrmann, K. M. (1990) Cloning of an aroF allele encoding a tyrosine-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, J Bacteriol 172, 6581-6584. Weber, C., Bruckner, C., Weinreb, S., Lehr, C., Essl, C. and Bole, E. (2012) Biosynthesis of cis, cis-muconic acid and its aromatic precursors catechol and proteocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae, App Environ Microbiol. 78, 8421-8430. Wheeler, K. A., Lamb, H. K., and Hawkins, A. R. (1996) Control of metabolic flux through the quinate pathway in Aspergillus nidulans, Biochem J 315 (Pt 1), 195-205. White, Mark D., Karl A. P. Payne, Karl Fisher, Stephen A. Marshall, David Parker, Nicholas J. W. Rattray, Drupad K. Trivedi, et al. 2015. "UbiX Is a Flavin Prenyltransferase Required for Bacterial Ubiquinone Biosynthesis." Nature 522 (7557): 502-6. Wu, C-M., Wu, C-C., Su, C-C., Lee, S-N., Lee, Y-A. and Wu, J-Y. (2006) Microbial synthesis of cis,cis-muconic acid form benzoate by Sphingobacterium sp. Mutants. Biochem. Eng. J. 29, 35-40. Xie, N., Tang, H., Feng, J., Tao, F., Ma, C. and Xu, P. (2009) Characterization of benzoate degradationby newly isolated bacterium Pseudomonas sp. XP-M2. Biochem. Eng. J. 46, 79-82. Xie, N., Hong Liang, Ri-Bo Huang, and Ping Xu. 2014. "Biotechnological Production of Muconic Acid: Current Status and Future Prospects." Biotechnology Advances 32 (3): 615-22. Yi, J., Draths, K. M., Li, K. and Frost, J. W. (2003)Altered Glucose Transport and Shikimate Pathway Product Yields in E. coli. Biotechnol. Prog. 2003, 19, 1450-1459. Yoshikawa, N. , Mizuno, S., Ohta, K., and Suzuki, M. (1990) Microbial production of cis, cis-muconic acid. J. Biotechno. 14, 203-210.
본 발명은 비-방향족 탄소원, 예를 들어 글루코오스, 수크로오스, 글리세롤 및 셀룰로오스 가수분해물(cellulosic hydrolysates)을 포함하나 이에 한정되지 않는 당 및 탄수화물로부터 시작하여 시스, 시스-뮤콘산을 생산하는 유전자 조작된 미생물을 제공한다.
본 발명의 일 실시예에서, 방향족 아미노산 생합성의 음성 조절자의 활성은 유전적으로 조작된다. 본 발명의 일 측면에서, 음성 조절자 TyrR의 활성은 TyrR 단백질을 코딩하는 tyrR 유전자의 발현을 조절함으로써 상당히 감소된다. 본 발명의 다른 측면에서, 음성 조절자 TyrR의 활성은 미생물의 염색체 DNA에서 tyrR 유전자를 결실시키거나 또는 불활성화시킴으로써 완전히 제거될 수 있다.
본 발명의 또 다른 실시예에서, 방향족 아미노산 경로에서 특정 대사산물에 의한 특정 효소의 피드백 저해는 유전자 조작을 통해 극복된다. 대부분의 야생형 E. coli 균주에서, 방향족 아미노산 경로의 초반에 기능하는 데옥시아라비노-헵툴로소네이트 7-포스페이트 합성효소 (deoxyarabino-heptulosonate 7-phosphate synthase; "DAHP synthase")는 3개의 상이한 유전자, 즉 aroG, aroFaroH에 의해 인코딩되는 것으로 알려진 3개의 상이한 동질효소(isozymes)로 존재한다. 이러한 3개의 유전자 각각에 의해 인코딩된 단백질은 방향족 아미노산 경로의 하나 이상의 대사산물에 의해 피드백 저해를 받는다. 본 발명의 일 측면에서, 야생형 aroG 유전자는 미생물 세포(microbial cell) 내에서 방향족 아미노산 경로의 하나 이상의 대사산물에 의한 피드백 저해에 대해 내성이 있는 AroG 단백질을 코딩하는 변형된 aroG 유전자로 대체된다. 이러한 AroG 단백질의 피드백 내성 형태는 "AroGFBR"라고 한다. 본 발명의 다른 측면에서, 야생형 aroF 유전자는 미생물 세포 내에서 방향족 아미노산 경로의 하나 이상의 대사산물에 의한 피드백 저해에 대해 내성이 있는 AroF 단백질을 코딩하는 aroF 유전자로 대체된다 (AroFFBR). 본 발명의 또 다른 측면에서, 야생형 aroH 유전자는 미생물 세포 내에서 방향족 아미노산 경로의 하나 이상의 대사산물에 의한 피드백 저해에 대해 내성이 있는 AroH 단백질을 코딩하는 aroH 유전자로 대체된다 (AroHFBR). 본 발명의 또 다른 측면에서, 시스, 시스-뮤콘산의 상업적 생산을 위해 선택된 생촉매는 DAHP 합성효소에 대해 하나 이상의 피드백 내성 동질효소를 가질 수 있다.
본 발명의 또 다른 실시예에서, 미생물 세포 내에서 중심 방향족 생합성 경로에 관여하는 하나 이상의 효소의 활성이 향상된다. 본 발명의 일 측면에서, 방향족 경로 및/또는 뮤콘산 경로의 작동에 관여하는 하나 이상의 효소의 활성 향상은 유전자 조작을 통해 달성된다. 본 발명의 바람직한 측면에서, 단백질 AroF, AroG, AroH, AroB, TktA, TalB, AroZ, QutC, Qa-4, AsbF, QuiC, AroY, Rpe, Rpi, Pps, CatA 및 CatX 또는 이의 동족체(homologs) 또는 유사체를 코딩하는 하나 이상의 유전자의 발현이 향상되어, 상기 단백질의 증가된 활성을 야기한다. Rpe는 리불로오스-5-포스페이트 에피머라제(ribulose-5-phosphate epimerase)이고, Rpi는 리불로오스-5-포스페이트 이소머라제(isomerase)이며, Pps는 포스포에놀 피루베이트 합성효소이다 (Neidhardt and Curtiss, 1996). 만일 숙주 균주가 효모, 예를 들어, 사카로마이세스 세레비지애(Saccharomyces cerevisiae), 또는 사상균(filamentous fungus), 예를 들어, 뉴로스포라 크라싸(Neurospora crassa) 이면, S. 세레비지애의 경우 쉬키메이트 경로(shikimate pathway)에서 반응을 촉진시키는 몇몇 효소들은 ARO1 유전자에 의해 인코딩된 Aro1p라고 불리는 하나의 큰 단백질 또는 폴리펩티드 내로 혼합될 수 있다. Aro1p는 AroB, AroD, AroE, AroK (또는 AroL), 및 AroA의 기능을 겸비한다. 이와 같이, 본 발명의 목적을 위해, Aro1p 및 ARO1, 또는 이의 일부는 치환체로서 사용될 수 있거나, 또는 AroB, AroD, AroE, AroK, 및/또는 AroA에 더하여 사용될 수 있다.
본 발명의 또 다른 실시예에서, 박테리아 세포 내에서 에리트로오스-4-포스페이트를 통한 분출(flux)은 펜토오스 포스페이트 경로의 작동에서 효소를 과발현시킴으로써 향상된다. 본 발명의 일 측면에서, 트랜스알돌라제 효소, 예를 들어 talB 또는 talA 유전자에 의해 코딩된 트랜스알돌라제 효소의 발현은 유전자 변형에 의해 향상된다. 본 발명의 다른 측면에서, 트랜스케톨라제 효소를 인코딩하는 유전자, 예를 들어, tktA 유전자의 발현은 유전자 조작에 의해 향상된다. 본 발명의 또 다른 측면에서, 리불로오스-5-포스페이트 에피머라제 및 리불로오스-5-포스페이트 이소머라제 중 하나 또는 둘 모두를 인코딩하는 유전자의 발현은 유전자 조작에 의해 향상된다.
본 발명의 다른 실시예에서, 방향족 아미노산 경로의 기능에 필요한 포스포에놀 피루베이트(PEP)는 유전자 조작을 통해 증가된다. 본 발명의 일 측면에서, PEP 풀(pool)의 사용에 대한 경쟁은 글루코오스 흡수를 위한 PEP 독립 시스템과 글루코오스의 흡수를 위한 PEP-의존성 포스포트랜스퍼라제 시스템 (PTS)의 제거 및/또는 보완을 통해 감소된다. 본 발명의 또 다른 측면에서, GalP 기반 당 흡수 시스템은 미생물 세포 내에서 ATP를 보존할 목적으로 불활성화된다. 본 발명의 또 다른 측면에서, PTS 시스템 및 GalP 기반 당 흡수 시스템 (ΔPTS/ΔgalP) 둘 다의 기능에 결함이 있는 미생물 세포에서, 당 흡수는 Glf (글루코오스 확산을 촉진하는 단백질)를 인코딩하는 외인성 유전자 또는 Glf 및 Glk (글루코키나제) 단백질 모두를 인코딩하는 외인성 유전자를 도입함으로써 달성된다. 본 발명의 또 다른 실시예에서, PEP의 이용률은 pps와 같은 PEP 합성효소를 인코딩하는 유전자의 발현을 증가시킴으로써 증가된다.
본 발명의 또 다른 실시예에서, 3,4-디히드록시벤조산 탈탄산효소 (3,4-dihydroxybenzoic acid decarboxylase; AroY)의 활성이 향상된다. 이 실시예의 일 측면에서, AroY의 발현은 유전자 조작에 의해 향상된다. 본 발명의 다른 측면에서, UbiX, KpdB, Elw, Kox, Lpl 및 이들의 동족체를 포함하는 군으로부터 선택된 AroY에 대한 부속 단백질로서 작용하는 단백질의 발현은 유전자 조작에 의해 증가되어, 3,4-디히드록시벤조산 탈탄산효소 활성의 증가를 야기한다.
본 발명의 다른 실시예에서, PEP의 이용률은 포스포에놀피루베이트 카복실라제 (Ppc) 활성의 감소 또는 제거에 의해 증가된다. 본 발명의 일 측면에서, 특히 Ppc 활성이 제거될 때, 피루베이트 카복실라제 (Pyc) 활성이 증가되고 및/또는 Ppc 활성으로 대체된다.
본 명세서에 포함된 모든 특허, 특허출원, 간행물, 서열 및 기타 공개된 자료는 참조로 포함된다.
본 특허출원에서 사용된 바와 같이, 문구 "예를 들어" 또는 "~와 같은"는 당면의 주제에 대해 하나 이상의 방법, 접근법, 해결책 또는 물질의 조성이 있음을 나타내기 위한 것이며, 주어진 예는 그 예에 한정되는 것을 의미하지 않는다.
용어 "이종(heterologous)"은 유기체에서 자연적으로 또는 천연적으로 발견되지 않으나, 유전공학에 의해, 예를 들어 형질전환, 교배, 또는 형질도입 (transduction)에 의해 유기체에 도입될 수 있는 유전자 또는 단백질을 나타낸다. 이종 유전자는 염색체 내로 통합(삽입)되거나 또는 플라스미드 상에 함유될 수 있다. 용어 "외인성(exogenous)"은 유전공학에 의해, 예를 들어 형질전환, 교배, 형질도입, 또는 돌연변이유발에 의해 활성을 증가, 감소 또는 제거하기 위한 목적으로 유기체 내로 도입되거나 또는 유기체에서 변경되는 유전자 또는 단백질을 나타낸다. 외인성 유전자 또는 단백질은 이종일 수 있거나, 또는 숙주 유기체에 고유하나, 하나 이상의 방법, 예를 들어, 돌연변이, 결실, 프로모터의 변화, 종결자의 변화, 중복, 또는 염색체 또는 플라스미드에서 하나 이상의 추가 복제의 삽입에 의해 변경된 유전자 또는 단백질일 수 있다. 따라서, 예를 들어, 만일 aroB 유전자의 제 2 복제가 천연 부위와 완전히 다른 염색체의 부위에서 삽입되면, 제 2 복제는 외인성일 것이다.
본 발명에서 사용된 용어 "미생물"은 발효 공정을 통해 시스, 시스-뮤콘산의 상업적 생산에 사용될 수 있는 박테리아, 고세균(archaea), 효모, 조류 및 사상균을 포함한다. 용어 "유전자 조작된 미생물"은 자연에 존재하지 않으나 본 특허 출원에 기재된 바와 같이 하나 또는 다른 유전자 변형을 이용하여 생성된 미생물을 나타낸다.
명명법의 경우, 유전자 또는 코딩 영역은 일반적으로 이탤릭체로 된 소문자, 예를 들어 "aroZ"로 명명되며, 유전자에 의해 인코딩된 효소 또는 단백질은 동일한 문자이나, 첫 글자는 대문자이고 이탤릭체는 사용하지 않는 것으로 명명될 수 있다, 예를 들어 "AroZ". 또한, 효소 또는 단백질은 더 기술적인 이름으로 언급될 수 있다, 예를 들어, AroZ는 3-데히드로쉬키메이트 탈수효소(3-dehydroshikimate dehydratase)라고도 한다. 특정 촉매 활성을 갖는 효소의 일 예를 인코딩하는 유전자 또는 코딩 영역은, 역사적으로 다른 기원 때문에 또는 유전자가 상이한 종으로부터 유래되기 때문에, 다양한 이름을 가질 수 있다. 예를 들어, 바실러스 안트라시스(Bacillus anthracis)로부터의 3-데히드로쉬키메이트 탈수효소를 인코딩하는 유전자는 aroZ 대신에 asbF로 명명될 수 있으며, 아스페르질루스 니둘란스 (Aspergillus nidulans)로부터의 동일한 유전자는 qutC로 명명될 수 있고, 뉴로스포라 크라싸(Neurospora crassa)로부터의 동일한 유전자는 qa-4로 명명될 수 있으며, 아시네토박터 바일이(Acinetobacter baylyi)로부터의 동일한 유전자는 quiC로 명명될 수 있다.
"플라스미드"는 미생물의 염색체 또는 염색체들과는 별개로, 염색체보다 상당히 더 작고, 염색체 또는 염책체들로부터 별도로 복제하는 원형 또는 선형 DNA 분자를 의미한다. "플라스미드"는 세포당 약 하나의 복제 또는 세포당 하나 이상의 복제에 존재할 수 있다. 미생물 세포 내에서 플라스미드의 유지는 일반적으로 항생제 선택을 필요로 하지만, 영양요구성의 보완이 사용될 수도 있다.
박테리아 세포와 관련하여 본 발명에서 사용된, 용어 "염색체" 또는 "염색체 DNA"는 플라스미드보다 상당히 더 크고 임의의 항생제 선택을 필요로하지 않는 원형 DNA 분자이다.
용어 "발현 카세트" 또는 "카세트"는 적어도 프로모터, 및 효소 또는 다른 단백질을 코딩하는 유전자 또는 영역을 함유하는 염색체 또는 플라스미드의 일부일 수 있는 DNA 서열을 의미하며, 따라서 코딩 영역은 프로모터에 의해 발현되고, 효소 또는 단백질은 DNA 서열을 함유하는 숙주 세포에 의해 생성된다. "발현 카세트"는 코딩 영역이 자연적으로 코딩 영역과 관련되지 않은 프로모터로부터 발현되도록, 적어도 부분적으로 합성되거나, 또는 유전공학 방법에 의해 구축될 수 있다. 임의로, "발현 카세트"는 자연적으로 코딩 영역과 관련된 종결자일 수도 있거나 또는 종결자가 아닐 수도 있는 전사 종결자를 함유할 수 있다. "발현 카세트"는 하나 이상의 단백질에 대한 코딩 영역을 가질 수 있으며, 이 경우, 이것은 오페론, 또는 합성 오페론이라고 불릴 수 있다.
유전자 또는 코딩 영역의 "과발현"은 동일하거나 또는 유사한 성장 조건 하에서 숙주 미생물의 야생형 버전에서 확인된 수준보다 높은 수준으로 숙주 미생물에서 그 유전자 또는 코딩 영역에 의해 인코딩된 효소 또는 단백질을 생산하는 것을 의미한다. 이는 하기 방법들 중 하나 이상에 의해 달성될 수 있다: 1) 더 강한 프로모터의 도입, 2) 번역 시작 코돈의 약 4 내지 10 염기 상류에 위치한 5'-AGGAGG의 DNA 서열과 같은 더 강한 리보솜 결합 부위의 도입, 3) 종결자 또는 더 강한 종결자의 도입, 4) 코딩 영역의 하나 이상의 부위에서 코돈의 선택의 개선, 5) mRNA 안정성의 개선, 및 6) 염색체에 다수의 복제를 도입하거나 또는 다중복제 플라스미드 상에 카세트를 놓음으로써, 유전자의 복제수의 증가. 과발현되는 유전자로부터 생산된 효소 또는 단백질은 "과잉생산된"이라고 한다. "과발현된" 유전자 또는 "과잉생산된" 단백질은 숙주 미생물에 대해 고유한 것일 수 있으며, 또는 상이한 유기체로부터 유전공학 방법에 의해 숙주 미생물에 이식된 것일 수 있다. 이 경우, 효소 또는 단백질 및 효소 또는 단백질을 인코딩하는 유전자 또는 코딩 영역은 "외래" 또는 "이종"이라고 한다. 외래 또는 이종 유전자 및 단백질은 유전자 조작되지 않은 숙주 유기체에 존재하지 않기 때문에, 이들은 의미상 과발현되고 과잉생산된다.
제 1 유전자, DNA 서열 또는 단백질의 "동족체"는 상기 제 1 유전자, DNA 서열 또는 단백질의 생물학적 기능과 유사한 생물학적 기능을 수행하고, 기본 매개 변수를 이용하여 서열 비교를 위한 BLAST 컴퓨터 프로그램 (Altschul et al, 1990; Altschul et al, 1997)에 의해 측정된 바와 같이 (단백질 서열을 비교하거나 또는 유전자 서열로부터 유래된 단백질 서열을 비교할 때) 상기 제 1 유전자 또는 단백질과 적어도 25% 서열 동일성을 가지는, 제 2 유전자, DNA 서열 또는 단백질이며, 결실 및 삽입을 허용한다. E. coli aroG 유전자의 동족체의 예는 살모넬라 타이피뮤리움(Salmonella typhimurium)으로부터의 aroG일 것이다.
상동성에 의해 매우 먼 거리에 있는 2개의 효소 또는 단백질은 동일한 생화학적 기능을 수행할 수 있으나, 단지 서로 상대적으로 약하게 상동일 수 있다. 예를 들어, E. coli K-12 (GenBank NP_416129)로부터의 FumA 푸마라제는 이들의 중첩 영역 상의 클로스트리디움 보툴리눔(Clostridium botulinum) (GenBank GAE03909.1)으로부터의 푸마라제와 약 26.9% 상동이며, 이들의 중첩 영역 상의 피로코쿠스(Pyrococcus) sp. ST04 (GenBank AKF23146.1)로부터의 푸마라제 베타 아단위와 약 25.1% 상동이다. 다른 예로서, DHS를 PCA로 전환시키는 작용을 하는 클렙시엘라(Klebsiella) AroZ 및 뉴로스포라 크라싸(Neurospora crassa) Qa-4 효소는 29.3% 동일하다. 따라서, 대사 경로의 유전공학의 경우, 이종 효소 또는 단백질의 중요한 특징은 효소 또는 단백질에 의해 수행되는 기능 또는 반응이지, 근원 유기체(source organism) 또는 정확한 아미노산 서열이 아니기 때문에, 우리는 "상동" 효소 또는 단백질 또는 "동족체"를 이들의 아미노산 서열의 동일성에서 25% 이상인 임의의 쌍의 효소 또는 단백질을 포함하는 것으로 정의한다, 예를 들어 리프만-피어슨 방법(Lipman-Pearson method) (Ktuple = 2, 갭 페널티(Gap penalty) = 4, 및 갭 길이 페널티 = 12)으로 LaserGene 12 (DNAStar, Madison, WI) MegAlign 프로그램을 이용하여 정렬을 위한 기본 매개변수를 사용하여 나타낸 것처럼 간격을 허용한다.
제 1 유전자, DNA 서열 또는 단백질의 "유사체"는 상기 제 1 유전자, DNA 서열 또는 단백질의 생물학적 기능과 유사한 생물학적 기능을 수행하는 제 2 유전자, DNA 서열 또는 단백질이나, 서열 비교를 위한 BLAST 컴퓨터 프로그램 (Altschul et al, 1990; Altschul et al, 1997)에 의해 측정된 바와 같이 (단백질 서열을 비교하거나 또는 유전자 서열로부터 유래된 단백질 서열을 비교할 때) 상기 제 1 유전자, DNA 서열 또는 단백질과 25% 미만의 서열 동일성이 있는 경우, 결실 및 삽입을 허용한다. 클렙시엘라 뉴모니아(Klebsiella pneumoniae) AroZ 단백질의 유사체의 예는 아스페르질루스 니둘란스(Aspergillus nidulans)로부터의 QutC 단백질일 것인데, 그 이유는 두 단백질 모두 3-데히드로쉬키메이트 탈수효소 반응을 촉진시키는 효소이나, 두 효소 또는 각각의 유전자 간에 유의한 서열 상동성이 없기 때문이다. 당해 기술분야의 통상의 기술자는 특정 생물학적 기능을 갖는 많은 효소 및 단백질, 예를 들어 DAHP 합성 효소 또는 3-데히드로쉬키메이트 탈수효소가 많은 상이한 유기체에서 동족체 또는 유사체로서 확인될 수 있다는 것을 알 것이고, 이러한 효소 또는 단백질 군의 구성원은 동일한 기능을 공유하기 때문에, 이들이 구조적으로 약간 또는 상당히 상이할 수 있을지라도, 동일한 군의 상이한 구성원은 많은 경우에 현재의 유전공학 방법을 이용하여 동일한 생물학적 기능을 수행하는데 사용될 수 있다. 따라서, 예를 들어, AorZ 효소 및 QutC 효소는 동일한 반응인 DHS 탈수효소를 촉진하므로, 어느 하나가 적당한 상황에서 시스, 시스-뮤콘산의 생산을 야기할 것이며, 궁극적으로 어느 것을 사용할 것인지에 대한 선택은 유사한 발효 조건 하에서 시스, 시스-뮤콘산의 더 높은 역가를 야기하는 것을 선택함으로써 이루어질 수 있다.
용어 "비-방향족 탄소원" 또는 "비-방향족 화합물"은 탄소 및/또는 에너지의 공급원으로서 본 발명의 미생물을 공급하는데 사용될 수 있는 탄소-함유 화합물을 의미하며, 여기서 화합물은 벤젠과 관련된 6-원 고리를 함유하지 않는다. 비-방향족 탄소원의 예는 글루코오스, 자일로오스, 락토오스, 글리세롤, 아세테이트, 아라비노오스, 갈락토오스, 만노오스, 말토오스, 또는 수크로오스를 포함한다. "방향족 화합물"은 벤젠과 관련된 하나 이상의 6-원 고리를 함유하는 화합물이다. 방향족 화합물의 예는 카테콜, 또는 1,2-디히드록시 벤젠이다. 비-방향족 탄소원의 공급원으로서 글루코오스를 이용하여 뮤콘산을 생산하기 위해 선택된 미생물은, 특허 문헌 [미국특허 번호 8,871,489 및 미국특허출원 공개번호 US2013/0337519A1 및 US2014/0234923A]에 제공된 유전공학 기술을 이용하여 글리세롤, 수크로오스 및 자일로오스와 같은 다른 유형의 비-방향족 탄소원을 사용하도록 추가로 조작될 수 있다.
용어 "강한 항시성 프로모터(strong constitutive promoter)"는 DNA 서열 또는 RNA 폴리머라제에 의해 전사되는 유전자의 일반적으로 상류 (통상적인 5'에서 3' 방향으로 나타낸 경우 유전자의 5' 측면)에 놓이고, 상기 DNA 서열 또는 유전자가 임의의 적당한 분석 절차에 의해 직접 또는 간접적으로 용이하게 검출되는 수준에서 RNA 폴리머라제에 의한 전사에 의해 발현되도록 하는 DNA 서열을 의미한다. 적당한 분석 절차의 예는 1) 정량적 역전사효소 + PCR, 2) 인코딩된 효소의 효소 분석, 3) 쿠마시 블루-염색된 단백질 겔, 또는 4) 상기 전사의 결과로서 간접적으로 생산되는 대사산물의 측정가능한 생산, 및 전사, 대사산물, 또는 유도 화학물질의 수준을 특이적으로 조절하는 단백질의 존재 또는 부재에 상관없이 발생하는 이러한 측정가능한 전사를 포함한다. "강한 항시성 프로모터"가 아닌 프로모터의 예는 E. coli의 P1ac 프로모터인데, 그 이유는 락토오스 또는 유도제 IPTG의 부재 하에 억제제에 의해 억제되기 때문이다. 당해 기술분야에서 잘 알려진 방법을 이용함으로써, "강한 항시성 프로모터"는 천연 프로모터 (그렇지 않으면 DNA 서열 또는 유전자의 상류에 자연적으로 존재하는 프로모터)를 대체하기 위해 사용될 수 있어, 플라스미드 또는 염색체 중 어느 하나에 놓일 수 있고 천연 프로모터로부터의 수준보다 높은 수준에서 원하는 DNA 서열 또는 유전자의 발현 수준을 제공하는 발현 카세트를 야기한다. 강한 항시성 프로모터는 종 또는 속에 대해 특이적일 수 있으나, 종종 박테리아의 강한 항시성 프로모터는 멀리 떨어져 있는 박테리아에서 잘 기능할 수 있다. 예를 들어, 바실러스 서브틸리스(Bacillus subtilis)로부터의 프로모터 또는 바실러스 서브틸리스(B. subtilis) 상에서 정상적으로 성장하는 파지는 E. coli에서 잘 기능할 수 있다. "강한 항시성 프로모터"는 시스, 시스-뮤콘산의 선행기술 생산에서 사용된 Ptac와 같은 유도성 프로모터와 상당히 상이하며, 일반적으로 원하는 수준의 기능을 위해서 고가의 화학물질 또는 기타 환경 변화를 필요로 한다 (Niu et al., 2002). 강한 항시성 프로모터의 예는 바실러스 서브틸리스 파지 SP01 및 coli 파지 람다 PR로부터의 P15, P26 이다.
"돌연변이"는 DNA 서열의 임의의 변화로, DNA 서열을 관련 야생형 서열과 상이하게 만드는 것이다. "돌연변이"는 단일 염기 변화, 결실, 삽입, 치환, 틀이동 (frameshift), 역위, 복제 또는 DNA 서열의 다른 유형의 변화를 포함할 수 있다. 일반적으로 "돌연변이"는 기능에 부정적인 영향을 미치거나 또는 유전자 또는 유전자 산물의 활성을 감소시키는 변화를 나타낸다, 그러나, 본 명세서에서, 용어 "돌연변이"는 유전자 또는 유전자 산물의 활성을 증가시키는 변화를 나타낼 수도 있다. 예를 들어, aroG 유전자의 피드백 내성 돌연변이는 페닐알라닌과 같은 저해제의 존재 하에 AroG의 활성을 증가시킨다. 프로모터를 상이하고 더 강한 프로모터로 대체하면 유전자 또는 유전자 산물의 활성을 증가시킬 수 있는 돌연변이가 야기된다. "삭제돌연변이(null mutation)"는 대부분의 또는 모든 유전자의 결실과 같은 돌연변이이며, 유전자의 기능을 효과적으로 제거하는 돌연변이이다. "돌연변이체"는 하나 이상의 돌연변이를 포함하는 균주 또는 분리 균주이다.
시스, 시스-뮤콘산 (본 명세서에서 간단히 "뮤콘산"이라고 함)의 생물학적 생산은 방향족 아미노산 경로로부터의 탄소의 방향 전환(redirection)에 기초한다. 방향족 아미노산 및 비타민의 본래 생산은 대사산물인 에리트로오스-4-포스페이트 (erythrose-4-phosphate; E4P) 및 포스포에놀피루베이트 (PEP)를 필요로 한다. 방향족 아미노산 합성의 제 1 개입 단계는 효소 3-데옥시-아라비노-헵툴로네이트 7-포스페이트 (DAHP) 합성효소에 의해 촉진된다. E. coli에서, 이 단계는 3개의 상이한 동질효소인 AroG, AroF, 또는 AroH에 의해 수행될 수 있다. 각각의 이들 효소는 억제제 단백질 TyrR에 의한 전사 수준 및 경로의 말단 생성물인 페닐알라닌, 티로신 및 트립토판으로부터의 저해에 의한 단백질 수준에서 각각 조절된다. 뮤콘산의 생산은 방향족 아미노산 경로인 데히드로쉬킴산(dehydroshikimic acid; DHS)의 중간체로부터 진행되며, 3개의 이종 효소인 데히드로쉬키메이트 탈수효소 (AroZ), 3,4-디히드록시벤조에이트 탈탄산효소 (AroY) 및 카테콜 1,2-디옥시게나제 (CatA)의 발현을 필요로 한다. 이 경로는 도 1 및 도 2에 나타낸다.
"뮤코닉 경로" 또는 "뮤콘산 경로"는 DHS로부터 PCA로, 카테콜로, 시스, 시스-뮤콘산으로의 생화학적 경로를 나타내고, "뮤코닉 경로 유전자"는 뮤코닉 경로의 단계를 촉진하는 효소를 인코딩하거나, 또는 상기 효소들, 예를 들어 aroZ, aroY, catA, catX,qutC 중 하나의 활성을 향상시키는 역할을 하는 보조 기능을 인코딩하는 유전자이다 (도 3). DHS는 3-데히드로쉬키메이트의 약어이고, PCA는 프로토카테큐산(protocatechuic acid)의 약어이다. "뮤코닉 플라스미드"는 하나 이상의 뮤코닉 경로 유전자를 함유하는 플라스미드이다.
본 발명에서 사용된 유전자 조작은 도 1에 나타낸 바와 같이 많은 미생물 세포에 존재하는 방향족 아미노산 및 방향족 비타민 (또는 비타민-유사) 생합성의 공통 경로를 중심으로 한다. 도 1에 나타낸 방향족 아미노산 생합성의 공통 경로는 "쉬킴산" 또는 "쉬키메이트" 경로, "코리스민산(chorismic acid)" 또는 "코리스메이트(chorismate)" 경로, 또는 "중심 방향족" 또는 "중심 방향족 생합성" 경로라고 할 수 있다.
방향족 아미노산, 페닐알라닌, 티로신 및 트립토판의 생산을 위한 미생물의 유전공학에 관한 상당한 양의 발표된 연구물이 있다 (US 4,681,852, US 4,753,883, US 6,180,373, 유럽특허출원 86300748.0). 방향족 아미노산의 생산 방법은 피드백 내성 효소 (AroF, AroG, PheA, TyrA), 전사의 억제의 탈조절(tyrR), 프로모터 강도의 증가 (Ptac, P1ac) 및 하나 이상의 유전자의 복제수의 증가 (tktA)의 다양한 조합을 이용하는 것을 포함한다. 상기한 유전자 변형의 많은 특정 조합에 따라 뮤콘산 생산에 적합한 생촉매를 얻을 수 있다.
본 명세서에 전체 참조로 포함된, 국제특허출원 공개번호 WO2013/116244에 개시된 바에 따르면, 유전자 조작된 미생물은 원하는 표현형을 얻기 위해 필요한 특정 외인성 또는 이종 유전자를 가지고 있지만, 뮤콘산을 생산하기 위해 임의의 외인성 플라스미드를 함유할 필요는 없다. 본 발명의 바람직한 실시예에서, 미생물에 도입된 외인성 유전자는 염색체 DNA에 안정적으로 통합된다. 이러한 외인성 유전자의 염색체 DNA 통합의 결과로, 외인성 DNA를 가지는 플라스미드를 유지하기 위한 항생제 또는 다른 선택 방법의 사용에 대한 필요성이 완전히 제거되었다. 또한, 화학 유도제를 필요로 하지 않는 강한 프로모터는 글루코오스와 같은 탄소원에서 시스, 시스-뮤콘산으로의 경로의 작동에 필요한 유전자를 발현하는데 사용된다.
외인성 코딩 서열이 염색체 DNA에 통합될 때, 이것은 유전자좌에 통합되며, 그 결실은 어떠한 악영향을 야기하지 않는 것으로 보고되었다. 예를 들어, ydeM 으로도 알려진 E. coli 박테리아의 물리적 위치 0039에서의 코딩 영역은 지질단백질 (lipoprotein)로 주석을 달고, 결실 시에 악영향을 미치지 않는 것으로 입증되었다. 유사하게, nlpA 로도 알려진 E. coli 박테리아의 물리적 위치 2160에서의 코딩 영역은 라디칼 SAM 도메인 단백질로 주석을 달고, 결실 시에 악영향을 미치지 않는 것으로 입증되었다. 본 발명에서, PR-catAX의 복제는 E. coli 박테리아의 물리적 위치 0039에서 삽입되었고, PR-aroG FBR 의 복제는 E. coli 박테리아의 물리적 위치 2160에서 삽입되었다. 본 명세서에 기재된 다른 예에서, 삽입은 녹아웃 또는 결실에 유리한 유전자, 예컨대 원치 않는 기능을 암호화하는 유전자, 예를 들어 ptsI 유전자 또는 tyrR 유전자에서 이루어진다.
방향족 아미노산 생합성 경로는 많은 미생물, 특히 E. coli에 대해 잘 알려져 있다 (Neidhart and Curtiss 1996). 야생형 세포에서, 경로는 피드백 저해 및 전사의 억제에 의해 엄격하게 조절된다. 제 1 개입 단계는 데옥시-아라비노-헵툴로소네이트 7-포스페이트 (DAHP) 합성효소에 의해 촉진되며, 거기에는 aroF, aroGaroH에 의해 인코딩되는 3개의 동질효소가 있다. 3개의 동질효소인 AroF, AroG 및 AroH는 방향족 아미노 생합성 경로의 생성물, 즉 티로신, 페닐알라닌 및 트립토판에 의해 피드백 저해된다. AroF, AroG 및 AroH의 피드백 내성 돌연변이체는 잘 알려져 있다 (Hu et al. 2003; Lutke-Eversloh and Stephanopoulos 2007). 본 발명의 일 측면은 방향족 아미노산 생합성 경로의 산물에 의한 피드백 저해에 대해 내성이 있는 AroF, AroG 및 AroH 효소 단백질을 발현하기 위하여 aroF, aroGaroH 유전자의 피드백 내성 대립유전자(alleles)의 사용을 포함한다. 피드백 저해에 대해 내성이 있는 AroF, AroG 및 AroH 효소 단백질은 AroFFBR, AroGFBR and AroHFBR라고 한다.
방향족 경로에 관련된 오페론 중 몇몇의 전사는 tyrR 유전자에 의해 인코딩된 억제자 또는 trpR 유전자에 의해 인코딩된 억제자 중 어느 하나, 또는 둘 모두에 의해 조절된다 (Neidhardt and Curtiss 1996). 특히 중요한 것은, TyrR 단백질이 하나 이상의 방향족 아미노산과 결합할 때, TyrR 단백질에 의한 aroGaroF의 전사의 음성 조절이다. 본 발명의 일 측면은 숙주 박테리아 균주의 염색체로부터 이들 유전자를 제거함으로써 tyrR 또는 trpR 유전자에 의한 음성 조절의 제거를 포함한다.
본 발명은 뮤콘산 생산에 적합한 생촉매의 유전적 요소의 특정 조합, 예를 들어, 과잉생산된 피드백 내성 AroG, 과잉생산된 피드백 내성 AroF, 과발현된 tktA, 과발현된 talA, 강한 항시성 프로모터로부터 aroZ, aroYcatAX (또는 이의 유사체 또는 동족체)를 발현하기 위해 염색체로 통합된 카세트, 및 방향족 아미노산 및 비타민에 대해 프로토트로피(prototrophy)를 부여하나 원치 않는 방향족 화합물의 현저한 분비를 야기하지 않는 AroE 효소를 인코딩하는 유전자로서 정의한 누출성 aroE 대립유전자의 다양한 조합을 교시하나, 이에 한정되지 않는다.
본 명세서에 개시된 균주 구조의 모든 구체적인 예는 야생형 대장균 (Escherichia coli) C 균주 (ATCC 8739), 또는 대장균 W 균주(ATCC 9637)에 기초한다. 그러나, 이 시점에서, 본 명세서에 개시된 유전적 요소의 발현 카세트 또는 적당한 유사체 및 동족체가 임의의 다른 적당한 미생물, 예컨대 임의의 다른 적당한 E. coli 균주 및 발효 공정을 통한 뮤콘산의 상업적 생산에 사용될 수 있는 박테리아, 고세균, 효모, 조류 및 사상균의 다른 종에 결합될 수 있다는 것을 인식해야 한다.
E. coli에서, 글루코오스로부터의 방향족 아미노산 생합성 경로는 펜토오스 포스페이트 경로 (pentose phosphate pathway; PPP)의 비-산화적 분지(non-oxidative branch)로 시작한다. 비-산화적 펜토오스 포스페이트 경로에서 4개의 주요 효소는 트랜스케톨라제, 트랜스알돌라제, 리불로오스-5-포스페이트 에피머라제 및 리불로오스-5-포스페이트 이소머라제이다. 이들 효소는 헥소오스 또는 펜토오스 당으로부터 에리트로오스 4-포스페이트 (E4P)의 형성을 야기하는 반응을 촉진한다. E. coli에서 E4P의 이용률을 증가시키기 위하여, 트랜스케톨라제를 인코딩하는 tktA 유전자가 과발현될 수 있다 (Niu et al., 2002). 유사하게, 트랜스알돌라제 유전자의 과발현도 어떤 상황에서 E4P의 이용률을 증가시키는 것으로 예상된다 (Bongaerts et al., 2001). 본 발명의 또 다른 측면에서, 트랜스케톨라제 및 트랜스알돌라제 유전자의 발현은 트랜스케톨라제 및 트랜스알돌라제 효소의 활성의 증가를 야기하는 유전자 조작을 통해 향상된다. 본 발명의 또 다른 측면에서, PPP의 비-산화적 분지를 통한 분출은 리불로오스-5-포스페이트 에피머라제 및 리불로오스-5-포스페이트 이소머라제를 과인생산함으로써 증가된다.
공통 방향족 아미노산 경로에서 제 1 개입 단계 및 가장 엄격하게 조절된 반응은 (aroG, aroF,aroH에 의해 인코딩된) DAHP 합성효소에 의해 데옥시아라비노-헵툴로소네이트 7-포스페이트 (DAHP)를 생산하기 위한 포스포에놀피루베이트 (PEP)와 E4P의 축합이다. E. coli에 의해 소비된 D-글루코오스는 부분적으로 PPP를 통해 그리고 부분적으로 해당 작용(glycolysis)을 통해 방향족 생합성으로 유도된다. 트랜스케탈로오스 (tktA) 및 DAHP 합성 효소의 동질효소 (aroG)가 이들의 복제수를 증가시킴으로써 이들의 발현을 증가시키는 플라스미드로 형질전환을 통해 증폭되면, 방향족 경로로의 글루코오스의 흐름은 크게 증가된다 (Niu et al., 2002). 본 발명의 바람직한 측면에서, 외인성 aroG 및 tktA 유전자는 트랜스케톨라제 및 DAHP 합성효소의 표소 활성의 증폭을 위해 염색체 DNA 내로 통합된다.
본 발명의 다른 실시예에서, 미생물 세포 내의 PEP를 통한 분출은 PEP의 분출을 다른 경로로 감소시킴으로써 DAHP의 합성에 이용가능한 PEP를 증가시켜 개선된다. 많은 속의 박테리아 세포는 포스포트랜스퍼라제 시스템 (PTS)을 이용하여 세포막을 가로질러 글루코오스의 수송에서 PEP를 소비하며, 여기서 하나의 PEP 분자는 박테리아 외부막을 가로질러 수송된 글루코오스의 모든 분자에 대해 소비된다. PEP-의존성 PTS를 비-PEP 의존성 (PEP 비의존성) 글루코오스 흡수 기전으로 대체하거나 또는 보완함으로써, 미생물 세포 내에서 방향족 아미노산 생합성 경로에 이용가능한 PEP의 풀 크기를 증가시키는 것이 가능하다. 예를 들어, 당 흡수용 PTS 시스템은 GalP-기반 당 흡수 시스템 또는 Glf/Glk 단백질에 기반한 당 수송체 시스템에 의해 대체되거나 또는 보완될 수 있다 (Chandran et al., 2003; Yi et al., 2003). 본 발명의 바람직한 측면에서, 미생물 세포 내에서 PEP 풀을 보존하기 위해 당 흡수용 PTS 시스템을 삭제하는 것 외에도, GalP 기반 당 흡수 시스템은 미생물 세포 내에서 ATP를 보존하기 위해 불활성화된다. PTS 시스템 및 Gal-P 기반 당 흡수 시스템 둘 모두의 기능에 결함이 있는 미생물 세포 (△PTS/△galP)에서, 당 흡수는 Glf를 코딩하는 외인성 유전자 (글루코오스 촉진 확산 단백질) 또는 Glf 및 Glk (글루코키나제) 단백질 모두를 인코딩하는 외인성 유전자를 도입함으로써 달성될 수 있다. 본 발명에서 사용된 바와 같이, 용어 기능성 글루코오스-촉진 확산 단백질은 임의의 Glf 단백질 및 Glf와 기능적으로 동등하고 촉진 확산에 의해 당을 미생물 세포 내로 수송시키는 기능을 하는 임의의 다른 단백질을 나타낸다. 본 발명의 일 측면에서, 글루코오스 촉진자 단백질 Glf를 코딩하는 유전자는 △PTS/△galP인 미생물 세포 내로 도입되고, 미생물 세포 내로 수송된 글루코오스는 내인성 글루코오스 키나제에 의해 인산화된다. 본 발명의 다른 측면에서, Glf 및 Glk 단백질 모두를 코딩하는 유전자는 △PTS/△galP인 미생물 세포 내로 도입된다. 본 발명의 바람직한 측면에서, 미생물 세포 내로 도입된 외인성 glfglk 유전자는 숙주 염색체 DNA 내로 통합된다.
본 발명의 다른 실시예에서, 성장 및 에너지를 위한 탄소원이 글루코오스신생합성(gluconeogenesis)을 필요로 하는 경우 (예를 들어, 탄소원이 아세테이트 또는 석시네이트인 경우), PEP 풀은 세포 내에 이미 존재하는 카복실화 효소, 예를 들어 E. coli에서 pck에 의해 인코딩되는 PEP 카복시키나제의 활성을 증가시킴으로써, 또는 외인성 카복실화 효소를 도입함으로써 증가될 수 있다. 바람직한 실시예에서, 카복실화 효소를 코딩하는 도입된 외인성 유전자는 숙주 염색체 내로 안정되게 통합된다. 카복실화 효소를 코딩하는 유전자는 다양한 미생물 종으로부터 유래될 수 있다. 카복실화 효소를 코딩하는 유전자는 추가로 유전자 조작을 받을 수 있어서, 시스, 시스-뮤콘산 생산을 위한 생촉매 내에서 카복실화 효소의 발현이 현저히 향상된다.
PEP는 방향족 경로에 대한 2개의 주요 대사산물 중 하나이며, Ppc 활성의 감소 또는 제거는 방향족 경로 및 뮤콘산 생산을 위한 PEP를 보존한다. Ppc는 TCA 회로의 중간체인 옥살로아세테이트를 형성하는 보충대사 반응(anaplerotic reaction)을 촉진시킨다. Ppc 활성은 최소 배지에서 야생형 E. coli 및 일부 다른 유기체에는 필수적이나, 다른 것에는 결여되어 있다. Ppc가 없는 효모 같은 일부 유기체는 Pyc를 이용하여 옥살로아세테이트를 보충한다. Ppc 활성의 감소 또는 결여는 PEP 대신에 피루베이트로부터 옥살로아세테이트로의 대체 경로를 제공함으로써 Pyc 활성으로 보완될 수 있는데, 이는 뮤콘산 생산 및 중간체로 PEP를 필요로 하는 방향족 화합물과 같은 다른 화합물의 생산을 위한 PEP의 이용률을 증가시킨다. 본 명세서에 개시된 적어도 하나의 예에서, Ppc를 Pyc로 대체하면 PEP로부터 OAA로의 분출을 감소시킬 수 있으며, 이는 차례로 중심 방향족 경로에 대해 PEP를 보존한다.
본 발명의 또 다른 실시예에서, 미생물 세포 내의 PEP 풀은 PEP를 기질로 사용하는 PykA 및 PykF와 같은 피루베이트 키나제 효소의 활성을 감소시키거나 또는 제거함으로써 증가된다.
DAHP로부터, 방향족 아미노산 경로는 여러 중간체를 거쳐 3개의 방향족 아미노산, 즉 L-티로신 (L-Tyr), L-페닐알라닌 (L-Phe), 및 L-트립토판 (L-Trp)의 생합성을 위한 분지점(branch point)인 코리스메이트 (CHA)로 진행한다.
공통 방향족 아미노산 경로의 초기 단계에서, 3-데히드로퀴네이트 (3-dehydroquinate; DHQ) 합성효소 (AroB)는 DAHP로부터 포스페이트 기를 제거하여, DHQ의 형성을 야기한다. 효소 DHQ 탈수효소 (AroD)는 DHQ로부터 물 분자를 제거하여, 3-데히드로쉬키메이트 (DHS)의 형성을 야기하고, 이어서 쉬키메이트 탈수소효소 (AroE)에 의해 쉬키메이트 (SHK)로 환원된다. 쉬키메이트 키나제 I/II (AroK, AroL)는 쉬키메이트를 쉬키메이트 3-포스페이트 (S3P)로 인산화한다. S3P를 PEP와 축합시켜, 5-에놀피루보일쉬키메이트 3-포스페이트 (EPSP)의 형성을 야기한다. EPSP의 형성은 EPSP 합성효소 (AroA)에 의해 매개된다. EPSP로부터의 포스페이트 기는 코리스메이트 합성효소 (AroC)에 의해 제거되어, 코리스메이트 (CHA)의 형성을 야기한다.
도 2에 나타낸 바와 같이, 방향족 아미노산 경로는 aroE 유전자의 돌연변이로 인해 3-데히드로쉬키메이트 (DHS)에서 쉬키메이트 (SHK)로의 전환 수준에서 차단될 수 있어서, DHS의 축적을 야기한다 (Niu et al., 2002). 외인성 aroZ 유전자의 도입은 DHS를 프로토카테큐에이트 (protocatechuate; PCA)로 전환시키는 역할을 한다. 이어서 PCA는 AroY 효소에 의해 매개된 탈카복실화 반응을 통해 카테콜로 전환된다. 카테콜은 궁극적으로 catA 유전자 산물의 작용을 통해 시스-시스 뮤콘산 (ccMuA)으로 전환된다. ccMuA는 말레일 아세토아세테이트 이소머라제에 의해 작용하여 트랜스-트랜스 뮤콘산 (ttMuA)을 얻을 수 있다. DHS로부터 ccMuA 및/또는 ttMuA로의 생합성 경로는 뮤콘산 경로라고 한다. DHS의 ccMuA로의 전환을 담당하는 3개의 상이한 유전자는 다양한 미생물 종으로부터 얻어질 수 있고, 대장균과 같은 뮤콘산 생산을 위해 선택된 미생물 내로 도입될 수 있다. 본 발명의 바람직한 실시예에서, 뮤콘산 경로에 관여하는 단백질을 코딩하는 외인성 유전자는 숙주 염색체 DNA 내로 통합된다.
방향족 아미노산 경로를 시스, 시스-뮤콘산의 생산으로의 방향 전환에서, aroE 유전자의 돌연변이가 중요하다. aroE 유전자는 완전히 불활성화되어, 뮤콘산 생산을 위해 기재된 E. coli의 WN1/pWN2.248 균주로 수행된 것처럼, 방향족 아미노산의 생합성에서 완전한 차단을 야기할 수 있다 (Niu et al., 2002). WN1/pWN2.248 E. coli 균주 및 관련 균주의 중요한 단점은, aroE 유전자의 완전한 불활성화로 인해 이 균주가 페닐알라닌, 티로신 및 트립토판과 같은 방향족 아미노산, 및 상기 언급한 방향족 비타민 또는 비타민-유사 화합물에 대해 영양요구성이 되었다는 것이다. 그 결과, 시스, 시스-뮤콘산의 생산을 위한 균주의 성장 동안 이 균주는 이러한 화합물 (또는 쉬키메이트와 같은 공통 중간체)의 외인성 첨가를 필요로 하며, 이에 의하여 이러한 균주를 이용하는 시스, 시스-뮤콘산의 상업적 생산 비용을 상당히 증가시킨다. 방향족 아미노산의 외인성 공급원에 대한 이러한 의존성을 극복하기 위한 신규한 방법은, aroE에서 누출성 돌연변이가 있는 균주를 사용하는 것이다. 누출성 aroE 돌연변이체는 상당량의 DHS를 축적하는 동안 쉬킴산에 제한된 탄소 흐름을 허용할 것이며, 이는 AroZ 효소의 작용에 의해 PCA로의 전환에 이용 가능하다. 따라서, aroE의 누출성 돌연변이체 형태의 사용은 여전히 탄소의 흐름을 시스, 시스-뮤콘산으로 전환시키면서, 외인성 방향족 아미노산에 대한 의존성을 제거할 것이다.
DHS의 시스, 시스-뮤콘산으로의 전환에 필수적인 AroZ, AroY 및 CatA 단백질의 합성을 코딩하는 유전자는 많은 미생물 종 중 어느 하나로부터 유래될 수 있다. 일 실시예에서, 이러한 외인성 유전자는 개발중인 생촉매의 숙주 염색체 내로 통합된다. 바람직한 실시예에서, 생촉매 내에서 이러한 외인성 유전자의 발현은 어떠한 유도제도 필요 없는 항시성 프로모터에 의해 유도된다.
효소 3-데히드로쉬키메이트 탈수효소 (AroZ; EC 4.2.1.118)는 중간체 프로토카테큐에이트의 생합성에 필요하다. 본 명세서에서, "AroZ"는 3-데히드로쉬키메이트 탈수효소 반응을 촉진시키는 임의의 효소를 나타낸다. 선행기술에서, 이 효소는 클렙시엘라 뉴모니아(Klebsiella pneumoniae) 균주 A170-40 (ATCC25597)의 aroZ 유전자로부터 발현된다 (Niu et al., 2002; Draths and Frost, 1995). 그러나, AroZ의 특이적 활성은 유기체에 따라 0.1 내지 261 micromoles/min/mg으로 다양하다 (Wheeler et al, 1996; Fox et al, 2008; Pfleger et al, 2008), 따라서 K. 뉴모니아 보다 더 높은 특이적 활성을 갖는 유기체, 예를 들어 아시네토박터 바일이 (Acinetobacter baylyi), 아스페르질루스 니둘란스(Aspergillus nidulans) (Wheeler et al, 1996) [현재 에머리셀라 니둘란스(Emericella nidulans)로도 알려짐], 또는 뉴로스포라 크라싸(Neurospora crassa) (Rutledge, 1984; Stroman et al, 1978), 또는 포도스포라 안세리나(Podospora anserina) [포도스포라 파우시세타(Podospora pauciseta)로도 알려짐 (Hansen et al, 2009)]로부터의, asbF (Fox et al, 2008; Pfleger et al, 2008), qutC (Wheeler et al, 1996), qa-4 (Rutledge, 1984), 및 quiC로도 알려진 aroZ 유전자를 발현시킴으로써 현저한 개선이 이루어질 수 있다.
일 특정 예로서, 3-데히드로쉬키메이트 탈수효소를 인코딩하는 N. 크라싸로부터의 qa-4 유전자에 대한 코딩 서열은 임의의 몇몇 잘 알려진 방법, 예를 들어 전체 유전자 DNA 합성, cDNA 클로닝, 또는 게놈 DNA 클로닝 및 PCR 또는 합성 DNA 링커 합성의 조합에 의해 얻어질 수 있다. qa-4 유전자에 인트론이 없으므로, 코딩 영역은 게놈 DNA로부터 PCR에 의해 얻어질 수 있다 (Rutledge, 1984). qa-4 효소의 단백질 서열 (서열번호 4) 및 천연 유전자의 DNA 서열 (서열번호 5)은 알려져 있다.
대안적으로, 발현 카세트는 A. 니둘란스로부터의 3-데히드로쉬키메이트 탈수효소에 대해 구축될 수 있다. A. 니둘란스로부터의 QutC 효소에 대한 코딩 서열은 임의의 몇몇 잘 알려진 방법, 예를 들어 전체 유전자 DNA 합성, cDNA 클로닝, 또는 게놈 DNA 클로닝 및 PCR 또는 합성 DNA 링커 합성의 조합에 의해 얻어질 수 있다. QutC의 단백질 서열 (서열번호 6) 및 인트론을 함유하지 않은 천연 유전자의 DNA 서열 (서열번호 7; GenBank accession number M77665.1)은 알려져 있다. 발현 카세트는 DNA 합성에 의해, 또는 게놈 클로닝 및 PCR의 조합에 의해 얻어질 수 있어서, QutC 효소는 E. coli에서 정확하게 생산될 수 있다. E. coli에서 강한 항시성 프로모터로부터 QutC에 대한 코딩 서열을 발현함으로써, 염색체에 통합된 유전자의 1 또는 2 복제로부터 충분한 발현이 얻어질 수 있어서, 선행기술 (Niu et al., 2002)에 개시되어 있고 불안정성을 야기할 수 있는 다중복제 플라스미드 상의 발현 카세트의 2 이상의 복제의 유지를 필요없게 한다. 상기 기재된 방법을 사용하여 일반적으로 원하는 효소를 코딩하는 DNA 서열을 얻을 수 있고, 그 다음 코딩 서열을 사용하여 E. coli 또는 다른 적당한 미생물 숙주 유기체에서 기능하도록 설계된 발현 카세트를 구축할 수 있다.
AroZ의 특이적 활성은, 실시예 4에 기재된 바와 같이, 보다 강한 프로모터 및/또는 리보솜 결합 부위(ribosome binding site; RBS)가 코딩 영역 앞에 도입되어 있는, 개선된 발현 카세트를 구축함으로써 선행기술 (Niu et al., 2002)의 단백질 서열을 사용함으로써 개선될 수도 있다.
클렙시엘라 뉴모니아 균주 A170-40로부터의 AroZ (3-데히드로쉬키메이트 탈수효소)를 인코딩하는 aroZ 유전자는 선행기술에 기재된 바와 같이 얻어질 수 있다. 유전자의 DNA 서열 및 주변 DNA(surrounding DNA)는 당해 기술분야에 잘 알려진 방법에 의해 결정될 수 있다. aroZ와 같은 본 발명의 이종 유전자는 천연 DNA 서열을 이용하여 발현 카세트 내에 포함될 수 있거나, 또는 의도된 숙주 유기체에 대한 코돈 최적화 서열로 합성될 수 있다. aroZ 유전자는 활성 aroZ 유전자를 함유하는 임의의 다른 미생물, 예를 들어, K. 뉴모니아 균주 342, 아시네토박터 Sp. ADP1 (아시네토박터 바일이 ADP1), 바실러스 튜링겐시스(Bacillus thuringiensis), 에머리셀라 니둘란스(Emericella nidulans), 어위니아 아밀로보라(Erwinia amylovora), 슈도모나스 푸티다 W619(Pseudomonas putida W619), 뉴로스포라 크라싸(Neurospora crassa), 아스페르질루스 니둘란스(Aspergillus nidulans) 및 기타 다수에서 기재된 바와 같이 클로닝될 수 있다 (Draths and Frost, 1995).
효소 프로토카테큐에이트 탈탄산효소 (AroY; EC 4.1.1.63)는 중간체 카테콜의 생합성을 위해 필요하다. 본 명세서에서, "AroY"는 프로토카테큐에이트 탈탄산효소 반응을 촉진하는 임의의 효소를 나타낼 것이다. 선행기술에서, 이 효소는 다중복제 플라스미드 상에서 클렙시엘라 뉴모니아 균주 A170-40 (ATCC25597)의 aroY 유전자로부터 발현된다 (Niu et al., 2002). 그러나, 다시 한번, 공정에서의 개선은 숙주 유기체의 염색체에 통합된 발현 카세트의 1 또는 2 복제로부터 효소를 충분히 생산함으로써 얻어질 수 있다. 이는 선행기술의 K. 뉴모니아 AroY 효소의 특이적 활성보다 더 높은 특이적 활성을 갖는 AroY 효소를 자연적으로 생산하는 유기체로부터 aroY 유전자를 얻음으로써, 또는 실시예 4에 기재된 바와 같이, 강한 항시성 프로모터 및/또는 강한 RBS를 사용하는 발현 카세트를 구축하여 K. 뉴모니아 AroY의 발현 수준을 증가시킴으로써 달성될 수 있다. K. 뉴모니아 균주 A170-40으로부터의 AroY에 대한 단백질 서열은 서열번호 8로 제시된다. 해당 유전자인 aroY는 상기 기재된 대로 클로닝될 수 있거나 (Draths and Frost, 1995), 또는 단백질 서열에 기초하여, 의도된 숙주 유기체에 대한 최적화 코돈으로 합성될 수 있다.
aroY 유전자는 동족체 또는 유사체를 함유하는 임의의 다른 미생물, 예를 들어, K. 뉴모니아 균주 NCTC418 (ATCC15380), 클렙시엘라 뉴모니아 342, 및 아르술라 아데니니보란스(Arxula adeninivorans)로부터 얻어질 수 있다 (Sietmann et al, 2010). 클렙시엘라 뉴모니아 342로부터의 aroY 유전자의 DNA 서열 및 주변 DNA는 서열번호 9로 제시된다.
효소 카테콜 1,2-디옥시게나제 (CatA; EC 1.13.11.1)는 시스, 시스-뮤콘산 생합성의 마지막 단계에서 필요하다. 본 명세서에서, "CatA"는 카테콜 1,2-디옥시게나제 반응을 촉진하는 임의의 효소를 나타낼 것이다. 선행기술에서, 이 효소는 다중복제 플라스미드 상에서 아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus) 균주 ADP1의 catA 유전자로부터 발현된다 (Niu et al., 2002). 공급원 균주인 아시네토박터 칼코아세티쿠스 균주 ADP1은, 명백하게 아시네토박터 Sp. ADP1 및 아시네토박터 바일이 ADP1으로 재명명되었다 (Neidle and Ornston, 1986; Barbe et al, 2004; de Berardinis et al, 2008). 이 선행기술의 예에서, catA 유전자는 락토오스 또는 유도제로서 IPTG (이소프로필티오갈락토시드) 중 어느 하나를 필요로 하는 Ptac 프로모터로부터 발현되었다. 이들 화합물은 상업적 발효에서 사용하기에는 너무 비싸다, 그래서 다시, 고가의 유도제에 대한 필요성을 제거하고 발현 카세트를 염색체에 통합시킴으로써 더 안정한 균주를 생성하기 위해 공정의 상당한 개선이 필요하다. 이것은 다른 실시예에서 상기 기재된 바와 같은 강한 항시성 프로모터, 강한 RBS, 및/또는 더 안정한 mRNA를 사용하는 catA 유전자에 대한 발현 카세트를 구축함으로써 달성될 수 있다.
아시네토박터 바일이 ADP1으로부터의 catA 유전자의 DNA 서열 및 주변 서열은 서열번호 10으로 제시된다. 동일한 균주로부터의 CatA에 대한 단백질 서열은 서열번호 11로 제시된다. 바람직한 실시예에서, catA에 대한 발현 카세트는, catA 유전자의 발현 수준을 증가시키기 위하여, catA로부터 하류에 자연적으로 존재하는 하나 또는 2개의 추가 개방형 판독 프레임(open reading frames)을 함유한다 (Schirmer and Hillen, 1998). 많은 다른 유기체, 예를 들어 슈도모나스 아빌라 (Pseudomonas arvilla), 슈도모나스 플루오레센스(Pseudomonas fluorescens) (Nakazawa et al, 1967; Kojima et al, 1967), 스트렙토마이세스 Sp. 균주 2065 (Iwagami et al, 2000), 쿠프리아비두스 네카토르 335T(Cupriavidus necator 335T) 및 기타 다수 (Perez-Pantoja et al, 2008)는 catA 유전자에 대한 공급원일 수 있다.
시스, 시스-뮤콘산으로의 탄소의 흐름을 개선하기 위하여, 누출성 aroE 돌연변이체를 이용하여 DHS로부터 쉬키메이트 (SHK)로의 탄소의 흐름을 감소시키는 것 이외에, 방향족 아미노산 경로에서 분지하는 특정 다른 경로를 차단할 필요가 있다. 아시네토박터슈도모나스 속의 일부 박테리아는 DHS를 갈산으로 전환하는 효소인 p-히드록시벤조에이트 히드록실라제를 인코딩하는 pobA라는 유전자를 함유한다. PobA 동족체 또는 유사체가 E. coli에서 발견되지는 않았지만, DHS를 생산하도록 조작된 E. coli의 균주는 측정가능한 양의 갈산을 분비하므로 (Li and Frost, 1999), 이러한 효소는 E. coli에 존재할 가능성이 있다. 또한, DHS로부터 유래된 PCA는 pobA 유전자에 의해 코딩된 p-히드록시벤조에이트 히드록실라제 (PobA) 효소의 작용에 의해 갈산으로 전환될 수 있다. 이렇게 생산된 갈산은 이후에 피로갈롤 (pyrogallol)로 전환될 수 있다. 개선된 시스, 시스-뮤콘산을 위해 선택된 생촉매의 갈산 및 피로갈롤로의 탄소 흐름을 차단하기 위한 하나의 방법은, 유전자 조작을 통해 p-히드록시벤조에이트 히드록실라제 (PobA) 단백질의 활성을 차단하거나 또는 감소시키는 것이다. 유사하게, DHS의 전구체인 DHQ는 aroE에 의해 코딩된 쉬키메이트 탈수소효소에 의해 작용하여, 퀸산의 생산을 야기할 수도 있다. 본 발명의 실시예에서, 누출성 AroE 돌연변이체 효소는 DHQ를 퀸산으로 전환시키는 것에 대한 무능력 또는 감소된 능력을 추가로 선택하거나 또는 스크리닝한다.
시스, 시스-뮤콘산 대신 트랜스, 트랜스-뮤콘산의 생산에는 몇가지 장점이 있다. 트랜스, 트랜스-뮤콘산은 테레프탈산의 생산을 위해 에틸렌과의 딜스-알더 반응(Diels Alder reaction)에서 시스, 시스 뮤콘산보다 바람직하다. 유전자 조작된 방향족 경로와 함께 생촉매는 화학 전환 공정을 이용하여 세포 외부의 트랜스, 트랜스-뮤콘산으로 전환될 수 있는 시스, 시스-뮤콘산을 생산한다. 반면에, 말레일아세토아세테이트 이소머라제 또는 유사한 이소머라제 효소를 생촉매에 도입함으로써, 박테리아 생촉매 내에서 시스, 시스-뮤콘산을 트랜스, 트랜스-뮤콘산으로 전환하는 것이 가능하다.
일 실시예에서, 본 발명은 3,4-디히드록시벤조산 (프로토카테큐산 또는 PCA)의 카테콜로의 전환에 관여하는 AroY 단백질의 활성을 향상시키는 유전적 방법을 제공한다. AroY 단백질의 활성은 글루코오스의 뮤콘산으로의 생물학적 전환에서 주요 제한 및 병목으로 확인되었다 (Horwitz et al 2015; Weber et al 2012; Curran et al 2013; Sonoki et al 2014). AroY는 많은 박테리아 사이에 널리 퍼져있는 비-산화적 탈탄산효소의 종류에 속하며 매우 다양한 기질을 이용한다 (Lupa et al 2005). 비-산화적 탈탄산효소를 인코딩하는 많은 이들 유전자는 B, C, D 형의 유전자를 인코딩하는 3개의 유전자 오페론으로 구성된다. "C" 형 유전자는 AroY와 같은 탈탄산효소를 인코딩하는 반면, B 및 D 형 유전자의 특정 기능은 이들이 C 형 탈탄산효소의 완전한 활성을 실현하는데 필요한 것으로 종종 나타났지만 알려지지 않았다 (Lupa et al 2005; Jimenez et al 2013; Lin et al 2015; Sonoki et al 2014). 웨버(Weber) 등 (2012)은 클렙시엘라 뉴모니아 또는 세디멘티박터 히드록시벤조이쿠스(Sedimentibacter hydroxybenzoicus)의 B, C 및 D 유전자를 높은-복제수 효모 벡터 pRS4K-HKT7에 클로닝하고, 외부 첨가된 PCA가 있는 배지에서 발효를 수행하여 이들 유전자 군으로부터 PCA 탈탄산효소 활성의 존재를 결정하였다; 그러나, C 유전자에 의해 인코딩된 PCA 탈탄산효소가 이들 유전자 군의 B 또는 D 유전자에 의존적이었는지 여부를 결정하기 위한 어떠한 노력도 없었으며, B, C 및 D 유전자를 포함하는 이들 유전자 군의 발현이 글루코오스와 같은 비-방향족 탄소원을 사용하여 뮤콘산 생산을 향상시킬 수 있었는지 여부를 결정하려는 어떠한 시도도 없었다.
본 명세서에 개시된 특정 예에서 사용되는 AroY를 인코딩하는 유전자는 클렙시엘라 뉴모니아로부터 유래되나, 이 aroY 유전자의 국소 유전자 구조는 B 또는 D 형 효소를 인코딩하는 전사적으로 결합된 유전자를 나타내지 않는다. 이전 연구 결과에 따르면, 클렙시엘라 뉴모니아 (4-히드록시벤조산 탈탄산효소의 오페론 부분)의 다른 B 형 유전자인 kpdB의 포함은 리그닌-관련 방향족 화합물로부터 뮤콘산을 생산할 때 AroY 활성을 증가시킬 수 있다 (Sonoki et al 2014). 그러나, 리그닌은 화학 물질의 복잡한 혼합물이며, 뮤콘산과 같은 순수한 생성물을 생산하기 위해서는 고가의 하류 정화 공정을 필요로 한다. 존슨(Johnson) 등 (2016)은 엔테로박터 클로아카(Enterobacter cloaceae)로부터의 AroY (PCA 탈탄산효소)를 발현하는 슈도모나스 푸티다(Pseudomonas putida) 균주에서 KpdB와 89.3%의 서열 동일성을 갖는 E. 클로아카로부터의 EcdB 단백질의 공-발현이 탄소원으로 글루코오스를 사용하여 54시간 발효 종료시에 1.44 g/L 내지 4.92 g/L의 뮤콘산 생산을 증가시켰음을 나타내었다; 그러나, 이 슈도모나스 푸티다 기반 시스템에서 뮤콘산 수율은 여전히 극단적으로 (0.077 mol/mol)로 나타났으며, 따라서 이 슈도모나스 푸티다 기반 시스템은 상업적 규모의 적용에 적합하지 않다. 따라서, 탄수화물 및 기타 비-방향족 화합물 (상기 참조)과 같은 저렴하고 순수한 비-방향족 탄소원으로부터 개선된 뮤콘산 생산 공정에 대한 필요성이 여전히 존재한다. 최근 연구에 따르면, KpdB의 동족체인 UbiX가 프레닐화 플라빈 모노뉴클레오티드 보조인자(prenylated flavin mononucleotide cofactor)를 생산하며, 이 보조인자가 유비퀴논 형성에서 UbiD의 탈카복실화 활성을 지지한다는 것을 나타내었다 (White et al 2015; Payne et al 2015). UbiX 및 이의 동족체의 이전 특성이 4-히드록시-3-폴리프레닐벤조에이트 탈탄산효소, 히드록시벤조에이트 탈탄산효소, 아단위 B 단백질, 페놀산 탈탄산효소, 또는 페닐아크릴산 탈탄산효소와 같은 단백질을 나타낼지라도, 이들 단백질은 이제 더 정확하게 플라빈 프레닐트랜스퍼라제로 주석을 달았다.
뮤콘산의 생산에서 추가 제한은 전구체 대사산물인 PEP와 E4P의 제한에 기인할 수 있다. 이들 대사산물의 소비를 제거하거나 또는 감소시키는 변화가 본 발명에서 생성물 형성을 개선시키는 것으로 나타났다. 예를 들어, PEP 이용률은 천연 글루코오스 수송인 포스포트랜스퍼라제 시스템 (PTS)을 대체 시스템 (지모모나스 모빌리스(Zymomonas mobilis)의 Glf-Glk)으로 대체하여 향상시켰다. E coli의 PTS의 본래 사용은 글루코오스의 수송 및 인산화를 위해 PEP의 이용을 필요로 한다. Glf-Glk 시스템은 글루코오스의 수송 및 인산화를 위해 촉진 확산기 및 글루코키나제 + ATP를 각각 이용한다. PTS 대신 Glf-Glk의 사용은 여러 가지 방향족 산물에 대한 수율과 역가를 향상시키는 것으로 나타났다. PEP는 다양한 생물학적 반응을 위한 기질이다. PTS에 의한 글루코오스 수송 이외에, PEP는 피루베이트 키나제의 기질이며, ATP 및 피루베이트의 생산을 야기하여 해당 작용에서 생성된 ATP의 절반을 제공한다. 피루베이트 키나제 (pykA 또는 pykF)를 인코딩하는 유전자의 불활성화는 방향족 경로에서 생성물의 수율을 증가시키는 것으로 나타났다 (Escalante et al. 2010). 또한, PEP는 포스포에놀피루베이트 카복실라제 (Ppc)에 의한 옥살로아세테이트의 생산을 위한 기질이다. E. coli에서, 이것은 필수 유전자이고 (Baba et al., 2006), ppc에 대해 결실된 균주는 최소 배지에서 성장할 수 없다. 포스포에놀피루베이트 카복실라제를 가지고 있지 않으나 대신 피루베이트로부터 피루베이트 카복실라제 (Pyc)로 옥살로아세테이트를 보충하는 다른 유기체, 예를 들어, S. 세레비지애가 있다. E coli에서 피루베이트 카복실라제의 첨가가 연구되었으나, 임의의 방향족 산물에 대해서가 아닌 석시네이트 생산의 개선에 대해서만 연구되었다 (Lin et al. 2004; Vemuri, Eiteman, and Altman 2002).
도 1. E. coli에서 방향족 아미노산 생합성의 경로.
도 2. E. coli에서 뮤콘산 생합성의 경로.
도 3. 3-데옥시-아라비노-헵툴로네이트 7-포스페이트 합성효소(DHAP synthase)의 뮤콘산으로의 전환 반응 단계.
도 4. 총 뮤콘산 및 생화학적 중간체의 HPLC 분석에 사용된 기준을 나타내는 크로마토그래프.
도 5. 뮤콘산 이성질체의 HPLC 분석에 사용된 기준을 나타내는 크로마토그래프.
도 6. 플라스미드 pCP32AMP, pCP14 및 pCP54로 형질전환된 E. coli 균주 MYR34에서 DHS의 생산에 대한 역가. E. coli의 MYR34 균주는 aroE 유전자의 결실을 가진다. 플라스미드 pCP32AMP는 DAHP 합성효소를 코딩하는 aroG 유전자를 발현한다. 플라스미드 pCP14는 DHQ 합성효소를 코딩하는 aroB 유전자를 발현한다. 플라스미드 pCP54는 aroBaroG 유전자 모두를 발현한다.
도 7. 플라스미드 pCP32AMP 및 pCP54로 형질전환된 E. coli 균주 MYR34 및 MYR170에서 DHS의 생산에 대한 역가. E. coli의 MYR34 균주는 aroE 유전자의 결실을 가진다. MYR170 균주는 숙주 염색체 DNA의 ack 유전자좌(locus)에서 통합된 P15 프로모터의 조절 하에 aroE 유전자의 결실 및 aroB 유전자의 제 2 복제를 가진다. 플라스미드 pCP32AMP는 DAHP 합성효소를 코딩하는 aroG 유전자를 발현한다. 플라스미드 pCP54는 aroBaroG 유전자를 모두 발현한다.
도 8. 플라스미드 pMG37 단독으로 형질전환되거나 또는 pMG37 및 pCP32AMP 플라스미드와 함께 형질전환된 E. coli 균주 MYR34 및 MYR170에서 시스, 시스-뮤콘산의 생산에 대한 역가. E. coli의 MYR34 균주는 aroE 유전자의 결실을 가진다. MYR170 균주는 숙주 염색체 DNA의 ack 유전자좌에서 통합된 P15 프로모터의 조절 하에 aroE 유전자의 결실 및 aroB 유전자의 제 2 복제를 가진다. 플라스미드 pCP32AMP는 DAHP 합성효소를 코딩하는 aroG 유전자를 발현한다. 플라스미드 pMG37는 뮤콘산 경로에서 기능하는 단백질을 코딩하는 aroZ, aroY,catAX 유전자들을 발현한다.
도 9. aroG 유전자 단독을 발현하는 플라스미드 (pCP32AMP) 또는 aroGtktA 유전자를 동시에 발현하는 플라스미드 (pCP50)로 형질전환된 E. coli의 MYR170 균주에서 DHS의 생산에 대한 역가. MYR170 균주는 숙주 염색체 DNA의 ack 유전자좌에서 통합된 P15 프로모터의 조절 하에 aroE 유전자의 결실 및 aroB 유전자의 제 2 복제를 가진다.
도 10. 플라스미드 pCP32AMP 및 pCP50으로 형질전환된 E. coli의 MYR34 및 MYR170 균주로부터의 DHS 수율. DHS 수율은 소비된 글루코오스의 그램 당 생산된 DHS의 그램으로 계산된다. 플라스미드 pCP32AMP는 aroG 유전자를 발현하고, pCP50은 aroGtktA를 발현한다. 박테리아 균주 MYR34는 aroE 유전자의 결실을 가진다. E. coli의 MYR170 균주는 MYR34로부터 유래되고, 염색체 DNA 상의 ack 유전자좌에서 통합된 추가의 aroB 유전자를 가진다.
도 11. 플라스미드 pCP32AMP 및 pCP50으로 형질전환된 E. coli의 MYR170 및 MYR261 균주로부터의 DHS 역가. 플라스미드 pCP32AMP는 aroG 유전자를 발현하고, pCP50은 aroBtktA 유전자를 발현한다. MYR170 균주는 숙주 염색체 DNA의 ack 유전자좌에서 통합된 P15 프로모터의 조절 하에 aroE 유전자의 결실 및 aroB 유전자의 제 2 복제를 가진다. E. coli의 MYR261 균주는 E. coli의 MYR170 균주로부터 유래된다. E. coli의 MYR261 균주는 염색체 DNA의 poxB 유전자좌에서 통합된 이의 천연(native) 프로모터를 갖는 tktA 유전자의 제 2 복제를 가진다.
도 12. 쉬킴산 생합성 경로에서 DAHP 합성효소를 코딩하는 aroG를 발현하는 플라스미드 pCP32AMP 및 뮤콘산 경로에서 기능하는 단백질을 코딩하는 aroZ, aroYcatAX 유전자를 발현하는 플라스미드 pMG37로 형질전환된 E. coli 균주 MYR170, MYR261 및 MYR305에서 뮤콘산 및 아세트산 생산. MYR170 균주는 숙주 염색체 DNA의 ack 유전자좌에서 삽입된 P15 프로모터의 조절 하에 aroE 유전자의 결실 및 aroB 유전자의 추가 복제를 가진다. MYR261 및 MYR305는 MYR170 균주의 유도체이다. MYR261은 숙주 염색체 DNA 상의 poxB 유전자좌에서 통합된 tktA 유전자의 추가 복제를 가지며, MYR305는 숙주 염색체 DNA 상의 poxB 유전자좌에서 결실을 가진다.
도 13. E. coli 균주 MYR34에 의해 생산된 내인성 DHS의 뮤콘산으로의 전환. E. coli의 균주 MYR34는 쉬키메이트 탈수소효소(shikimate dehydrogenase)를 코딩하는 aroE 유전자의 결실을 가진다. 결과적으로, DHS의 축적이 있다. 균주 MYR34가 뮤콘산 경로에서 기능하는 단백질을 코딩하는 aroZ, aroYcatAX 유전자를 발현하는 플라스미드로 형질전환된 경우, DHS가 뮤콘산으로 전환된다. 그러나, MYR34 균주가 임의의 외인성 유전자가 없는 공 플라스미드 벡터 (pCL1921)로 형질전환된 경우, DHS의 뮤콘산으로의 전환은 발생하지 않는다.
도 14. DHS가 뮤콘산 경로로 전환하는 능력에 대한 aroZ 유사체의 비교. 3개의 상이한 aroZ 유사체, 즉, 아시네토박터 sp. ADP1으로부터의 quiC, 바실러스 튜링겐시스(Bacillus thuringiensis)로부터의 asbF, 및 뉴로스포라 그라싸 (Neurospora crassa)로부터의 qa-4는 P15 및 람다 PR 프로모터로부터 각각 catAXaroY 유전자를 발현하는 저-복제 플라스미드(low-copy plasmid)에서 P26 프로모터 하에서 클로닝되었다. 이러한 3개의 상이한 플라스미드 구조체는 형질전환을 통해 MYR34에서 발현되었고, 생산된 뮤콘산의 양이 측정되었다.
도 15. catAX, aroYquiC의 단일 복제는 E. coli의 MYR170 균주 내에 염색체로 통합되어(△aroE, △ack::P 15 -aroB), MYR352를 야기하였다(서열번호: 41). 또한, MYR170은 뮤콘산 경로의 작동에 필요한 모든 유전자를 가진 저-복제 플라스미드 pMG37로 형질전환되어, MYR219 균주를 야기하였다. MYR352 및 MYR219 모두는 YEp24 (중-복제 공벡터(medium-copy empty vector)) 또는 pCP32AMP (중-복제 aroG 발현 플라스미드) 또는 pCP50 (중-복제 aroGtktA 발현 플라스미드)로 형질전환되었고, 생산된 PCA, 카테콜 및 뮤콘산의 양은 HPLC 방법을 사용하여 정량되었다.
도 16. catAX의 발현을 증가시킴으로써 MYR352에서 카테콜 축적의 제거. MYR352는 aroY 단독을 발현하는 플라스미드 (pMG27), 또는 quiC 단독을 발현하는 플라스미드 (pMG39), 또는 3개의 뮤콘산 경로 유전자, 즉, catAX, aroYquiC를 모두 발현하는 플라스미드 (pMG37), 또는 뮤콘산 경로에서 단지 2개의 유전자, 즉, catAXaroY를 발현하는 플라스미드 (pMG33)로 형질전환되었다. catAX 단독의 과발현은 카테콜의 축적을 방지하기에 충분하였다.
도 17. 글루코오스의 이입(importing)을 위해 상이한 시스템을 이용한 균주의 성장. ptsHIgalP의 결실 (MYR31)은 최소 글루코오스 배지에서 성장의 결핍을 야기하는 반면, glfglk 유전자의 도입 (MYR217)은 다시 성장을 가져온다. 대조 균주 MYR34는 △aroE이지만, 그렇지 않으면 야생형이다. 3개의 방향족 아미노산 및 3개의 방향족 비타민을 배지에 첨가하여 영양요구성(auxotrophic) 균주의 성장을 허용하였다.
도 18. E. coli의 MYR34 및 MYR217 균주에서 DHS 생산. DHS의 생산을 야기하는 플라스미드로 형질전환된 경우, 글루코오스 이입을 위해 glf-glk를 이용하는 MYR217은, 포스포트랜스퍼라제 시스템 (PTS)을 이용하는 MYR34의 형질전환체보다 더 높은 역가의 DHS를 생산하였다.
도 19. 7 리터 발효기에서 E. coli의 MYR428 균주에 의한 뮤콘산의 생산. △aroE △ackA::P 15 -aroB △poxB::tktA의 유전자형을 갖는 E. coli의 MYR261를 플라스미드 pCP32AMP 및 pMG37로 형질전환시켜, E. coli의 MYR428 균주를 생성하였다.
도 20. 뮤콘산을 생산하도록 유전자 조작된 E. coli 균주 MYR993 및 2개의 MYR993 유도체인 MYR993ΔubiX 및 MYR993ΔubiD에서 뮤콘산 및 PCA 생산. MYR993ΔubiX E. coli 균주는 ubiX 유전자의 코딩 영역을 카나마이신 내성을 코딩하는 카세트로 대체함으로써 MYR993 균주로부터 유래되었다. MYR993ΔubiD E. coli 균주는 ubiD 유전자의 코딩 영역을 카나마이신 내성을 코딩하는 카세트로 대체함으로써 MYR993 균주로부터 유사하게 유래되었다.
도 21. UbiX의 다양한 동족체의 상대적 활성 측정. UbiX 동족체의 활성 측정은 290nm에서의 흡광도 (A290)의 감소로 측정한 PCA의 탈카복실화로부터 수행되었다. 5개의 상이한 UbiX 동족체, 즉 KpdB, UbiX, Elw, Kok 및 Lpl은 본 연구에서 사용되었다.
도 22. 낮은 또는 높은 수준의 kpdB 유전자 발현을 갖는 E. coli 균주에서 뮤콘산 및 PCA 생산. 외인성 kpdB 유전자를 갖지 않는 E. coli 균주 MYR1305를 부모 균주로 사용하였고, P26 프로모터 또는 E. coli pgi 프로모터로부터 발현된 kpdB 유전자를 갖는 저 복제 플라스미드로 형질전환시켰다. P26 프로모터로부터의 유전자 발현은 비교적 낮은 수준으로 예상되는 반면, pgi 프로모터로부터의 유전자 발현은 비교적 높은 수준으로 예상된다.
도 23. E. coli 균주 MYR1674 및 이의 유도체 MYR1772에서 뮤콘산 생산. MYR1772는 ppc의 코딩 영역과 프로모터를 PR-pyc 유전자로 대체함으로써 MYR1674로부터 유래되었다. PR은 콜리파지 람다로부터의 강한 우측 프로모터의 약자이다.
이 특허 출원의 명세서는 뮤콘산의 효율적인 생산을 위한 미생물 균주의 구축과 관련된 발명의 여러 가지 측면을 제공한다. 당업자는 본 발명의 여러 가지 측면을 편집하여 뮤콘산의 생산에 매우 높은 효율성을 갖는 생촉매를 구축할 수 있다.
실험 부분
총설
균주 및 접종물(inoculum) 제조: 본 발명에서 사용된 박테리아 균주의 목록은 표 1 및 표 2에 제공된다. 본 발명에서 사용된 플라스미드의 목록은 표 3에 제공된다. 본 명세서에 개시된 균주 구조의 모든 구체적인 예는 야생형 E. coli C 균주 (ATCC 8739), 또는 E. coli K-12 균주(YMC9 또는 MM294)로부터 유래되나, 본 명세서에 개시된 유전적 요소는 임의의 다른 적당한 E. coli 균주에 결합될 수 있으며, 본 명세서에 개시된 유전적 요소의 발현 카세트 또는 적당한 유사체 및 동족체는 임의의 다른 적당한 미생물, 예를 들어 발효 공정을 통한 시스, 시스-뮤콘산의 상업적 생산에 사용될 수 있는 박테리아, 고세균, 효모, 조류 및 사상균의 다른 종에 결합될 수 있다.
E. coli C는 AM1 무기 배지(mineral media)에서 10% 글루코오스를 발효시킬 수 있다. AM1 배지는 2.63 g/L (NH4)2HPO4, 0.87 g/L NH4H2PO4, 1.5 mM MgSO4, 1.0 mM 베타인, 및 1.5 ml/L 미량 원소를 함유한다. 미량 원소는 1000X 스톡(stock)으로서 제조되고 하기 성분들을 함유한다: 1.6 g/L FeCl3, 0.2 g/L CoCl2·6H20, 0.1 g/L CuCl2, 0.2 g/L ZnCl2·4H20, 0.2 g/L NaMo04, 0.05 g/L H3B03, 및 0.33 g/L MnCl2·4H20. 발효액의 pH는 1.0 - 10.0 M KOH 또는 1.0 - 9.0 M 수산화암모늄을 사용하여 7.0으로 유지된다.
발효: 유전자 조작되고 -80℃ 냉동고에 저장된 E. coli 균주의 40% 글리세롤 스톡으로부터 신선한 NBS-2% 글루코오스 (Jantama et al., 2008a) 플레이트 상에 도말하여 발효를 시작하였다. (만약 있다면) 플라스미드는 한천 플레이트 및 액체 배지에 적당한 항생제(들)을 포함하는 것으로 유지된다. 암피실린 (나트륨 염)을 150 mg/L로, 스펙티노마이신 HCL을 100 mg/L로, 테트라사이클린 HCl을 15 mg/l로, 및 카나마이신 설페이트를 50 mg/l로 사용하였다. 24 내지 48시간 후 (37℃), 단일 콜로니를 진탕 플라스크(shake flask) 내 25 ml의 동일한 배지에서 채취한다. 세포가 약 1.0의 OD600으로 성장할 때까지 37℃에서 200 rpm으로 진탕한 후, 배양물을 얼음으로 냉각시키고 동일한 부피의 무균 80% 글리세롤을 첨가하였다. 그 다음, 발효를 위한 접종물로서 사용하기 위하여, 2ml 분취액을 -80℃에서 동결시켰다. 용어 "역가"는 발효액의 단위 부피당 생산된 발효 산물의 양을 의미하며, 용어 "수율"은 생산된 발효 산물 대 소비된 탄소원의 비율 (g/g 또는 mol/mol)을 의미한다.
세포 성장: Thermo Electronic Spectronic 20 분광 광도계를 이용하여 550 nm (OD550) 또는 600 nm (OD600)에서 광학 밀도를 측정하여 세포 질량을 평가하였다.
쉬킴산 경로 및 뮤콘산 경로에서 중간체의 분석: 시스, 시스-뮤콘산 및 시스, 트랜스-뮤콘산, 및 기타 생화학적 중간체를 포함하는 발효액에서 생산된 총 뮤콘산을, Waters Alliance 기기를 구비한 HPLC로 분석하고, 시그마-알드리치로부터 구입한 표준을 이용하여 210 nm에서 흡광도 또는 45°에서 굴절률을 모니터링하였다. 컬럼은 BioRad Aminex HPX-87H로, 50℃에서 이동상으로 8 mM 황산을 0.6 ml/min의 유속으로 40분 동안 수행하였다. 구입한 표준 (시그마-알드리치)의 크로마토그래프는 도 4에 나타내었다. HPLC를 준비하기 위해, 발효 시료를 0.05 M 인산 칼륨 완충액, pH 7.0에서 10배 또는 100배 희석하여, 시스, 시스-형태의 뮤콘산을 시스, 트랜스-형태로 이성질체화하는 것으로부터 보호한다.
뮤콘산의 이성질체를 분리하기 위하여, 상기와 같이 제조된 시료를 제 2 HPLC 시스템에서 행하였다. 기기는 Agilent 1200 HPLC이었고, 컬럼은 인산으로 pH 3.0으로 조정된 30% 메탄올 내 50mM KH2P04를 이동상으로 30℃에서 작동하는 Agilent Eclipse XDB-C18, 4.6 x 150 mm이었다. 유속은 278 nm에서 흡광도에 의한 검출로, 4분 동안 1 ml/min이었다. 시스, 트랜스-뮤콘산 표준은 시스, 시스-뮤콘산을 물에 용해시켜, HPLC 피크가 완전히 새로운 위치로 이동될 때까지, 실온에서 약 2시간 동안 자발적 산 촉매 이성질체화를 거쳐 만들었다. 다른 표준은 시그마-알드리치에서 구입하였다. 표준들이 나타내는 크로마토그래프는 도 5에 나타내었다.
발효 공정을 위한 뮤콘산 생산 배지의 조성: 발효 배지의 각 리터에는 50 ml/L의 1M KH2PO4, 10 ml의 200g/L 시트르산 + 25 g/L 구연산철(Ferric citrate), 1.2 ml의 98% 황산, 및 한 방울의 소포제(Antifoam) 204를 함유한다. 이들 성분은 충분한 물과 혼합하여 하기의 다른 성분을 추가할 수 있는 공간을 허용한다. 고압 멸균 처리 후, 하기 성분들을 첨가하였다: 10, 20, 30 또는 40 ml의 50% 글로코오스 (5, 10, 15, 또는 20 g/l 최종을 얻음), 2 ml의 1M MgS04, 1 ml의 0.1M CaC12, 10 ml의 1000X 미량 원소 (Jantama et al. 2008a), 및 필요한 경우, 1, 2, 4, 또는 8 ml의 50 g/L 페닐알라닌 + 50 g/L 티로신 + 50 g/L 트립토판 (0.5, 0.1, 0.2, 또는 0.4 g/l 최종을 얻음), 10 ml의 1 g/L p-히드록시벤조산 + 1 g/l p-아미노벤조산 + 1 g/L 2,3-디히드록시벤조산 (마지막 3개의 화합물은 방향족 "비타민" 또는 "비타민-유사 화합물"이라고 함), 및, 필요에 따라, 1 ml의 150 mg/ml 암피실린(나트륨 염) 및/또는 1 ml의 100 mg/ml 스펙티노마이신 HCl. 방향족 아미노산과 비타민은 필요하지 않았고, 기능성 AroE 단백질을 발현하는 균주에는 사용되지 않았다.
진탕 플라스크의 경우, NBS 염 (Jantama et al. 2008a) + 0.2 M MOPS 완충액, pH 7.4는 상기 기재된 예비-고압 멸균 혼합물로 대체하였지만, 글루코오스 및 다른 첨가제는 동일하였다. 유가식(fed batch) 발효의 경우, 공급병은 600 g/L의 무수 글루코오스, 및 필요한 경우, 32 ml/L의 50 g/L 페닐알라닌 + 50 g/L 티로신 + 50 g/L 트립토판을 함유하였다. 9M NH4OH를 염기로 사용하여 발효 배지의 pH를 유지하였다. 방향족 아미노산과 비타민은 필요하지 않았고, 기능성 AroE 단백질을 발현하는 균주에는 사용되지 않았다.
DCU 조절기 또는 Biocommand Software에 의해 조절된 pH, DO, 온도, 글루코오스 및 공급 속도를 가진 7L New Brunswick 과학적 발효기에서 유가식 발효를 수행하였다. 배지는 50 mM K2HPO4, 20 mM K2SO4, 3 mM MgSO4 및 미량 원소를 함유하였다. 미량 원소는 50X 스톡으로서 제조되고 하기 성분들을 함유한다: 1.6 g/L FeCl3, 0.1 g/L CuCl2, 0.2 g/L ZnCl2·4H20, 0.2 g/L NaMo04, 0.05 g/L H3B03, 및 0.55 g/L MnCl2·4H20. 온도를 37℃로 유지하였고, 9N 암모늄수로 pH를 7.0으로 유지하였다. 폭기 (Aeration)는 0.5 vvm이었고, 임펠러의 속도를 750 rpm에서 1200 rpm으로 자동 증가시켜 용존 산소 (DO)를 30%로 유지하였다. 배지 내 초기 글루코오스 농도는 약 20 내지 25 g/L이었다. 농도가 5 g/L 이하로 떨어지면, 공급 글루코오스 용액을 발효기에 첨가하였다. 초기 글루코오스 공급 속도는 4 g/L/hr이었고, 7 g/L/hr의 공급 속도로 48시간까지 증가시킨 후, 7 g/L/hr로 유지시켰다.
뮤콘산 경로 유전자를 발현하는 플라스미드의 구축: DHS를 뮤콘산으로 전환하는데 필요한 3개의 이종 유전자를 단독으로 또는 저-복제 플라스미드인 pCL1921와 조합하여 클로닝하였다 (Lerner and Inouye, 1990). pCL1921의 DNA 서열은 표 7에서 서열번호 20으로 제시된다. 간략하게, catAX, aroYaroZ 유사체 또는 동족체의 코딩서열은 E. coli에서 발현을 위해 코돈-최적화되었고, 상업적으로 합성되었다 (GeneArt, Invitrogen). 그 다음, 독특한 리보솜-결합 부위를 갖는 정방향 프라이머 및 각 유전자에 대해 독특한 종결자 서열을 갖는 역방향 프라이머를 이용하여 이들 서열을 PCR 증폭시켰다. 결과의 PCR 단편을 제한 효소로 절단하고, 표준 분자 클로닝 과정에 의해 독특한 항시성 프로모터 서열의 하류를 클로닝하였다. 프로모터 서열은 이전에 기재된 공급원 DNA 서열로부터 PCR 증폭 (미국특허출원 20090191610; 미국특허 7244593)한 다음, 제한효소 절단 및 표준 분자 클로닝으로 클로닝하였다. 프로모터-RBS-코딩서열-종결자 서열은 함께 발현 카세트를 구성하였다. 그 다음, 개별 발현 카세트를 조합하여 하나, 둘 또는 3개 모두 뮤콘산 경로 유전자를 발현하는 플라스미드를 생성하였다.
본 발명은 하기의 예를 이용하여 더 예시된다: 그러나, 단독으로 또는 이들의 임의의 조합으로 본 명세서에 제공된 예는 본 발명의 범위 또는 실시예를 제한하는 것으로 해석되어서는 안된다. 마지막에 제공되는 청구범위는 발명의 범위를 정의한다. 당업자는 청구범위에서 정의된 본 발명의 범위를 명확하게 이해할 수 있다. 당업자는 본 발명의 정신 및 범위를 벗어나지 않고 본 발명에 의해 제공되는 기술적 해결 수단을 변형 또는 변화시킬 수 있다.
실시예 1
aroGaroF 유전자의 발현의 증가
E. colityrR 유전자는 다수의 잘 알려진 방법들, 예를 들어 화학적 또는 방사선 돌연변이유발 및 스크리닝 (예를 들어, PCR 및 DNA 시퀀싱에 의함) 또는 유사체 내성에 대한 선택 (예를 들어, 4-플루오로티로신에 대한 내성), 트랜스포존 돌연변이유발, 박테리오파지 Mu 돌연변이유발, 또는 형질전환 중 어느 하나에 의해 돌연변이될 수 있다. 바람직한 실시예에서, tyrR 유전자의 돌연변이는 삭제돌연변이 (검출가능한 활성을 남기지 않는 돌연변이)이고, 더 바람직한 실시예에서는, tyrR 유전자의 적어도 일부는 결실된다. 이것은 선형 DNA 분자를 이용한 2-단계의 형질전환 방법을 이용하여 달성될 수 있다 (Jantama et al, 2008a; Jantama et al, 2008b). 제 1 단계에서, cam R , sacB 카세트는 tyrR 유전자좌에 통합되어 클로람페니콜 내성을 선택하는 이중 재조합에 의해 tyrR 개방형 판독 프레임의 대부분 또는 모두를 대체한다. 제 2 단계에서, tyrR 유전자의 결실된 버전을 포함하는 선형 DNA는 LB와 같은 농축 배지에서 5% 수크로오스에 대한 내성을 선택하는 이중 재조합에 의해 통합된다. 정확한 결실은 진단 중합효소연쇄반응 (PCR)에 의해 동정되고 확인된다. tyrR의 결실의 목적은 aroGaroF의 발현을 증가시키는 것이다. 유사한 결과를 얻는 대안적인 방법은 aroG 및/또는 aroF 앞에 있는 천연 프로모터를 강한 항시성 프로모터로 대체하고, 필요하다면, 전사 종결자를 추가하는 것이다. 이것이 어떻게 수행되는지에 대한 더 상세한 내용은 일반적으로 하기 실시예 4에 제시된다.
tyrR 결실이 aroLM과 같은 유전자의 원치 않는 과발현을 야기할 수 있기 때문에, TyrR 단백질에 의한 AroG 및 AroF 활성의 억제를 극복하기 위한 상기 기재된 2개의 방법 중 후자가 바람직하다 (Neidhardt and Curtiss, 1996). 이것이 어떻게 수행되는지에 대한 더 상세한 내용은 일반적으로 하기 실시예 4에 제시된다.
실시예 2
피드백 내성 AroG 및 AroF
피드백 내성 AroG 효소 (3-데옥시-D-아라비노헵툴로소네이트-7-포스페이트 합성효소 또는 DAHPS)를 야기하는 aroG 유전자의 돌연변이는 당해 기술분야에 잘 알려져 있다 (Shumilin et al, 1999; Kikuchi et al, 1997; Shumilin et al, 2002). 또한, 이러한 돌연변이를 생성, 동정 및 특징화하는 방법도 잘 알려져 있다 (Ger et al., 1994, Hu et al., 2003). 바람직한 돌연변이는 페닐알라닌에 의한 저해에 대해 완전한 내성을 야기하는 돌연변이이다. 임의의 알려진 공개된 피드백 내성 돌연변이는 다수의 잘 알려진 방법 중 임의의 방법에 의해 염색체에 함유된 aroG 유전자 내로 또는 플라스미드 상에 도입될 수 있으며, 이의 일 예는 원하는 돌연변이가 PCR 프라이밍(priming) 올리고뉴클레오티드의 일부로서 합성되는 돌연변이유발 PCR이다 (Hu et al., 2003). 돌연변이의 정확한 도입은 DNA 시퀀싱으로 확인된다. E. coli C로부터의 야생형 aroG 유전자의 서열은 서열번호 18로 제시된다. 바람직한 돌연변이는 코돈 150을 CCA에서 CTA로 변화시킴으로써, AroG의 아미노산 150을 프롤린에서 류신으로 변화시키는 점 돌연변이이다 (Hu et al, 2003). 더 바람직한 실시예에서, E. coli에서 바람직한 코돈인 코돈 150은 CCA에서 CTG로 변한다. 인코딩된 DAHP 합성효소가 페닐알라닌에 의한 저해에 대해 최대 3 mM 까지 완전히 내성을 가지며 야생형 효소와 유사한 특이적 활성을 가지기 때문에, aroG의 이러한 특정 대립유전자가 바람직하다 (Hu et al., 2003).
추가의 피드백 내성 aroG 대립유전자는 돌연변이유발 및 하나 이상의 페닐알라닌 유사체, 예를 들어 베타-2-티에닐알라닌, p-플루오로페닐알라닌, p-클로로페닐알라닌, o-플루오로페닐알라닌, 및 o-클로로페닐알라닌에 대한 내성에 대해 선택한 다음, 내성을 야기하는 돌연변이가 aroG 유전자에 결합되는 것을 입증함으로써 얻어질 수 있다 (Ger et al., 1994; 미국특허 4,681,852). aroG와의 결합은 페닐알라닌의 존재 및 부재 하에 DNA 시퀀싱 또는 효소 분석에 의해 직접적으로 (Ger et al., 1994), 또는 파지 매개 형질 도입 및 aroG 유전자좌에서 또는 근처에서 선택되거나 또는 반대로 선택될 수 있는 유전자 마커에 대한 선택에 의해 간접적으로 입증될 수 있다 (미국특허 4,681,852). 이러한 유전자 마커는 aroG 유전자 자체의 결실 또는 점 돌연변이일 수 있거나, 또는 E. coli의 경우 nadA와 같은 임의의 적당히 가깝게 결합된 유전자의 돌연변이일 수 있다. E. coli의 예를 들면, 돌연변이유발 및 페닐알라닌 유사체 내성에 대해 선택한 후, 개별 돌연변이체 또는 돌연변이체의 풀은 3개의 모든 DAHP 합성효소 유전자인 aroG, aroF, 및 aroH에 대해 결실되고, 적당한 최소 배지 상에서 성장을 위해 선택된 천연 수령자(recipient)로의 P1 매개 형질도입을 위한 공여자(donors)로서 사용될 수 있다. 그러면, 형질도입체는 원하는 유전자(들)의 돌연변이에 대해 풍부해질 것이다. 대안적으로, 돌연변이유발 및 유사체 내성에 대해 선택한 후, 개별 돌연변이체 또는 돌연변이체의 풀은 니코틴아미드가 결여된 적당한 최소 배지 상에서의 성장을 위해 다시 선택되는 nadA 유전자의 삭제돌연변이를 함유하는 천연 수령자로의 P1 매개 형질도입을 위한 공여자로서 사용될 수 있다. 또 다른 방법은 aroG 유전자 근처, 예를 들어 nadA 유전자에서 삽입된 트랜스포존, 예를 들어 Tn10을 함유하는 배경 균주에서 내성 돌연변이체를 선택하는 것이다. 유사체 내성 돌연변이체로부터, 테트라사이클린 또는 다른 적당한 항생제 내성에 대해 선택하는 상기 트랜스포존을 함유하지 않는 배경 균주로의 P1 형질도입은 원하는 aroG 돌연변이를 풍부하게 할 것이다. 모든 이러한 방법에서, 피드백 내성은 효소 분석 및 유전자의 DNA 시퀀싱에 의해 궁극적으로 확인된다. 우리는 피드백 저해에 대해 내성이 있는 aroG의 대립유전자를 aroG*로 나타낼 것이다.
균주 WM191 (ΔtyrR, ΔaroF)은 YMC9 (ATCC 33927)로부터 유래되었다. 2 단계의 유전자 대체 방법 (Jantama et al., 2008a)을 사용하여 tyrRaroF에서 깨끗한 결실을 도입하였으며, 균주 WM191을 얻었다. 다음으로, nadA::Tn10 대립유전자를 CAG12147 (CGSC 7351, Coli Genetic Stock Center, Yale University)로부터 형질도입시켜, 균주 WM189 (ΔtyrR, ΔaroF, nadA::Tn10)를 얻었다. 선택은 LB + 테트라사이클린 HCl (15 mg/l) 상에서 이루어졌다. 균주 RY890 (ΔtyrR::kan, aroF363)은 P1 형질도입에 의한 3 단계로 MM294 (ATCC 33625)로부터 유래되었다. 공여자 균주는 순서대로 JW1316-1 (CGSC 9179, Coli Genetic Stock Center, Yale University), NK6024 (CGSC 6178, Coli Genetic Stock Center, Yale University), 및 AB3257 (CGSC 3257, Coli Genetic Stock Center, Yale University)이었고, 3개의 선택은 순서대로 LB + 카나마이신 설페이트 (50 mg/l), LB + 테트라사이클린 히드로클로라이드 (15 mg/l), 및 티아민 HCl (5 mg/l)과 함께 NBS 최소 글루코오스 (Jantama et al., 2008a)이었다.
WM189를 약 20% 생존하도록 자외선으로 돌연변이화시키고, o-플루오로페닐알라닌 (1 mM), 티아민 (5 mg/l) 및 니코틴아미드 (1 mM)를 함유하는 NBS 최소 글루코오스 배지 (Jantama et al., 2008a) 상에 플레이팅하였다. 여러 플레이트 각각으로부터의 콜로니를 별도의 풀에 모으고, P1vir 용해물(lysates)을 각각의 풀 상에서 제조하였다. 이 용해물을 사용하여 WM191을 LB 배지에서 테트라사이클린 내성 (15 mg/l)으로 형질도입시키고, 얻어진 콜로니를 o-플루오로페닐알라닌 (1 mM), 티아민 (5 mg/l) 및 니코틴아미드 (1 mM)를 함유하는 NBS 최소 글루코오스 배지에 복제 플레이팅하였다. 테트라사이클린 및 유사체 모두에서 생존한 콜로니 복제는 aroG 내에 피드백 내성 돌연변이를 함유하는 것으로 추정되었다. DNA 시퀀싱을 위하여, 5개의 독립 풀로부터 8개의 개별 콜로니를 선택하였다. aroG 코딩 영역은 중합효소연쇄반응에 의해 증폭되고 서열화되었다. 표 4에 나타낸 결과는, 8개의 균주 각각이 그들의 aroG 유전자에 점 돌연변이를 함유하고 있음을 나타내었다. 대립유전자들 중 일부는 공개된 대립유전자와 동일하였지만, 일부는 신규하였다.
상기 기재된 풀 중 하나로부터의 P1vir 용해물을 사용하여 상기 기재된 복제 플레이팅에 의해 RY890 (aroG 야생형 대립유전자를 가짐)을 테트라사이클린 내성 및 o-플루오로페닐알라닌 (0.3 mM)에 대한 내성으로 형질도입시켰다. RY893, RY897, RY899, 및 RY901로 명명된 4개의 콜로니를 DNA 시퀀싱을 위해 선택하였고(표 4), 다시, 대립유전자 중 2개는 공개된 대립유전자와 동일하였으나, 2개는 신규하였다. 4개의 균주에 대해 동질유전자(isogenic)이나 야생형 aroG 유전자를 함유하는 균주 RY902는, CAG12147로부터의 형질도입에 의해 대조군으로서 구축되었다. 이러한 5개의 균주는 진탕 플라스크 내의 25 ml NBS 최소 글루코오스 (15 g/l) + 티아민 HCl (5 mg/l) 및 니코틴아미드 (1 mM)에서 밤새도록 성장시켰다. 결과의 세포를 원심분리에 의해 수확하고, 재현탁시켜 10 ml의 물로 헹구고, 재-원심분리하고, 0.5 ml의 50 mM 인산칼륨, pH 7.0에서 재현탁시켰다. 현탁된 세포를 3 방울의 클로로포름으로 볼텍싱(vortexing)하여 용해시키고, 하기 변형과 함께 문헌 (Hu et al., 2003)에 기재된 방법과 유사한 방법을 이용하여 DAHP 합성효소 활성에 대하여 조 용해물을 분석하였다. 인산염 완충액은 50 mM (최종 농도), pH 7.0이었고, 최종 에리트로오스-4-포스페이트 농도는 2 mM이었으며, 최종 포스포에놀 피루베이트 농도는 5 mM이었고, 배양 온도는 30℃이었으며, 반응은 10분에서 중지하였다. 우리는 1 mU를 밀리그램 단백질당 분당 1 nMole의 DAHP를 생산하는 활성으로 정의한다. 피드백 내성을 시험하기 위해, 각각의 조 용해물을 18 mM의 최종 농도의 페닐알라닌과 함께 또는 없이 분석하였다. 분석 결과는 표 5에 나타내었다. 효소는 페닐알라닌에 대해 다양한 특이적 활성 및 내성을 나타내었으나, 시험된 모든 선택된 돌연변이체 버전은 야생형 대조군보다 현저히 더 내성이었다.
상기 기재된 RY893, RY899, RY901, 및 RY902로부터의 aroG 대립유전자는, 하기와 같이 뮤콘산 생산 배경 균주로 도입되었다. aroG*aroGwt 공여자 균주로부터의 P1vir 용해물을 사용하여, MYR219 (E. coli C, ΔaroE, Δack::P 15 -aroB, pMG37)를 테트라사이클린 HCl 내성(15 mg/l)에 형질도입하여, 각각 새로운 균주 RY903, RY909, RY911, 및 RY912를 얻었다. 그 다음, 각각의 이들 균주를 JW1316-1의 P1vir 용해물을 이용하여 카나마이신 설페이트 내성 (50 mg/l)에 형질도입하여, △tyR::kan 대립유전자를 도입하고, 각각 균주 RY913, RY919, RY921, 및 RY922를 얻었다. 스펙티노마이신 선택은 뮤코닉 플라스미드를 유지하기 위하여 전반적으로 유지되었다. 결과의 4개의 균주는 진탕 플라스크 내의 20 g/l 글루코오스, 0.2 M MOPS 완충액, pH 7.4, 니코틴아미드 (1 mM), 페닐알라닌 (100 mg/l), 티로신 (100 mg/l), 트립토판 (100 mg/l), p-히드록시벤조산 (1 mg/l), p-아미노벤조산 (1 mg/l), 2,3-디히드록시벤조산 (1 mg/l), 페놀 레드 (10 mg/l), 및 황산암모늄 (1 g/l)의 보충제를 함유하는 25 ml NBS 최소 배지 (Jantama et al., 2008a)에서 37℃에서 48시간 동안 성장시켰다. pH는 진탕 플라스크에 요구되는 1.0 M KOH의 1 ml 분취액을 수동으로 첨가하여, pH 7.0 표준에 대해 페놀 레드의 색으로부터 눈으로 추정되는 7에 가깝게 유지시켰다. 생산된 뮤콘산은 상기 기재된 바와 같이 HPLC로 분석하였고, 결과는 표 6에 나타내었다. 피드백 내성 aroG* 대립유전자를 함유하는 3개의 균주 모두는 야생형 aroG 대립유전자를 함유하는 동질유전자 균주보다 더 많은 뮤콘산을 생산하였다. 본 명세서에 개시된 별도의 실험에서, 다중복제 플라스미드 pCP32AMP 상에 aroG를 함유하는 균주 MYR205는 진탕 플라스크에서 1.5 g/l의 뮤콘산을 생산하였다. 따라서, 본 발명자들은 △tyrR 및 단일 복제 염색체 aroG*의 조합이 동질유전자 aroG 플라스미드 함유 균주에 비해 더 잘 수행하여 진탕 플라스크에서 뮤콘산을 생산할 수 있음을 나타내었다. 플라스미드 대립유전자에 비해 염색체 대립유전자의 내재하는 우수한 유전적 안정성에 더하여, 플라스미드 내에 보유하기 위한 선택 배지에 대한 필요성의 완화는, 본 명세서에 기재된 신규한 균주를 대규모의 상업적 발효에 더 적합하게 만든다. 또한, 뮤콘산 경로 유전자의 발현에는 화학 유도제가 필요하지 않았다. 따라서, 상기 기재된 본 발명의 균주는 선행기술의 균주에 비해 개선되며 (Niu et al., 2002), 이들 모두는 바람직하지 않은 다중복제 플라스미드 상의 DAHP 합성효소의 과발현을 위한 유전자를 함유한다.
AroG에 대해 상기 기재된 것과 유사한 방식으로, 티로신에 의한 피드백 저해에 대해 내성이 있는 AroF 또는 AroH 동질효소를 야기하는 돌연변이는 플라스미드 상에 또는 염색체 내에 도입될 수 있다. 바람직한 돌연변이는 코돈 148을 CCG에서 CTG로 변화시켜 (Weaver et al., 1990), aroF*라는 유전자를 제공함으로써, AroF의 아미노산 148을 프롤린에서 류신으로 변화시키는 점 돌연변이이다. aroF*의 다른 대립유전자는 aroG* 대립유전자에 대해 상기 기재된 것과 유사한 방식으로, 티로신 유사체 (예를 들어, o-플루오로티로신, m-플루오로티로신, p-플루오로페닐알라닌 등)에 대한 내성으로 분리될 수 있다. aroF* 대립유전자는, 예를 들어, JW2584 (CGSC 10051, Coli Genetic Stock Center, Yale University)와 같은 균주에서와 같이 가까이 결합된 △yfiR::kan에서 트랜스포존 또는 카나마이신 내성 삽입과의 결합에 의해 선택되고, 풍부해지며, 형질도입될 수 있다.
실시예 3
염색체 DNA로부터 aroE의 결실 및 뮤콘산 생산
이 실시예에서, 뮤콘산 경로에서 기능하는 단백질을 코딩하는 유전자의 발현 뿐만 아니라 다중복제 플라스미드 상에서 aroBaroG의 과발현의 효과를 연구하였다. 이 연구에서, 부모 균주로서 쉬키메이트 탈수소효소를 코딩하는 aroE 유전자의 결실을 함유하는 균주 MYR34를 사용하였다. aroE의 염색체 복제의 결실은 상기 실시예 1에 기재된 것과 유사한 방식으로 수행되었다. MYR34가 쉬킴산 경로에서 기능하는 DAHP 합성효소 단백질을 코딩하는 aroG 유전자를 과발현하는 플라스미드 pCP32AMP로 형질전환되었을 때, DHS의 축적이 유의하게 증가하였다. MYR34가 항시성 프로모터로부터 aroB를 발현하는 플라스미드로 형질전환되었을 때, DHS의 축적이 유의하게 증가하지 않았다. 그러나, E. coli 균주 MYR34가 aroBaroG 유전자 모두를 발현하는 플라스미드로 형질전환된 경우, aroG 단독으로 형질전환된 MYR34에서 관찰된 것보다 DHS의 축적이 증가하여, DHS 생산에서 aroB가 2차 병목으로 시사되었다 (도 6).
도 7에서 제시된 실험에서, 숙주 염색체 DNA에 통합된 aroB 유전자의 추가 복제의 효과를 시험하였다. MYR34로부터 유래된 E. coli 균주 MYR170에서, P15 프로모터의 조절 하에 aroB 유전자의 추가 복제는 ack 유전자좌에서 숙주 염색체 내로 통합되었다. MYR170 균주가 pCP32AMP 플라스미드로 형질전환된 경우, 동일한 플라스미드로 형질전환된 MYR34 균주에서 검출된 DHS 축적과 비교할 때 DHS 축적이 약간 증가하였다. MYR170에서 DHS의 축적의 약간의 증가는 숙주 염색체 DNA 내에 통합된 aroB 유전자의 추가 복제에 기인할 수 있다. MYR170이 aroBaroG 유전자 모두 발현하는 pCP54로 형질전환된 경우, DHS 축적의 추가 증가로 인해, DHS 생산에서 aroB가 2차 병목으로 시사되었다.
도 8은 E. coli 균주 MYR34 및 MYR170에 의한 뮤콘산 생산의 결과를 제공한다. aroBaroG 유전자의 과발현이 있는 aroE 결실 균주 MYR34 및 MYR170에서 DHS의 축적이 있음을 입증하였고, 뮤콘산 생산 경로에서 기능하는 단백질을 코딩하는 "뮤코닉 경로" 유전자의 발현이 DHS를 시스, 시스-뮤콘산으로 전환시킬 수 있는지 알아보기 위한 노력이 이루어졌다. 이러한 실험에서, E. coli 균주 MYR34 및 MYR170은 플라스미드 pM37 단독으로 형질전환되거나, 또는 플라스미드 pMG37 및 pCP32AMP 모두로 형질전환되었다. 플라스미드 pMG37은 뮤콘산 경로에서 기능하는 단백질을 코딩하는 aroZ, aroYcatAX 유전자를 발현한다. MYR34 및 MYR170 모두에서의 뮤콘산 생산은, pMG37 플라스미드만으로 형질전환된 이들 두 균주에서의 뮤콘산 생산에 비해, 이들 박테리아 균주가 플라스미드 pCP32AMP 및 pMG37 모두로 형질전환될 때 증가하였으며, 이는 이들 균주에서 aroB 발현이 시스, 시스-뮤콘산 생산에 대해 병목이라는 것을 시사한다.
실시예 4
tktA의 과발현
tktA에 의해 인코딩된 트랜스케톨라제는 펜토오스 포스페이트 경로에서 주요 효소이고, 뮤콘산의 생산에서 주요 중간체 중 하나인 에리트로오스-4-포스페이트의 생산을 제한하는 것으로 생각된다. 다중복제 플라스미드 상에 천연 프로모터를 갖는 유전자를 도입함으로써 (Sprenger et al, 1995, 1995a), 트랜스케톨라제를 인코딩하는 tktA의 과발현은, 방향족 경로로의 분출을 개선시키는 것으로 알려져 있다 (Draths et al., 1992). 그러나, 이러한 플라스미드는 불안정하고, 종종 유지를 위해 항생제 선택을 필요로 한다. 선행기술에서 또 다른 방법은 tktA 유전자의 하나의 추가 복제를 숙주 균주의 염색체에 첨가하는 것이었다 (Niu et al., 2002). 그러나, 천연 프로모터를 갖는 tktA의 하나의 추가 복제는 에리트로오스-4-포스페이트로 방향족 경로를 포화시키기에 충분하지 못하며, 이는 이의 천연 프로모터가 이상에 매우 가깝지 않기 때문이다. 따라서, 공정은 상당한 개선이 필요하다.
tktA의 개선된 과발현은, 염색체에서 천연 tktA 프로모터를 강한 항시성 프로모터, 예를 들어 바실러스 서브틸리스 파지 SPO1로부터의 P15 또는 P26 프로모터 (각각 서열번호 1 및 서열번호 2), 또는 박테리오파지 람다로부터의 PR 프로모터 (서열번호 3)로 대체함으로써 얻어질 수 있다. 이것은, 제 1 단계에서 cam R , sacB 카세트를 사용하여 천연 염색체 tktA 프로모터를 대체하는 것을 제외하고는, 실시예 1에 기재된 바와 같이 2 단계로 수행된다. 제 2 단계에서, 강한 항시성 프로모터는 상기 강한 항시성 프로모터의 하류측에서 tktA 코딩 영역의 5' 말단의 적어도 50 염기들 및 상류측에서 천연 tktA 프로모터의 바로 상류에 적어도 50 염기쌍의 동족체가 측면에 위치해 있는 강한 항시성 프로모터를 포함하는 선형 DNA로 형질전환시키고, 수크로오스 내성을 선택함으로써 도입된다. 이러한 발현 카세트로부터의 개선된 발현은 발현 카세트로부터 전사되는 mRNA의 안정성을 증가시킴으로써 달성된다. mRNA 안정성의 개선은 mRNA의 5' 말단, mRNA의 3' 말단, 또는 둘 모두에 줄기 고리 구조(stem loop structure)를 추가함으로써 달성된다. 줄기-고리 구조는 종종 로-독립적 전사 종결자(rho-independent transcription terminator)에 의해 자연적으로 종결되는 mRNA의 말단에 존재하지만, 그렇지 않은 경우, 로-독립적 전사 종결자는 잘 알려진 유전공학 방법 (결찰, PCR 등)에 의해 DNA 서열에 첨가될 수 있다. 이러한 종결자는 3 이상의 염기의 "고리(loop)"에 의해 분리된 다음 T가 풍부한 하나 이상의 염기의 영역 (데옥시티미딘)에 의해 분리된 각 반복에서 4 내지 20 염기의 역위 반복(inverted repeat)으로 구성될 수 있다. 역위 반복은 G 및 C (데옥시구아니딘 및 데옥시시티딘)가 풍부하다. 유사하게, 줄기-고리는 전사의 시작점으로부터 바로 하류이나, 리보솜 결합 부위 앞에 상기 기재된 줄기-고리를 함유하나 T-풍부 영역은 포함하지 않는, DNA 서열을 삽입함으로써 mRNA의 5' 말단에 구축될 수 있다. 이러한 예는 P15 프로모터 (서열번호 1)와 관련하여 제시된다.
tktA 유전자의 과발현이 쉬킴산 경로를 통한 탄소의 흐름에 미치는 영향의 분석에서, E. coli 균주 MYR170을 부모 균주로 사용하였다. MYR170은 쉬키메이트 탈수소효소를 코딩하는 aroE 유전자의 결실 및 ack 유전자좌에서 aroB 유전자의 추가 복제를 가진다.
도 9, 10 및 11에 기재된 실험에서, 2개의 상이한 플라스미드, 즉 pCP32AMP 및 pCP50을 사용하였다. 플라스미드 pCP32AMP는 이의 천연 프로모터로부터 DAHP 합성효소 aroG 유전자만을 발현하고, 플라스미드 pCP50은 aroG 유전자와 함께 이의 천연 프로모터로부터 트랜스케톨라제 유전자 tktA를 발현한다. aroE 결실 및 염색체 DNA의 ack 유전자좌에서 통합된 P15 프로모터의 조절 하에 aroB 유전자의 추가 복제를 갖는, MYR170은 pCP32AMP 및 pCP50 플라스미드로 개별적으로 형질전환시켰다. 도 8에 나타낸 바와 같이, DHS 축적은, aroG 유전자만을 발현하는 E. coli 세포와 비교하였을 때, tktA 유전자와 함께 aroG 유전자의 발현으로 더 증가하였다.
도 10은 2개의 상이한 균주, 즉 플라스미드 pCP32AMP 또는 pCP50으로 형질전환된 MYR34, MYR170에서 DHS 수율에 대한 자료를 제공한다. aroE 유전자 결실을 갖는 MYR34 균주는 소비된 글루코오스의 그램당 0.1g의 DHS를 생산하였다. 이 균주가 aroG 유전자 과발현을 갖는 pCP32AMP 플라스미드로 형질전환된 경우, MYR34에서 DHS 수율은 소비된 글루코오스의 그램당 0.15g의 DHS로 증가하였다. MYR170은 ack 유전자좌에서 삽입된 aroB 유전자의 추가 복제를 가진다. 이러한 aroB 유전자의 추가 복제의 존재의 결과로서, pCP32AMP로 형질전환된 MYR170 균주에서 DHS 생산에 대한 수율은 pCP32AMP로 형질전환된 MYR34 균주에서 언급된 DHS 수율보다 약간 더 높았다. 따라서, MYR170에서 aroB의 추가 복제의 존재는 쉬킴산 경로를 통한 탄소 흐름의 증가를 야기하였다. MYR170 균주가 aroGtktA 유전자 모두를 발현하는 플라스미드 pCP50으로 형질전환되었을 때, DHS 수율의 추가 증가가 관찰되었다. 따라서, tktA의 추가 복제의 존재는 쉬킴산 경로를 통한 탄소 흐름의 증가를 설명하였다. 보다 구체적으로는, 추가 aroBtktA 유전자의 존재의 효과는 DHS 수율에 대해 부가적인 효과를 야기하였다.
도 11에 기재된 실험에서 사용된 MYR261을 유전자 조작하여, poxB 유전자좌에서 MYR170의 염색체 DNA 내로 tktA 유전자의 추가 복제를 통합하였다. MYR261 균주에서 원하는 유전자 대체 (poxB::tktA)를 PCR을 통해 확인하였다. MYR261은 pCP32AMP (aroG 과발현) 플라스미드 또는 pCP50 (aroGtktA 과발현) 플라스미드 중 어느 하나로 형질전환되었다. 대조군으로서, MYR170은 pCP32AMP 플라스미드로 형질전환되었다. 도 11에 나타낸 결과에서 알 수 있듯이, MYR261의 염색체 DNA에서 tktA 유전자의 추가 복제의 존재는, pCP32AMP 플라스미드로 형질전환된 MYR170 균주에서 관찰된 DHS 생산에 대한 역가와 비교할 때, pCP32AMP 플라스미드를 이용한 DHS 생산에 대한 역가를 증가시켰다. 트랜스케톨라제를 과발현하는 플라스미드 pCP50으로 형질전환될 때, MYR261 균주에서 트랜스케톨라제 수준의 추가 증가는 DHS 생산에 대한 역가의 추가 증가를 야기하였다. poxB에 의해 인코딩된 효소, PoxB, 또는 피루베이트 옥시다제는 반응 생성물로서 아세테이트를 생산한다. 이와 같이, 본 명세서에 기재된 바와 같이 tktA의 삽입으로 인한 poxB의 결실은 아세테이트 생산에 대한 잠재적인 활성 경로를 제거한다. 유사하게, 하기 실시예 12에 기재된 바와 같이, 동시에 P 15 aroB의 삽입 및 AckA를 인코딩하는 ackA의 결실, 또는 아세테이트 키나제는 아세테이트로의 또 다른 잠재적인 활성 경로를 제거한다. 아세테이트의 생산은 일반적으로 발효에서 바람직하지 않다 (Jantama et al., 2008b). 따라서, 이러한 결실은 아세테이트 생산을 감소시키는데 유용할 수 있다.
도 12는 플라스미드 pCP32AMP 및 pMG37로 형질전환한 후에 E.coli의 MYR170, MYR261 및 MYR305 균주에서 뮤콘산 및 아세트산 생산에 대한 역가를 제공한다. MYR305는 염색체 DNA로부터 poxB 유전자를 결실시킴으로써 MYR170으로부터 유래되는 반면, MYR261은 poxB 유전자가 tktA 유전자의 추가 복제를 삽입함으로써 불활성화된 MYR170 유도체이다. 상기한 바와 같이, 플라스미드 pCP32AMP는 E. coli 균주 MYR170, MYR261 및 MYR305에서 aroE 유전자의 결실로 인해 DHS의 축적을 야기하는 쉬킴산 생합성 경로에서 기능하는 DAHP 합성효소 단백질을 코딩하는 aroG 유전자를 발현한다. 도 2에 예시된 바와 같이, 뮤코닉 경로 유전자, 즉 플라스미드 pMG37 상에서 aroZ, aroYcatAX의 발현으로, DHS는 시스, 시스-뮤콘산으로 전환된다. MYR261 균주에서 aroB 유전자 및 tktA 유전자의 추가 복제가 존재하면, 아세트산의 축적의 감소와 함께 뮤콘산의 생산이 약간 증가하였다.
실시예 5
talA 또는 talB의 과발현
talB 유전자는 E. coli에서 우세한 트랜스알돌라제를 인코딩하나, talA 유전자는 소수의 트랜스알돌라제를 인코딩한다. 트랜스알돌라제의 과잉생산은 방향족 경로로의 분출을 개선하는 것으로 알려져 있다 (Lu and Liao, 1997; Sprenger, 1995; Sprenger et al, 1995b). 선행기술에서, 이것은 이의 천연 프로모터로부터 다중복제 플라스미드 상의 tal 유전자 (현재 talB 유전자로 알려짐)의 과발현에 의해 달성되었다 (Lu et al., 1997, Sprenger et al., 1995b). 그러나, 이러한 플라스미드는 불안정하고, 유지를 위해 항생제 선택을 필요로 한다. 따라서, 개선된 공정이 필요하다. talB의 개선된 과발현은, 염색체에서 천연 talB 프로모터를 강한 항시성 프로모터, 예를 들어 바실러스 서브틸리스 파지 SPO1로부터의 P15 또는 P26 프로모터 (각각 서열번호 1 및 서열번호 2), 또는 박테리오파지 람다로부터의 PR 프로모터 (서열번호 3)로 대체함으로써 얻어질 수 있다. 이것은, 제 1 단계에서 cam R , sacB 카세트를 사용하여 천연 염색체 talB 프로모터를 대체하는 것을 제외하고는, 실시예 1에 기재된 바와 같이 2 단계로 수행된다. 제 2 단계에서, 강한 항시성 프로모터는 상기 강한 항시성 프로모터의 하류측에서 talB 코딩 영역의 5' 말단의 적어도 50 염기들 및 상류측에서 천연 talB 프로모터의 바로 상류에 적어도 50 염기쌍의 동족체가 측면에 위치해 있는 강한 항시성 프로모터를 포함하는 선형 DNA로 형질전환시키고, 수크로오스 내성을 선택함으로써 도입된다. talA 유전자는 유사한 방법으로 과발현될 수도 있으나, talB 유전자가 우세한 활성을 인코딩하므로 talB 유전자를 과발현시키는 것이 바람직하다 (Sprenger, 1995; Sprenger et al, 1995b). 과발현을 위해 설계된 발현 카세트의 구축에 대한 상세한 내용은 실시예 4를 참조하라.
실시예 6
aroZ, aroYcatAX 유전자의 발현
E. coli에 의해 생산된 내인성 DHS의 뮤콘산으로의 전환을 입증하기 위하여, 이종 유전자인 아시네토박터 sp. ADP1으로부터의 catAX, 클렙시엘라 뉴모니아로부터의 aroY, 및 아시네토박터 sp. ADP1으로부터의 quiC를 저-복제 플라스미드인 pCL1921 내의 강한 항시성 프로모터 (각각, P15, PR 및 P26) 하에서 클로닝하여 (Lerner and Inouye, 1990), '뮤코닉 플라스미드' pMG37을 생성하였다. 공벡터 (pCL1921) 또는 pMG37을 가지는 MYR34 균주 유도체는 2% 글루코오스를 함유하는 진탕 플라스크 배지 (방향족 아미노산 및 비타민이 보충된 NBS 최소 배지)에서 17시간 동안 37℃에서 성장시켰다. 상청액을 모으고 HPLC로 분석하였다. DHS의 축적을 나타내는 MYR34/pCL1921과는 대조적으로, MYR34/pMG37은 뮤콘산의 생산을 나타낸다 (도 13). 상당량의 DHS, 또는 PCA 및 카테콜과 같은 중간체 산물은 후자의 균주에서 검출되지 않았으며, 이는 pMG37로부터 발현된 이종 유전자가 기능적이고 충분하다는 것을 시사한다.
실시예 7
aroZ 동족체의 비교
3개의 상이한 aroZ 동족체 및 유사체는 DHS를 뮤콘산 생산 경로로 전환시키는 능력을 비교하였다 (도 14). 아시네토박터 sp. ADP1으로부터의 quiC, 바실러스 튜링겐시스로부터의 asbF, 및 뉴로스포라 크라싸로부터의 qa-4는 AroZ-유사 활성을 갖는 단백질을 인코딩하는 것으로 보고되었다 (Elsemore and Ornston, 1995; Fox et al, 1995; Rutledge, 1984). 각각의 이들 유전자는 E. coli에서 발현하기 위해 코돈-최적화되었고, GeneArt (Invitrogen)에 의해 합성되었으며, P15 및 PR 프로모터 각각으로부터 catAXaroY 유전자를 발현하는 저-복제 '뮤코닉 플라스미드' 내의 강한 항시성 P26 프로모터 하에서 클로닝되었다. MYR34/pCL1921, MYR34/pMG37 (aroZ로서 quiC를 갖는 뮤코닉 플라스미드), MYR34/pMG47 (aroZ로서 asbF를 갖는 뮤코닉 플라스미드), 및 MYR34/pMG70 (aroZ로서 qa-4를 갖는 뮤코닉 플라스미드)은 2% 글루코오스, 방향족 아미노산 및 방향족 비타민을 함유하는 최소 배지가 있는 진탕 플라스크에서 48시간 동안 37℃에서 성장시켰다. 상청액을 모으고 HPLC로 분석하였다. 예상한 바와 같이, 공벡터로 형질전환된 MYR34는 DHS를 축적하였고 뮤콘산을 생산하지 않았다. 2개의 aroZ 동족체 및 하나의 유사체는 DHS를 뮤콘산 생산으로 전환시키는 기능을 하였으나, 다양한 정도로 기능을 하였다. quiC 유전자를 발현하는 MYR34 유도체가 가장 강력하였으며, 미량의 DHS 잔류가 있는 뮤콘산으로 거의 100%의 DHS 전환을 나타내었다. 균류 aroZ 동족체인 qa-4를 발현하는 MYR34 유도체는, DHS의 뮤콘산으로의 약 80%에 육박하는 전환 및 20% DHS 잔류를 나타내었다. 마직막으로, asbF 유전자를 발현하는 MYR34 유도체는 DHS의 뮤콘산으로의 단지 50% 전환 및 50% DHS 잔류를 나타내었다. 종합하면, 우리의 진탕 플라스크 분석 조건 하에서, quiC 유전자의 발현 및/또는 활성은 다른 aroZ 동족체의 발현 및/또는 활성에 비해 가장 높은 것으로 나타났다.
실시예 8
catAX, aroYquiC의 염색체 통합
뮤콘산은 adhE 유전자좌에서 항시성 프로모터로부터 발현된 catA-X, aroYquiC의 염색체로 통합된 단일 복제만을 함유하는 균주에 의해 생산될 수 있다.
높은 DHS 생산자인 MYR170 (△aroE, △ack::P 15 -aroB)는 염색체에서 adhE 유전자좌에서 뮤콘산 경로 유전자를 통합하는데 사용된 숙주 균주였다 (서열번호 41). 결과의 균주 MYR352를 플라스미드 YEp24 (중-복제, 공벡터), pCP32AMP (중-복제, 천연 프로모터로부터 발현된 aroG), 또는 pCP50 (중-복제, 각각의 천연 프로모터로부터 발현된 aroGtktA)로 형질전환시켜, 유도체 균주를 생성하였다. 후자의 2개의 플라스미드를 사용하여 DHS 생산을 증가시켰다. 균주를 상기 기재된 바와 같이 2% 글루코오스를 함유하는 진탕 플라스크 배지에서 72시간 동안 37℃에서 성장시켰다. 상청액을 72시간 동안 모으고 HPLC로 분석하였다. 예상한 바와 같이, aroGaroG/tktA로 형질전환된 MYR352 유도체는 공벡터 대조군에 비해 총 생성물 형성에서 전반적인 증가를 나타내었다 (도 15). 모든 MYR352 형질전환체는 뮤콘산의 측정가능한 역가를 생산하였으며, 이는 뮤콘산이 통합된 "뮤코닉 경로" 유전자만을 함유하고 유전자 발현의 공급된 화학 유도제가 없는 균주에 의해 생산될 수 있음을 처음으로 입증한 것이다.
이들 MYR352 유도체 균주에서 생산된 모든 DHS가 최종 산물인 뮤콘산으로 전환된 것은 아니다. 대신, 상당량의 카테콜 축적이 있었으며 (도 15), 이는 catAX의 발현 또는 활성이 염색체 상의 단일 복제로부터 발현될 때 제한적이라는 것을 암시한다. 주요 축적 중간체가 카테콜이기 때문에, quiCaroY 유전자 발현 및/또는 활성은 뮤콘산 합성을 위한 MYR352 배경 균주에서 충분할 것으로 보인다.
MYR352 균주 유도체를 유사한 MYR219 균주 유도체와 병행하여 비교하였다. MYR219 균주는 MYR170 균주와 동일하나, 뮤콘산 경로 유전자를 발현하는 저-복제 플라스미드 pMG37을 함유한다. 따라서, MYR352 및 MYR219 균주 간의 주된 차이점은 뮤콘산 경로 유전자의 용량과 관련이 있다 (각각 1 복제 vs 약 5 복제). MYR352 유도체 균주와는 대조적으로, MYR219 유도체 균주는 카테콜 또는 다른 중간체의 축적이 거의 없었으며, 최종 산물인 뮤콘산을 성공적으로 생산하였다. 종합하면, 이러한 결과는 MYR352와 같은 균주에서 catAX 활성을 증가시킬 필요가 있음을 나타낸다.
실시예 9
catAX의 발현
MYR352 균주에서 카테콜의 축적 및 뮤콘산의 비효율적인 생산은 catAX 유전자 산물(들)의 용량 및/또는 활성의 제한에 기인한다. 상기 기재된 바와 같이, MYR352는 강한 항시성 프로모터 하에서 △aroE, △ack::P 15 -aroB,catAX, aroYquiC 유전자의 염색체로 통합된 단일 복제를 함유한다. 이 균주를 중-복제 공벡터 대조군 (YEp24) 또는 aroG/tktA 발현 플라스미드 (pCP50)로 형질전환시켜, 방향족 아미노산 합성 경로로의 탄소 흐름을 증가시키고 다량의 DHS를 생산하였다. 상기 기재된 바와 같이, 2% 글루코오스가 보충된 진탕 플라스크 배지에서 72시간 동안 37℃에서 형질전환된 균주의 성장은 카테콜 중간체의 축적을 야기하였다. 이 결과는 catAX 활성이 MYR352에서 불충분할 수 있음을 시사하였다. 이 가설을 확인하기 위하여, MYR352/pCP50에서 카테콜 축적을 완화시키기 위해 저-복제 플라스미드로부터 발현된 하나 이상의 뮤콘산 경로 유전자의 능력을 시험하였다 (도 16). 구체적으로는, MYR352/pCP50을 저-복제 공벡터 대조군 (pCL1921) 또는 뮤콘산 생산 경로의 3개의 유전자, 2개의 유전자, 또는 하나의 유전자 모두를 발현하는 플라스미드로 더 형질전환시켰다. 유도체 균주를 상기 기재된 바와 같이 진탕 플라스크 실험에서 분석하였다. (pMG27로부터의) aroY 단독 또는 (pMG39로부터의) quiC 단독의 용량 증가는 카테콜 축적을 완화시키지 못했지만, (pMG37로부터의) 뮤콘산 경로 유전자 또는 (pMG33으로부터의) catAXaroY를 모두 함께 발현시키면 카테콜을 뮤콘산으로 성공적으로 전환시켰다. 또한, (pMG31로부터의) catAX 단독의 발현은 뮤콘산의 생산 및 카테콜의 축적을 방지하기에 충분하였다.
실시예 10
누출성 aroE 돌연변이의 구축
시스, 시스-뮤콘산을 생산하기 위한 선행기술 공정에서, 숙주 균주는 삭제돌연변이인, aroE353으로 명명된 aroE 유전자의 돌연변이를 함유한다. 그 결과, 균주는 쉬키메이트 경로로부터 제조된 방향족 아미노산 (페닐알라닌, 티로신, 및 트립토판) 및 방향족 비타민 (p-히드록시벤조산, p-아미노벤조산, 및 2,3-디히드록시벤조산)의 공급을 필요로 한다. 방향족 아미노산은 상업적으로 매력적인 공정에 공급하기에는 너무 비싸다. 따라서, 선행기술 공정은 상당한 개선이 필요하다. 이것은 aroE 유전자의 누출성 버전을 도입하여 수행될 수 있으며, 우리는 aroE*라고 부를 것이다. 누출성 돌연변이는 삭제 표현형(null phenotype)을 야기하는 aroE 코딩 서열에서 하나의 아미노산을 변화시키는 미스센스(missense) 돌연변이를 먼저 생성함으로써 얻어진다. 이것은 상기 열거된 6개의 방향족 화합물의 동시 영양요구성에 대해 임의의 형태의 돌연변이유발 및 스크리닝에 의해 달성될 수 있다. 바람직한 방법은, Taq DNA 폴리머라제를 사용하고, 야생형 E. coli C 게놈 DNA를 주형으로 사용하고, aroE 코딩 영역의 상류에 약 1000 염기쌍 및 하류에 1000 염기쌍을 혼성화하는 PCR 올리고뉴클레오티드 프라이머를 사용하는 오류-유발(error-prone) PCR 돌연변이유발에 의해 돌연변이체 aroE 유전자의 풀을 생성하는 것이다. 결과의 선형 DNA 분자의 풀을 사용하여 시스, 시스-뮤콘산을 생산하고, aorE 코딩 영역을 대체하는 통합된 cam R , sacB 카세트를 함유하고 (관련 예에 대해 실시예 4 참조) 수크로오스 내성을 선택하는 E. coli C 유도체를 형질전환시킨다. 그 다음, 형질전환체는 클로람페니콜 내성을 잃어 버리고 상기 열거된 6개의 방향족 화합물을 필요로 하는 영양요구성 균주(auxotrophs)에 대해 스크리닝 한다. 몇몇 독립적인 영양요구성 균주를 선택하고, 6개의 방향족 화합물이 없는 최소 글루코오스 플레이트 상에 (최소 글루코오스 배지에서 헹군) 약 107, 108, 또는 109 세포를 플레이팅하여 복귀능력(revertability)에 대해 시험한다. 플레이트 상에서 콜로니를 생기게 하는 복귀돌연변이체(Revertants)는 시스, 시스-뮤콘산의 생산을 위해 선택되고 시험되나, 상당한 수준의 방향족 아미노산을 생산하지 않는다. 이러한 복귀돌연변이체 중에는, AroE 효소가 성장을 위해 충분한 방향족 아미노산 및 비타민을 제공하지만 이러한 방향족 화합물의 잉여는 제공하지 않도록, aroE 유전자에 하나 이상의 돌연변이를 가지는 균주가 있을 것이다. 누출성 aroE 돌연변이체를 얻는 또 다른 방법은, aroE353aroE24 (둘 다 Coli Genetic Stock Center at Yale University, New Haven, CT, USA로부터 얻을 수 있음)와 같은 고전적인 복귀성(revertable) aroE 돌연변이체 중 하나를 시스, 시스-뮤콘산 생산 균주에 도입하고, 상기 기재된 복귀돌연변이체를 선택하는 것이다.
실시예 11
촉진 확산에 의한 글루코오스의 이입
방향족 경로의 제 1 개입 단계에서 기질 중 하나는 포스포에놀피루베이트 (PEP)이다. PEP는 포스페이트의 공급원이고, 박테리아 포스포트랜스퍼라제 시스템 (PTS)에 의해 글루코오스 및 일부 다른 당을 이입하기 위한 에너지이기도 하다. 따라서, 박테리아가 PTS-의존성 당에서 성장하는 경우, PTS 및 PEP의 방향족 경로 사이에는 경쟁이 있다. 이와 같이, 방향족 경로로의 분출 증가에서 상당한 개선은 PTS를 제거하고 당 흡수를 위한 대안적인 경로를 제공함으로써 달성될 수 있다. 이 문제에 대한 한 가지 해결책은 PTS를 글루코오스 흡수에 상당히 잘 작동하는 양성자 공동수송체(proton symporter)인 E. coli GalP 투과효소(permease)로 대체하는 것이다 (미국특허 6,692,794). 그러나, 양성자 공동수송체는 여전히 투과효소를 구동시키는데 필요한 양성자 구배를 유지하기 위해 에너지를 사용한다. 이와 같이, 공정의 추가 개선을 위한 필요성이 존재한다.
자일로오스와 같은 일부 당은 ATP (아데노신 트리포스페이트)의 가수분해로부터 에너지를 끌어내는 수송체 단백질(transporter protein)에 의해 이입될 수 있다. 다시 한번, 만일 에너지-의존성 수송체가 적은 에너지를 필요로 하는 수송체로 대체될 수 있다면, ATP에 내재하는 에너지가 다른 유익한 용도로 보존될 수 있기 때문에 개선이 이루어질 수 있다.
당의 이입을 위해 에너지를 소비하지 않는 촉진 확산 수송체를 사용함으로써상당한 개선이 이루어질 수 있다 (Parker et al, 1995; Snoep et al, 1994). 예를 들어, glf 유전자에 의해 인코딩된 지모모나스 모빌리스(Zymomonas mobilis)로부터의 글루코오스 촉진자는 3-데히드로쉬키메이트(DHS) 생산 균주에서 PTS 대신에 또는 이에 더하여 사용될 수 있다 (Yi et al., 2003). 그러나, 이들 균주는 글루코오스 이입을 위해 여전히 적어도 부분적으로 GalP에 의존한다. GalP는 글루코오스의 이입을 위해 양성자 구배의 형태로 에너지를 필요로 하기 때문에, 뮤코닉 생산 균주에 대한 글루코오스 이입의 효율을 개선시킬 필요가 있다.
또한, Z. 모빌리스로부터의 glf + 글루코키나제 유전자인 glk의 발현을 위한 카세트는 강한 항시성 프로모터, 예를 들어 P26과 함께 결합될 수 있다. 이 카세트는 원하는 화합물, 이 경우 시스, 시스-뮤콘산의 생산을 방해하지 않을 위치에서 숙주 균주의 게놈에 통합될 수 있다. E. coli 염색체에서 이러한 위치의 예는 트레오닌 분해 오페론인 tdcABCDEFG이다. 만일, 성장 배지가 트레오닌을 함유하지 않으면, 이 오페론은 필요하지 않거나 또는 발현되지 않는다, 그래서 그 오페론에서 발현 카세트의 삽입은 대사를 방해하지 않는다.
상기 기재된 개선을 달성하기 위하여, 실시예 1에 개시된 방법과 유사한 방법을 이용하여 PTS 기능을 인코딩하는 유전자들 중 하나 이상을 결실시킨다. 예를 들어, ptsH, ptsI, crr, 또는 ptsG 중 하나 이상을 결실시킬 수 있다. 다음으로, 미국특허 번호 8,871,489에 기재된 공정을 이용하여 galP를 결실시킨다. 그 다음, P 26 -glf, glk 카세트는 실시예 1에 기재된 것과 유사한 2 단계로 도입될 수 있다. 제 1 단계에서, cam R , sacB 카세트는 pAC21로부터 유래된 선형 DNA (서열번호: 15)를 사용하고 클로람페니콜 (30 mg/l) 내성을 선택하여, tdc 오페론에서 통합된다. 제 2 단계에서, P 26 -glf, glk 카세트는 pAC19로부터 유래된 선형 DNA (서열번호 15)를 사용하고 수크로오스 내성을 선택하고 클로람페니콜 민감도를 스크리닝하여, tdc 오페론에서 통합되고, 이 경우 최소 글루코오스 배지에서의 성장이 개선되었다.
글루코오스의 촉진 확산이 E. coli에서 종래의 글루코오스 이입 시스템을 대체할 수 있는지를 시험하기 위하여, ptsHI 유전자 및 galP 유전자를 MYR34 (△aroE)로부터 결실시킨 다음, pAC19로부터 유래된 선형 DNA (서열번호 15)를 이용하여 P 26 -glf, glk 카세트를 tdc 오페론에서 통합시켜, 균주 MYR217을 얻었다. MYR217은 필요한 3개의 방향족 아미노산 및 3개의 방향족 비타민-유사 화합물로 보충된 최소 글루코오스 배지에서 상당히 잘 성장한다 (도 17). 그러나, ptsHIgalP의 결실을 함유하나 glf, glk 카세트를 함유하지 않는 균주 MYR31은, 임의의 측정가능한 성장을 나타내지 않았다 (도 17). 따라서, 촉진 확산은 우리의 배경 균주에서 2개의 종래의 글루코오스 이입 시스템을 대체하기에 충분하다.
촉진 확산이 방향족 경로로부터 유래된 화합물을 생산하는데 유용한지를 시험하기 위하여, MYR34 및 MYR217을 pCP54 (aroG, aroB) 및 pCP55 (aroG, aroB, tktA)로 형질전환시켰다. 진탕 플라스크에서 방향족 중간체 3-데히드로쉬키메이트 (DHS)의 생산은 이러한 2개의 균주에 대해 비교되었다 (도 18). pCP54 또는 pCP55의 경우, 촉진 확산을 이용한 균주는 종래의 글루코오스 이입 시스템을 이용한 균주보다 훨씬 더 많은 DHS를 생산하였다. DHS의 생산은 조작된 E. coli 균주에서 뮤콘산 생산의 좋은 대용품이므로, 우리는 글루코오스의 촉진 확산이 뮤콘산 생산에 유용한 개선이라고 결론지을 수 있다.
실시예 12
aroB 유전자의 과발현
aroB 유전자의 발현은 시스, 시스-뮤콘산 생산의 속도를 제한하는 것으로 보고되었다 (Niu et al., 2002). 선행기술에서, 이것은 이른바 aroB 유전자의 제 2 복제와 이의 천연 프로모터를 통합시킴으로써 해결되었다. 그러나, aroB 유전자의 천연 프로모터 및 리보솜 결합 부위가 전혀 이상적이지 않기 때문에, 이것은 aroB 제한을 완화시키기에 불충분하다. 따라서, 공정은 상당한 개선이 필요하다.
aroB의 개선된 과발현은, 염색체에서 천연 aroB 프로모터를 강한 항시성 프로모터, 예를 들어 바실러스 서브틸리스 파지 SPO1로부터의 P15 또는 P26 프로모터 (각각 서열번호 1 및 서열번호 2), 또는 박테리오파지 람다로부터의 PR 프로모터 (서열번호 3)로 대체함으로써 얻어질 수 있다. 이것은, 제 1 단계에서 cam R , sacB 카세트를 사용하여 천연 염색체 aroB 프로모터 및/또는 리보솜 결합 부위를 대체하는 것을 제외하고는, 실시예 4에 기재된 바와 같이 2 단계로 수행된다. 제 2 단계에서, 강한 항시성 프로모터는 강한 항시성 프로모터, 뒤이어 리보솜 결합 부위, 및 상기 강한 항시성 프로모터의 하류측에서 ATG 시작 코돈을 포함하는 aroB 코딩 서열의 5' 말단의 적어도 50 염기들 및 상류측에서 천연 aroB 프로모터의 바로 상류에 적어도 50 염기쌍의 동족체를 포함하는 선형 DNA로 형질전환시키고, 수크로오스 내성을 선택함으로써 도입된다. 유사한 방법을 이용하여 강한 프로모터를 도입하는 것외에 또는 대신에, 강한 리보솜 결합 부위, 예를 들어 AGGAGG는 aroB의 ATG 번역 시작 코돈의 약 4 내지 10 염기쌍 상류에 도입될 수 있다. 이러한 합성 카세트, 예를 들어 P 15 -aroB 카세트의 복제는 천연 aroB 유전자좌와는 완전히 다른 유전자좌, 예를 들어 ack 유전자좌에서 염색체에 통합될 수 있다. 실시예 4에서와 같이, ack 유전자의 동시 결실 및 poxB 유전자의 결실은, 발효 중 원치 않는 아세테이트의 형성을 감소시키는데 도움을 줄 수 있다.
실시예 13
펜토오스 포스페이트 경로의 산화적 분지를 통한 분출 감소
방향족 경로에서 제 1 개입 단계에 필요한 에리트로오스-4-포스페이트는 펜토오스 포스페이트 경로 (PPP)의 비-산화적 부분으로부터 유래된다. 탄소가 PPP에 들어갈 수 있는 2개의 상이한 경로가 있다. 제 1 경로는, (zwf 유전자에 의해 인코딩되는) 효소 글루코오스-6-포스페이트 탈수소효소, (pgl 유전자로부터 인코딩되는) 6-포스포글루코노락토나제 및 (gnd 유전자에 의해 인코딩되는) 6-포스포글루코네이트 탈수소효소에 의해 글루코오스-6-포스페이트로부터 리불로오스-5-포스페이트를 얻는다. 이들 3 단계 중 마지막에서, 하나의 탄소는 CO2로 소실된다. PPP로의 이 경로를 PPP의 산화적 분지라고 한다. 그 다음, 리불로오스-5-포스페이트는 이소머라제, 에피머라제, 트랜스케톨라제 및 트랜스알돌라제의 작용에 의해 다양한 다른 당 포스페이트로 전환된다. 리불로오스-5-포스페이트로 시작하는 이 가역반응의 군은 PPP의 비-산화적 분지라고 한다. 탄소가 PPP에 들어갈 수 있는 제 2 경로는 프룩토오스-6-포스페이트 및 글리세르알데히드-3-포스페이트 (둘 다 엠덴-마이어호프 경로(Embden-Meyerhof pathway)로부터 유래되고, 해당작용으로도 알려짐)를 통해 이루어지며, 이들은 트랜스알돌라제 및 트랜스케톨라제에 의해 혼합되고 재배열되어 다양한 다른 당 포스페이트를 얻고, 그 중 하나는 에리트로오스-4-포스페이트이다. 만일 탄소가 이 제 2 경로를 통해 PPP에 들어가면, CO2는 소실되지 않는다. 글루코오스로부터 시스, 시스-뮤콘산의 수율을 개선하기 위하여, PPP의 산화적 분지를 차단하여 CO2의 소실을 방지할 수 있으며, PPP에 들어가는 모든 탄소는 프룩토오스-6-포스페이트 및 글리세르알데히드-3-포스페이트로부터 비-산화적 경로를 거쳐야 한다. PPP의 산화적 분지의 차단은, tyrR 유전자를 결실시키기 위해 실시예 1에 개시된 방법과 유사한 2-단계의 방법을 이용하여 zwf 유전자를 결실시킴으로써 달성된다.
실시예 14
방향족 경로로의 PEP를 통한 분출 증가
PEP는 시스, 시스-뮤콘산에 대한 경로 상에서 중간체의 속도를 제한하지 않도록 하는 것이 바람직하다. 이는 다른 실시예들에서 상기 기재된 pps 유전자의 과발현 카세트를 통합함으로써 달성되는, 효소 PEP 합성효소에 의해 피루베이트의 PEP로의 재생을 증가시킴으로써 달성된다. 또 다른 방법은 E. coli에서 pykApykF 유전자에 의해 인코딩되는 피루베이트 키나제에 의해 PEP의 소비를 제한하는 것이다. 이 경우, 방법은 효소(들)의 활성을 감소시키는 것이다. 이는 피루베이트 키나제 (미국특허 번호 9,017,976 및 tyrR의 경우 실시예 1에 기재됨)를 인코딩하는 하나 이상의 유전자들을 결실시키거나, 또는 이들 유전자 중 하나 이상의 발현 강도를 감소시킴으로써, 예를 들어, 프로모터, 리보솜 결합 부위 또는 코딩 서열을 돌연변이화함으로써 달성되어, 피루베이트 키나제 활성의 수준이 감소된다. 예를 들어, E. coli pykA 유전자 앞의 RBS는 5'CGGAGTATTACATG이다. ATG 번역 시작 코돈은 밑줄그었다. 이 서열은 CaGAGTATTACATG, CaaAGTATTACATG, CaatGTATTACATG, CaataTATTACATG 등으로 돌연변이화될 수 있으므로, RBS 서열은 한번에 하나의 염기 변화에 의해 AGGAGG의 컨센서스 RBS (consensus RBS)를 덜 유사하게 만든다. 각각의 돌연변이화된 버전은 야생형을 대체하는 pykA 유전자좌에서의 염색체 내로 도입된 다음, 시스, 시스-뮤콘산 생산 수준의 개선을 위해 측정한다.
실시예 15
수크로오스 상에서 성장 부여
E. coli C로부터 유래된 균주는 유일한 탄소원으로 수크로오스 상에서 성장하지 않는다. 그러나, 이들은 국제특허출원 공개번호 WO2012/082720 및 미국특허출원 공개번호 US2013/0337519에 개시된 바와 같이 유전자 조작될 수 있으며, 전체 참조로 본 명세서에 포함된다. 이와 같이, 시스, 시스-뮤콘산 생산 균주는 상기한 출원에 개시된 바와 같이 수크로오스 상에서 성장하도록 조작될 수 있다.
실시예 16
시스, 시스-뮤콘산의 개선된 생산자
실시예 1 내지 15에 기재된 모든 특징은 차례로 특징을 도입함으로써 E. coli의 하나의 균주에 결합될 수 있다. 결과의 균주는 개선된 시스, 시스-뮤콘산 생산자를 포함한다. 그 다음, 결과의 균주는 제 1 복제의 위치로부터 떨어진 위치에서 한번에 하나씩 상기 기재된 각각의 과발현 카세트의 제 2 복제를 통합함으로써 더욱 개선될 수 있다. 편리하고 안전한 위치의 예는 리보솜 RNA를 인코딩하는 rrfF의 종결자로부터 바로 하류에 있는 BsrB1 제한 부위이다. 원하는 카세트를 무딘(blunt) 선형 DNA로서 플라스미드 pMH17F (서열번호 17)의 독특한 BsrB1 부위에 결찰시킨다. 예로는 catAX 발현 카세트를 결찰하여 pcatAX로 명명된 플라스미드를 얻는다. 동시에, cam R , sacB 카세트는 무딘 단편으로서 pMH17F에 결찰시켜 pMH28F (서열번호 19)를 얻는다. PCR 또는 제한 효소 절단에 의해 pMH28로부터 유래된 선형 DNA를 사용하여 rrfF 부위에 cam R , sacB 카세트를 놓는다. 다음으로, PCR 또는 제한효소 절단에 의해 pcatAX로부터 유래된 선형 DNA를 사용하여 수크로오스 상에서의 선택을 이용하여 rrfF 유전자좌에서 catAX 카세트의 제 2 복제를 도입한다. 그 다음, 결과의 균주를 시스, 시스-뮤콘산 생산에 대한 이의 조부모 균주와 비교하여, catAX가 제한 단계임을 확인한다. 유사한 방법으로, 실시예 2 내지 15의 각각의 카세트를 속도 제한 단계에 대해 시험하였다. 만일 단계가 속도 제한인 것으로 확인되면, 관련 카세트의 하나 이상의 추가 복제는 염색체에서 또 다른 적당한 위치에서 통합되어, 플라스미드 또는 유도성 프로모터를 필요로 하지 않고 시스, 시스-뮤콘산 생산에서 더욱 개선을 야기한다.
실시예 17
발효에 의한 시스, 시스-뮤콘산의 생산
시스, 시스-뮤콘산은 상기 실시예 1 내지 15에 개시된 유전자 조작된 미생물에 의해 생산될 수 있다. 성장 배지는 광범위하게 다양할 수 있으며, 미생물의 적당한 성장을 지지하는 임의의 배지일 수 있다. 바람직한 배지는 무기염 및 비-방향족 탄소원, 예를 들어 글루코오스, 자일로오스, 락토오스, 글리세롤, 아세테이트, 아라비노오스, 갈락토오스, 만노오스, 말토오스 또는 수크로오스를 함유하는 최소 배지이다 (바람직한 최소 성장 배지의 예는 상기 참조). 조작된 미생물 및 성장 배지의 각각의 조합에 대해, 시스, 시스-뮤콘산을 생산하기 위한 적당한 조건은, 온도, pH, 통기율, 및 화합물 또는 pH를 유지하는데 사용되는 화합물과 같은 발효 매개변수가 체계적으로 변화되는 일상적인 실험에 의해 결정된다. 시스, 시스-뮤콘산이 생산됨에 따라, pH가 너무 낮아지는 것을 방지하기 위하여 하나 이상의 화합물을 발효기에 공급해야 한다. 산을 중화하기 위한 바람직한 화합물은 암모늄, 나트륨, 칼륨, 칼슘, 마그네슘의 산화물, 수산화물, 탄산염 및 중탄산염과 같은 알칼리성 염, 또는 이러한 알칼리성 염 중 2개 이상의 조합을 포함한다.
7 리터 발효기에서 E. coli의 MYR428 균주에 의한 뮤콘산 생산은 도 19에 나타내었다. △aroE △ackA::P 15 -aroB △poxB::tktA의 유전자형을 갖는 E. coli의 MYR261 균주를 플라스미드 pCP32AMP 및 pMG37로 형질전환시켜, MYR428을 생성하였다. MYR428은 48시간 동안 글루코오스를 공급하면서 상기 기재된 7리터 발효기에서 성장시켰다. 최종 뮤콘산 역가는 16 g/l 이었다 (도 19 참조).
발효가 완료된 후, 세포를 응집, 원심분리, 및/또는 여과로 제거한 다음, 시스, 시스-뮤콘산을 하나 이상의 차후 단계, 예를 들어 침전, 결정화, 전기투석, 크로마토그래피 (이온 교환, 소수성 친화도, 및/또는 크기 기반), 미세여과, 나노여과, 역삼투, 및 증발의 조합에 의해 정화된 액으로부터 정제시킨다.
실시예 18
3,4-디히드록시벤조산 (PCA) 탈탄산효소 (AroY) 활성의 개선
표 2에 제공된 유전자형을 갖는 E. coli 균주 MYR993을 부모 균주로 사용하여, ubiX 유전자 또는 ubiD 유전자 중 하나의 결실을 갖는 균주를 생성하였다. ubiX의 결실을 갖는 E. coli 균주를 구축할 때, ubiX 유전자의 각 말단에 45 bp의 상동성을 갖는 프라이머 MS608 및 MS609를 이용하여 카나마이신 내성 카세트를 증폭시켰다. ubiD의 결실을 갖는 E. coli 균주를 구축할 때, ubiD 유전자의 각 말단에 45 bp의 상동성을 갖는 프라이머 MS604 및 MS605를 이용하여 카나마이신 내성 카세트를 증폭시켰다. PCR 산물을 컬럼 정제 (QIAquick PCR Purification Kit, Qiagen)하고 사용하여, 이전에 개발된 방법 (Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA97: 6640-6645)을 이용한 E. coli 균주 MYR993을 형질전환시켜 (표 2), ubiX 유전자 또는 ubiD 유전자 중 하나의 결실을 갖는 E. coli 균주를 생산하였다 (표 2 - MYR993 ΔubiX 및 MYR993 ΔubiD). 결실 균주는 호흡에서 손상될 것으로 예상되므로, 글루코오스를 LB 선택 플레이트에 첨가하여 발효성 성장을 제공하였다.
E. coli 균주 MYR993, MYR993 ΔubiX 및 MYR993 ΔubiD를, 탄소원으로 글루코오스를 이용하여, 5g K2HPO4, 3.5g KH2HPO4, 3.5g (NH4)2HPO4, 1 mM MgSO4, 0.1 mM CaCl2, 미량 원소 (1.6mg FeCl3·6H2O, 0.2mg CoCl2·6H2O, 0.1mg CuCl2·2H2O, 0.2mg ZnCl2, 0.2mg Na2MsO4·2H2O, 0.05mg H3BO3, 0.55mg MnCl2·4H2O), 및 0.2 M MOPS 완충액 (모두 리터당)으로 구성된 배지에서 48시간 동안 37℃에서 250 rpm으로 250 ml 진탕 플라스크 내에서 25 ml 배양물로 성장시켰다. 48시간의 성장이 끝날 때, 배양 상청액은 뮤콘산 및 함량을 분석하였다. 도 20에 나타낸 결과에서 알 수 있듯이, 부모 균주 MYR993은 PCA가 거의 없는 배양 배지에서 주로 뮤콘산을 축적하는 반면, E. coli 균주 MYR993ΔubiX는 PCA만 축적하고 뮤콘산은 검출되지 않았다. 반면에, E. coli 균주 MYR993ΔubiD는 뮤콘산 및 PCA의 축적의 감소를 나타내었다. 결론은 UbiX 단백질이 AroY (PCA 탈탄산효소) 활성에 필요하다는 것이다.
실시예 19
in vitro 분석에서 UbiX 동족체의 활성의 비교
in vitro 분석을 통해 UbiX 및 4개의 이의 동족체의 활성을 비교하였다. 이 in vitro 분석에서, AroY 단백질을 발현하는 E. coli 균주로부터의 용해물을 UbiX 단백질 또는 이의 동족체를 발현하는 다른 E. coli 균주로부터의 용해물과 결합시키고, 결합된 용해물을 기질로서 PCA를 소비하는 능력에 대해 분석하였다. 뮤콘산 생산 E. coli 균주에서, PCA는 AroY 단백질에 의해 탈카복실화되어 카테콜을 생성하고, 차례로 CatA 단백질에 의해 뮤콘산으로 전환된다. AroY 단백질의 탈카복실화 활성은 UbiX 또는 이의 동족체 중 하나의 존재에 의해 향상될 것으로 예상되며, UbiX 또는 이의 동족체의 효율에 따라, 분석 용액 내의 PCA는 상이한 속도로 소비될 것이다.
이 in vitro 분석에서, UbiX 및 4개의 이의 동족체, 즉 클렙시엘라 뉴모니아kpdB 유전자 (kpdB)에 의해 코딩된 KpdB (서열번호 42), E. coli Welw 유전자에 의해 코딩된 Elw (서열번호 46), 클렙시엘라 옥시토카kox 유전자 (kox)에 의해 코딩된 Kox (서열번호 48) 및 락토바실러스 플란타룸(Lactobacillus plantarum)lpl 유전자 (lpl)에 의해 코딩된 Lpl (서열번호 50)을 포함한다. 마지막 3개의 동족체의 명명은 본 발명에 제공된 간단히 임시 명명이다. AroY, UbiX, KpdB, Elw, Kox 및 Lpl은 저 복제 플라스미드 (SC101 복제 기원) 상의 강한 항시성 람다 파지 프로모터 PR (서열번호 3)로부터 발현되었다. 유전자 클로닝을 위해, 플라스미드 pCAT350 (서열번호 55) 및 pCP165 (서열번호 56)를 사용하였다. AroY 플라스미드의 구축에서, 프라이머 RP712 및 RP714를 사용하여 aroY 유전자를 증폭시켰으며, 프라이머 MS461 및 MS346을 사용하여 pCAT350 플라스미드 백본을 증폭시켰다. 결과의 PCR 산물을 결찰하여 AroY 단백질을 과발현하는 플라스미드를 얻었다. KpdB 플라스미드의 구축에서, 프라이머 RP731 및 RP732를 사용하여 kpdB 유전자를 증폭시켰으며, 프라이머 MS461 및 MS346을 사용하여 pCAT350 플라스미드 백본을 증폭시켰다. 결과의 PCR 산물을 결찰하여 KpdB 단백질을 과발현하는 플라스미드를 얻었다. UbiX 플라스미드의 구축에서, 프라이머 MS669 및 MS666을 사용하여 ubiX 유전자를 증폭시켰으며, 프라이머 MS461 및 RP607을 사용하여 pCAT350 플라스미드 백본을 증폭시켰다. 결과의 PCR 산물을 결찰하여 UbiX 단백질을 과발현하는 플라스미드를 얻었다. Elw 플라스미드의 구축에서, 프라이머 MS676 및 MS680을 사용하여 elw 유전자를 증폭시켰으며, 프라이머 MS461 및 MS621을 사용하여 pCP165 플라스미드 백본을 증폭시켰다. 결과의 PCR 산물을 결찰하여 Elw 단백질을 과발현하는 플라스미드를 얻었다. Kox 플라스미드의 구축에서, 프라이머 MS686 및 MS684를 사용하여 kox 유전자를 증폭시켰으며, 프라이머 MS461 및 MS621을 사용하여 pCP165 플라스미드 백본을 증폭시켰다. 결과의 PCR 산물을 결찰하여 Kox 단백질을 과발현하는 플라스미드를 얻었다. Lpl 플라스미드의 구축에서, 프라이머 MS692 및 MS691을 사용하여 lpl 유전자를 증폭시켰으며, 프라이머 MS461 및 MS621을 사용하여 pCP165 플라스미드 백본을 증폭시켰다. 결과의 PCR 산물을 결찰하여 Lpl 단백질을 과발현하는 플라스미드를 얻었다. 모든 단편은 NEBuilder HiFi DNA Assembly Cloning Kit를 이용하여 클로닝할 수 있는 20 bp의 상동성을 함유하였고, NEB5α E. coli 세포 (New England Biolabs)에 클로닝되었다.
플라스미드 클로닝 후, AroY 활성을 입증하기 위하여 in vitro 효소 분석법이 개발되었다. 1 mL의 밤새도록 LB 성장시킨 배양물을 하향 회전(spun down)시키고, 200 μL의 박테리아 단백질 추출 시약 (B-PER) (Thermo Fisher Scientific)에 재현탁시켰다. 회전 혼합기에서 5분 배양한 후, 탁상용 원심분리기에서 13,000 rpm으로 시료를 원심분리하여, 세포 잔해물을 제거하였다. 정화된 조 용해물 상청액을 새로운 튜브로 옮기고 얼음에 저장하였다. 20 μL의 AroY 과발현 용해물을, 100 mM 인산염 나트륨 완충액 pH 6.4, 25 mM MgCl2 및 1 mM 프로토카테큐산 (Sigma-Aldrich)을 함유하는 150 μL 반응물 (최종 부피)에서, 20 μL의 UbiX 또는 동족체 용해물과 혼합시켰다. 290 nm에서의 흡광도를 60분 동안 매분 판독하였다. AroY 활성은 A290에서 PCA의 소실을 모니터링함으로써 측정되었다. UbiX와 이의 동족체의 상대적 활성은 도 21에 나타내었다. 시험된 모든 UbiX 동족체는 AroY 활성을 개선시켰으나, 시험된 특정 동족체에 따라 다양한 효소 활성의 변화가 나타났다. 가장 높은 AroY 활성은 KpdB를 사용하여 달성되었지만, 가장 낮은 활성은 락토바실러스 동족체에서 관찰되었다. 가장 높은 활성이 항상 최적일 수 없기 때문에, 나타난 다양한 활성을 사용하여 뮤코닉 경로 성능을 개선시켰다.
실시예 20
kpdB 발현 수준이 AroY의 활성에 미치는 영향
in vitro 분석에서 KpdB 단백질의 발현이 AroY 단백질의 활성을 향상시킴을 입증하였고, 뮤콘산 생산 생촉매 내 KpdB 단백질의 발현 수준이 뮤콘산 생산 수준에 영향을 미치는지를 결정하기 위한 노력이 이루어졌다. 이 실험에서, 뮤콘산 생산 균주 MYR1305를 상이한 수준으로 KpdB를 발현하는 다양한 플라스미드로 형질 전환시켰다. MYR1305의 형질전환은 3개의 상이한 플라스미드로 수행되었다. 실험 대조군에서, MYR1305는 KpdB 단백질을 코딩하는 임의의 유전자가 없는 대조 플라스미드 pCP140으로 형질전환시켰다. pCP140의 DNA 서열은 서열번호 57로 제시된다. 간략하게, P15 프로모터 하에서 E. coli 코돈-최적화된 catAX, 천연 E. coli 프로모터 하에서 E. coli tktA, P15 프로모터 하에서 E. coli aroB, 및 P26 프로모터 (서열번호 2) 하에서 E. coli aroD를 발현하기 위해, pCP140을 구축하였다. MYR1305를 형질전환시키는데 사용된 제 2 플라스미드 pCP169는 P26 프로모터 하에서 kpdB 유전자를 추가로 갖는 pCP140의 유도체이다. MYR1305를 형질전환시키는데 사용된 제 3 플라스미드 pCP170은 E. coli pgi 프로모터 (서열번호 52) 하에서 kpdB 유전자를 추가로 갖는 pCP140의 유도체이다. 낮은 수준 발현은 P26 프로모터를 사용하여 달성되는 반면, 높은 발현은 E. coli pgi 프로모터를 사용하여 달성되었다. pCP169 및 pCP170은 먼저 2 세트의 프라이머를 이용하여 2개의 단편으로 pCP140 플라스미드를 증폭시킴으로써 구축되었다 (제 1 단편에 대한 PCR 프라이머 RP607 및 RP677, 및 제 2 단편에 대한 PCR 프라이머 RP671 및 RP664). 2개의 작은 PCR 산물은 하나의 큰 PCR 산물보다 플라스미드 구축을 더 용이하게 한다. 플라스미드 pCP169의 구축에서, 프라이머 RP702 및 RP783을 이용하여 P26 프로모터를 증폭시켰으며, 프라이머 RP781 및 RP780을 이용하여 kpdB를 증폭시켰다. 플라스미드 pCP170의 구축에서, 프라이머 RP700 및 RP784를 이용하여 pgi 프로모터를 증폭시켰으며, 프라이머 RP779 및 RP780을 이용하여 kpdB를 증폭시켰다. 모든 PCR 산물은 NEBuilder HiFi DNA Assembly Cloning Kit를 이용하여 클로닝을 가능하게 하기 위해 20 bp 상동성 중첩을 가졌다. 도 22에 나타낸 바와 같이, kpdB를 발현하는 균주는 외인성 kpdB 유전자 발현이 없는 대조 균주보다 더 높은 수준의 뮤콘산을 생산하였다. 또한, PCA 축적은 외인성 kpdB 유전자를 발현하는 균주에서 제거되었다. 생산된 뮤콘산의 수준은 kpdB 유전자의 발현이 증가함에 따라 증가하지 않았으며, 이는 외인성 kpdB 유전자가 낮은 발현 수준으로 발현되더라도 포화 수준의 활성이 달성되었음을 시사한다.
실시예 21
ppc 돌연변이체의 보완 및 뮤콘산 형성에 대한 효과
포스포에놀피루베이트 카복실라제 (ppc) 유전자가 결실된 박테리아 균주를 이용하여 뮤콘산 형성을 위한 PEP의 증가된 이용률을 연구하였다. E. coli 균주 MYR1674를 유전자 조작하여 뮤콘산 생산을 위한 생촉매로 사용하였다. MYR1674는 탄소와 에너지 원으로서 글루코오스를 함유한 최소 배지에서 성장할 수 있으며 뮤콘산을 생산할 수 있다. 그러나, ppc 유전자가 MYR1674에서 결실된 경우, 결과의 균주 MYR1674 △ppc는 글루코오스를 함유한 최소 배지에서 성장할 수 없으며 LB (Luria Broth)와 같은 농축 배지에서만 생존할 수 있다. MYR1674 △ppc의 최소 배지에서의 성장 능력의 소실은 E. coli의 MYR1674 △ppc 균주에서 원래의 ppc 유전자좌에서 피루베이트 카복실라제를 코딩하는 pyc 유전자를 삽입함으로써 회복될 수 있다.
사카로마이세스 세레비지애로부터의 피루베이트 카복실라제 (pyc) 유전자 (서열번호 53)는, E. coli ppc 프로모터 및 종결자의 측면 상동성을 함유하는 프라이머 MS1383 및 MS1384를 이용하여 클로닝하였다. 최소 배지에서 강한 성장을 용이하게 하기 위하여, 강한 항시성 우측 람다 파지 프로모터 PR이 요구되었다. 프라이머 MS1429 및 MS1430을 이용하여 PR 프로모터를 증폭시켰고, 결과의 PCR 산물을 사용하여 내인성 ppc 프로모터를 대체하였다. △ppc:: PR-pyc 유전자좌의 최종 뉴클레오티드 서열은 서열번호 58에 나타내었다. S. 세레비지애 pyc 유전자는 임의의 E. coli 유전자와 밀접한 관련이 없기 때문에 선택되었으며, 상이한 코돈 사용으로 인한 예상된 낮은 발현은 뮤콘산 생산을 위한 PEP 보존에 유익할 수 있다. 피루베이트 카복실라제를 함유하는 많은 유기체가 있으며, 피루베이트 카복실라제 활성을 갖는 임의의 동족체 또는 유사체가 사용될 수 있다. 원래 ppc 유전자좌에서 △ppc:: PR-pyc를 통합하여 MYR1674로부터 유래된 새로운 균주 MYR1772는 클로닝된 S. 세레비지애 pyc 유전자의 기능성을 확인하는 최소 배지에서 생존할 수 있었다. MYR1772 및 이의 부모 MYR1674 균주는 진탕 플라스크 실험에서 이들의 뮤콘산 생산능력을 비교하였다. 도 23에 나타낸 결과에 알 수 있듯이, MYR1772 균주는 부모 MYR1674 보다 뮤콘산 생산의 높은 역가를 생산하였으며, 이는 내인성 포스포에놀피루베이트 카복실라제 효소를 외인성 피루베이트 카복실라제 효소로 대체하는 이점이 있음을 입증하였다.
실시예 22
뮤콘산 생산의 측정
박테리아 균주 MYR814, MYR993, MYR1536, MYR1557, MYR1570, MYR1595, MYR1630, MYR1674 및 MYR1772를 진탕 플라스크 배양물에서 밤새도록 성장시켰으며, 뮤콘산 생산에 대한 역가 및 수율을 결정하였다. 또한, 성장률은 600 nm에서 흡광도를 측정하여 결정하였으며, 다양한 박테리아 균주의 상대적 성장을 표 8에 나타내었다. "+++"로 표시되는 박테리아 성장은 야생형 E. coli 균주에서 보이는 성장과 유사한 성장을 나타낸다. "+"로 표시되는 박테리아의 성장은 약한 성장을 나타낸다. 중간 성장은 "++"로 표시된다. 특정 균주가 약한 성장을 나타낼 때, 그 균주는 성장을 개선하기 위해 5일 동안 밤새도록 전이를 거치게 되며, 각 전이는 약 10 세대 또는 두 배가 된다.
박테리아 균주 MYR814, MYR1570, MYR1630 및 MYR1674를 유가식 방식으로 7 리터 발효기에서 성장시켰으며, 뮤콘산 생산에 대한 역가 및 수율을 결정하였다 (표 9). 뮤콘산의 역가 및 수율에 대해 시험한 박테리아 균주는 부산물을 거의 생산하지 않았다. 예를 들어, 유가식 발효의 72시간 후의 박테리아 균주는 부산물로서 0.08g/L의 PCA 및 0.07g/L의 푸마레이트만을 나타내었다.
<110> Myriant Corporation Sillers, Ryan Spencer, Michelle Yocum, R. Rogers Hermann, Theron <120> IMPROVED MUCONIC ACID PRODUCTION FROM GENETICALLY ENGINEERED MICROORGANISMS <130> MC2017-01PCT <150> US 62/302558 <151> 2016-03-02 <160> 94 <170> PatentIn version 3.5 <210> 1 <211> 195 <212> DNA <213> Bacillus subtilis <220> <221> promoter <222> (1)..(195) <223> The P15 promoter from Bacillus subtilis phage SP01, with a stem and loop added just downstream from the transcription start site. <400> 1 gctattgacg acagctatgg ttcactgtcc accaaccaaa actgtgctca gtaccgccaa 60 tatttctccc ttgaggggta caaagaggtg tccctagaag agatccacgc tgtgtaaaaa 120 ttttacaaaa aggtattgac tttccctaca gggtgtgtaa taatttaatt acaggcgggg 180 gcaaccccgc ctgtt 195 <210> 2 <211> 164 <212> DNA <213> Bacillus subtilis <220> <221> promoter <222> (1)..(164) <223> The P26 promoter from Bacillus subtilis phage SP01 <400> 2 gcctacctag cttccaagaa agatatccta acagcacaag agcggaaaga tgttttgttc 60 tacatccaga acaacctctg ctaaaattcc tgaaaaattt tgcaaaaagt tgttgacttt 120 atctacaagg tgtggtataa taatcttaac aacagcagga cgct 164 <210> 3 <211> 91 <212> DNA <213> Escherichia coli <220> <221> promoter <222> (1)..(91) <223> The PR promoter from Escherichia coli phage <400> 3 acgttaaatc tatcaccgca agggataaat atctaacacc gtgcgtgttg actattttac 60 ctctggcggt gataatggtt gcatgtacaa g 91 <210> 4 <211> 359 <212> PRT <213> Neurospora crassa <220> <221> PEPTIDE <222> (1)..(359) <223> Protein sequence of 3-dehydroshikimate dehydratase from Neurospora crassa encoded by the qa-4 gene. <400> 4 Met Pro Ser Lys Leu Ala Ile Ser Ser Met Ser Leu Gly Arg Cys Phe 1 5 10 15 Ala Gly His Ser Leu Asp Ser Lys Leu Asp Ala Ala Gln Arg Tyr Gly 20 25 30 Tyr Leu Gly Ile Glu Leu Phe Tyr Glu Asp Leu Val Asp Val Ala Glu 35 40 45 His Leu Ser Asn Glu Arg Pro Ser Pro Glu Gly Pro Phe Val Glu Ala 50 55 60 Gln Ile Ala Ala Ala Arg His Ile Leu Gln Met Cys Gln Ala Arg Gly 65 70 75 80 Leu Glu Val Val Cys Leu Gln Pro Phe Met His Tyr Asp Gly Leu Asn 85 90 95 Asp Arg Ala Glu His Glu Arg Arg Leu Glu Lys Leu Ala Leu Trp Ile 100 105 110 Glu Leu Ala His Glu Leu His Thr Asp Ile Ile Gln Ile Pro Ala Asn 115 120 125 Phe Leu Pro Ala Asn Gln Val Ser Asp Asn Leu Asp Leu Ile Val Ser 130 135 140 Asp Leu Cys Lys Val Ala Asp Ile Gly Ala Gln Ala Leu Pro Pro Ile 145 150 155 160 Arg Phe Ala Tyr Glu Ser Leu Cys Trp Ser Thr Arg Val Asp Leu Trp 165 170 175 Glu Arg Cys Trp Asp Ile Val Gln Arg Val Asp Arg Pro Asn Phe Gly 180 185 190 Ile Cys Leu Asp Thr Phe Asn Ile Leu Gly Arg Ile Tyr Ala Asp Pro 195 200 205 Thr Ser Pro Ser Gly Arg Thr Pro Asn Ala Lys Glu Ala Val Arg Lys 210 215 220 Ser Ile Ala Asn Leu Val Ser Arg Val Asp Val Ser Lys Val Phe Tyr 225 230 235 240 Val Gln Val Val Asp Ala Glu Arg Leu Ser Lys Pro Leu Leu Pro Gly 245 250 255 His Pro Tyr Tyr Asn Pro Glu Gln Pro Ala Arg Met Ser Trp Ser Arg 260 265 270 Asn Cys Arg Leu Phe Tyr Gly Glu Thr Glu Tyr Gly Ala Tyr Leu Pro 275 280 285 Val Lys Glu Val Ala Arg Ala Leu Phe His Gly Ile Gly Phe Glu Gly 290 295 300 Trp Val Ser Leu Glu Leu Phe Asn Arg Arg Met Ser Glu Glu Gly Pro 305 310 315 320 Glu Val Pro Glu Glu Leu Ala Met Arg Gly Ala Ile Ser Trp Ala Lys 325 330 335 Leu Val Gln Asp Leu Arg Ile Pro Val Glu Gly Pro Leu Val Thr Met 340 345 350 Pro Arg Val Ser Ala Ser Leu 355 <210> 5 <211> 2160 <212> DNA <213> Neurospora crassa <220> <221> gene <222> (1)..(2160) <223> Genomic DNA sequence of the qa-4 gene from Neurospora crassa plus surrounding sequences. <400> 5 gaattcggga aatggaatct tacctgggaa ccgaaatcac agtccgggta ggttatagag 60 catatagtga actgtcaaag ttctagacct ggaccagcca cttggagtcg ttgttttagt 120 tatacctaca ttcactcact gttgactttc aatcatactt acttagacgg agcaacgcgc 180 cagaatccaa attgttgcat agttgcggta tcaccaagtg gcttcccata atagtttgcc 240 attcgatgag acagctaact ggaagaccgg tactcgcagg ttgcacgatt acacggaagg 300 attcggtatt ccgtgtttca tctgtcaaag tccctttcca tatgaatccg aggtactatg 360 actggatctc gatacaagct ggccagcgag gtgcctgcct tgacaggctg tcaactgcgg 420 gacggccggc taagtgttta acacgcaagg gtggaagatg tctcgtcccg tcatccaaga 480 ccgtcaacat tcgaggccat ctgatcgttg aagagatgct aaatcttgtg aaacgctcat 540 aggtcgctta ccttcggccc acccgttaat gctttattcc gctgagcaaa cttcggcttc 600 catcccgcgg ttcaccgttt acatcactta tcgttgcggt tattggccga ttcttcgcaa 660 accgaaacga tgacatcccg aatatctgca atacaccgcc acggccggcg tctttatcac 720 acctcctatg ggagacgaaa gtgccttgat acccctagtc atttgaagat tcaggatggg 780 agacggctgg ccgcttgcgg agttacgttc gagtcttggt cgcaggaacg cttgccgtat 840 tgaatgagac cccgagaagg tcaaatcaaa tcttggaaga ccccaactgc ttcctcattg 900 ccttcactcc ccatatcaat ggggcacatc ctgtgactac cttggtgctt tatttcctca 960 ccatttggcg atacaagctc aaggacaccg aggtgatata cagttcttca aggacactat 1020 ctcacctcaa tatcaagaac cagtctcatc atctcttatt tctccaggat ccccccacca 1080 acaacatcgg cttttttttt tcccctattc tcaagaccca tcaagacgct cacttcgctg 1140 agcctttcgc catgccgtca aagctagcca ttagttccat gtccctaggg cgctgctttg 1200 ccggccactc tctggacagc aagcttgatg ccgctcaacg atacggctat cttggtatcg 1260 agctttttta tgaggatctg gtcgacgttg cagagcattt gtcgaacgag cgtccctctc 1320 ccgaaggccc ttttgtcgaa gctcagatag ccgccgctcg tcatattctc cagatgtgtc 1380 aagccagggg gcttgaggtc gtctgcctcc agcctttcat gcactacgac ggccttaacg 1440 acagggcaga acatgagcgt cgtctggaga agctagcact atggattgag ctcgctcatg 1500 agcttcacac cgacatcatt cagatcccag ccaacttcct ccctgccaac caagtcagtg 1560 acaacctcga cctgattgtc tcagatcttt gcaaggtggc cgatattgga gctcaagctt 1620 tgccccctat ccgctttgcc tacgagagtc tttgctggag cacccgtgtc gacctctggg 1680 agcgctgctg ggacatcgta caacgcgttg accgccccaa ctttggcatt tgccttgaca 1740 ccttcaacat cctcggccgc atctatgccg accctacatc tcctagcggt aggacaccca 1800 acgcaaaaga ggcagtcagg aagtccatcg ccaacttggt ctcgcgcgtg gatgtctcca 1860 aagtcttcta cgtccaggtg gttgacgccg agaggctgag caagccacta ctgcccggtc 1920 acccgtatta caatccagag cagccggcga ggatgagctg gtcgcgcaat tgtagactgt 1980 tctacggcga aacagaatat ggtgcgtatc ttcccgtgaa ggaggttgct cgagcccttt 2040 tccacggcat tggtttcgag ggctgggtca gtttggagct tttcaaccgc agaatgtctg 2100 aggagggacc tgaagtgccg gaggaacttg ccatgagagg cgctatctcg tgggccaagt 2160 2160 <210> 6 <211> 348 <212> PRT <213> Aspergillus niger <220> <221> PEPTIDE <222> (1)..(340) <223> Protein sequence of 3dehydroshikimate dehydratase from Aspergillus nidulans. encoded by the qutC gene <400> 6 Met Pro Ala Asn Leu Lys Ile Gly Ile Pro Thr Val Ser Leu Ser Lys 1 5 10 15 Pro Gly Leu His Ser Leu Asp His Lys Leu Arg Ser Ala Ala His Gly 20 25 30 Phe Ala Gly Ile Glu Leu Phe Ile Asp Asp Leu Ser His Phe Ala Ser 35 40 45 Ser Ser Phe Asn Gly Ser Leu Thr Gln Ala Ala Lys Tyr Ile Ser Ser 50 55 60 Leu Ala Lys Gln Leu Asn Leu Thr Phe Ile Cys Leu Gln Pro Phe Gly 65 70 75 80 Phe Tyr Glu Gly Leu Val Asp Thr Asn Gln Ser Thr Tyr Leu Leu Thr 85 90 95 Glu Lys Leu Pro Leu Trp Phe Ala Ile Ala Arg Ile Ile Gly Thr Asp 100 105 110 Leu Ile Gln Ile Pro Ala Asn Phe Leu Gln Asn Asp Pro Val Thr Gly 115 120 125 Ala Ala Arg Thr Ser Gly Asp Ile Arg Leu Ile Val Ser Asp Leu Gln 130 135 140 Thr Ile Ala Asp Ile Gly Val Lys Gln Gly Phe Arg Phe Val Tyr Glu 145 150 155 160 Ala Leu Cys Trp Ser Thr His Val Asp Thr Trp Glu Ala Ala Trp Asn 165 170 175 Val Val Lys Leu Val Asp Arg Glu Asn Phe Gly Ile Cys Leu Asp Ser 180 185 190 Phe Asn Thr Arg Thr Pro Leu Pro Ser Leu Gly Arg Arg Arg Met Leu 195 200 205 Ser Lys Pro Trp Pro Ser Pro Trp Arg Arg Ser Val Leu Ser Ser Pro 210 215 220 Val Glu Asn Trp Thr Ser Gly Lys Ser Ser Thr Ser Ser Leu Ser Met 225 230 235 240 Ala Ser Gly Cys Arg Arg Arg Trp Thr Arg Ser Thr Pro Phe Met Trp 245 250 255 Arg Ala Asn Pro Arg Arg Met Ser Trp Ser Arg Asn Ala Arg Leu Phe 260 265 270 Pro Cys Glu Glu Glu Arg Gly Gly Tyr Leu Pro Val Leu Glu Ile Ala 275 280 285 Arg Ala Phe Phe Glu Ile Gly Phe Glu Gly Trp Val Ser Leu Glu Leu 290 295 300 Phe Ser Arg Thr Cys Asn Asp Pro Asp Val Asn Thr Val Gly Glu His 305 310 315 320 Ala Arg Arg Gly Met Asp Arg Arg Arg Arg Val Val Ala Ala Leu Gly 325 330 335 Leu Asp Val Glu Val Pro Ala Arg Asn Cys Glu Cys 340 345 <210> 7 <211> 3298 <212> DNA <213> Aspergillus niger <220> <221> gene <222> (1)..(3298) <223> Genomic DNA sequence of the qutC gene from Aspergillus nidulans plus surrounding sequences <400> 7 aagcttggtt tcaagtgatg atatatagtt atgaggatat aatatgaacc gaaagacgat 60 gtttcttgtg aatatttacg tgatagttgt ctgtctaata tggtacagca gtagaacaac 120 tacatacggt cactacttac agccctagtc attccctccc tcgattgcct accatttata 180 cactttgaac atccacaggc ttgcctccct ccatactctc cctaacagct tgaacaactc 240 tgagcgccct caccccatct tcaacgccac agccaactcc tcgctcgcca tcctcaccct 300 ttccactaac aacatcaaca aaatatcccc actgcgcatc aaacggcctc acatcagcat 360 ccttcactga aatctgctgc atcgccaact ccgtattcca gcctttctct ttcccctgtc 420 cacaagaaac atggtcatag ctccagcgcg tcatatcagg cacactgaga ctcgctctgg 480 ttccaagaat tcgataacag tcgcttgcac tcttggaagg agcgggcgga atcgtaggat 540 tctcgcccgt tcctgtttca aagttcaacg gcgaaggcgt cgcgtcgcag atgagaaatg 600 tgcctactat cccagacgca aagcgcagcg tcacagcaca gccttcctcg gcggtatgtt 660 ccgggttctg gcgcatgcgc tgcaggagtg taccctccgc gtagacccta ctgacgggcc 720 caaacagaaa ctgcagcacg tcgatatcgt ggataagatt aatccccagc acgccgccct 780 tcttcttatc tgcgcgccaa gaaccgagcg gcggcgcgaa gtaagaggcc ggcttcagaa 840 gtgtccagag gccgttcact gcaacgacgg tgccgagtga gtctgtctct aacaaagact 900 ttgtggtttg gatgtacgga ttgaagcggc ggtggtggcc gatctggatg ttgatcttcg 960 catccttgcc tctcttctca tctttacatt tctgttcctt gacggtagcg aggaggtgct 1020 cggccgactc cagatcgtca ctgatcggtt tctcaaggag gatattgcgg attccgttct 1080 ccagcagctg gagcgtgacg tccacgtgcg tgtgattggg cgtgctcacg atcgccgcgt 1140 ctggtttccc ggttgtctta ccgacaacgt ctaacataga cgtaatagaa tcatagcaag 1200 gaacgccaaa tgattctgcg accgggattg cagagggtga agggtcaaca aaagcgatca 1260 gctgggttcg tgggtgtcgt tgcacggatt gtgcgtgacg gggcccaata agtccggcac 1320 cgacgatgac aatgaggata ttcttgtcct tttccttgct gcagggcacc attgtgcatg 1380 tcggtggctg gaaataaaca gaacagggat atggtcaagt cggagaatcg gtgcaggata 1440 gaccggctac ttgatgtagg acgacagtcg cgatctaccg agagcgtgag attcactgtg 1500 ggactgattt atgtaatttg aggcgcagca gacttaggga cttgaaatgt ggctgtctgt 1560 ggatgcattt gcggggtatg gagtacagag tgcatacagc tgtgtatatg gagttcctta 1620 cggagagggt gacctggtat ggggagaacg ggcaaaatgc tcacccggca acctctcaaa 1680 gcgtttaccc ggtatactcc tctgatatca atatttccaa tcagcaccta tatcatcacg 1740 acgctctcct gaggattccg tagctaaccg ccctggatcc tacattaata aataagccat 1800 ttgctttttc tgctgcgagt gtgattctca atacgattac gtatcacatg cagattgcct 1860 ttacttcagc tgcatttgat cagccacagc tctaagagca aacataccct acctacctac 1920 ctacttcgcc tagggtacat aatcaccgcc atctcctcct cgatcagtct tcaactcaat 1980 cagctcattc attctattct taatataata tataccttta gatctccagc agagacccga 2040 agagtcggca attcaaaatg cccgcaaacc tcaaaatcgg tatcccaacc gtgtccctgt 2100 caaaaccggg cctgcactct cttgaccata agctccgctc ggccgctcat ggcttcgcgg 2160 ggatcgagct gtttattgat gacctctccc atttcgcctc atcgtcattc aatggctccc 2220 tcactcaagc ggcaaagtat atctcctcgc tcgccaagca acttaacctc acatttatct 2280 gcctgcaacc attcggtttc tacgagggtc tggtggacac aaatcagtcg acgtacctgc 2340 tcactgagaa actcccgctc tggtttgcga tcgcccgcat tataggcaca gatctcatcc 2400 aaatccccgc aaatttcctc cagaatgacc ctgtcaccgg ggctgcacga acaagcggcg 2460 acataaggct tatcgtctca gatctgcaga cgatcgcaga tatcggtgta aagcagggct 2520 tccgctttgt gtacgaggcg ctctgctggt cgacgcatgt cgatacatgg gaagcagcgt 2580 ggaatgtcgt caagctggtt gatagagaga atttcgggat ctgcctggat agcttcaaca 2640 cgcggacccc gcttccgtca ctgggaagac gccggatgct gagcaagccg tggccaagtc 2700 catggagacg ctccgttctc tcgtctccag tggagaactg gacatcagga aaatcttcta 2760 catccagctt gtcgatggcg agcggttgtc ggcgccgctg gacgagaagc acccctttca 2820 tgtggagggc caacccccga agaatgagct ggagtcgcaa tgcgcggtta ttcccctgtg 2880 aagaggagag gggtgggtat cttcctgtgt tggagatcgc gagggcgttc tttgaaatcg 2940 ggttcgaggg gtgggtgagt ctagagctgt tttcaaggac gtgtaatgat cccgatgtga 3000 acacggtggg ggagcatgcg agacgtggga tggatagaag gaggagggtt gttgcggcgc 3060 taggactcga tgttgaggtg ccagcacgta actgtgaatg ttagcatgaa cggcaaggag 3120 agggtggagg tgcaggtgca ggaggagctg gctgttcagc atcggctgta ggtagtggta 3180 tcttgaaagg acgatagggt ttgatctaga gatttttatt ttgtctaatt actggtaatg 3240 atggcctcat gcacgctgtt gaacacgctg tacaacatca ctgttgaaga tgatacct 3298 <210> 8 <211> 502 <212> PRT <213> Klebsiella pneumoniae <220> <221> PEPTIDE <222> (1)..(502) <223> Protein sequence of protocatechuate decarboxylase (AroY) from Klebsiella pnemoniae ATCC25597 <400> 8 Met Thr Ala Pro Ile Gln Asp Leu Arg Asp Ala Ile Ala Leu Leu Gln 1 5 10 15 Gln His Asp Asn Gln Tyr Leu Glu Thr Asp His Pro Val Asp Pro Asn 20 25 30 Ala Glu Leu Ala Gly Val Tyr Arg His Ile Gly Ala Gly Gly Thr Val 35 40 45 Lys Arg Pro Thr Arg Ile Gly Pro Ala Met Met Phe Asn Asn Ile Lys 50 55 60 Gly Tyr Pro His Ser Arg Ile Leu Val Gly Met His Ala Ser Arg Gln 65 70 75 80 Arg Ala Ala Leu Leu Leu Gly Cys Glu Ala Ser Gln Leu Ala Leu Glu 85 90 95 Val Gly Lys Ala Val Lys Lys Pro Val Ala Pro Val Val Val Pro Ala 100 105 110 Ser Ser Ala Pro Cys Gln Glu Gln Ile Phe Leu Ala Asp Asp Pro Asp 115 120 125 Phe Asp Leu Arg Thr Leu Leu Pro Ala His Thr Asn Thr Pro Ile Asp 130 135 140 Ala Gly Pro Phe Phe Cys Leu Gly Leu Ala Leu Ala Ser Asp Pro Val 145 150 155 160 Asp Ala Ser Leu Thr Asp Val Thr Ile His Arg Leu Cys Val Gln Gly 165 170 175 Arg Asp Glu Leu Ser Met Phe Leu Ala Ala Gly Arg His Ile Glu Val 180 185 190 Phe Arg Gln Lys Ala Glu Ala Ala Gly Lys Pro Leu Pro Ile Thr Ile 195 200 205 Asn Met Gly Leu Asp Pro Ala Ile Tyr Ile Gly Ala Cys Phe Glu Ala 210 215 220 Pro Thr Thr Pro Phe Gly Tyr Asn Glu Leu Gly Val Ala Gly Ala Leu 225 230 235 240 Arg Gln Arg Pro Val Glu Leu Val Gln Gly Val Ser Val Pro Glu Lys 245 250 255 Ala Ile Ala Arg Ala Glu Ile Val Ile Glu Gly Glu Leu Leu Pro Gly 260 265 270 Val Arg Val Arg Glu Asp Gln His Thr Asn Ser Gly His Ala Met Pro 275 280 285 Glu Phe Pro Gly Tyr Cys Gly Gly Ala Asn Pro Ser Leu Pro Val Ile 290 295 300 Lys Val Lys Ala Val Thr Met Arg Asn Asn Ala Ile Leu Gln Thr Leu 305 310 315 320 Val Gly Pro Gly Glu Glu His Thr Thr Leu Ala Gly Leu Pro Thr Glu 325 330 335 Ala Ser Ile Trp Asn Ala Val Glu Ala Ala Ile Pro Gly Phe Leu Gln 340 345 350 Asn Val Tyr Ala His Thr Ala Gly Gly Gly Lys Phe Leu Gly Ile Leu 355 360 365 Gln Val Lys Lys Arg Gln Pro Ala Asp Glu Gly Arg Gln Gly Gln Ala 370 375 380 Ala Leu Leu Ala Leu Ala Thr Tyr Ser Glu Leu Lys Asn Ile Ile Leu 385 390 395 400 Val Asp Glu Asp Val Asp Ile Phe Asp Ser Asp Asp Ile Leu Trp Ala 405 410 415 Met Thr Thr Arg Met Gln Gly Asp Val Ser Ile Thr Thr Ile Pro Gly 420 425 430 Ile Arg Gly His Gln Leu Asp Pro Ser Gln Thr Pro Glu Tyr Ser Pro 435 440 445 Ser Ile Arg Gly Asn Gly Ile Ser Cys Lys Thr Ile Phe Asp Cys Thr 450 455 460 Val Pro Trp Ala Leu Lys Ser His Phe Glu Arg Ala Pro Phe Ala Asp 465 470 475 480 Val Asp Pro Arg Pro Phe Ala Pro Glu Tyr Phe Ala Arg Leu Glu Lys 485 490 495 Asn Gln Gly Ser Ala Lys 500 <210> 9 <211> 5502 <212> DNA <213> Klebsiella pneumoniae <220> <221> gene <222> (1)..(5502) <223> DNA sequence of the aroY gene of Klebsiella pneumoniae 342 plus 2 kilobases of surrounding DNA sequences <400> 9 gcgacgccga ctgggcgatc cgtgaactgc tggcgcgtat gacccagcgt ctgcagggct 60 gtgaaaccat agaggatgtg attaaggtgg cggagctgtt cgcgccgaac atcgccccga 120 cgatccccgg taaactgtat attctggata ccgatccatg gcagatgcgc tgcgtggcgc 180 agtggctgtc gcccgccggg gagacgacgt cctttgctcc cgacgactgc tgggcgatac 240 ggcggggact cagccatccg ccggtgcagg gtgagcccga tatcacctgc tatcatctgc 300 cggaggcgca cgccggccag tcgctctgcg taccgctcat cgcccagggc gaagcgatcg 360 gtctgctgag ctttcagaac gtcaccgcca gtgacgcccc ttcccgggct tacctggagc 420 tgatggccga agcgctgggg ctggcgctcg ccaatcagcg tttacgcagc gccctgctgg 480 aaaaagcgtt gttcgattcg ctgaccggcc tgcgtaaccg ccatcatctt gatgaagcgc 540 tgcactcgca gatggcgctg gcggtccata cccacacccc gctgagctgc ctgatgatcg 600 acatcgatca cttcaaagcc atcaatgacc gctacggcca tgaagccggg gatctggtga 660 ttaagagcgt cgcgaccatt gtgcagcgcg cggtgcgcga tatcggcatg gctttccgct 720 acggcggcga ggagttttta gtgctgctcc ccgggattga cgaagccggg gcgcaccagt 780 gcgccagcga gatctacacc caggtgcaca atatgacgct gcgcgatggc ctgacggaga 840 taggccaggt ggatgtgtcg attggcatcg ccagctaccc gcagcacacc caaagcgaca 900 gcctgctgcg cgcagcggac gccgcgctgt accgggcgaa agagctgggc cgttcaagga 960 ttgtcagctt tggccgcctg aagacccgct aagcgggatt attgctcagc ggcattaagc 1020 agcgagataa ctttccgcac caccgccgaa cggaaatggc ggtggtaaac catgctcagc 1080 tcactctccg ccagccgatc ctgaagatcg atatacacca cgttatcaag gcgtaaggcc 1140 ctcgccgaga ccggcaccag cgccaccccc accccggcgg agaccaggct aatcatcgag 1200 gtgacatcgt taattcgctg caccacctgc ggcgtaaaac ccgcgacgcg acaggcgtca 1260 ataaatacct gctccagtcc ggtgccctgc ggatcgtcaa gcgagatcca gttgtcagtg 1320 cgcaacgagg ccagattgag cgcccccacg cctgccagcg gatgctgttg ataaagcgcc 1380 aggcaaagtt tttcccgcac aaatggcctg accaccagcg cgtccggcgg tgacgccagc 1440 ggcgcgcgga tgatggcgat atccagacgc agatccagca gcgcttcgta gagcatttgc 1500 acatccccct gcaccagcga cagctcaatc cccggccagt cagcgcgcag ctcgcgcagg 1560 agccccggca gtttgctgtc atacatcgca ctggagacat agcccagatg caatcgcccc 1620 tgctcgcctc gtgcggtgcg ctgggcgtcc aggaccgcct gatcggccat ctccagcgcc 1680 agccgcgtct tctgcaagaa ggcctcgccc gcggcggtga gggtcaggcg ccggttagcg 1740 cgggagaaga gcaccacgcc caggcgctgc tcgagttgtt taatctgctg gctgagggcg 1800 ggctgggcga tatgtaaccg ctctgccgcc cgatgcatat gtagttcttc agcaacgacc 1860 acaaaatggc gtaacgctcg caaggacatg gccggactcc gcggagtaaa ttgataataa 1920 aaatgttatc aataaagcat gaatgatgca attgataacc attagcctgc gagcatactg 1980 tgcgcatcga cacgctaagg agaacatcat gaccgcaccg attcaggatc tgcgcgacgc 2040 tatcgcgctg ctgcaacagc atgacaatca gtacctcgaa accgatcatc cggttgaccc 2100 taacgctgag ctggccggcg tctatcgcca catcggcgcg ggcggcaccg tgaagcgccc 2160 cacgcgcatc ggcccggcga tgatgtttaa caatattaag ggctatccgc actcgcgcat 2220 tctggtgggc atgcacgcca gccgccagcg ggccgcgctg ctgctgggct gcgaagcctc 2280 acagctggcg ctggaggtag gcaaagcggt gaaaaaaccg gtcgcgccgg tggtcgttcc 2340 ggccagcagc gccccctgtc aggaacaggt ctttctggcc gacgatccgg attttgattt 2400 gcgcaccctg ctcccggcgc ccaccaacac cccgatcgac gccggtccct tcttctgcct 2460 gggcctggcg ctggccagcg atcccgacga cgcctcgctc accgacgtca ccatccaccg 2520 cttgtgcgtc cagggccggg atgagctgtc gatgtttctc gccgctggcc gccatatcga 2580 agtgtttcgt cagaaagccg aggccgctgg caaaccgctg ccgataacca tcaatatggg 2640 actcgatccg gctatctata tcggcgcctg ctttgaagcg ccgaccacac gtttggctat 2700 aacgaactgg gcgtcgccgg tgcgctgcgt cagcgtccgg tagagctggt acagggcgtc 2760 agcgtcccgg agaaagccat cgctcgcgcc gagatcgtta tcgaagggga actgctgccg 2820 ggggtacgcg tcagagaaga tcagcacaca acagcggcca tgcgatgccg gaatttcctg 2880 gttactgcgg cggcgccaat ccgtcgctgc cggtcattaa agtcaaagcg gtgaccatgc 2940 gaaacaatgc gattctgcag acgctggtag ggccgggcga agagcatacc accctcgccg 3000 gattgccaac ggaagccagt atctggaatg ctgtcgaggc tgctatcccg ggctttttac 3060 aaaatgtcta cgcccacacc gcgggcggcg gtaaattcct cgggatcctg caggtgaaaa 3120 aacgccagcc cgccgacgaa gggcgtcagg ggcaggccgc gttgctggcg ctggcgacct 3180 attccgagct gaaaaatatc attctggtcg atgaagatgt cgatatcttt gacagcgacg 3240 atatcctgtg ggccatgacc acccgcatgc agggggatgt cagcatcacg acgatcccag 3300 gcattcgtgg tcaccagctg gatccttccc agaccccggc ctacagcccg tcgatccgcg 3360 gagagggtat cagttgcaag acgattttcg attgcacggt gccgtgggcg ctaaaatcac 3420 acttcgagcg cgcaccgttt gccgatgtcg atccgcgtcc gtttgcgccg gagtattttg 3480 cccggctgga aaaaaaccac ggtcagtaaa atcaggtgat agccgccgga gcacggcggc 3540 atcttccggg ccagcatcac ctgcagcggg tggctgacgc agggttagtt gatcgcggcg 3600 gagaggtctt ttttcacctg ctcacgctgc tcgggggtca acacctggct cacgtcgaag 3660 tagtatttca cacgataata ccgcacctgc tggtccagct ggccaaaggc ggccagctgc 3720 tgtttgacct tagcgtcatc ccatttcccg gagtgaataa cgtctgccag ggcaccatcc 3780 tgatagccgc tgatttaatc tggcttacat tgttttcgaa tccctgacgc agcgcctgga 3840 ttttggcgac ctgctcttca ctcagcttca ggtgctggac gaccggatcc tgcgagacag 3900 acggtatatc ggcggaggtc gacgcctggc tggctgccgt aaagcaggtg gtcagcgcaa 3960 tggcgagcag ggtgttacgc aagcgagtat tcacagtgaa tgatccttca aaaaagaaaa 4020 tgagaggcga ttatcactgc gctaataaag actatctgta acaaagggtt aatttaaaac 4080 tggataaaaa aaggatggta agaaacagaa atcagatccc gggtcagcag cacagaaaga 4140 tatattcatc cttccagtaa cggccctgtc caatgatatc cccggcggcg ctgattaact 4200 gtttttgctt ttggtttcaa tcccctcaac gatcacatgg ctggtcaggg tatgaataga 4260 ttgcaacagc ccgggaaaag cggggtcgtt ttctttatcc cagaagtaat ctttatccac 4320 tttgacgcaa tcgaagcgga agcgctccag cagcgggaag gacgtcgtcc gcggccaaaa 4380 tcatccagcc agaccgggca aagcgccgcc agcgtgctca gcgccgtcag ctcacgtccg 4440 gcgataaact cgtgaaagtt ctcatttatt tccagagcaa tgtgtttaca ggagcgcagg 4500 aaatcacaga gatagcgatc cgtcagaata aagtggctta ataaatcatc aatattcagc 4560 gatatcggtt tattatcgac ccgggcgaaa tcaaatacag aaagtaactc gatttgccga 4620 ataaatagag caagcttatc gcgttcggta agcgtggaga aagaaaacgt cgacgcagag 4680 gtggtatttt gtgcgggtgc tataatatct ttagtaagca actcccacga gtggtagctg 4740 ccgtcatcgc taatagcggg ctccagaacg aagcgataag aggtattttt cacgttttct 4800 tcaaccattt aaaaaatacc aaaaataaga aagggttaag catgtcatat attttccgcc 4860 aacaaaaata gtttaaagtg atcgataata atcattcgat agttaaaaac tatcaagata 4920 taatttattg atcggtaaat tgaattaata taaattagcc actgccgtaa ctccctctga 4980 aaagtcaatt aaaatattgt ttcaaaccag ccagttacca gagtattctg cgtaaagcct 5040 ggtcgtctca cgctttgtgc tgccaggtaa aaaaagagag gggtaataaa aatgaaaaat 5100 acaagccgcc agttttagtc atatcattat gccgaatatg aataacgctg cgctgaggcg 5160 ccgcttcgcc tggcatgcca tgagtcctca acaaaaaagt gtgactcagt cgacaaaacg 5220 tcatattttc ccgctatcct gcagcgaaga agagtgaagt ggatgacagg cagtgaaaaa 5280 aataaacgtg attccgctgg ggctgatgct attcatgctc atcgccagcg catggctggg 5340 ccctgcgccg cggcacaccg gcagcatgca gtgcgtttgg tttgacgggg caatggtgag 5400 ctgcctgccg aagcaacgac tgggcgaagg ctcgccgcat catttactgg tcagacgata 5460 aaccggtact cgccgggtgg tgttgaacag attatcgctg gc 5502 <210> 10 <211> 4629 <212> DNA <213> Acinetobacter baylyi <220> <221> gene <222> (1)..(4629) <223> DNA sequence of the catA gene from Acinetobacter baylyi ADP1, including 410 bases of upstream sequence and two open reading frames downstream <400> 10 atctgctcga ccatagtaat gatcacatta tgagctaaat ttacttttta aaatttaaat 60 atattatata tatttgaatt ttattgtttt attttaattt ttagcttaga agtttttatt 120 aagatttatt tttaaattag atgtcgaaaa aattagtata ccaaaaaagc atgaaaacat 180 actctcttag gaattggagt cgccatgagt ttcagataca gttgatcagt atggaaggta 240 tagaaacgac tatcgaaata aataagtttg tggtgtgtga agcaaggtaa agctcaaggc 300 tgaggcaaac caagcaaagg ttaattgaac cgatatgcac aacacattca acgatagcgt 360 cgacagataa gtttatcaaa tgatgttttg gcgatttcaa ggagaaagcc atggaagtta 420 aaatattcaa tactcaggat gtgcaagatt ttttacgtgt tgcaagcgga cttgagcaag 480 aaggtggcaa tccgcgtgta aagcagatca tccatcgtgt gctttcagat ttatataaag 540 ccattgaaga tttgaatatc acttcagatg aatactgggc aggtgtggca tatttaaatc 600 agctaggtgc caatcaagaa gctggtttac tctcgccagg cttgggtttt gaccattacc 660 tcgatatgcg tatggatgcc gaagatgccg cactaggtat tgaaaatgcg acaccacgta 720 ccattgaagg cccgctatac gtggcaggtg cgcctgaatc ggtaggttat gcgcgcatgg 780 atgacggaag tgatccaaat ggtcataccc tgattctaca tggcacgatc tttgatgcag 840 atggaaaacc tttacccaat gccaaagttg aaatctggca tgccaatacc aaaggctttt 900 attcacactt cgacccaaca ggcgagcagc aggcgttcaa tatgcgccgt agtattatta 960 ccgatgaaaa cggtcagtat cgcgttcgta ccattttgcc tgcgggttat ggttgcccac 1020 cagaaggtcc aacgcaacag ttgctgaatc agttgggccg tcatggtaac cgccctgcgc 1080 acattcacta ttttgtttct gccgatggac accgcaaact aactacgcaa attaatgtgg 1140 ctggcgatcc gtacacctat gacgactttg cttatgcaac ccgtgaaggc ttggtggttg 1200 atgcagtgga acacaccgat cctgaagcca ttaaggccaa tgatgttgaa ggcccattcg 1260 ctgaaatggt tttcgatcta aaattgacgc gtttggttga tggtgtagat aaccaagttg 1320 ttgatcgtcc acgtctagcg gtgtaataca ccaaaatggt tcaaaattat caggcgagtg 1380 atcatgatca ctggcctgtt tttatttcag ggaagggtgg agacaattac gtggacaatc 1440 aaatcattca ggaaaccgta gataaaattt taagcgtatt gccgaatcag gctgggcaat 1500 tggcacgctt ggttcgtctg atgcagtttg cttgtgaccc caccattacc gtcattggta 1560 aatataatca tggtaaaagc cgactactca atgagctgat cgggacagat attttttctg 1620 ttgccgataa acgagagacg attcaactgg ccgaacataa acaagatcag gtgcgttggt 1680 tggatgcacc cggactcgat gcagatgttg cggcagtgga tgatcgtcat gcttttgaag 1740 cagtctggac acaggcagat attcgccttt ttgtgcattc agtccgagaa ggcgaactcg 1800 atgcaactga gcatcatctt ttacaacaac ttattgaaga tgcagaccat agccggcgcc 1860 aaaccatact ggtcttgacc cagatagatc agataccgga tcagacaatt ttaacccaga 1920 ttaaaacctc aattgcacag caggtaccca aactcgatat ttgggctgtt tcggccactc 1980 gccaccgtca gggtattgaa aatggaaaaa ccttgctgat cgaaaaaagt ggaatcggcg 2040 cgttacgaca tacacttgag caggcacttg ctcaggttcc atctgcacga acgtatgaaa 2100 agaatagatt gctgtctgac ttgcatcatc aacttaagca gttattactc gatcaaaaac 2160 atgtacttca gcaactacaa cagacacagc agcagcaatt gcatgacttt gatacaggac 2220 tcatcaacat actcgataag attcgagtag atcttgagcc cattgtaaat atagatggtc 2280 aagaccaagc actcaatcca gattcatttg ccacgatgtt taaaaataca gcagccaagc 2340 agcaacgtgc caaagtgcag attgcttact cacgtgcctg tatcgagatc aatagccatc 2400 tcatacgtca cggtgtggtg ggtttacccg cagagcaaca aaccacgata aaaagtattg 2460 atacggtcat tgttgcggtt tttggaattt cagtgaaatt tcgcgatcag ctacgtgcat 2520 tgttttatac cgataccgaa cgacaacgct tgcaaagaga gtttcgattt tattttgaaa 2580 agtcagcagg ccgaatgatt ttagctgcca agattgagca gacaatgcgg cagcaagggt 2640 gtattcaaaa tgcaatgatg gcgttgcaac agatggagag tgcagcatga ccagcggcgg 2700 acacattcaa ttgtttatcg aacacacccg gcagattgcg actgcccaag gggatataca 2760 gttggcattg caatcgatgc agcaatggcg cgaagcattt gctacagcat taaaacaaaa 2820 tacctttgat ttaacgggct ggtcaccgca gacaaagatc gccaatcaac tcaagcaatt 2880 taaccataag cttacaacgc atgtatcgaa ttgggatacc gaatggcata cttttagtgc 2940 tgctcaatcg gttgcagaag tatttcatga tcgggtgatg ttgcttgtat tcggtaagtt 3000 taatgccgga aagagttcat tgtgtaactt actggccgaa tgctttcgtt ctcacgaaca 3060 aaccgtgcaa tattttcatg ttcaaaatga acagatattt tataccgaat ctcacttacg 3120 cgaaggtgca accgagacga cagcgcaact acagggcgta tgtctgggtg aaaaacttat 3180 tttgctagat acaccaggtt tgcattctgg tactcagaaa aatgcagcgc tcacacaaaa 3240 atttatcgac agtgcagatg gtgtgctgtg gctcagtagc gcaacttcac cgggtcaggt 3300 gcaagagcta gatgcactgg ggcgcgagtt aaagcgtcat aaacctttat ttcctgttat 3360 tacccgaagc gattttgtcg aagaagatga aattgatggt gagctatgta cagtgctttg 3420 caataaaaat tcagaacaac gtgcgttgca agagtctgat gtattgatgc gtgcgaaaga 3480 aaaactgcac atatgcaagt ggatgtgagt ttattaaagc cgcccgtgtc cgtttcaact 3540 caaatggcgc gtgaagcaga tatgaaccca caagccatga acgaggctgg ttttgagcga 3600 ttatttgcag cacttttggc tcttattgag cctgctttgc gctataagca gcgtaaacct 3660 gccgaagtat tgttgcattt tttgcaagaa catatcattg aaggtttaag gttttacctg 3720 caacccgatc tagagcaaat acaacaggac ctcaaacagg ctcaagatga tttacgacag 3780 ctacacaccg atttagccga ggcagtctgg cgtagcgtat tgcctgagct accacaactt 3840 cttgagcaac atgcaagtac acaaaatatt gatgccgtag tgaacagttt gaacgagtgg 3900 ataaacgtcg cattcgaaca acagcttgca attcagcttg atgcttatgg tttaaatttg 3960 gattcgctta gcaagatcga aaaaaccgaa aaaatgcagt atgaacgcat tgcgggaatg 4020 gtggtgcatg atggcttgta cacgactctc acgcagcaga ttcaacaagc tgtcaaagct 4080 tctacgagtg aattgattga tcagtgtcag gctcaacttg agcagtcaat caaacatgtt 4140 caaacactcg atgaaacctt catcgattac agcgcagcac tcgatcaact cagccaagcg 4200 ctacgcattg aataaagagc agtaaatttt tcagacatat tttattcgat gagtggcctg 4260 atatggtgcg ttgcaaacac ctcctgtaca caggcgagaa ttttaggaat gtaattactg 4320 tggtccatat ttcgcaccgc gagtgaaatt gggctatagg catcatcatc taaaattgga 4380 atataaagta gattcttcac cccaatatcc atggcagacg ccggtacgat gcagacgcct 4440 tcacctgctg ccaccaagcc gagtgccagt tgaatttctc gaatttcggt gagtttggat 4500 ggtactaggc ctagttcggt aaagagtgac tgaataaagg tcgcaaaatt gggcttttga 4560 gagactgggt acagcagcat cggttcatca ataatttgag agagatgaac ccctgttgct 4620 gcaaactga 4629 <210> 11 <211> 311 <212> PRT <213> Acinetobacter baylyi <220> <221> PEPTIDE <222> (1)..(311) <223> Protein sequence of CatA (catechol 1,2-dioxygenase) from Acinetobacter baylyi ADP1 <400> 11 Met Glu Val Lys Ile Phe Asn Thr Gln Asp Val Gln Asp Phe Leu Arg 1 5 10 15 Val Ala Ser Gly Leu Glu Gln Glu Gly Gly Asn Pro Arg Val Lys Gln 20 25 30 Ile Ile His Arg Val Leu Ser Asp Leu Tyr Lys Ala Ile Glu Asp Leu 35 40 45 Asn Ile Thr Ser Asp Glu Tyr Trp Ala Gly Val Ala Tyr Leu Asn Gln 50 55 60 Leu Gly Ala Asn Gln Glu Ala Gly Leu Leu Ser Pro Gly Leu Gly Phe 65 70 75 80 Asp His Tyr Leu Asp Met Arg Met Asp Ala Glu Asp Ala Ala Leu Gly 85 90 95 Ile Glu Asn Ala Thr Pro Arg Thr Ile Glu Gly Pro Leu Tyr Val Ala 100 105 110 Gly Ala Pro Glu Ser Val Gly Tyr Ala Arg Met Asp Asp Gly Ser Asp 115 120 125 Pro Asn Gly His Thr Leu Ile Leu His Gly Thr Ile Phe Asp Ala Asp 130 135 140 Gly Lys Pro Leu Pro Asn Ala Lys Val Glu Ile Trp His Ala Asn Thr 145 150 155 160 Lys Gly Phe Tyr Ser His Phe Asp Pro Thr Gly Glu Gln Gln Ala Phe 165 170 175 Asn Met Arg Arg Ser Ile Ile Thr Asp Glu Asn Gly Gln Tyr Arg Val 180 185 190 Arg Thr Ile Leu Pro Ala Gly Tyr Gly Cys Pro Pro Glu Gly Pro Thr 195 200 205 Gln Gln Leu Leu Asn Gln Leu Gly Arg His Gly Asn Arg Pro Ala His 210 215 220 Ile His Tyr Phe Val Ser Ala Asp Gly His Arg Lys Leu Thr Thr Gln 225 230 235 240 Ile Asn Val Ala Gly Asp Pro Tyr Thr Tyr Asp Asp Phe Ala Tyr Ala 245 250 255 Thr Arg Glu Gly Leu Val Val Asp Ala Val Glu His Thr Asp Pro Glu 260 265 270 Ala Ile Lys Ala Asn Asp Val Glu Gly Pro Phe Ala Glu Met Val Phe 275 280 285 Asp Leu Lys Leu Thr Arg Leu Val Asp Gly Val Asp Asn Gln Val Val 290 295 300 Asp Arg Pro Arg Leu Ala Val 305 310 <210> 12 <211> 1461 <212> DNA <213> Acinetobacter sp. ADP1 <220> <221> gene <222> (1)..(1461) <223> DNA sequence of the quiC (3-dehydroshikimate dehydratase)gene from Acinetobacter sp. ADP1 <400> 12 atgaaattaa cttctttacg cgtatcttta ttggcgctgg gcttggtaac atcaggtttt 60 gctgcggcag aaacttatac tgtagatcgt tatcaggatg atagtgaaaa aggctctttg 120 cgttgggcaa ttgaacaatc taatgcaaat agcgcacaag agaatcagat tctgattcag 180 gctgttggta aggcacctta tgtgatcaag gtggataaac cgttaccacc gattaaatca 240 tctgtaaaaa ttattggtac agaatgggat aaaacgggcg aatttattgc gattgatggt 300 tcaaactata tcaagggcga aggcgaaaaa gcatgtccag gtgcaaatcc aggacaatat 360 ggtaccaatg ttcgtaccat gactttacca ggtttggttc tacaagatgt caatggtgtg 420 accctgaaag gtcttgatgt tcatcgcttc tgtattggtg tactggtaaa tcgttcaagc 480 aataatttga ttcagcataa ccgtatttca aataattacg gtggcgctgg tgtcatgatc 540 acgggtgatg atggtaaagg taacccaacg tctaccacca ccaataacaa caaagtattg 600 gataatgtgt ttattgacaa tggcgatggt cttgaactga cgcgtggagc agcattcaac 660 ctgattgcta acaatctgtt tacatcgacc aaagccaatc cagagccgtc tcaaggcatt 720 gaaattcttt gggggaatga caatgcagtg gtgggtaaca aatttgaaaa ctattcagat 780 ggtctacaaa tcaactgggg taaacgtaat tacatcgctt ataacgaatt gaccaataac 840 tctttgggtt tcaatcttac aggtgatgga aacatcttcg atagtaacaa agtgcatggc 900 aatcgtattg gtatcgcaat tcgttctgaa aaagatgcaa atgcacgtat cacacttacc 960 aaaaatcaga tttgggataa tggtaaagat atcaaacgct gtgaggctgg tggttcatgt 1020 gttccaaacc aacgtttagg tgcaattgta tttggtgttc ctgcgcttga gcatgaaggt 1080 tttgtaggct ctcgtggtgg cggtgtagtc attgaacctg caaaattaca aaaaacatgt 1140 acacagccaa atcaacaaaa ctgtaatgcc attccgaacc aaggtattca ggcacctaaa 1200 ctgactgtca gtaaaaaaca acttacagtt gaagttaaag gaacaccaaa ccagcgttac 1260 aacgtagaat tttttggaaa tcgtaatgca tcttcttccg aagctgagca atatttaggt 1320 tcaattgttg tagtgacaga tcatcaaggt cttgcaaaag caaactgggc accaaaagtc 1380 agcatgccat ctgttactgc gaatgtaact gatcacttgg gcgccacttc agagttaagt 1440 tctgcagtga aaatgagata a 1461 <210> 13 <211> 1461 <212> DNA <213> Acinetobacter sp. arc5 <220> <221> gene <222> (1)..(1461) <223> Codon-optimized DNA sequence of the quiC (3-dehydroshikimate dehydratase)gene from Acinetobacter sp. ADP1 <400> 13 atgaaactga ccagcctgcg tgttagcctg ctggcactgg gtctggttac cagcggtttt 60 gcagcagcag aaacctatac cgttgatcgt tatcaggatg atagcgaaaa aggtagcctg 120 cgttgggcaa ttgaacagag caatgcaaat agcgcacaag aaaaccagat tctgattcag 180 gcagttggta aagcaccgta tgttatcaaa gttgataaac cgctgcctcc gattaaaagc 240 agcgttaaaa tcattggcac cgagtgggat aaaaccggtg aatttattgc aattgatggc 300 agcaactata tcaaaggcga aggtgaaaaa gcatgtccgg gtgcaaatcc gggtcagtat 360 ggcaccaatg ttcgtaccat gaccctgcct ggtctggttc tgcaagatgt taatggtgtt 420 accctgaaag gtctggatgt tcatcgtttt tgtattggtg ttctggttaa tcgcagcagc 480 aataacctga ttcagcataa tcgtatcagc aacaattatg gtggtgccgg tgttatgatt 540 accggtgatg atggtaaagg taatccgacc agcaccacca ccaataataa caaagttctg 600 gataacgtgt tcatcgataa tggtgatggt ctggaactga cccgtggtgc agcatttaat 660 ctgattgcaa ataacctgtt taccagcaca aaagccaatc cggaaccgag ccagggtatt 720 gaaattctgt ggggtaatga taatgccgtg gtgggtaaca aattcgaaaa ctattcagat 780 ggcctgcaaa tcaattgggg taaacgtaac tatatcgcct ataacgaact gaccaataac 840 agcctgggtt tcaatctgac aggtgatggt aacattttcg acagcaataa agtgcatggt 900 aaccgtattg gtattgccat tcgtagtgaa aaagatgcca atgcacgtat taccctgacc 960 aaaaatcaga tttgggataa cggcaaagat atcaaacgtt gtgaagccgg tggtagctgt 1020 gttccgaatc agcgtctggg tgcaattgtt tttggtgttc cggcactgga acatgaaggt 1080 tttgttggta gccgtggcgg tggtgttgtt attgaaccgg caaaactgca aaaaacctgc 1140 acccagccga accagcagaa ttgtaatgca attcctaatc agggtattca ggcaccgaaa 1200 ctgacagtta gcaaaaaaca gctgaccgtt gaagttaaag gcacccctaa tcagcgttat 1260 aatgtggaat tttttggcaa tcgtaatgcc agcagcagcg aagcagaaca gtatctgggt 1320 agcattgttg ttgttaccga tcatcagggt ctggcaaaag caaattgggc tccgaaagtt 1380 agcatgccga gcgttaccgc aaatgtgaca gatcatctgg gtgcgaccag cgaactgagc 1440 agcgcagtta aaatgcgtta a 1461 <210> 14 <211> 486 <212> PRT <213> Acinetobacter sp. arc5 <220> <221> PEPTIDE <222> (1)..(486) <223> Protein sequence of QuiC (3-dehydroshikimate dehydrogenase from Acinetobacter sp. ADP1 <400> 14 Met Lys Leu Thr Ser Leu Arg Val Ser Leu Leu Ala Leu Gly Leu Val 1 5 10 15 Thr Ser Gly Phe Ala Ala Ala Glu Thr Tyr Thr Val Asp Arg Tyr Gln 20 25 30 Asp Asp Ser Glu Lys Gly Ser Leu Arg Trp Ala Ile Glu Gln Ser Asn 35 40 45 Ala Asn Ser Ala Gln Glu Asn Gln Ile Leu Ile Gln Ala Val Gly Lys 50 55 60 Ala Pro Tyr Val Ile Lys Val Asp Lys Pro Leu Pro Pro Ile Lys Ser 65 70 75 80 Ser Val Lys Ile Ile Gly Thr Glu Trp Asp Lys Thr Gly Glu Phe Ile 85 90 95 Ala Ile Asp Gly Ser Asn Tyr Ile Lys Gly Glu Gly Glu Lys Ala Cys 100 105 110 Pro Gly Ala Asn Pro Gly Gln Tyr Gly Thr Asn Val Arg Thr Met Thr 115 120 125 Leu Pro Gly Leu Val Leu Gln Asp Val Asn Gly Val Thr Leu Lys Gly 130 135 140 Leu Asp Val His Arg Phe Cys Ile Gly Val Leu Val Asn Arg Ser Ser 145 150 155 160 Asn Asn Leu Ile Gln His Asn Arg Ile Ser Asn Asn Tyr Gly Gly Ala 165 170 175 Gly Val Met Ile Thr Gly Asp Asp Gly Lys Gly Asn Pro Thr Ser Thr 180 185 190 Thr Thr Asn Asn Asn Lys Val Leu Asp Asn Val Phe Ile Asp Asn Gly 195 200 205 Asp Gly Leu Glu Leu Thr Arg Gly Ala Ala Phe Asn Leu Ile Ala Asn 210 215 220 Asn Leu Phe Thr Ser Thr Lys Ala Asn Pro Glu Pro Ser Gln Gly Ile 225 230 235 240 Glu Ile Leu Trp Gly Asn Asp Asn Ala Val Val Gly Asn Lys Phe Glu 245 250 255 Asn Tyr Ser Asp Gly Leu Gln Ile Asn Trp Gly Lys Arg Asn Tyr Ile 260 265 270 Ala Tyr Asn Glu Leu Thr Asn Asn Ser Leu Gly Phe Asn Leu Thr Gly 275 280 285 Asp Gly Asn Ile Phe Asp Ser Asn Lys Val His Gly Asn Arg Ile Gly 290 295 300 Ile Ala Ile Arg Ser Glu Lys Asp Ala Asn Ala Arg Ile Thr Leu Thr 305 310 315 320 Lys Asn Gln Ile Trp Asp Asn Gly Lys Asp Ile Lys Arg Cys Glu Ala 325 330 335 Gly Gly Ser Cys Val Pro Asn Gln Arg Leu Gly Ala Ile Val Phe Gly 340 345 350 Val Pro Ala Leu Glu His Glu Gly Phe Val Gly Ser Arg Gly Gly Gly 355 360 365 Val Val Ile Glu Pro Ala Lys Leu Gln Lys Thr Cys Thr Gln Pro Asn 370 375 380 Gln Gln Asn Cys Asn Ala Ile Pro Asn Gln Gly Ile Gln Ala Pro Lys 385 390 395 400 Leu Thr Val Ser Lys Lys Gln Leu Thr Val Glu Val Lys Gly Thr Pro 405 410 415 Asn Gln Arg Tyr Asn Val Glu Phe Phe Gly Asn Arg Asn Ala Ser Ser 420 425 430 Ser Glu Ala Glu Gln Tyr Leu Gly Ser Ile Val Val Val Thr Asp His 435 440 445 Gln Gly Leu Ala Lys Ala Asn Trp Ala Pro Lys Val Ser Met Pro Ser 450 455 460 Val Thr Ala Asn Val Thr Asp His Leu Gly Ala Thr Ser Glu Leu Ser 465 470 475 480 Ser Ala Val Lys Met Arg 485 <210> 15 <211> 9462 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(9462) <223> DNA sequence of the plasmid pAC21 <400> 15 gttgacagta agacgggtaa gcctgttgat gataccgctg ccttactggg tgcattagcc 60 agtctgaatg acctgtcacg ggataatccg aagtggtcag actggaaaat cagagggcag 120 gaactgctga acagcaaaaa gtcagatagc accacatagc agacccgcca taaaacgccc 180 tgagaagccc gtgacgggct tttcttgtat tatgggtagt ttccttgcat gaatccataa 240 aaggcgcctg tagtgccatt tacccccatt cactgccaga gccgtgagcg cagcgaactg 300 aatgtcacga aaaagacagc gactcaggtg cctgatggtc ggagacaaaa ggaatattca 360 gcgatttgcc cgagcttgcg agggtgctac ttaagccttt agggttttaa ggtctgtttt 420 gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact gactaaagta 480 gtgagttata cacagggctg ggatctattc tttttatctt tttttattct ttctttattc 540 tataaattat aaccacttga atataaacaa aaaaaacaca caaaggtcta gcggaattta 600 cagagggtct agcagaattt acaagttttc cagcaaaggt ctagcagaat ttacagatac 660 ccacaactca aaggaaaagg actagtaatt atcattgact agcccatctc aattggtata 720 gtgattaaaa tcacctagac caattgagat gtatgtctga attagttgtt ttcaaagcaa 780 atgaactagc gattagtcgc tatgacttaa cggagcatga aaccaagcta attttatgct 840 gtgtggcact actcaacccc acgattgaaa accctacaag gaaagaacgg acggtatcgt 900 tcacttataa ccaatacgct cagatgatga acatcagtag ggaaaatgct tatggtgtat 960 tagctaaagc aaccagagag ctgatgacga gaactgtgga aatcaggaat cctttggtta 1020 aaggctttga gattttccag tggacaaact atgccaagtt ctcaagcgaa aaattagaat 1080 tagtttttag tgaagagata ttgccttatc ttttccagtt aaaaaaattc ataaaatata 1140 atctggaaca tgttaagtct tttgaaaaca aatactctat gaggatttat gagtggttat 1200 taaaagaact aacacaaaag aaaactcaca aggcaaatat agagattagc cttgatgaat 1260 ttaagttcat gttaatgctt gaaaataact accatgagtt taaaaggctt aaccaatggg 1320 ttttgaaacc aataagtaaa gatttaaaca cttacagcaa tatgaaattg gtggttgata 1380 agcgaggccg cccgactgat acgttgattt tccaagttga actagataga caaatggatc 1440 tcgtaaccga acttgagaac aaccagataa aaatgaatgg tgacaaaata ccaacaacca 1500 ttacatcaga ttcctaccta cgtaacggac taagaaaaac actacacgat gctttaactg 1560 caaaaattca gctcaccagt tttgaggcaa aatttttgag tgacatgcaa agtaagcatg 1620 atctcaatgg ttcgttctca tggctcacgc aaaaacaacg aaccacacta gagaacatac 1680 tggctaaata cggaaggatc tgaggttctt atggctcttg tatctatcag tgaagcatca 1740 agactaacaa acaaaagtag aacaactgtt caccgttaga tatcaaaggg aaaactgtcc 1800 atatgcacag atgaaaacgg tgtaaaaaag atagatacat cagagctttt acgagttttt 1860 ggtgcattta aagctgttca ccatgaacag atcgacaatg taacagatga acagcatgta 1920 acacctaata gaacaggtga aaccagtaaa acaaagcaac tagaacatga aattgaacac 1980 ctgagacaac ttgttacagc tcaacagtca cacatagaca gcctgaaaca ggcgatgctg 2040 cttatcgaat caaagctgcc gacaacacgg gagccagtga cgcctcccgt ggggaaaaaa 2100 tcatggcaat tctggaagaa atagcgcttt cagccggcaa acctgaagcc ggatctgcga 2160 ttctgataac aaactagcaa caccagaaca gcccgtttgc gggcagcaaa acccgttatg 2220 cttgtaaacc gttttgtgaa aaaattttta aaataaaaaa ggggacctct agggtcccca 2280 attaattagt aatataatct attaaaggtc attcaaaagg tcatccaccg gatcaattcc 2340 cctgctcgcg caggctgggt gccaagctct cgggtaacat caaggcccga tccttggagc 2400 ccttgccctc ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg acccgcagtt 2460 gcaaaccctc actgatccgc atgcccgttc catacagaag ctgggcgaac aaacgatgct 2520 cgccttccag aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc accggcaagc 2580 gccgcgacgg ccgaggtctt ccgatctcct gaagccaggg cagatccgtg cacagcacct 2640 tgccgtagaa gaacagcaag gccgccaatg cctgacgatg cgtggagacc gaaaccttgc 2700 gctcgttcgc cagccaggac agaaatgcct cgacttcgct gctgcccaag gttgccgggt 2760 gacgcacacc gtggaaacgg atgaaggcac gaacccagtg gacataagcc tgttcggttc 2820 gtaagctgta atgcaagtag cgtatgcgct cacgcaactg gtccagaacc ttgaccgaac 2880 gcagcggtgg taacggcgca gtggcggttt tcatggcttg ttatgactgt ttttttgggg 2940 tacagtctat gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt cgatgtttga 3000 tgttatggag cagcaacgat gttacgcagc agggcagtcg ccctaaaaca aagttaaaca 3060 tcatgaggga agcggtgatc gccgaagtat cgactcaact atcagaggta gttggcgtca 3120 tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt gtacggctcc gcagtggatg 3180 gcggcctgaa gccacacagt gatattgatt tgctggttac ggtgaccgta aggcttgatg 3240 aaacaacgcg gcgagctttg atcaacgacc ttttggaaac ttcggcttcc cctggagaga 3300 gcgagattct ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc attccgtggc 3360 gttatccagc taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac attcttgcag 3420 gtatcttcga gccagccacg atcgacattg atctggctat cttgctgaca aaagcaagag 3480 aacatagcgt tgccttggta ggtccagcgg cggaggaact ctttgatccg gttcctgaac 3540 aggatctatt tgaggcgcta aatgaaacct taacgctatg gaactcgccg cccgactggg 3600 ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc gcagtaaccg 3660 gcaaaatcgc gccgaaggat gtcgctgccg actgggcaat ggagcgcctg ccggcccagt 3720 atcagcccgt catacttgaa gctagacagg cttatcttgg acaagaagaa gatcgcttgg 3780 cctcgcgcgc agatcagttg gaagaatttg tccactacgt gaaaggcgag atcaccaagg 3840 tagtcggcaa ataatgtcta acaattcgtt caagccgacg ccgcttcgcg gcgcggctta 3900 actcaagcgt tagatgcact aagcacataa ttgctcacag ccaaactatc aggtcaagtc 3960 tgcttttatt atttttaagc gtgcataata agccctacac aaattgggag atatatcatg 4020 aaaggctggc tttttcttgt tatcgcaata gttggcgaag taatcgcaac atccgcatta 4080 aaatctagcg agggctttac taagctgatc cggtggatga ccttttgaat gacctttaat 4140 agattatatt actaattaat tggggaccct agaggtcccc ttttttattt taaaaatttt 4200 ttcacaaaac ggtttacaag catacgttgg ccgattcatt aatgcagctg gcacgacagg 4260 tttcccgact ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta gctcactcat 4320 taggcacccc aggctttaca ctttatgctt ccggctcgta tgttgtgtgg aattgtgagc 4380 ggataacaat ttcacacagg aaacagctat gaccatgatt acgccaagct tgcatgcctg 4440 caggtcgact ctagaggatc ccccccgccg ccgacagagt aataggtttt acttaatagc 4500 tcttcctgtc ccttccaggc agtgatccgc attccgttct catggcgagg caacatttcg 4560 ggatggaaga taatgttctt tgctacagga aaatcaacaa tatgcgcacc agatgccact 4620 ggcagccgcc cgctgcgcgt tactaactct ataaatgcag ggatctcatc aatgacaaca 4680 tcctgcggac tgtttcctgc cagtcccatg atgatggcga catccgtggc atggcctttg 4740 cccgtcagtg acaacgaccc gtacagatcg accacaatat ggctcgtcgc ggttaataag 4800 ccgctacttt ccagccgatc aataaaactt tttccggcat tcattggccc cacggtatgc 4860 gaactggagg gaccaatccc aattttgaaa atatcgaatg cactaatcat gtgacggaag 4920 atcacttcgc agaataaata aatcctggtg tccctgttga taccgggaag ccctgggcca 4980 acttttggcg aaaatgagac gttgatcggc acgtaagagg ttccaacttt caccataatg 5040 aaataagatc actaccgggc gtattttttg agttatcgag attttcagga gctaaggaag 5100 ctaaaatgga gaaaaaaatc actggatata ccaccgttga tatatcccaa tggcatcgta 5160 aagaacattt tgaggcattt cagtcagttg ctcaatgtac ctataaccag accgttcagc 5220 tggatattac ggccttttta aagaccgtaa agaaaaataa gcacaagttt tatccggcct 5280 ttattcacat tcttgcccgc ctgatgaatg ctcatccgga attccgtatg gcaatgaaag 5340 acggtgagct ggtgatatgg gatagtgttc acccttgtta caccgttttc catgagcaaa 5400 ctgaaacgtt ttcatcgctc tggagtgaat accacgacga tttccggcag tttctacaca 5460 tatattcgca agatgtggcg tgttacggtg aaaacctggc ctatttccct aaagggttta 5520 ttgagaatat gtttttcgtc tcagccaatc cctgggtgag tttcaccagt tttgatttaa 5580 acgtggccaa tatggacaac ttcttcgccc ccgttttcac catgggcaaa tattatacgc 5640 aaggcgacaa ggtgctgatg ccgctggcga ttcaggttca tcatgccgtt tgtgatggct 5700 tccatgtcgg cagaatgctt aatgaattac aacagtactg cgatgagtgg cagggcgggg 5760 cgtaattttt ttaaggcagt tattggtgcc cttaaacgcc tggtgctacg cctgaataag 5820 tgataataag cggatgaatg gcagaaattc gaaagcaaat tcgacccggt cgtcggttca 5880 gggcagggtc gttaaatagc cgcttatgtc tattgctggt ttantcggta cccggggatc 5940 gcggccgcgg accggatccc atcacatata cctgccgttc actattattt agtgaaatga 6000 gatattatga tattttctga attgtgatta aaaaggcaac tttatgccca tgcaacagaa 6060 actataaaaa atacagagaa tgaaaagaaa cagatagatt ttttagttct ttaggcccgt 6120 agtctgcaaa tccttttatg attttctatc aaacaaaaga ggaaaataga ccagttgcaa 6180 tccaaacgag agtctaatag aatgaggtcg aaaagtaaat cgcgcgggtt tgttactgat 6240 aaagcaggca agacctaaaa tgtgtaaagg gcaaagtgta tactttggcg tcacccctta 6300 catattttag gtcttttttt attgtgcgta actaacttgc catcttcaaa caggagggct 6360 ggaagaagca gaccgctaac acagtacata aaaaaggaga catgaacgat gaacatcaaa 6420 aagtttgcaa aacaagcaac agtattaacc tttactaccg cactgctggc aggaggcgca 6480 actcaagcgt ttgcgaaaga aacgaaccaa aagccatata aggaaacata cggcatttcc 6540 catattacac gccatgatat gctgcaaatc cctgaacagc aaaaaaatga aaaatatcaa 6600 gttcctgaat tcgattcgtc cacaattaaa aatatctctt ctgcaaaagg cctggacgtt 6660 tgggacagct ggccattaca aaacgctgac ggcactgtcg caaactatca cggctaccac 6720 atcgtctttg cattagccgg agatcctaaa aatgcggatg acacatcgat ttacatgttc 6780 tatcaaaaag tcggcgaaac ttctattgac agctggaaaa acgctggccg cgtctttaaa 6840 gacagcgaca aattcgatgc aaatgattct atcctaaaag accaaacaca agaatggtca 6900 ggttcagcca catttacatc tgacggaaaa atccgtttat tctacactga tttctccggt 6960 aaacattacg gcaaacaaac actgacaact gcacaagtta acgtatcagc atcagacagc 7020 tctttgaaca tcaacggtgt agaggattat aaatcaatct ttgacggtga cggaaaaacg 7080 tatcaaaatg tacagcagtt catcgatgaa ggcaactaca gctcaggcga caaccatacg 7140 ctgagagatc ctcactacgt agaagataaa ggccacaaat acttagtatt tgaagcaaac 7200 actggaactg aagatggcta ccaaggcgaa gaatctttat ttaacaaagc atactatggc 7260 aaaagcacat cattcttccg tcaagaaagt caaaaacttc tgcaaagcga taaaaaacgc 7320 acggctgagt tagcaaacgg cgctctcggt atgattgagc taaacgatga ttacacactg 7380 aaaaaagtga tgaaaccgct gattgcatct aacacagtaa cagatgaaat tgaacgcgcg 7440 aacgtcttta aaatgaacgg caaatggtac ctgttcactg actcccgcgg atcaaaaatg 7500 acgattgacg gcattacgtc taacgatatt tacatgcttg gttatgtttc taattcttta 7560 actggcccat acaagccgct gaacaaaact ggccttgtgt taaaaatgga tcttgatcct 7620 aacgatgtaa cctttactta ctcacacttc gctgtacctc aagcgaaagg aaacaatgtc 7680 gtgattacaa gctatatgac aaacagagga ttctacgcag acaaacaatc aacgtttgcg 7740 ccgagcttcc tgctgaacat caaaggcaag aaaacatctg ttgtcaaaga cagcatcctt 7800 gaacaaggac aattaacagt taacaaataa aaacgcaaaa gaaaatgcca atatcctatt 7860 ggcattttct tttatttctt ccatttaaat ggatgcatgc gctagcggag tgtatactgg 7920 cttactatgt tggcactgat gagggtgtca gtgaagtgct tcagcctcgt gagcgggacg 7980 gtcgtaaggt cgttccgctc cacttcactg aacggcaatc cgagggtgtg gatccaatta 8040 aggccacgct gtcatttaaa ttccgttttt ccagttcaaa tgcaattgcc ttcaatgcac 8100 cttcgtagct gtggtgagcc agcggtgctg gctctccccc atttacggat aagaatgcat 8160 tttccgagtt aataccgtcg gcaatacctg acattaatac ttcacagtcg ctggcatcga 8220 gtacggaaaa cttaatcgaa gacgaaccac agttaataac caaaacaacc ggaaattcat 8280 tcatctcttt tctcatcctg agttacggat taaaacagtt tgtatacgat gttcaggatg 8340 gtcagcagac caatcacggt aacaaacacg ttatccagac gaccacggta tttcgccaga 8400 gacggcgctt tacggatggc atacatcggc aacaggcaca gcagggatgc gataatcggt 8460 gcgcccatgg cttcaatcag gtcgaggatg ttcgggttgg cgtaggcaac aacccaggtg 8520 gagcccatga tgaagatcat gctgagagta ttcagtttac ccagcgacac tttggttttg 8580 tcacctttat aaccgaactt cagaatcaga ccattcaagc cttccagcgt ccccagatag 8640 tgaccgaaga aagatttgaa gatagccacg agtgcgatga tggaagccgc atattccagt 8700 gtaatcgcga acgttgtttt ggtaccggtc atggacgcaa agtggttagc cagataagaa 8760 agcactggaa tattctgcgc tttggcttcc gccatgttgg ccggagacag agtaaacagg 8820 cagctaaagg caaagaacat caccactgca accatcagca tgctggcacg agaaatgatt 8880 tgggaacatt tacgttcggt gaagtcgcga ccgaagtctt tctcatactc ttcacgttta 8940 gaaaccacga aggaagagac gattggcgag aagttaaagg agaaaaccat gatggaaatc 9000 cccagccaga cagtgatcag gataccgtca tgaccggtta acgacagcga accgaggtca 9060 acctggtcga taactgcaga gttccagtaa gggatcagcg acaaagaaat cagcaccagg 9120 ctggcgataa acggccatac caggtagctc agggtaccga gctcgaattc actggccgtc 9180 gttttacaac gtcgtgactg ggaaaaccct ggcgttaccc aacttaatcg ccttgcagca 9240 catccccctt tcgccagctg gcgtaatagc gaagaggccc gcaccgatcg cccttcccaa 9300 cagttgcgca gcctgaatgg cgaatggcgc ctgatgcggt attttctcct tacgcatctg 9360 tgcggtattt cacaccgcat atggtgcact ctcagtacaa tctgctctga tgccgcatag 9420 ttaagccagc cccgacaccc gccaacaccc gctgacgaat tc 9462 <210> 16 <211> 9430 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(9430) <223> DNA sequence of the plasmid pAC19 <400> 16 gttgacagta agacgggtaa gcctgttgat gataccgctg ccttactggg tgcattagcc 60 agtctgaatg acctgtcacg ggataatccg aagtggtcag actggaaaat cagagggcag 120 gaactgctga acagcaaaaa gtcagatagc accacatagc agacccgcca taaaacgccc 180 tgagaagccc gtgacgggct tttcttgtat tatgggtagt ttccttgcat gaatccataa 240 aaggcgcctg tagtgccatt tacccccatt cactgccaga gccgtgagcg cagcgaactg 300 aatgtcacga aaaagacagc gactcaggtg cctgatggtc ggagacaaaa ggaatattca 360 gcgatttgcc cgagcttgcg agggtgctac ttaagccttt agggttttaa ggtctgtttt 420 gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact gactaaagta 480 gtgagttata cacagggctg ggatctattc tttttatctt tttttattct ttctttattc 540 tataaattat aaccacttga atataaacaa aaaaaacaca caaaggtcta gcggaattta 600 cagagggtct agcagaattt acaagttttc cagcaaaggt ctagcagaat ttacagatac 660 ccacaactca aaggaaaagg actagtaatt atcattgact agcccatctc aattggtata 720 gtgattaaaa tcacctagac caattgagat gtatgtctga attagttgtt ttcaaagcaa 780 atgaactagc gattagtcgc tatgacttaa cggagcatga aaccaagcta attttatgct 840 gtgtggcact actcaacccc acgattgaaa accctacaag gaaagaacgg acggtatcgt 900 tcacttataa ccaatacgct cagatgatga acatcagtag ggaaaatgct tatggtgtat 960 tagctaaagc aaccagagag ctgatgacga gaactgtgga aatcaggaat cctttggtta 1020 aaggctttga gattttccag tggacaaact atgccaagtt ctcaagcgaa aaattagaat 1080 tagtttttag tgaagagata ttgccttatc ttttccagtt aaaaaaattc ataaaatata 1140 atctggaaca tgttaagtct tttgaaaaca aatactctat gaggatttat gagtggttat 1200 taaaagaact aacacaaaag aaaactcaca aggcaaatat agagattagc cttgatgaat 1260 ttaagttcat gttaatgctt gaaaataact accatgagtt taaaaggctt aaccaatggg 1320 ttttgaaacc aataagtaaa gatttaaaca cttacagcaa tatgaaattg gtggttgata 1380 agcgaggccg cccgactgat acgttgattt tccaagttga actagataga caaatggatc 1440 tcgtaaccga acttgagaac aaccagataa aaatgaatgg tgacaaaata ccaacaacca 1500 ttacatcaga ttcctaccta cgtaacggac taagaaaaac actacacgat gctttaactg 1560 caaaaattca gctcaccagt tttgaggcaa aatttttgag tgacatgcaa agtaagcatg 1620 atctcaatgg ttcgttctca tggctcacgc aaaaacaacg aaccacacta gagaacatac 1680 tggctaaata cggaaggatc tgaggttctt atggctcttg tatctatcag tgaagcatca 1740 agactaacaa acaaaagtag aacaactgtt caccgttaga tatcaaaggg aaaactgtcc 1800 atatgcacag atgaaaacgg tgtaaaaaag atagatacat cagagctttt acgagttttt 1860 ggtgcattta aagctgttca ccatgaacag atcgacaatg taacagatga acagcatgta 1920 acacctaata gaacaggtga aaccagtaaa acaaagcaac tagaacatga aattgaacac 1980 ctgagacaac ttgttacagc tcaacagtca cacatagaca gcctgaaaca ggcgatgctg 2040 cttatcgaat caaagctgcc gacaacacgg gagccagtga cgcctcccgt ggggaaaaaa 2100 tcatggcaat tctggaagaa atagcgcttt cagccggcaa acctgaagcc ggatctgcga 2160 ttctgataac aaactagcaa caccagaaca gcccgtttgc gggcagcaaa acccgttatg 2220 cttgtaaacc gttttgtgaa aaaattttta aaataaaaaa ggggacctct agggtcccca 2280 attaattagt aatataatct attaaaggtc attcaaaagg tcatccaccg gatcaattcc 2340 cctgctcgcg caggctgggt gccaagctct cgggtaacat caaggcccga tccttggagc 2400 ccttgccctc ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg acccgcagtt 2460 gcaaaccctc actgatccgc atgcccgttc catacagaag ctgggcgaac aaacgatgct 2520 cgccttccag aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc accggcaagc 2580 gccgcgacgg ccgaggtctt ccgatctcct gaagccaggg cagatccgtg cacagcacct 2640 tgccgtagaa gaacagcaag gccgccaatg cctgacgatg cgtggagacc gaaaccttgc 2700 gctcgttcgc cagccaggac agaaatgcct cgacttcgct gctgcccaag gttgccgggt 2760 gacgcacacc gtggaaacgg atgaaggcac gaacccagtg gacataagcc tgttcggttc 2820 gtaagctgta atgcaagtag cgtatgcgct cacgcaactg gtccagaacc ttgaccgaac 2880 gcagcggtgg taacggcgca gtggcggttt tcatggcttg ttatgactgt ttttttgggg 2940 tacagtctat gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt cgatgtttga 3000 tgttatggag cagcaacgat gttacgcagc agggcagtcg ccctaaaaca aagttaaaca 3060 tcatgaggga agcggtgatc gccgaagtat cgactcaact atcagaggta gttggcgtca 3120 tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt gtacggctcc gcagtggatg 3180 gcggcctgaa gccacacagt gatattgatt tgctggttac ggtgaccgta aggcttgatg 3240 aaacaacgcg gcgagctttg atcaacgacc ttttggaaac ttcggcttcc cctggagaga 3300 gcgagattct ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc attccgtggc 3360 gttatccagc taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac attcttgcag 3420 gtatcttcga gccagccacg atcgacattg atctggctat cttgctgaca aaagcaagag 3480 aacatagcgt tgccttggta ggtccagcgg cggaggaact ctttgatccg gttcctgaac 3540 aggatctatt tgaggcgcta aatgaaacct taacgctatg gaactcgccg cccgactggg 3600 ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc gcagtaaccg 3660 gcaaaatcgc gccgaaggat gtcgctgccg actgggcaat ggagcgcctg ccggcccagt 3720 atcagcccgt catacttgaa gctagacagg cttatcttgg acaagaagaa gatcgcttgg 3780 cctcgcgcgc agatcagttg gaagaatttg tccactacgt gaaaggcgag atcaccaagg 3840 tagtcggcaa ataatgtcta acaattcgtt caagccgacg ccgcttcgcg gcgcggctta 3900 actcaagcgt tagatgcact aagcacataa ttgctcacag ccaaactatc aggtcaagtc 3960 tgcttttatt atttttaagc gtgcataata agccctacac aaattgggag atatatcatg 4020 aaaggctggc tttttcttgt tatcgcaata gttggcgaag taatcgcaac atccgcatta 4080 aaatctagcg agggctttac taagctgatc cggtggatga ccttttgaat gacctttaat 4140 agattatatt actaattaat tggggaccct agaggtcccc ttttttattt taaaaatttt 4200 ttcacaaaac ggtttacaag catacgttgg ccgattcatt aatgcagctg gcacgacagg 4260 tttcccgact ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta gctcactcat 4320 taggcacccc aggctttaca ctttatgctt ccggctcgta tgttgtgtgg aattgtgagc 4380 ggataacaat ttcacacagg aaacagctat gaccatgatt acgccaagct tgcatgcctg 4440 caggtcgact ctagaggatc ccccccgccg ccgacagagt aataggtttt acttaatagc 4500 tcttcctgtc ccttccaggc agtgatccgc attccgttct catggcgagg caacatttcg 4560 ggatggaaga taatgttctt tgctacagga aaatcaacaa tatgcgcacc agatgccact 4620 ggcagccgcc cgctgcgcgt tactaactct ataaatgcag ggatctcatc aatgacaaca 4680 tcctgcggac tgtttcctgc cagtcccatg atgatggcga catccgtggc atggcctttg 4740 cccgtcagtg acaacgaccc gtacagatcg accacaatat ggctcgtcgc ggttaataag 4800 ccgctacttt ccagccgatc aataaaactt tttccggcat tcattggccc cacggtatgc 4860 gaactggagg gaccaatccc aattttgaaa atatcgaatg cactaatcat atccacaccc 4920 tcggattgcc gttcagtgaa gtggagcgga acgaccttac gaccgtcccg ctcacgaggc 4980 tttacgcact acgtactgcg atggcttcaa tttccagcgg gagggcggat ccactaatac 5040 aaaatatatc aaaagttaat aataatatta ttcttactta agactttttt gtcttcattt 5100 tttagtaaaa aatataaaaa aggccacctc ccgattttat cggaaggcag cctcttaaat 5160 tcagttcata atattaaaaa atattattca acttcagaat atttgttggc ataggcagct 5220 gccgcaccca acagtccagg ctgcggataa gtaatcaact taaccggaat cttggacatg 5280 acgcgttcaa agcgtccttt tgaaacaaag cgctgacgga aaccagattc tggcaaatgg 5340 gaagcgatac gaagaccgac accaccgcca ataacaacac tggttgcacc ctgtgccaaa 5400 gcaagatcac cagcgatagc gccaaggctc aagcagaagc gatccaaagc ggcttcagca 5460 aggttgtctt taccttccaa agccatctgc cataatttaa tatcatccag caagctgaac 5520 ggaacgcctt caatggcagc cagtgcttcg tagatattac caagacccgg gccagaaata 5580 atgcgttcga tagaaacgcg gcggaaacgt tcacgtaaac gtgccagaat tttgtcttca 5640 agtctgtcaa gcggagcaaa gtcgatatga ccgccttcag tttcgatgac gaaataacgg 5700 ccttcagtcc gcaacagatg ggcaacaccc aagcccgttc ccggaccaag aatagtgata 5760 acaccatcgc taggaagcgc ttcatcagga ccacaaatat gatccagata agaagaatcc 5820 atatgcgcaa ccgcgtgggc aaccgcgccg aagtcattga tcagaacatg cgtatcgatg 5880 tccagctttt cattcagagt agctggtctt aatacccaag ggttattggt aagttttaaa 5940 acttcaccat gaaccgggcc agcccatgca atagctgcgg cacgtggcag aggacgaccc 6000 agtttttcac cgaaacgttc ccaagctaac tgcaagctag catgttctgc cgttttaaaa 6060 gttgtttctt ctccaagaga aagaacccga ccattgctta cttccgcaat agagaaacgc 6120 gcatgcgttc caccgatgtc aatcgcaaca atttccataa taattccttt ctgaaatcag 6180 aaggctaccc aacaggtaaa ataagtccgc ccgctttata ccatcgttgt aaacaaaaag 6240 tataattggt taagacttat ctaaaaaaga caaaaggatt cagccaaagc aagtttaact 6300 acttctggga gcgccacatc tcctcgattt catccaggct ccgacctttg gtttccggca 6360 cgaagcgagc aacaatcaag ccacctaaga tacttaatgc tgcgaaaacg agataggaga 6420 aaccgtggtt gaaagtctga ttcaatgctg gagaaccatc ggcaacctta aacaggaagt 6480 taaccaagat attagctaac cattgtccgg taacagcgat aggcatagct gcgcccttga 6540 tggaactcgg gaacatttct gacagaacaa cccagcagac agggccccat gacataccaa 6600 agactgcaat ataaagaagc acagaagcca aaggcaaaac accaccgact ttgaaccaga 6660 aacagcagcc taaaacagcc atcattgcag ccataccgag agcaccccaa ataagcagag 6720 gtttacggcc gaagcggtca acaacacggg aagcaatcat ggtgaagatg aagttcacaa 6780 caccgataga gatggtctgc aataatgccg tatcagctcc aaaacctaaa ttctggaaca 6840 tctgcggtgc ataatacagc acggcgttaa taccgactaa ctgctggaag gcagcaacgg 6900 atacaccggc aaaaacaacg gtgataccaa aagcaaacaa acctgcgctg cttttgtcca 6960 tggctttatc aaagccagct ttaatctttt gaatcgtcag attaggatcg gcttgcggtt 7020 ccagacgagc aaggattttg ctagcctcgg aatgacgtcc cttcatcacc aaccaatgcg 7080 gcgtatccgg tgcggttaac agcagcaata agaaggcaat accgatcagg ccttctgaag 7140 ccggagacca gcaccaacca ctggcattaa cccaatcgat agaaccgaaa tgagccagta 7200 accaggtaaa gatataaccg gttaaagcac ccgtcacaat ggccatctgc tgaccagaaa 7260 ccatctgacc acgtttgtct ggcggagcaa tttcagcaat ataggttggg gtcaaggttg 7320 aaacgacacc gatacctaaa ccggcaagaa accggaaaaa gcaaaaaatt tgtaaagccg 7380 aaccaccggt tccaaataat ttttcggtta acgcagcacc aaaaccggcg gcgacgaaac 7440 aaatggaact catcaacaat ccgccgcgac gaccgaagcg aataccaatc cagccagaca 7500 gcaaagaacc ggtaacacaa ccgaccaaaa cagcaacaac gaccatccca gaaagggaag 7560 ccgcagccgt agcagacagg tgacgagggg caataaaatg gatatcaacc ggtgtaccga 7620 ttgcagcgat aaccgctgaa tcgtaaccga aaagcaagcc gcctatagca gcgattaggg 7680 ctagtcgcgt gactagaccc tgactacttt cagaactcat ggcgattcct ctccctctag 7740 agcgtcctgc tgttgttaag attattatac cacaccttgt agataaagtc aacaactttt 7800 tgcaaaattt ttcaggaatt ttagcagagg ttgttctgga tgtagaacaa aacatctttc 7860 cgctcttgtg ctgttaggat atctttcttg gaagctaggt aggcctcgag ttatggcagt 7920 tggttaaaag gaaacaaaaa gaccgttttc acacaaaacg gtctttttcg atttcttttt 7980 acagtcacag ccacttttgc accaattaag gccacgctgt catttaaact ccgtttttcc 8040 agttcaaatg caattgcctt caatgcacct tcgtagctgt ggtgagccag cggtgctggc 8100 tctcccccat ttacggataa gaatgcattt tccgagttaa taccgtcggc aatacctgac 8160 attaatactt cacagtcgct ggcatcgagt acggaaaact taatcgaaga cgaaccacag 8220 ttaataacca aaacaaccgg aaattcattc atctcttttc tcatcctgag ttacggatta 8280 aaacagtttg tatacgatgt tcaggatggt cagcagacca atcacggtaa caaacacgtt 8340 atccagacga ccacggtatt tcgccagaga cggcgcttta cggatggcat acatcggcaa 8400 caggcacagc agggatgcga taatcggtgc gcccatggct tcaatcaggt cgaggatgtt 8460 cgggttggcg taggcaacaa cccaggtgga gcccatgatg aagatcatgc tgagagtatt 8520 cagtttaccc agcgacactt tggttttgtc acctttataa ccgaacttca gaatcagacc 8580 attcaagcct tccagcgtcc ccagatagtg accgaagaaa gatttgaaga tagccacgag 8640 tgcgatgatg gaagccgcat attccagtgt aatcgcgaac gttgttttgg taccggtcat 8700 ggacgcaaag tggttagcca gataagaaag cactggaata ttctgcgctt tggcttccgc 8760 catgttggcc ggagacagag taaacaggca gctaaaggca aagaacatca ccactgcaac 8820 catcagcatg ctggcacgag aaatgatttg ggaacattta cgttcggtga agtcgcgacc 8880 gaagtctttc tcatactctt cacgtttaga aaccacgaag gaagagacga ttggcgagaa 8940 gttaaaggag aaaaccatga tggaaatccc cagccagaca gtgatcagga taccgtcatg 9000 accggttaac gacagcgaac cgaggtcaac ctggtcgata actgcagagt tccagtaagg 9060 gatcagcgac aaagaaatca gcaccaggct ggcgataaac ggccatacca ggtagctcag 9120 ggtaccgagc tcgaattcac tggccgtcgt tttacaacgt cgtgactggg aaaaccctgg 9180 cgttacccaa cttaatcgcc ttgcagcaca tccccctttc gccagctggc gtaatagcga 9240 agaggcccgc accgatcgcc cttcccaaca gttgcgcagc ctgaatggcg aatggcgcct 9300 gatgcggtat tttctcctta cgcatctgtg cggtatttca caccgcatat ggtgcactct 9360 cagtacaatc tgctctgatg ccgcatagtt aagccagccc cgacacccgc caacacccgc 9420 tgacgaattc 9430 <210> 17 <211> 5768 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(5768) <223> DNA sequence of the plasmid pMH17F <400> 17 gttgacagta agacgggtaa gcctgttgat gataccgctg ccttactggg tgcattagcc 60 agtctgaatg acctgtcacg ggataatccg aagtggtcag actggaaaat cagagggcag 120 gaactgctga acagcaaaaa gtcagatagc accacatagc agacccgcca taaaacgccc 180 tgagaagccc gtgacgggct tttcttgtat tatgggtagt ttccttgcat gaatccataa 240 aaggcgcctg tagtgccatt tacccccatt cactgccaga gccgtgagcg cagcgaactg 300 aatgtcacga aaaagacagc gactcaggtg cctgatggtc ggagacaaaa ggaatattca 360 gcgatttgcc cgagcttgcg agggtgctac ttaagccttt agggttttaa ggtctgtttt 420 gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact gactaaagta 480 gtgagttata cacagggctg ggatctattc tttttatctt tttttattct ttctttattc 540 tataaattat aaccacttga atataaacaa aaaaaacaca caaaggtcta gcggaattta 600 cagagggtct agcagaattt acaagttttc cagcaaaggt ctagcagaat ttacagatac 660 ccacaactca aaggaaaagg actagtaatt atcattgact agcccatctc aattggtata 720 gtgattaaaa tcacctagac caattgagat gtatgtctga attagttgtt ttcaaagcaa 780 atgaactagc gattagtcgc tatgacttaa cggagcatga aaccaagcta attttatgct 840 gtgtggcact actcaacccc acgattgaaa accctacaag gaaagaacgg acggtatcgt 900 tcacttataa ccaatacgct cagatgatga acatcagtag ggaaaatgct tatggtgtat 960 tagctaaagc aaccagagag ctgatgacga gaactgtgga aatcaggaat cctttggtta 1020 aaggctttga gattttccag tggacaaact atgccaagtt ctcaagcgaa aaattagaat 1080 tagtttttag tgaagagata ttgccttatc ttttccagtt aaaaaaattc ataaaatata 1140 atctggaaca tgttaagtct tttgaaaaca aatactctat gaggatttat gagtggttat 1200 taaaagaact aacacaaaag aaaactcaca aggcaaatat agagattagc cttgatgaat 1260 ttaagttcat gttaatgctt gaaaataact accatgagtt taaaaggctt aaccaatggg 1320 ttttgaaacc aataagtaaa gatttaaaca cttacagcaa tatgaaattg gtggttgata 1380 agcgaggccg cccgactgat acgttgattt tccaagttga actagataga caaatggatc 1440 tcgtaaccga acttgagaac aaccagataa aaatgaatgg tgacaaaata ccaacaacca 1500 ttacatcaga ttcctaccta cgtaacggac taagaaaaac actacacgat gctttaactg 1560 caaaaattca gctcaccagt tttgaggcaa aatttttgag tgacatgcaa agtaagcatg 1620 atctcaatgg ttcgttctca tggctcacgc aaaaacaacg aaccacacta gagaacatac 1680 tggctaaata cggaaggatc tgaggttctt atggctcttg tatctatcag tgaagcatca 1740 agactaacaa acaaaagtag aacaactgtt caccgttaga tatcaaaggg aaaactgtcc 1800 atatgcacag atgaaaacgg tgtaaaaaag atagatacat cagagctttt acgagttttt 1860 ggtgcattta aagctgttca ccatgaacag atcgacaatg taacagatga acagcatgta 1920 acacctaata gaacaggtga aaccagtaaa acaaagcaac tagaacatga aattgaacac 1980 ctgagacaac ttgttacagc tcaacagtca cacatagaca gcctgaaaca ggcgatgctg 2040 cttatcgaat caaagctgcc gacaacacgg gagccagtga cgcctcccgt ggggaaaaaa 2100 tcatggcaat tctggaagaa atagcgcttt cagccggcaa acctgaagcc ggatctgcga 2160 ttctgataac aaactagcaa caccagaaca gcccgtttgc gggcagcaaa acccgttatg 2220 cttgtaaacc gttttgtgaa aaaattttta aaataaaaaa ggggacctct agggtcccca 2280 attaattagt aatataatct attaaaggtc attcaaaagg tcatccaccg gatcaattcc 2340 cctgctcgcg caggctgggt gccaagctct cgggtaacat caaggcccga tccttggagc 2400 ccttgccctc ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg acccgcagtt 2460 gcaaaccctc actgatccgc atgcccgttc catacagaag ctgggcgaac aaacgatgct 2520 cgccttccag aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc accggcaagc 2580 gccgcgacgg ccgaggtctt ccgatctcct gaagccaggg cagatccgtg cacagcacct 2640 tgccgtagaa gaacagcaag gccgccaatg cctgacgatg cgtggagacc gaaaccttgc 2700 gctcgttcgc cagccaggac agaaatgcct cgacttcgct gctgcccaag gttgccgggt 2760 gacgcacacc gtggaaacgg atgaaggcac gaacccagtg gacataagcc tgttcggttc 2820 gtaagctgta atgcaagtag cgtatgcgct cacgcaactg gtccagaacc ttgaccgaac 2880 gcagcggtgg taacggcgca gtggcggttt tcatggcttg ttatgactgt ttttttgggg 2940 tacagtctat gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt cgatgtttga 3000 tgttatggag cagcaacgat gttacgcagc agggcagtcg ccctaaaaca aagttaaaca 3060 tcatgaggga agcggtgatc gccgaagtat cgactcaact atcagaggta gttggcgtca 3120 tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt gtacggctcc gcagtggatg 3180 gcggcctgaa gccacacagt gatattgatt tgctggttac ggtgaccgta aggcttgatg 3240 aaacaacgcg gcgagctttg atcaacgacc ttttggaaac ttcggcttcc cctggagaga 3300 gcgagattct ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc attccgtggc 3360 gttatccagc taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac attcttgcag 3420 gtatcttcga gccagccacg atcgacattg atctggctat cttgctgaca aaagcaagag 3480 aacatagcgt tgccttggta ggtccagcgg cggaggaact ctttgatccg gttcctgaac 3540 aggatctatt tgaggcgcta aatgaaacct taacgctatg gaactcgccg cccgactggg 3600 ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc gcagtaaccg 3660 gcaaaatcgc gccgaaggat gtcgctgccg actgggcaat ggagcgcctg ccggcccagt 3720 atcagcccgt catacttgaa gctagacagg cttatcttgg acaagaagaa gatcgcttgg 3780 cctcgcgcgc agatcagttg gaagaatttg tccactacgt gaaaggcgag atcaccaagg 3840 tagtcggcaa ataatgtcta acaattcgtt caagccgacg ccgcttcgcg gcgcggctta 3900 actcaagcgt tagatgcact aagcacataa ttgctcacag ccaaactatc aggtcaagtc 3960 tgcttttatt atttttaagc gtgcataata agccctacac aaattgggag atatatcatg 4020 aaaggctggc tttttcttgt tatcgcaata gttggcgaag taatcgcaac atccgcatta 4080 aaatctagcg agggctttac taagctgatc cggtggatga ccttttgaat gacctttaat 4140 agattatatt actaattaat tggggaccct agaggtcccc ttttttattt taaaaatttt 4200 ttcacaaaac ggtttacaag catacgttgg ccgattcatt aatgcagctg gcacgacagg 4260 tttcccgact ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta gctcactcat 4320 taggcacccc aggctttaca ctttatgctt ccggctcgta tgttgtgtgg aattgtgagt 4380 tacctagaga gggtgagaat tgccgaacat gcgcataagt ttcccggaca gatttcaggt 4440 ggtcagcagc aacgcgttgc cattgcgcgt tcgctgtgta tgaagccgaa aattatgttg 4500 tttgatgagc caacgtcggc gctcgatcct gagatggtga aagaggtgct ggatacgatg 4560 attgggctgg cgcagtcggg tatgacaatg ttgtgtgtaa cacatgagat ggggtttgca 4620 cgaaccgtcg ctgaccgggt aatttttatg gatcgtgggg aaatagtgga gcaagctgca 4680 cctgatgaat tttttgcgca tcctaaatca gagcgtacga gggcattttt atcgcaggta 4740 atccattaat tgaatgttag ttcgaaaagc aaaaaggcca tcctttcgga tggcctttcg 4800 cttgatttga tgtctggcag tttatggcgg gcgtcctgcc cgccaccctc cgggccgttg 4860 cttcgcaacg ttcaaatccg ctcccggcgg atttgtccta ctcgggagag tgttcaccga 4920 caaacaacag ataaaacaaa aggcccagtc ttccgactga gccttttgtt ttatttgatg 4980 tctggcagtt ccctactctc gcatggggag accccacact accatcggcg ctacggcggt 5040 ttcacttctg agttcggcat ggggtcaggt gggaccaccg cgctactgcc gccagacaaa 5100 ttcttttcta atctgccgaa ctttaaccta aaaagtggtg ctgataccca gagtcgaact 5160 ggggacctca cccttaccaa gggtgcgctc taccaactga gccatatcag cacgctaaat 5220 ttgatgcctg gcagttccct actctcgcat ggggagaccc cacactacca tcggcgctac 5280 ggcgtttcac ttctgagttc ggcatggggt caggtgggac caccgcgcta cggccgccag 5340 gcaaattctg ttttatcaga ccgcttctgc gttctgattt aatctgtatc aggctgaaaa 5400 tcttctctca tccggataac aatttcacac aggaaacagc tatgaccatg attacgccaa 5460 gctcgagctc gaattcactg gccgtcgttt tacaacgtcg tgactgggaa aaccctggcg 5520 ttacccaact taatcgcctt gcagcacatc cccctttcgc cagctggcgt aatagcgaag 5580 aggcccgcac cgatcgccct tcccaacagt tgcgcagcct gaatggcgaa tggcgcctga 5640 tgcggtattt tctccttacg catctgtgcg gtatttcaca ccgcatatgg tgcactctca 5700 gtacaatctg ctctgatgcc gcatagttaa gccagccccg acacccgcca acacccgctg 5760 acgaattc 5768 <210> 18 <211> 1053 <212> DNA <213> Escherichia coli <220> <221> gene <222> (1)..(1053) <223> DNA sequence of the coding region of the wild type aroG gene <400> 18 atgaattatc agaacgacga tttacgcatc aaagaaatca aagagttact tcctcctgtc 60 gcattgctgg aaaaattccc cgctactgaa aatgccgcga atacggttgc ccatgcccga 120 aaagcgatcc ataagatcct gaaaggtaat gatgatcgcc tgttggttgt gattggccca 180 tgctcaattc atgatcctgt cgcggcaaaa gagtatgcca ctcgcttgct ggcgctgcgt 240 gaagagctga aagatgagct ggaaatcgta atgcgcgtct attttgaaaa gccgcgtacc 300 acggtgggct ggaaagggct gattaacgat ccgcatatgg ataatagctt ccagatcaac 360 gacggtctgc gtatagcccg taaattgctg cttgatatta acgacagcgg tctgccagcg 420 gcaggtgagt ttctcgatat gatcacccca caatatctcg ctgacctgat gagctggggc 480 gcaattggcg cacgtaccac cgaatcgcag gtgcaccgcg aactggcatc agggctttct 540 tgtccggtcg gcttcaaaaa tggcaccgac ggtacgatta aagtggctat cgatgccatt 600 aatgccgccg gtgcgccgca ctgcttcctg tccgtaacga aatgggggca ttcggcgatt 660 gtgaatacca gcggtaacgg cgattgccat atcattctgc gcggcggtaa agagcctaac 720 tacagcgcga agcacgttgc tgaagtgaaa gaagggctga acaaagcagg cctgccagca 780 caggtgatga tcgatttcag ccatgctaac tcgtccaaac aattcaaaaa gcagatggat 840 gtttgtgctg acgtttgcca gcagattgcc ggtggcgaaa aggccattat tggcgtgatg 900 gtggaaagcc atctggtgga aggcaatcag agcctcgaga gcggggagcc gctggcctac 960 ggtaagagca tcaccgatgc ctgcatcggc tgggaagata ccgatgctct gttacgtcaa 1020 ctggcgaatg cagtaaaagc gcgtcgcggg taa 1053 <210> 19 <211> 8820 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(8820) <223> DNA sequence of the plasmid pMH28F <400> 19 gttgacagta agacgggtaa gcctgttgat gataccgctg ccttactggg tgcattagcc 60 agtctgaatg acctgtcacg ggataatccg aagtggtcag actggaaaat cagagggcag 120 gaactgctga acagcaaaaa gtcagatagc accacatagc agacccgcca taaaacgccc 180 tgagaagccc gtgacgggct tttcttgtat tatgggtagt ttccttgcat gaatccataa 240 aaggcgcctg tagtgccatt tacccccatt cactgccaga gccgtgagcg cagcgaactg 300 aatgtcacga aaaagacagc gactcaggtg cctgatggtc ggagacaaaa ggaatattca 360 gcgatttgcc cgagcttgcg agggtgctac ttaagccttt agggttttaa ggtctgtttt 420 gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact gactaaagta 480 gtgagttata cacagggctg ggatctattc tttttatctt tttttattct ttctttattc 540 tataaattat aaccacttga atataaacaa aaaaaacaca caaaggtcta gcggaattta 600 cagagggtct agcagaattt acaagttttc cagcaaaggt ctagcagaat ttacagatac 660 ccacaactca aaggaaaagg actagtaatt atcattgact agcccatctc aattggtata 720 gtgattaaaa tcacctagac caattgagat gtatgtctga attagttgtt ttcaaagcaa 780 atgaactagc gattagtcgc tatgacttaa cggagcatga aaccaagcta attttatgct 840 gtgtggcact actcaacccc acgattgaaa accctacaag gaaagaacgg acggtatcgt 900 tcacttataa ccaatacgct cagatgatga acatcagtag ggaaaatgct tatggtgtat 960 tagctaaagc aaccagagag ctgatgacga gaactgtgga aatcaggaat cctttggtta 1020 aaggctttga gattttccag tggacaaact atgccaagtt ctcaagcgaa aaattagaat 1080 tagtttttag tgaagagata ttgccttatc ttttccagtt aaaaaaattc ataaaatata 1140 atctggaaca tgttaagtct tttgaaaaca aatactctat gaggatttat gagtggttat 1200 taaaagaact aacacaaaag aaaactcaca aggcaaatat agagattagc cttgatgaat 1260 ttaagttcat gttaatgctt gaaaataact accatgagtt taaaaggctt aaccaatggg 1320 ttttgaaacc aataagtaaa gatttaaaca cttacagcaa tatgaaattg gtggttgata 1380 agcgaggccg cccgactgat acgttgattt tccaagttga actagataga caaatggatc 1440 tcgtaaccga acttgagaac aaccagataa aaatgaatgg tgacaaaata ccaacaacca 1500 ttacatcaga ttcctaccta cgtaacggac taagaaaaac actacacgat gctttaactg 1560 caaaaattca gctcaccagt tttgaggcaa aatttttgag tgacatgcaa agtaagcatg 1620 atctcaatgg ttcgttctca tggctcacgc aaaaacaacg aaccacacta gagaacatac 1680 tggctaaata cggaaggatc tgaggttctt atggctcttg tatctatcag tgaagcatca 1740 agactaacaa acaaaagtag aacaactgtt caccgttaga tatcaaaggg aaaactgtcc 1800 atatgcacag atgaaaacgg tgtaaaaaag atagatacat cagagctttt acgagttttt 1860 ggtgcattta aagctgttca ccatgaacag atcgacaatg taacagatga acagcatgta 1920 acacctaata gaacaggtga aaccagtaaa acaaagcaac tagaacatga aattgaacac 1980 ctgagacaac ttgttacagc tcaacagtca cacatagaca gcctgaaaca ggcgatgctg 2040 cttatcgaat caaagctgcc gacaacacgg gagccagtga cgcctcccgt ggggaaaaaa 2100 tcatggcaat tctggaagaa atagcgcttt cagccggcaa acctgaagcc ggatctgcga 2160 ttctgataac aaactagcaa caccagaaca gcccgtttgc gggcagcaaa acccgttatg 2220 cttgtaaacc gttttgtgaa aaaattttta aaataaaaaa ggggacctct agggtcccca 2280 attaattagt aatataatct attaaaggtc attcaaaagg tcatccaccg gatcaattcc 2340 cctgctcgcg caggctgggt gccaagctct cgggtaacat caaggcccga tccttggagc 2400 ccttgccctc ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg acccgcagtt 2460 gcaaaccctc actgatccgc atgcccgttc catacagaag ctgggcgaac aaacgatgct 2520 cgccttccag aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc accggcaagc 2580 gccgcgacgg ccgaggtctt ccgatctcct gaagccaggg cagatccgtg cacagcacct 2640 tgccgtagaa gaacagcaag gccgccaatg cctgacgatg cgtggagacc gaaaccttgc 2700 gctcgttcgc cagccaggac agaaatgcct cgacttcgct gctgcccaag gttgccgggt 2760 gacgcacacc gtggaaacgg atgaaggcac gaacccagtg gacataagcc tgttcggttc 2820 gtaagctgta atgcaagtag cgtatgcgct cacgcaactg gtccagaacc ttgaccgaac 2880 gcagcggtgg taacggcgca gtggcggttt tcatggcttg ttatgactgt ttttttgggg 2940 tacagtctat gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt cgatgtttga 3000 tgttatggag cagcaacgat gttacgcagc agggcagtcg ccctaaaaca aagttaaaca 3060 tcatgaggga agcggtgatc gccgaagtat cgactcaact atcagaggta gttggcgtca 3120 tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt gtacggctcc gcagtggatg 3180 gcggcctgaa gccacacagt gatattgatt tgctggttac ggtgaccgta aggcttgatg 3240 aaacaacgcg gcgagctttg atcaacgacc ttttggaaac ttcggcttcc cctggagaga 3300 gcgagattct ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc attccgtggc 3360 gttatccagc taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac attcttgcag 3420 gtatcttcga gccagccacg atcgacattg atctggctat cttgctgaca aaagcaagag 3480 aacatagcgt tgccttggta ggtccagcgg cggaggaact ctttgatccg gttcctgaac 3540 aggatctatt tgaggcgcta aatgaaacct taacgctatg gaactcgccg cccgactggg 3600 ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc gcagtaaccg 3660 gcaaaatcgc gccgaaggat gtcgctgccg actgggcaat ggagcgcctg ccggcccagt 3720 atcagcccgt catacttgaa gctagacagg cttatcttgg acaagaagaa gatcgcttgg 3780 cctcgcgcgc agatcagttg gaagaatttg tccactacgt gaaaggcgag atcaccaagg 3840 tagtcggcaa ataatgtcta acaattcgtt caagccgacg ccgcttcgcg gcgcggctta 3900 actcaagcgt tagatgcact aagcacataa ttgctcacag ccaaactatc aggtcaagtc 3960 tgcttttatt atttttaagc gtgcataata agccctacac aaattgggag atatatcatg 4020 aaaggctggc tttttcttgt tatcgcaata gttggcgaag taatcgcaac atccgcatta 4080 aaatctagcg agggctttac taagctgatc cggtggatga ccttttgaat gacctttaat 4140 agattatatt actaattaat tggggaccct agaggtcccc ttttttattt taaaaatttt 4200 ttcacaaaac ggtttacaag catacgttgg ccgattcatt aatgcagctg gcacgacagg 4260 tttcccgact ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta gctcactcat 4320 taggcacccc aggctttaca ctttatgctt ccggctcgta tgttgtgtgg aattgtgagt 4380 tacctagaga gggtgagaat tgccgaacat gcgcataagt ttcccggaca gatttcaggt 4440 ggtcagcagc aacgcgttgc cattgcgcgt tcgctgtgta tgaagccgaa aattatgttg 4500 tttgatgagc caacgtcggc gctcgatcct gagatggtga aagaggtgct ggatacgatg 4560 attgggctgg cgcagtcggg tatgacaatg ttgtgtgtaa cacatgagat ggggtttgca 4620 cgaaccgtcg ctgaccgggt aatttttatg gatcgtgggg aaatagtgga gcaagctgca 4680 cctgatgaat tttttgcgca tcctaaatca gagcgtacga gggcattttt atcgcaggta 4740 atccattaat tgaatgttag ttcgaaaagc aaaaaggcca tcctttcgga tggcctttcg 4800 cttgatttga tgtctggcag tttatggcgg gcgtcctgcc cgccaccctc cgggccgttg 4860 cttcgcaacg ttcaaatccg gtgacggaag atcacttcgc agaataaata aatcctggtg 4920 tccctgttga taccgggaag ccctgggcca acttttggcg aaaatgagac gttgatcggc 4980 acgtaagagg ttccaacttt caccataatg aaataagatc actaccgggc gtattttttg 5040 agttatcgag attttcagga gctaaggaag ctaaaatgga gaaaaaaatc actggatata 5100 ccaccgttga tatatcccaa tggcatcgta aagaacattt tgaggcattt cagtcagttg 5160 ctcaatgtac ctataaccag accgttcagc tggatattac ggccttttta aagaccgtaa 5220 agaaaaataa gcacaagttt tatccggcct ttattcacat tcttgcccgc ctgatgaatg 5280 ctcatccgga attccgtatg gcaatgaaag acggtgagct ggtgatatgg gatagtgttc 5340 acccttgtta caccgttttc catgagcaaa ctgaaacgtt ttcatcgctc tggagtgaat 5400 accacgacga tttccggcag tttctacaca tatattcgca agatgtggcg tgttacggtg 5460 aaaacctggc ctatttccct aaagggttta ttgagaatat gtttttcgtc tcagccaatc 5520 cctgggtgag tttcaccagt tttgatttaa acgtggccaa tatggacaac ttcttcgccc 5580 ccgttttcac catgggcaaa tattatacgc aaggcgacaa ggtgctgatg ccgctggcga 5640 ttcaggttca tcatgccgtt tgtgatggct tccatgtcgg cagaatgctt aatgaattac 5700 aacagtactg cgatgagtgg cagggcgggg cgtaattttt ttaaggcagt tattggtgcc 5760 cttaaacgcc tggtgctacg cctgaataag tgataataag cggatgaatg gcagaaattc 5820 gaaagcaaat tcgacccggt cgtcggttca gggcagggtc gttaaatagc cgcttatgtc 5880 tattgctggt ttantcggta cccggggatc gcggccgcgg accggatccc atcacatata 5940 cctgccgttc actattattt agtgaaatga gatattatga tattttctga attgtgatta 6000 aaaaggcaac tttatgccca tgcaacagaa actataaaaa atacagagaa tgaaaagaaa 6060 cagatagatt ttttagttct ttaggcccgt agtctgcaaa tccttttatg attttctatc 6120 aaacaaaaga ggaaaataga ccagttgcaa tccaaacgag agtctaatag aatgaggtcg 6180 aaaagtaaat cgcgcgggtt tgttactgat aaagcaggca agacctaaaa tgtgtaaagg 6240 gcaaagtgta tactttggcg tcacccctta catattttag gtcttttttt attgtgcgta 6300 actaacttgc catcttcaaa caggagggct ggaagaagca gaccgctaac acagtacata 6360 aaaaaggaga catgaacgat gaacatcaaa aagtttgcaa aacaagcaac agtattaacc 6420 tttactaccg cactgctggc aggaggcgca actcaagcgt ttgcgaaaga aacgaaccaa 6480 aagccatata aggaaacata cggcatttcc catattacac gccatgatat gctgcaaatc 6540 cctgaacagc aaaaaaatga aaaatatcaa gttcctgaat tcgattcgtc cacaattaaa 6600 aatatctctt ctgcaaaagg cctggacgtt tgggacagct ggccattaca aaacgctgac 6660 ggcactgtcg caaactatca cggctaccac atcgtctttg cattagccgg agatcctaaa 6720 aatgcggatg acacatcgat ttacatgttc tatcaaaaag tcggcgaaac ttctattgac 6780 agctggaaaa acgctggccg cgtctttaaa gacagcgaca aattcgatgc aaatgattct 6840 atcctaaaag accaaacaca agaatggtca ggttcagcca catttacatc tgacggaaaa 6900 atccgtttat tctacactga tttctccggt aaacattacg gcaaacaaac actgacaact 6960 gcacaagtta acgtatcagc atcagacagc tctttgaaca tcaacggtgt agaggattat 7020 aaatcaatct ttgacggtga cggaaaaacg tatcaaaatg tacagcagtt catcgatgaa 7080 ggcaactaca gctcaggcga caaccatacg ctgagagatc ctcactacgt agaagataaa 7140 ggccacaaat acttagtatt tgaagcaaac actggaactg aagatggcta ccaaggcgaa 7200 gaatctttat ttaacaaagc atactatggc aaaagcacat cattcttccg tcaagaaagt 7260 caaaaacttc tgcaaagcga taaaaaacgc acggctgagt tagcaaacgg cgctctcggt 7320 atgattgagc taaacgatga ttacacactg aaaaaagtga tgaaaccgct gattgcatct 7380 aacacagtaa cagatgaaat tgaacgcgcg aacgtcttta aaatgaacgg caaatggtac 7440 ctgttcactg actcccgcgg atcaaaaatg acgattgacg gcattacgtc taacgatatt 7500 tacatgcttg gttatgtttc taattcttta actggcccat acaagccgct gaacaaaact 7560 ggccttgtgt taaaaatgga tcttgatcct aacgatgtaa cctttactta ctcacacttc 7620 gctgtacctc aagcgaaagg aaacaatgtc gtgattacaa gctatatgac aaacagagga 7680 ttctacgcag acaaacaatc aacgtttgcg ccgagcttcc tgctgaacat caaaggcaag 7740 aaaacatctg ttgtcaaaga cagcatcctt gaacaaggac aattaacagt taacaaataa 7800 aaacgcaaaa gaaaatgcca atatcctatt ggcattttct tttatttctt ccatttaaat 7860 ggatgcatgc gctagcggag tgtatactgg cttactatgt tggcactgat gagggtgtca 7920 gtgaagtgct tcctcccggc ggatttgtcc tactcgggag agtgttcacc gacaaacaac 7980 agataaaaca aaaggcccag tcttccgact gagccttttg ttttatttga tgtctggcag 8040 ttccctactc tcgcatgggg agaccccaca ctaccatcgg cgctacggcg gtttcacttc 8100 tgagttcggc atggggtcag gtgggaccac cgcgctactg ccgccagaca aattcttttc 8160 taatctgccg aactttaacc taaaaagtgg tgctgatacc cagagtcgaa ctggggacct 8220 cacccttacc aagggtgcgc tctaccaact gagccatatc agcacgctaa atttgatgcc 8280 tggcagttcc ctactctcgc atggggagac cccacactac catcggcgct acggcgtttc 8340 acttctgagt tcggcatggg gtcaggtggg accaccgcgc tacggccgcc aggcaaattc 8400 tgttttatca gaccgcttct gcgttctgat ttaatctgta tcaggctgaa aatcttctct 8460 catccggata acaatttcac acaggaaaca gctatgacca tgattacgcc aagctcgagc 8520 tcgaattcac tggccgtcgt tttacaacgt cgtgactggg aaaaccctgg cgttacccaa 8580 cttaatcgcc ttgcagcaca tccccctttc gccagctggc gtaatagcga agaggcccgc 8640 accgatcgcc cttcccaaca gttgcgcagc ctgaatggcg aatggcgcct gatgcggtat 8700 tttctcctta cgcatctgtg cggtatttca caccgcatat ggtgcactct cagtacaatc 8760 tgctctgatg ccgcatagtt aagccagccc cgacacccgc caacacccgc tgacgaattc 8820 8820 <210> 20 <211> 4774 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(4774) <400> 20 gttgacagta agacgggtaa gcctgttgat gataccgctg ccttactggg tgcattagcc 60 agtctgaatg acctgtcacg ggataatccg aagtggtcag actggaaaat cagagggcag 120 gaactgctga acagcaaaaa gtcagatagc accacatagc agacccgcca taaaacgccc 180 tgagaagccc gtgacgggct tttcttgtat tatgggtagt ttccttgcat gaatccataa 240 aaggcgcctg tagtgccatt tacccccatt cactgccaga gccgtgagcg cagcgaactg 300 aatgtcacga aaaagacagc gactcaggtg cctgatggtc ggagacaaaa ggaatattca 360 gcgatttgcc cgagcttgcg agggtgctac ttaagccttt agggttttaa ggtctgtttt 420 gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact gactaaagta 480 gtgagttata cacagggctg ggatctattc tttttatctt tttttattct ttctttattc 540 tataaattat aaccacttga atataaacaa aaaaaacaca caaaggtcta gcggaattta 600 cagagggtct agcagaattt acaagttttc cagcaaaggt ctagcagaat ttacagatac 660 ccacaactca aaggaaaagg actagtaatt atcattgact agcccatctc aattggtata 720 gtgattaaaa tcacctagac caattgagat gtatgtctga attagttgtt ttcaaagcaa 780 atgaactagc gattagtcgc tatgacttaa cggagcatga aaccaagcta attttatgct 840 gtgtggcact actcaacccc acgattgaaa accctacaag gaaagaacgg acggtatcgt 900 tcacttataa ccaatacgct cagatgatga acatcagtag ggaaaatgct tatggtgtat 960 tagctaaagc aaccagagag ctgatgacga gaactgtgga aatcaggaat cctttggtta 1020 aaggctttga gattttccag tggacaaact atgccaagtt ctcaagcgaa aaattagaat 1080 tagtttttag tgaagagata ttgccttatc ttttccagtt aaaaaaattc ataaaatata 1140 atctggaaca tgttaagtct tttgaaaaca aatactctat gaggatttat gagtggttat 1200 taaaagaact aacacaaaag aaaactcaca aggcaaatat agagattagc cttgatgaat 1260 ttaagttcat gttaatgctt gaaaataact accatgagtt taaaaggctt aaccaatggg 1320 ttttgaaacc aataagtaaa gatttaaaca cttacagcaa tatgaaattg gtggttgata 1380 agcgaggccg cccgactgat acgttgattt tccaagttga actagataga caaatggatc 1440 tcgtaaccga acttgagaac aaccagataa aaatgaatgg tgacaaaata ccaacaacca 1500 ttacatcaga ttcctaccta cgtaacggac taagaaaaac actacacgat gctttaactg 1560 caaaaattca gctcaccagt tttgaggcaa aatttttgag tgacatgcaa agtaagcatg 1620 atctcaatgg ttcgttctca tggctcacgc aaaaacaacg aaccacacta gagaacatac 1680 tggctaaata cggaaggatc tgaggttctt atggctcttg tatctatcag tgaagcatca 1740 agactaacaa acaaaagtag aacaactgtt caccgttaga tatcaaaggg aaaactgtcc 1800 atatgcacag atgaaaacgg tgtaaaaaag atagatacat cagagctttt acgagttttt 1860 ggtgcattta aagctgttca ccatgaacag atcgacaatg taacagatga acagcatgta 1920 acacctaata gaacaggtga aaccagtaaa acaaagcaac tagaacatga aattgaacac 1980 ctgagacaac ttgttacagc tcaacagtca cacatagaca gcctgaaaca ggcgatgctg 2040 cttatcgaat caaagctgcc gacaacacgg gagccagtga cgcctcccgt ggggaaaaaa 2100 tcatggcaat tctggaagaa atagcgcttt cagccggcaa acctgaagcc ggatctgcga 2160 ttctgataac aaactagcaa caccagaaca gcccgtttgc gggcagcaaa acccgttatg 2220 cttgtaaacc gttttgtgaa aaaattttta aaataaaaaa ggggacctct agggtcccca 2280 attaattagt aatataatct attaaaggtc attcaaaagg tcatccaccg gatcaattcc 2340 cctgctcgcg caggctgggt gccaagctct cgggtaacat caaggcccga tccttggagc 2400 ccttgccctc ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg acccgcagtt 2460 gcaaaccctc actgatccgc atgcccgttc catacagaag ctgggcgaac aaacgatgct 2520 cgccttccag aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc accggcaagc 2580 gccgcgacgg ccgaggtctt ccgatctcct gaagccaggg cagatccgtg cacagcacct 2640 tgccgtagaa gaacagcaag gccgccaatg cctgacgatg cgtggagacc gaaaccttgc 2700 gctcgttcgc cagccaggac agaaatgcct cgacttcgct gctgcccaag gttgccgggt 2760 gacgcacacc gtggaaacgg atgaaggcac gaacccagtg gacataagcc tgttcggttc 2820 gtaagctgta atgcaagtag cgtatgcgct cacgcaactg gtccagaacc ttgaccgaac 2880 gcagcggtgg taacggcgca gtggcggttt tcatggcttg ttatgactgt ttttttgggg 2940 tacagtctat gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt cgatgtttga 3000 tgttatggag cagcaacgat gttacgcagc agggcagtcg ccctaaaaca aagttaaaca 3060 tcatgaggga agcggtgatc gccgaagtat cgactcaact atcagaggta gttggcgtca 3120 tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt gtacggctcc gcagtggatg 3180 gcggcctgaa gccacacagt gatattgatt tgctggttac ggtgaccgta aggcttgatg 3240 aaacaacgcg gcgagctttg atcaacgacc ttttggaaac ttcggcttcc cctggagaga 3300 gcgagattct ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc attccgtggc 3360 gttatccagc taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac attcttgcag 3420 gtatcttcga gccagccacg atcgacattg atctggctat cttgctgaca aaagcaagag 3480 aacatagcgt tgccttggta ggtccagcgg cggaggaact ctttgatccg gttcctgaac 3540 aggatctatt tgaggcgcta aatgaaacct taacgctatg gaactcgccg cccgactggg 3600 ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc gcagtaaccg 3660 gcaaaatcgc gccgaaggat gtcgctgccg actgggcaat ggagcgcctg ccggcccagt 3720 atcagcccgt catacttgaa gctagacagg cttatcttgg acaagaagaa gatcgcttgg 3780 cctcgcgcgc agatcagttg gaagaatttg tccactacgt gaaaggcgag atcaccaagg 3840 tagtcggcaa ataatgtcta acaattcgtt caagccgacg ccgcttcgcg gcgcggctta 3900 actcaagcgt tagatgcact aagcacataa ttgctcacag ccaaactatc aggtcaagtc 3960 tgcttttatt atttttaagc gtgcataata agccctacac aaattgggag atatatcatg 4020 aaaggctggc tttttcttgt tatcgcaata gttggcgaag taatcgcaac atccgcatta 4080 aaatctagcg agggctttac taagctgatc cggtggatga ccttttgaat gacctttaat 4140 agattatatt actaattaat tggggaccct agaggtcccc ttttttattt taaaaatttt 4200 ttcacaaaac ggtttacaag catacgttgg ccgattcatt aatgcagctg gcacgacagg 4260 tttcccgact ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta gctcactcat 4320 taggcacccc aggctttaca ctttatgctt ccggctcgta tgttgtgtgg aattgtgagc 4380 ggataacaat ttcacacagg aaacagctat gaccatgatt acgccaagct tgcatgcctg 4440 caggtcgact ctagaggatc cccgggtacc gagctcgaat tcactggccg tcgttttaca 4500 acgtcgtgac tgggaaaacc ctggcgttac ccaacttaat cgccttgcag cacatccccc 4560 tttcgccagc tggcgtaata gcgaagaggc ccgcaccgat cgcccttccc aacagttgcg 4620 cagcctgaat ggcgaatggc gcctgatgcg gtattttctc cttacgcatc tgtgcggtat 4680 ttcacaccgc atatggtgca ctctcagtac aatctgctct gatgccgcat agttaagcca 4740 gccccgacac ccgccaacac ccgctgacga attc 4774 <210> 21 <211> 6432 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(6432) <223> DNA sequence of the plasmid pMG27 <400> 21 gttgacagta agacgggtaa gcctgttgat gataccgctg ccttactggg tgcattagcc 60 agtctgaatg acctgtcacg ggataatccg aagtggtcag actggaaaat cagagggcag 120 gaactgctga acagcaaaaa gtcagatagc accacatagc agacccgcca taaaacgccc 180 tgagaagccc gtgacgggct tttcttgtat tatgggtagt ttccttgcat gaatccataa 240 aaggcgcctg tagtgccatt tacccccatt cactgccaga gccgtgagcg cagcgaactg 300 aatgtcacga aaaagacagc gactcaggtg cctgatggtc ggagacaaaa ggaatattca 360 gcgatttgcc cgagcttgcg agggtgctac ttaagccttt agggttttaa ggtctgtttt 420 gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact gactaaagta 480 gtgagttata cacagggctg ggatctattc tttttatctt tttttattct ttctttattc 540 tataaattat aaccacttga atataaacaa aaaaaacaca caaaggtcta gcggaattta 600 cagagggtct agcagaattt acaagttttc cagcaaaggt ctagcagaat ttacagatac 660 ccacaactca aaggaaaagg actagtaatt atcattgact agcccatctc aattggtata 720 gtgattaaaa tcacctagac caattgagat gtatgtctga attagttgtt ttcaaagcaa 780 atgaactagc gattagtcgc tatgacttaa cggagcatga aaccaagcta attttatgct 840 gtgtggcact actcaacccc acgattgaaa accctacaag gaaagaacgg acggtatcgt 900 tcacttataa ccaatacgct cagatgatga acatcagtag ggaaaatgct tatggtgtat 960 tagctaaagc aaccagagag ctgatgacga gaactgtgga aatcaggaat cctttggtta 1020 aaggctttga gattttccag tggacaaact atgccaagtt ctcaagcgaa aaattagaat 1080 tagtttttag tgaagagata ttgccttatc ttttccagtt aaaaaaattc ataaaatata 1140 atctggaaca tgttaagtct tttgaaaaca aatactctat gaggatttat gagtggttat 1200 taaaagaact aacacaaaag aaaactcaca aggcaaatat agagattagc cttgatgaat 1260 ttaagttcat gttaatgctt gaaaataact accatgagtt taaaaggctt aaccaatggg 1320 ttttgaaacc aataagtaaa gatttaaaca cttacagcaa tatgaaattg gtggttgata 1380 agcgaggccg cccgactgat acgttgattt tccaagttga actagataga caaatggatc 1440 tcgtaaccga acttgagaac aaccagataa aaatgaatgg tgacaaaata ccaacaacca 1500 ttacatcaga ttcctaccta cgtaacggac taagaaaaac actacacgat gctttaactg 1560 caaaaattca gctcaccagt tttgaggcaa aatttttgag tgacatgcaa agtaagcatg 1620 atctcaatgg ttcgttctca tggctcacgc aaaaacaacg aaccacacta gagaacatac 1680 tggctaaata cggaaggatc tgaggttctt atggctcttg tatctatcag tgaagcatca 1740 agactaacaa acaaaagtag aacaactgtt caccgttaga tatcaaaggg aaaactgtcc 1800 atatgcacag atgaaaacgg tgtaaaaaag atagatacat cagagctttt acgagttttt 1860 ggtgcattta aagctgttca ccatgaacag atcgacaatg taacagatga acagcatgta 1920 acacctaata gaacaggtga aaccagtaaa acaaagcaac tagaacatga aattgaacac 1980 ctgagacaac ttgttacagc tcaacagtca cacatagaca gcctgaaaca ggcgatgctg 2040 cttatcgaat caaagctgcc gacaacacgg gagccagtga cgcctcccgt ggggaaaaaa 2100 tcatggcaat tctggaagaa atagcgcttt cagccggcaa acctgaagcc ggatctgcga 2160 ttctgataac aaactagcaa caccagaaca gcccgtttgc gggcagcaaa acccgttatg 2220 cttgtaaacc gttttgtgaa aaaattttta aaataaaaaa ggggacctct agggtcccca 2280 attaattagt aatataatct attaaaggtc attcaaaagg tcatccaccg gatcaattcc 2340 cctgctcgcg caggctgggt gccaagctct cgggtaacat caaggcccga tccttggagc 2400 ccttgccctc ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg acccgcagtt 2460 gcaaaccctc actgatccgc atgcccgttc catacagaag ctgggcgaac aaacgatgct 2520 cgccttccag aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc accggcaagc 2580 gccgcgacgg ccgaggtctt ccgatctcct gaagccaggg cagatccgtg cacagcacct 2640 tgccgtagaa gaacagcaag gccgccaatg cctgacgatg cgtggagacc gaaaccttgc 2700 gctcgttcgc cagccaggac agaaatgcct cgacttcgct gctgcccaag gttgccgggt 2760 gacgcacacc gtggaaacgg atgaaggcac gaacccagtg gacataagcc tgttcggttc 2820 gtaagctgta atgcaagtag cgtatgcgct cacgcaactg gtccagaacc ttgaccgaac 2880 gcagcggtgg taacggcgca gtggcggttt tcatggcttg ttatgactgt ttttttgggg 2940 tacagtctat gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt cgatgtttga 3000 tgttatggag cagcaacgat gttacgcagc agggcagtcg ccctaaaaca aagttaaaca 3060 tcatgaggga agcggtgatc gccgaagtat cgactcaact atcagaggta gttggcgtca 3120 tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt gtacggctcc gcagtggatg 3180 gcggcctgaa gccacacagt gatattgatt tgctggttac ggtgaccgta aggcttgatg 3240 aaacaacgcg gcgagctttg atcaacgacc ttttggaaac ttcggcttcc cctggagaga 3300 gcgagattct ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc attccgtggc 3360 gttatccagc taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac attcttgcag 3420 gtatcttcga gccagccacg atcgacattg atctggctat cttgctgaca aaagcaagag 3480 aacatagcgt tgccttggta ggtccagcgg cggaggaact ctttgatccg gttcctgaac 3540 aggatctatt tgaggcgcta aatgaaacct taacgctatg gaactcgccg cccgactggg 3600 ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc gcagtaaccg 3660 gcaaaatcgc gccgaaggat gtcgctgccg actgggcaat ggagcgcctg ccggcccagt 3720 atcagcccgt catacttgaa gctagacagg cttatcttgg acaagaagaa gatcgcttgg 3780 cctcgcgcgc agatcagttg gaagaatttg tccactacgt gaaaggcgag atcaccaagg 3840 tagtcggcaa ataatgtcta acaattcgtt caagccgacg ccgcttcgcg gcgcggctta 3900 actcaagcgt tagatgcact aagcacataa ttgctcacag ccaaactatc aggtcaagtc 3960 tgcttttatt atttttaagc gtgcataata agccctacac aaattgggag atatatcatg 4020 aaaggctggc tttttcttgt tatcgcaata gttggcgaag taatcgcaac atccgcatta 4080 aaatctagcg agggctttac taagctgatc cggtggatga ccttttgaat gacctttaat 4140 agattatatt actaattaat tggggaccct agaggtcccc ttttttattt taaaaatttt 4200 ttcacaaaac ggtttacaag catacgttgg ccgattcatt aatgcagctg gcacgacagg 4260 tttcccgact ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta gctcactcat 4320 taggcacccc aggctttaca ctttatgctt ccggctcgta tgttgtgtgg aattgtgagc 4380 ggataacaat ttcacacagg aaacagctat gaccatgatt acgccaagct tgcatgcctg 4440 caggtcgacc gttaaatcta tcaccgcaag ggataaatat ctaacaccgt gcgtgttgac 4500 tattttacct ctggcggtga taatggttgc atgtactaat ctagataagg aatatagcca 4560 tgaccgcacc gattcaggat ctgcgtgatg caattgccct gctgcaacag catgataatc 4620 agtatctgga aaccgatcat ccggttgatc cgaatgcaga actggcaggc gtttatcgtc 4680 atattggtgc cggtggcacc gttaaacgtc cgacccgtat tggtccggca atgatgttta 4740 ataacattaa aggttatccg cacagccgta ttctggttgg tatgcatgca agccgtcagc 4800 gtgcagcact gctgctgggt tgtgaagcaa gtcagctggc actggaagtt ggtaaagcag 4860 ttaaaaaacc ggttgcaccg gtggttgttc cggcaagcag cgcaccgtgt caagagcaga 4920 tttttctggc agatgatccg gattttgatc tgcgtaccct gctgcctgca cataccaata 4980 ccccgattga tgcaggtccg tttttttgtc tgggtctggc cctggcaagc gatccggtgg 5040 atgcaagcct gaccgatgtt accattcatc gtctgtgtgt tcagggtcgt gatgaactga 5100 gcatgttcct ggcagcaggt cgccatattg aagtttttcg tcagaaagca gaagcagcag 5160 gtaaaccgct gccgattacc attaatatgg gtctggaccc agcaatctat attggcgcat 5220 gttttgaagc accgaccacc ccgtttggtt ataatgaact gggtgttgcc ggtgcactgc 5280 gtcagcgtcc ggttgaactg gttcagggtg ttagcgttcc ggaaaaagca attgcacgtg 5340 ccgaaattgt tattgaaggt gaactgctgc ctggtgttcg tgttcgtgaa gatcagcata 5400 ccaattcagg tcatgcaatg ccggaatttc cgggttattg tggtggtgca aatccgagcc 5460 tgccggttat taaagttaaa gccgttacca tgcgcaataa cgcaattctg caaaccctgg 5520 ttggtccggg tgaagaacat accaccctgg caggtctgcc gaccgaagca agcatttgga 5580 atgcagttga agcagcaatt ccgggttttc tgcaaaatgt ttatgcccat accgcaggcg 5640 gtggtaaatt tctgggtatt ctgcaagtga aaaaacgtca gcctgccgat gaaggtcgtc 5700 agggtcaggc agccctgctg gcgctggcaa cctatagcga actgaaaaat atcattctgg 5760 tggatgagga tgtggacatt tttgatagtg atgatattct gtgggcaatg accacccgta 5820 tgcagggtga tgttagcatt accaccattc cgggtattcg cggtcatcag ctggacccga 5880 gccagacacc ggaatattca ccgagcattc gtggtaatgg tattagctgc aaaaccatct 5940 ttgattgtac cgttccgtgg gcactgaaaa gccattttga acgtgcaccg tttgcagatg 6000 ttgatccgcg tccgtttgca cctgaatatt ttgcacgtct ggaaaaaaat cagggcagcg 6060 caaaataagc taataacagg cctgctggta atcgcaggaa tttttatttg gatggatccc 6120 cgggtaccga gctcgaattc actggccgtc gttttacaac gtcgtgactg ggaaaaccct 6180 ggcgttaccc aacttaatcg ccttgcagca catccccctt tcgccagctg gcgtaatagc 6240 gaagaggccc gcaccgatcg cccttcccaa cagttgcgca gcctgaatgg cgaatggcgc 6300 ctgatgcggt attttctcct tacgcatctg tgcggtattt cacaccgcat atggtgcact 6360 ctcagtacaa tctgctctga tgccgcatag ttaagccagc cccgacaccc gccaacaccc 6420 gctgacgaat tc 6432 <210> 22 <211> 7294 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(7294) <223> DNA sequence of the plasmid pMG31 <400> 22 gttgacagta agacgggtaa gcctgttgat gataccgctg ccttactggg tgcattagcc 60 agtctgaatg acctgtcacg ggataatccg aagtggtcag actggaaaat cagagggcag 120 gaactgctga acagcaaaaa gtcagatagc accacatagc agacccgcca taaaacgccc 180 tgagaagccc gtgacgggct tttcttgtat tatgggtagt ttccttgcat gaatccataa 240 aaggcgcctg tagtgccatt tacccccatt cactgccaga gccgtgagcg cagcgaactg 300 aatgtcacga aaaagacagc gactcaggtg cctgatggtc ggagacaaaa ggaatattca 360 gcgatttgcc cgagcttgcg agggtgctac ttaagccttt agggttttaa ggtctgtttt 420 gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact gactaaagta 480 gtgagttata cacagggctg ggatctattc tttttatctt tttttattct ttctttattc 540 tataaattat aaccacttga atataaacaa aaaaaacaca caaaggtcta gcggaattta 600 cagagggtct agcagaattt acaagttttc cagcaaaggt ctagcagaat ttacagatac 660 ccacaactca aaggaaaagg actagtaatt atcattgact agcccatctc aattggtata 720 gtgattaaaa tcacctagac caattgagat gtatgtctga attagttgtt ttcaaagcaa 780 atgaactagc gattagtcgc tatgacttaa cggagcatga aaccaagcta attttatgct 840 gtgtggcact actcaacccc acgattgaaa accctacaag gaaagaacgg acggtatcgt 900 tcacttataa ccaatacgct cagatgatga acatcagtag ggaaaatgct tatggtgtat 960 tagctaaagc aaccagagag ctgatgacga gaactgtgga aatcaggaat cctttggtta 1020 aaggctttga gattttccag tggacaaact atgccaagtt ctcaagcgaa aaattagaat 1080 tagtttttag tgaagagata ttgccttatc ttttccagtt aaaaaaattc ataaaatata 1140 atctggaaca tgttaagtct tttgaaaaca aatactctat gaggatttat gagtggttat 1200 taaaagaact aacacaaaag aaaactcaca aggcaaatat agagattagc cttgatgaat 1260 ttaagttcat gttaatgctt gaaaataact accatgagtt taaaaggctt aaccaatggg 1320 ttttgaaacc aataagtaaa gatttaaaca cttacagcaa tatgaaattg gtggttgata 1380 agcgaggccg cccgactgat acgttgattt tccaagttga actagataga caaatggatc 1440 tcgtaaccga acttgagaac aaccagataa aaatgaatgg tgacaaaata ccaacaacca 1500 ttacatcaga ttcctaccta cgtaacggac taagaaaaac actacacgat gctttaactg 1560 caaaaattca gctcaccagt tttgaggcaa aatttttgag tgacatgcaa agtaagcatg 1620 atctcaatgg ttcgttctca tggctcacgc aaaaacaacg aaccacacta gagaacatac 1680 tggctaaata cggaaggatc tgaggttctt atggctcttg tatctatcag tgaagcatca 1740 agactaacaa acaaaagtag aacaactgtt caccgttaga tatcaaaggg aaaactgtcc 1800 atatgcacag atgaaaacgg tgtaaaaaag atagatacat cagagctttt acgagttttt 1860 ggtgcattta aagctgttca ccatgaacag atcgacaatg taacagatga acagcatgta 1920 acacctaata gaacaggtga aaccagtaaa acaaagcaac tagaacatga aattgaacac 1980 ctgagacaac ttgttacagc tcaacagtca cacatagaca gcctgaaaca ggcgatgctg 2040 cttatcgaat caaagctgcc gacaacacgg gagccagtga cgcctcccgt ggggaaaaaa 2100 tcatggcaat tctggaagaa atagcgcttt cagccggcaa acctgaagcc ggatctgcga 2160 ttctgataac aaactagcaa caccagaaca gcccgtttgc gggcagcaaa acccgttatg 2220 cttgtaaacc gttttgtgaa aaaattttta aaataaaaaa ggggacctct agggtcccca 2280 attaattagt aatataatct attaaaggtc attcaaaagg tcatccaccg gatcaattcc 2340 cctgctcgcg caggctgggt gccaagctct cgggtaacat caaggcccga tccttggagc 2400 ccttgccctc ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg acccgcagtt 2460 gcaaaccctc actgatccgc atgcccgttc catacagaag ctgggcgaac aaacgatgct 2520 cgccttccag aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc accggcaagc 2580 gccgcgacgg ccgaggtctt ccgatctcct gaagccaggg cagatccgtg cacagcacct 2640 tgccgtagaa gaacagcaag gccgccaatg cctgacgatg cgtggagacc gaaaccttgc 2700 gctcgttcgc cagccaggac agaaatgcct cgacttcgct gctgcccaag gttgccgggt 2760 gacgcacacc gtggaaacgg atgaaggcac gaacccagtg gacataagcc tgttcggttc 2820 gtaagctgta atgcaagtag cgtatgcgct cacgcaactg gtccagaacc ttgaccgaac 2880 gcagcggtgg taacggcgca gtggcggttt tcatggcttg ttatgactgt ttttttgggg 2940 tacagtctat gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt cgatgtttga 3000 tgttatggag cagcaacgat gttacgcagc agggcagtcg ccctaaaaca aagttaaaca 3060 tcatgaggga agcggtgatc gccgaagtat cgactcaact atcagaggta gttggcgtca 3120 tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt gtacggctcc gcagtggatg 3180 gcggcctgaa gccacacagt gatattgatt tgctggttac ggtgaccgta aggcttgatg 3240 aaacaacgcg gcgagctttg atcaacgacc ttttggaaac ttcggcttcc cctggagaga 3300 gcgagattct ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc attccgtggc 3360 gttatccagc taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac attcttgcag 3420 gtatcttcga gccagccacg atcgacattg atctggctat cttgctgaca aaagcaagag 3480 aacatagcgt tgccttggta ggtccagcgg cggaggaact ctttgatccg gttcctgaac 3540 aggatctatt tgaggcgcta aatgaaacct taacgctatg gaactcgccg cccgactggg 3600 ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc gcagtaaccg 3660 gcaaaatcgc gccgaaggat gtcgctgccg actgggcaat ggagcgcctg ccggcccagt 3720 atcagcccgt catacttgaa gctagacagg cttatcttgg acaagaagaa gatcgcttgg 3780 cctcgcgcgc agatcagttg gaagaatttg tccactacgt gaaaggcgag atcaccaagg 3840 tagtcggcaa ataatgtcta acaattcgtt caagccgacg ccgcttcgcg gcgcggctta 3900 actcaagcgt tagatgcact aagcacataa ttgctcacag ccaaactatc aggtcaagtc 3960 tgcttttatt atttttaagc gtgcataata agccctacac aaattgggag atatatcatg 4020 aaaggctggc tttttcttgt tatcgcaata gttggcgaag taatcgcaac atccgcatta 4080 aaatctagcg agggctttac taagctgatc cggtggatga ccttttgaat gacctttaat 4140 agattatatt actaattaat tggggaccct agaggtcccc ttttttattt taaaaatttt 4200 ttcacaaaac ggtttacaag catacgttgg ccgattcatt aatgcagctg gcacgacagg 4260 tttcccgact ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta gctcactcat 4320 taggcacccc aggctttaca ctttatgctt ccggctcgta tgttgtgtgg aattgtgagc 4380 ggataacaat ttcacacagg aaacagctat gaccatgatt acgccaagct tgctattgac 4440 gacagctatg gttcactgtc caccaaccaa aactgtgctc agtaccgcca atatttctcc 4500 cttgaggggt acaaagaggt gtccctagaa gagatccacg ctgtgtaaaa attttacaaa 4560 aaggtattga ctttccctac agggtgtgta ataatttaat tacaggcggg ggcaaccccg 4620 cctgttctgc agaggaggaa tatagccatg gaagtgaaaa tcttcaacac ccaggatgtt 4680 caggattttc tgcgtgttgc aagcggtctg gaacaagagg gtggtaatcc gcgtgttaaa 4740 caaattattc atcgtgttct gagcgacctg tataaagcaa ttgaagatct gaatatcacc 4800 agcgacgaat attgggcagg cgttgcatat ctgaatcagc tgggtgcaaa tcaagaagca 4860 ggtctgctga gtccgggtct gggttttgat cattatctgg atatgcgtat ggatgcagaa 4920 gatgcagcac tgggtattga aaatgcaaca ccgcgtacca ttgaaggtcc gctgtatgtt 4980 gcgggtgcac cggaaagcgt tggttatgca cgcatggatg atggtagcga tccgaatggt 5040 cataccctga ttctgcatgg caccattttt gatgcagatg gtaaaccgct gccgaatgca 5100 aaagttgaaa tttggcatgc aaacaccaaa ggcttttata gccattttga tccgaccggt 5160 gaacagcagg cctttaatat gcgtcgtagc attattaccg atgagaatgg tcagtatcgt 5220 gttcgtacca ttctgcctgc cggttatggt tgtcctccgg aaggtccgac ccagcaactg 5280 ctgaaccaac tgggtcgtca tggtaatcgt ccggcacata ttcattattt tgttagcgca 5340 gatggtcacc gtaaactgac cacccagatt aatgttgccg gtgatccgta tacctatgat 5400 gattttgcat atgccacccg tgaaggtctg gttgttgatg cagttgaaca taccgatccg 5460 gaagcaatta aagccaatga tgtggaaggt ccttttgccg aaatggtgtt tgatctgaaa 5520 ctgacccgtc tggttgatgg tgttgataat caggttgtgg atcgtccgcg tctggcagtt 5580 taatacacca aaatggttca aaattatcag gcgagtgatc atgatcactg gcctgttttt 5640 atttcaggga agggtggaga caattacgtg gataatcaga tcatccaaga aaccgtggat 5700 aaaattctga gcgttctgcc gaatcaggca ggtcagctgg cacgtctggt gcgtctgatg 5760 caatttgcat gcgatccgac cattaccgtt attggcaaat ataaccatgg taaaagccgt 5820 ctgctgaatg aactgattgg caccgatatc tttagcgttg cagataaacg tgaaaccatt 5880 cagctggccg aacataaaca ggatcaggtt cgttggctgg atgcacctgg tctggatgcc 5940 gatgttgcag cagttgatga tcgtcatgca tttgaagcag tttggaccca ggcagatatt 6000 cgtctgtttg ttcatagcgt tcgtgaaggt gaactggatg caaccgaaca ccatctgctg 6060 caacagctga ttgaagatgc cgatcatagc cgtcgtcaga ccattctggt tctgacccag 6120 attgatcaga ttccggatca gaccatcctg acacagatta aaaccagcat tgcacagcag 6180 gttccgaaac tggatatttg ggcagttagc gcaacccgtc atcgtcaggg cattgaaaac 6240 ggtaaaaccc tgctgatcga aaaaagcggt attggtgcac tgcgccatac cctggaacag 6300 gcactggcac aggtgccgag cgcacgtacc tatgaaaaaa atcgtctgct gtcagatctg 6360 caccatcagc tgaaacaact gctgctggat cagaaacatg ttctgcaaca actgcaacag 6420 acacagcaac agcagctgca tgattttgat accggtctga ttaacattct ggacaaaatt 6480 cgtgttgatc tggaaccgat tgtgaatatt gatggtcagg atcaagcact gaatccggat 6540 agctttgcaa ccatgtttaa aaacaccgca gcaaaacagc agcgtgccaa agttcagatt 6600 gcatatagcc gtgcatgcat tgaaatcaac agccatctga ttcgccatgg tgttgttggt 6660 ctgcctgcgg aacagcagac caccattaaa agcattgata ccgtgattgt tgccgtgttt 6720 ggtatcagcg ttaaatttcg tgatcagctg cgtgccctgt tttataccga taccgaacgt 6780 cagcgtctgc aacgtgaatt tcgtttctat tttgaaaaaa gtgccggtcg catgattctg 6840 gcagcaaaaa ttgaacagac catgcgtcag cagggctgta ttcagaatgc catgatggca 6900 ctgcaacaaa tggaaagcgc agcataaaaa cacggacgcc gcaaacggcg tccgaatttc 6960 ttggtcgact ctagaggatc cccgggtacc gagctcgaat tcactggccg tcgttttaca 7020 acgtcgtgac tgggaaaacc ctggcgttac ccaacttaat cgccttgcag cacatccccc 7080 tttcgccagc tggcgtaata gcgaagaggc ccgcaccgat cgcccttccc aacagttgcg 7140 cagcctgaat ggcgaatggc gcctgatgcg gtattttctc cttacgcatc tgtgcggtat 7200 ttcacaccgc atatggtgca ctctcagtac aatctgctct gatgccgcat agttaagcca 7260 gccccgacac ccgccaacac ccgctgacga attc 7294 <210> 23 <211> 8952 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(8952) <223> DNA sequence of the plasmid pMG33 <400> 23 gttgacagta agacgggtaa gcctgttgat gataccgctg ccttactggg tgcattagcc 60 agtctgaatg acctgtcacg ggataatccg aagtggtcag actggaaaat cagagggcag 120 gaactgctga acagcaaaaa gtcagatagc accacatagc agacccgcca taaaacgccc 180 tgagaagccc gtgacgggct tttcttgtat tatgggtagt ttccttgcat gaatccataa 240 aaggcgcctg tagtgccatt tacccccatt cactgccaga gccgtgagcg cagcgaactg 300 aatgtcacga aaaagacagc gactcaggtg cctgatggtc ggagacaaaa ggaatattca 360 gcgatttgcc cgagcttgcg agggtgctac ttaagccttt agggttttaa ggtctgtttt 420 gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact gactaaagta 480 gtgagttata cacagggctg ggatctattc tttttatctt tttttattct ttctttattc 540 tataaattat aaccacttga atataaacaa aaaaaacaca caaaggtcta gcggaattta 600 cagagggtct agcagaattt acaagttttc cagcaaaggt ctagcagaat ttacagatac 660 ccacaactca aaggaaaagg actagtaatt atcattgact agcccatctc aattggtata 720 gtgattaaaa tcacctagac caattgagat gtatgtctga attagttgtt ttcaaagcaa 780 atgaactagc gattagtcgc tatgacttaa cggagcatga aaccaagcta attttatgct 840 gtgtggcact actcaacccc acgattgaaa accctacaag gaaagaacgg acggtatcgt 900 tcacttataa ccaatacgct cagatgatga acatcagtag ggaaaatgct tatggtgtat 960 tagctaaagc aaccagagag ctgatgacga gaactgtgga aatcaggaat cctttggtta 1020 aaggctttga gattttccag tggacaaact atgccaagtt ctcaagcgaa aaattagaat 1080 tagtttttag tgaagagata ttgccttatc ttttccagtt aaaaaaattc ataaaatata 1140 atctggaaca tgttaagtct tttgaaaaca aatactctat gaggatttat gagtggttat 1200 taaaagaact aacacaaaag aaaactcaca aggcaaatat agagattagc cttgatgaat 1260 ttaagttcat gttaatgctt gaaaataact accatgagtt taaaaggctt aaccaatggg 1320 ttttgaaacc aataagtaaa gatttaaaca cttacagcaa tatgaaattg gtggttgata 1380 agcgaggccg cccgactgat acgttgattt tccaagttga actagataga caaatggatc 1440 tcgtaaccga acttgagaac aaccagataa aaatgaatgg tgacaaaata ccaacaacca 1500 ttacatcaga ttcctaccta cgtaacggac taagaaaaac actacacgat gctttaactg 1560 caaaaattca gctcaccagt tttgaggcaa aatttttgag tgacatgcaa agtaagcatg 1620 atctcaatgg ttcgttctca tggctcacgc aaaaacaacg aaccacacta gagaacatac 1680 tggctaaata cggaaggatc tgaggttctt atggctcttg tatctatcag tgaagcatca 1740 agactaacaa acaaaagtag aacaactgtt caccgttaga tatcaaaggg aaaactgtcc 1800 atatgcacag atgaaaacgg tgtaaaaaag atagatacat cagagctttt acgagttttt 1860 ggtgcattta aagctgttca ccatgaacag atcgacaatg taacagatga acagcatgta 1920 acacctaata gaacaggtga aaccagtaaa acaaagcaac tagaacatga aattgaacac 1980 ctgagacaac ttgttacagc tcaacagtca cacatagaca gcctgaaaca ggcgatgctg 2040 cttatcgaat caaagctgcc gacaacacgg gagccagtga cgcctcccgt ggggaaaaaa 2100 tcatggcaat tctggaagaa atagcgcttt cagccggcaa acctgaagcc ggatctgcga 2160 ttctgataac aaactagcaa caccagaaca gcccgtttgc gggcagcaaa acccgttatg 2220 cttgtaaacc gttttgtgaa aaaattttta aaataaaaaa ggggacctct agggtcccca 2280 attaattagt aatataatct attaaaggtc attcaaaagg tcatccaccg gatcaattcc 2340 cctgctcgcg caggctgggt gccaagctct cgggtaacat caaggcccga tccttggagc 2400 ccttgccctc ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg acccgcagtt 2460 gcaaaccctc actgatccgc atgcccgttc catacagaag ctgggcgaac aaacgatgct 2520 cgccttccag aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc accggcaagc 2580 gccgcgacgg ccgaggtctt ccgatctcct gaagccaggg cagatccgtg cacagcacct 2640 tgccgtagaa gaacagcaag gccgccaatg cctgacgatg cgtggagacc gaaaccttgc 2700 gctcgttcgc cagccaggac agaaatgcct cgacttcgct gctgcccaag gttgccgggt 2760 gacgcacacc gtggaaacgg atgaaggcac gaacccagtg gacataagcc tgttcggttc 2820 gtaagctgta atgcaagtag cgtatgcgct cacgcaactg gtccagaacc ttgaccgaac 2880 gcagcggtgg taacggcgca gtggcggttt tcatggcttg ttatgactgt ttttttgggg 2940 tacagtctat gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt cgatgtttga 3000 tgttatggag cagcaacgat gttacgcagc agggcagtcg ccctaaaaca aagttaaaca 3060 tcatgaggga agcggtgatc gccgaagtat cgactcaact atcagaggta gttggcgtca 3120 tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt gtacggctcc gcagtggatg 3180 gcggcctgaa gccacacagt gatattgatt tgctggttac ggtgaccgta aggcttgatg 3240 aaacaacgcg gcgagctttg atcaacgacc ttttggaaac ttcggcttcc cctggagaga 3300 gcgagattct ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc attccgtggc 3360 gttatccagc taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac attcttgcag 3420 gtatcttcga gccagccacg atcgacattg atctggctat cttgctgaca aaagcaagag 3480 aacatagcgt tgccttggta ggtccagcgg cggaggaact ctttgatccg gttcctgaac 3540 aggatctatt tgaggcgcta aatgaaacct taacgctatg gaactcgccg cccgactggg 3600 ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc gcagtaaccg 3660 gcaaaatcgc gccgaaggat gtcgctgccg actgggcaat ggagcgcctg ccggcccagt 3720 atcagcccgt catacttgaa gctagacagg cttatcttgg acaagaagaa gatcgcttgg 3780 cctcgcgcgc agatcagttg gaagaatttg tccactacgt gaaaggcgag atcaccaagg 3840 tagtcggcaa ataatgtcta acaattcgtt caagccgacg ccgcttcgcg gcgcggctta 3900 actcaagcgt tagatgcact aagcacataa ttgctcacag ccaaactatc aggtcaagtc 3960 tgcttttatt atttttaagc gtgcataata agccctacac aaattgggag atatatcatg 4020 aaaggctggc tttttcttgt tatcgcaata gttggcgaag taatcgcaac atccgcatta 4080 aaatctagcg agggctttac taagctgatc cggtggatga ccttttgaat gacctttaat 4140 agattatatt actaattaat tggggaccct agaggtcccc ttttttattt taaaaatttt 4200 ttcacaaaac ggtttacaag catacgttgg ccgattcatt aatgcagctg gcacgacagg 4260 tttcccgact ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta gctcactcat 4320 taggcacccc aggctttaca ctttatgctt ccggctcgta tgttgtgtgg aattgtgagc 4380 ggataacaat ttcacacagg aaacagctat gaccatgatt acgccaagct tgctattgac 4440 gacagctatg gttcactgtc caccaaccaa aactgtgctc agtaccgcca atatttctcc 4500 cttgaggggt acaaagaggt gtccctagaa gagatccacg ctgtgtaaaa attttacaaa 4560 aaggtattga ctttccctac agggtgtgta ataatttaat tacaggcggg ggcaaccccg 4620 cctgttctgc agaggaggaa tatagccatg gaagtgaaaa tcttcaacac ccaggatgtt 4680 caggattttc tgcgtgttgc aagcggtctg gaacaagagg gtggtaatcc gcgtgttaaa 4740 caaattattc atcgtgttct gagcgacctg tataaagcaa ttgaagatct gaatatcacc 4800 agcgacgaat attgggcagg cgttgcatat ctgaatcagc tgggtgcaaa tcaagaagca 4860 ggtctgctga gtccgggtct gggttttgat cattatctgg atatgcgtat ggatgcagaa 4920 gatgcagcac tgggtattga aaatgcaaca ccgcgtacca ttgaaggtcc gctgtatgtt 4980 gcgggtgcac cggaaagcgt tggttatgca cgcatggatg atggtagcga tccgaatggt 5040 cataccctga ttctgcatgg caccattttt gatgcagatg gtaaaccgct gccgaatgca 5100 aaagttgaaa tttggcatgc aaacaccaaa ggcttttata gccattttga tccgaccggt 5160 gaacagcagg cctttaatat gcgtcgtagc attattaccg atgagaatgg tcagtatcgt 5220 gttcgtacca ttctgcctgc cggttatggt tgtcctccgg aaggtccgac ccagcaactg 5280 ctgaaccaac tgggtcgtca tggtaatcgt ccggcacata ttcattattt tgttagcgca 5340 gatggtcacc gtaaactgac cacccagatt aatgttgccg gtgatccgta tacctatgat 5400 gattttgcat atgccacccg tgaaggtctg gttgttgatg cagttgaaca taccgatccg 5460 gaagcaatta aagccaatga tgtggaaggt ccttttgccg aaatggtgtt tgatctgaaa 5520 ctgacccgtc tggttgatgg tgttgataat caggttgtgg atcgtccgcg tctggcagtt 5580 taatacacca aaatggttca aaattatcag gcgagtgatc atgatcactg gcctgttttt 5640 atttcaggga agggtggaga caattacgtg gataatcaga tcatccaaga aaccgtggat 5700 aaaattctga gcgttctgcc gaatcaggca ggtcagctgg cacgtctggt gcgtctgatg 5760 caatttgcat gcgatccgac cattaccgtt attggcaaat ataaccatgg taaaagccgt 5820 ctgctgaatg aactgattgg caccgatatc tttagcgttg cagataaacg tgaaaccatt 5880 cagctggccg aacataaaca ggatcaggtt cgttggctgg atgcacctgg tctggatgcc 5940 gatgttgcag cagttgatga tcgtcatgca tttgaagcag tttggaccca ggcagatatt 6000 cgtctgtttg ttcatagcgt tcgtgaaggt gaactggatg caaccgaaca ccatctgctg 6060 caacagctga ttgaagatgc cgatcatagc cgtcgtcaga ccattctggt tctgacccag 6120 attgatcaga ttccggatca gaccatcctg acacagatta aaaccagcat tgcacagcag 6180 gttccgaaac tggatatttg ggcagttagc gcaacccgtc atcgtcaggg cattgaaaac 6240 ggtaaaaccc tgctgatcga aaaaagcggt attggtgcac tgcgccatac cctggaacag 6300 gcactggcac aggtgccgag cgcacgtacc tatgaaaaaa atcgtctgct gtcagatctg 6360 caccatcagc tgaaacaact gctgctggat cagaaacatg ttctgcaaca actgcaacag 6420 acacagcaac agcagctgca tgattttgat accggtctga ttaacattct ggacaaaatt 6480 cgtgttgatc tggaaccgat tgtgaatatt gatggtcagg atcaagcact gaatccggat 6540 agctttgcaa ccatgtttaa aaacaccgca gcaaaacagc agcgtgccaa agttcagatt 6600 gcatatagcc gtgcatgcat tgaaatcaac agccatctga ttcgccatgg tgttgttggt 6660 ctgcctgcgg aacagcagac caccattaaa agcattgata ccgtgattgt tgccgtgttt 6720 ggtatcagcg ttaaatttcg tgatcagctg cgtgccctgt tttataccga taccgaacgt 6780 cagcgtctgc aacgtgaatt tcgtttctat tttgaaaaaa gtgccggtcg catgattctg 6840 gcagcaaaaa ttgaacagac catgcgtcag cagggctgta ttcagaatgc catgatggca 6900 ctgcaacaaa tggaaagcgc agcataaaaa cacggacgcc gcaaacggcg tccgaatttc 6960 ttggtcgacc gttaaatcta tcaccgcaag ggataaatat ctaacaccgt gcgtgttgac 7020 tattttacct ctggcggtga taatggttgc atgtactaat ctagataagg aatatagcca 7080 tgaccgcacc gattcaggat ctgcgtgatg caattgccct gctgcaacag catgataatc 7140 agtatctgga aaccgatcat ccggttgatc cgaatgcaga actggcaggc gtttatcgtc 7200 atattggtgc cggtggcacc gttaaacgtc cgacccgtat tggtccggca atgatgttta 7260 ataacattaa aggttatccg cacagccgta ttctggttgg tatgcatgca agccgtcagc 7320 gtgcagcact gctgctgggt tgtgaagcaa gtcagctggc actggaagtt ggtaaagcag 7380 ttaaaaaacc ggttgcaccg gtggttgttc cggcaagcag cgcaccgtgt caagagcaga 7440 tttttctggc agatgatccg gattttgatc tgcgtaccct gctgcctgca cataccaata 7500 ccccgattga tgcaggtccg tttttttgtc tgggtctggc cctggcaagc gatccggtgg 7560 atgcaagcct gaccgatgtt accattcatc gtctgtgtgt tcagggtcgt gatgaactga 7620 gcatgttcct ggcagcaggt cgccatattg aagtttttcg tcagaaagca gaagcagcag 7680 gtaaaccgct gccgattacc attaatatgg gtctggaccc agcaatctat attggcgcat 7740 gttttgaagc accgaccacc ccgtttggtt ataatgaact gggtgttgcc ggtgcactgc 7800 gtcagcgtcc ggttgaactg gttcagggtg ttagcgttcc ggaaaaagca attgcacgtg 7860 ccgaaattgt tattgaaggt gaactgctgc ctggtgttcg tgttcgtgaa gatcagcata 7920 ccaattcagg tcatgcaatg ccggaatttc cgggttattg tggtggtgca aatccgagcc 7980 tgccggttat taaagttaaa gccgttacca tgcgcaataa cgcaattctg caaaccctgg 8040 ttggtccggg tgaagaacat accaccctgg caggtctgcc gaccgaagca agcatttgga 8100 atgcagttga agcagcaatt ccgggttttc tgcaaaatgt ttatgcccat accgcaggcg 8160 gtggtaaatt tctgggtatt ctgcaagtga aaaaacgtca gcctgccgat gaaggtcgtc 8220 agggtcaggc agccctgctg gcgctggcaa cctatagcga actgaaaaat atcattctgg 8280 tggatgagga tgtggacatt tttgatagtg atgatattct gtgggcaatg accacccgta 8340 tgcagggtga tgttagcatt accaccattc cgggtattcg cggtcatcag ctggacccga 8400 gccagacacc ggaatattca ccgagcattc gtggtaatgg tattagctgc aaaaccatct 8460 ttgattgtac cgttccgtgg gcactgaaaa gccattttga acgtgcaccg tttgcagatg 8520 ttgatccgcg tccgtttgca cctgaatatt ttgcacgtct ggaaaaaaat cagggcagcg 8580 caaaataagc taataacagg cctgctggta atcgcaggaa tttttatttg gatggatccc 8640 cgggtaccga gctcgaattc actggccgtc gttttacaac gtcgtgactg ggaaaaccct 8700 ggcgttaccc aacttaatcg ccttgcagca catccccctt tcgccagctg gcgtaatagc 8760 gaagaggccc gcaccgatcg cccttcccaa cagttgcgca gcctgaatgg cgaatggcgc 8820 ctgatgcggt attttctcct tacgcatctg tgcggtattt cacaccgcat atggtgcact 8880 ctcagtacaa tctgctctga tgccgcatag ttaagccagc cccgacaccc gccaacaccc 8940 gctgacgaat tc 8952 <210> 24 <211> 10630 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(10630) <223> DNA sequence of the plasmid pMG37 <400> 24 gttgacagta agacgggtaa gcctgttgat gataccgctg ccttactggg tgcattagcc 60 agtctgaatg acctgtcacg ggataatccg aagtggtcag actggaaaat cagagggcag 120 gaactgctga acagcaaaaa gtcagatagc accacatagc agacccgcca taaaacgccc 180 tgagaagccc gtgacgggct tttcttgtat tatgggtagt ttccttgcat gaatccataa 240 aaggcgcctg tagtgccatt tacccccatt cactgccaga gccgtgagcg cagcgaactg 300 aatgtcacga aaaagacagc gactcaggtg cctgatggtc ggagacaaaa ggaatattca 360 gcgatttgcc cgagcttgcg agggtgctac ttaagccttt agggttttaa ggtctgtttt 420 gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact gactaaagta 480 gtgagttata cacagggctg ggatctattc tttttatctt tttttattct ttctttattc 540 tataaattat aaccacttga atataaacaa aaaaaacaca caaaggtcta gcggaattta 600 cagagggtct agcagaattt acaagttttc cagcaaaggt ctagcagaat ttacagatac 660 ccacaactca aaggaaaagg actagtaatt atcattgact agcccatctc aattggtata 720 gtgattaaaa tcacctagac caattgagat gtatgtctga attagttgtt ttcaaagcaa 780 atgaactagc gattagtcgc tatgacttaa cggagcatga aaccaagcta attttatgct 840 gtgtggcact actcaacccc acgattgaaa accctacaag gaaagaacgg acggtatcgt 900 tcacttataa ccaatacgct cagatgatga acatcagtag ggaaaatgct tatggtgtat 960 tagctaaagc aaccagagag ctgatgacga gaactgtgga aatcaggaat cctttggtta 1020 aaggctttga gattttccag tggacaaact atgccaagtt ctcaagcgaa aaattagaat 1080 tagtttttag tgaagagata ttgccttatc ttttccagtt aaaaaaattc ataaaatata 1140 atctggaaca tgttaagtct tttgaaaaca aatactctat gaggatttat gagtggttat 1200 taaaagaact aacacaaaag aaaactcaca aggcaaatat agagattagc cttgatgaat 1260 ttaagttcat gttaatgctt gaaaataact accatgagtt taaaaggctt aaccaatggg 1320 ttttgaaacc aataagtaaa gatttaaaca cttacagcaa tatgaaattg gtggttgata 1380 agcgaggccg cccgactgat acgttgattt tccaagttga actagataga caaatggatc 1440 tcgtaaccga acttgagaac aaccagataa aaatgaatgg tgacaaaata ccaacaacca 1500 ttacatcaga ttcctaccta cgtaacggac taagaaaaac actacacgat gctttaactg 1560 caaaaattca gctcaccagt tttgaggcaa aatttttgag tgacatgcaa agtaagcatg 1620 atctcaatgg ttcgttctca tggctcacgc aaaaacaacg aaccacacta gagaacatac 1680 tggctaaata cggaaggatc tgaggttctt atggctcttg tatctatcag tgaagcatca 1740 agactaacaa acaaaagtag aacaactgtt caccgttaga tatcaaaggg aaaactgtcc 1800 atatgcacag atgaaaacgg tgtaaaaaag atagatacat cagagctttt acgagttttt 1860 ggtgcattta aagctgttca ccatgaacag atcgacaatg taacagatga acagcatgta 1920 acacctaata gaacaggtga aaccagtaaa acaaagcaac tagaacatga aattgaacac 1980 ctgagacaac ttgttacagc tcaacagtca cacatagaca gcctgaaaca ggcgatgctg 2040 cttatcgaat caaagctgcc gacaacacgg gagccagtga cgcctcccgt ggggaaaaaa 2100 tcatggcaat tctggaagaa atagcgcttt cagccggcaa acctgaagcc ggatctgcga 2160 ttctgataac aaactagcaa caccagaaca gcccgtttgc gggcagcaaa acccgttatg 2220 cttgtaaacc gttttgtgaa aaaattttta aaataaaaaa ggggacctct agggtcccca 2280 attaattagt aatataatct attaaaggtc attcaaaagg tcatccaccg gatcaattcc 2340 cctgctcgcg caggctgggt gccaagctct cgggtaacat caaggcccga tccttggagc 2400 ccttgccctc ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg acccgcagtt 2460 gcaaaccctc actgatccgc atgcccgttc catacagaag ctgggcgaac aaacgatgct 2520 cgccttccag aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc accggcaagc 2580 gccgcgacgg ccgaggtctt ccgatctcct gaagccaggg cagatccgtg cacagcacct 2640 tgccgtagaa gaacagcaag gccgccaatg cctgacgatg cgtggagacc gaaaccttgc 2700 gctcgttcgc cagccaggac agaaatgcct cgacttcgct gctgcccaag gttgccgggt 2760 gacgcacacc gtggaaacgg atgaaggcac gaacccagtg gacataagcc tgttcggttc 2820 gtaagctgta atgcaagtag cgtatgcgct cacgcaactg gtccagaacc ttgaccgaac 2880 gcagcggtgg taacggcgca gtggcggttt tcatggcttg ttatgactgt ttttttgggg 2940 tacagtctat gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt cgatgtttga 3000 tgttatggag cagcaacgat gttacgcagc agggcagtcg ccctaaaaca aagttaaaca 3060 tcatgaggga agcggtgatc gccgaagtat cgactcaact atcagaggta gttggcgtca 3120 tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt gtacggctcc gcagtggatg 3180 gcggcctgaa gccacacagt gatattgatt tgctggttac ggtgaccgta aggcttgatg 3240 aaacaacgcg gcgagctttg atcaacgacc ttttggaaac ttcggcttcc cctggagaga 3300 gcgagattct ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc attccgtggc 3360 gttatccagc taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac attcttgcag 3420 gtatcttcga gccagccacg atcgacattg atctggctat cttgctgaca aaagcaagag 3480 aacatagcgt tgccttggta ggtccagcgg cggaggaact ctttgatccg gttcctgaac 3540 aggatctatt tgaggcgcta aatgaaacct taacgctatg gaactcgccg cccgactggg 3600 ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc gcagtaaccg 3660 gcaaaatcgc gccgaaggat gtcgctgccg actgggcaat ggagcgcctg ccggcccagt 3720 atcagcccgt catacttgaa gctagacagg cttatcttgg acaagaagaa gatcgcttgg 3780 cctcgcgcgc agatcagttg gaagaatttg tccactacgt gaaaggcgag atcaccaagg 3840 tagtcggcaa ataatgtcta acaattcgtt caagccgacg ccgcttcgcg gcgcggctta 3900 actcaagcgt tagatgcact aagcacataa ttgctcacag ccaaactatc aggtcaagtc 3960 tgcttttatt atttttaagc gtgcataata agccctacac aaattgggag atatatcatg 4020 aaaggctggc tttttcttgt tatcgcaata gttggcgaag taatcgcaac atccgcatta 4080 aaatctagcg agggctttac taagctgatc cggtggatga ccttttgaat gacctttaat 4140 agattatatt actaattaat tggggaccct agaggtcccc ttttttattt taaaaatttt 4200 ttcacaaaac ggtttacaag catacgttgg ccgattcatt aatgcagctg gcacgacagg 4260 tttcccgact ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta gctcactcat 4320 taggcacccc aggctttaca ctttatgctt ccggctcgta tgttgtgtgg aattgtgagc 4380 ggataacaat ttcacacagg aaacagctat gaccatgatt acgccaagct tgctattgac 4440 gacagctatg gttcactgtc caccaaccaa aactgtgctc agtaccgcca atatttctcc 4500 cttgaggggt acaaagaggt gtccctagaa gagatccacg ctgtgtaaaa attttacaaa 4560 aaggtattga ctttccctac agggtgtgta ataatttaat tacaggcggg ggcaaccccg 4620 cctgttctgc agaggaggaa tatagccatg gaagtgaaaa tcttcaacac ccaggatgtt 4680 caggattttc tgcgtgttgc aagcggtctg gaacaagagg gtggtaatcc gcgtgttaaa 4740 caaattattc atcgtgttct gagcgacctg tataaagcaa ttgaagatct gaatatcacc 4800 agcgacgaat attgggcagg cgttgcatat ctgaatcagc tgggtgcaaa tcaagaagca 4860 ggtctgctga gtccgggtct gggttttgat cattatctgg atatgcgtat ggatgcagaa 4920 gatgcagcac tgggtattga aaatgcaaca ccgcgtacca ttgaaggtcc gctgtatgtt 4980 gcgggtgcac cggaaagcgt tggttatgca cgcatggatg atggtagcga tccgaatggt 5040 cataccctga ttctgcatgg caccattttt gatgcagatg gtaaaccgct gccgaatgca 5100 aaagttgaaa tttggcatgc aaacaccaaa ggcttttata gccattttga tccgaccggt 5160 gaacagcagg cctttaatat gcgtcgtagc attattaccg atgagaatgg tcagtatcgt 5220 gttcgtacca ttctgcctgc cggttatggt tgtcctccgg aaggtccgac ccagcaactg 5280 ctgaaccaac tgggtcgtca tggtaatcgt ccggcacata ttcattattt tgttagcgca 5340 gatggtcacc gtaaactgac cacccagatt aatgttgccg gtgatccgta tacctatgat 5400 gattttgcat atgccacccg tgaaggtctg gttgttgatg cagttgaaca taccgatccg 5460 gaagcaatta aagccaatga tgtggaaggt ccttttgccg aaatggtgtt tgatctgaaa 5520 ctgacccgtc tggttgatgg tgttgataat caggttgtgg atcgtccgcg tctggcagtt 5580 taatacacca aaatggttca aaattatcag gcgagtgatc atgatcactg gcctgttttt 5640 atttcaggga agggtggaga caattacgtg gataatcaga tcatccaaga aaccgtggat 5700 aaaattctga gcgttctgcc gaatcaggca ggtcagctgg cacgtctggt gcgtctgatg 5760 caatttgcat gcgatccgac cattaccgtt attggcaaat ataaccatgg taaaagccgt 5820 ctgctgaatg aactgattgg caccgatatc tttagcgttg cagataaacg tgaaaccatt 5880 cagctggccg aacataaaca ggatcaggtt cgttggctgg atgcacctgg tctggatgcc 5940 gatgttgcag cagttgatga tcgtcatgca tttgaagcag tttggaccca ggcagatatt 6000 cgtctgtttg ttcatagcgt tcgtgaaggt gaactggatg caaccgaaca ccatctgctg 6060 caacagctga ttgaagatgc cgatcatagc cgtcgtcaga ccattctggt tctgacccag 6120 attgatcaga ttccggatca gaccatcctg acacagatta aaaccagcat tgcacagcag 6180 gttccgaaac tggatatttg ggcagttagc gcaacccgtc atcgtcaggg cattgaaaac 6240 ggtaaaaccc tgctgatcga aaaaagcggt attggtgcac tgcgccatac cctggaacag 6300 gcactggcac aggtgccgag cgcacgtacc tatgaaaaaa atcgtctgct gtcagatctg 6360 caccatcagc tgaaacaact gctgctggat cagaaacatg ttctgcaaca actgcaacag 6420 acacagcaac agcagctgca tgattttgat accggtctga ttaacattct ggacaaaatt 6480 cgtgttgatc tggaaccgat tgtgaatatt gatggtcagg atcaagcact gaatccggat 6540 agctttgcaa ccatgtttaa aaacaccgca gcaaaacagc agcgtgccaa agttcagatt 6600 gcatatagcc gtgcatgcat tgaaatcaac agccatctga ttcgccatgg tgttgttggt 6660 ctgcctgcgg aacagcagac caccattaaa agcattgata ccgtgattgt tgccgtgttt 6720 ggtatcagcg ttaaatttcg tgatcagctg cgtgccctgt tttataccga taccgaacgt 6780 cagcgtctgc aacgtgaatt tcgtttctat tttgaaaaaa gtgccggtcg catgattctg 6840 gcagcaaaaa ttgaacagac catgcgtcag cagggctgta ttcagaatgc catgatggca 6900 ctgcaacaaa tggaaagcgc agcataaaaa cacggacgcc gcaaacggcg tccgaatttc 6960 ttggtcgacc gttaaatcta tcaccgcaag ggataaatat ctaacaccgt gcgtgttgac 7020 tattttacct ctggcggtga taatggttgc atgtactaat ctagataagg aatatagcca 7080 tgaccgcacc gattcaggat ctgcgtgatg caattgccct gctgcaacag catgataatc 7140 agtatctgga aaccgatcat ccggttgatc cgaatgcaga actggcaggc gtttatcgtc 7200 atattggtgc cggtggcacc gttaaacgtc cgacccgtat tggtccggca atgatgttta 7260 ataacattaa aggttatccg cacagccgta ttctggttgg tatgcatgca agccgtcagc 7320 gtgcagcact gctgctgggt tgtgaagcaa gtcagctggc actggaagtt ggtaaagcag 7380 ttaaaaaacc ggttgcaccg gtggttgttc cggcaagcag cgcaccgtgt caagagcaga 7440 tttttctggc agatgatccg gattttgatc tgcgtaccct gctgcctgca cataccaata 7500 ccccgattga tgcaggtccg tttttttgtc tgggtctggc cctggcaagc gatccggtgg 7560 atgcaagcct gaccgatgtt accattcatc gtctgtgtgt tcagggtcgt gatgaactga 7620 gcatgttcct ggcagcaggt cgccatattg aagtttttcg tcagaaagca gaagcagcag 7680 gtaaaccgct gccgattacc attaatatgg gtctggaccc agcaatctat attggcgcat 7740 gttttgaagc accgaccacc ccgtttggtt ataatgaact gggtgttgcc ggtgcactgc 7800 gtcagcgtcc ggttgaactg gttcagggtg ttagcgttcc ggaaaaagca attgcacgtg 7860 ccgaaattgt tattgaaggt gaactgctgc ctggtgttcg tgttcgtgaa gatcagcata 7920 ccaattcagg tcatgcaatg ccggaatttc cgggttattg tggtggtgca aatccgagcc 7980 tgccggttat taaagttaaa gccgttacca tgcgcaataa cgcaattctg caaaccctgg 8040 ttggtccggg tgaagaacat accaccctgg caggtctgcc gaccgaagca agcatttgga 8100 atgcagttga agcagcaatt ccgggttttc tgcaaaatgt ttatgcccat accgcaggcg 8160 gtggtaaatt tctgggtatt ctgcaagtga aaaaacgtca gcctgccgat gaaggtcgtc 8220 agggtcaggc agccctgctg gcgctggcaa cctatagcga actgaaaaat atcattctgg 8280 tggatgagga tgtggacatt tttgatagtg atgatattct gtgggcaatg accacccgta 8340 tgcagggtga tgttagcatt accaccattc cgggtattcg cggtcatcag ctggacccga 8400 gccagacacc ggaatattca ccgagcattc gtggtaatgg tattagctgc aaaaccatct 8460 ttgattgtac cgttccgtgg gcactgaaaa gccattttga acgtgcaccg tttgcagatg 8520 ttgatccgcg tccgtttgca cctgaatatt ttgcacgtct ggaaaaaaat cagggcagcg 8580 caaaataagc taataacagg cctgctggta atcgcaggaa tttttatttg gatggatccg 8640 cctacctagc ttccaagaaa gatatcctaa cagcacaaga gcggaaagat gttttgttct 8700 acatccagaa caacctctgc taaaattcct gaaaaatttt gcaaaaagtt gttgacttta 8760 tctacaaggt gtggtataat aatcttaaca acagcaggac gctcccgggt tgaggaaaac 8820 ctaatgaaac tgaccagcct gcgtgttagc ctgctggcac tgggtctggt taccagcggt 8880 tttgcagcag cagaaaccta taccgttgat cgttatcagg atgatagcga aaaaggtagc 8940 ctgcgttggg caattgaaca gagcaatgca aatagcgcac aagaaaacca gattctgatt 9000 caggcagttg gtaaagcacc gtatgttatc aaagttgata aaccgctgcc tccgattaaa 9060 agcagcgtta aaatcattgg caccgagtgg gataaaaccg gtgaatttat tgcaattgat 9120 ggcagcaact atatcaaagg cgaaggtgaa aaagcatgtc cgggtgcaaa tccgggtcag 9180 tatggcacca atgttcgtac catgaccctg cctggtctgg ttctgcaaga tgttaatggt 9240 gttaccctga aaggtctgga tgttcatcgt ttttgtattg gtgttctggt taatcgcagc 9300 agcaataacc tgattcagca taatcgtatc agcaacaatt atggtggtgc cggtgttatg 9360 attaccggtg atgatggtaa aggtaatccg accagcacca ccaccaataa taacaaagtt 9420 ctggataacg tgttcatcga taatggtgat ggtctggaac tgacccgtgg tgcagcattt 9480 aatctgattg caaataacct gtttaccagc acaaaagcca atccggaacc gagccagggt 9540 attgaaattc tgtggggtaa tgataatgcc gtggtgggta acaaattcga aaactattca 9600 gatggcctgc aaatcaattg gggtaaacgt aactatatcg cctataacga actgaccaat 9660 aacagcctgg gtttcaatct gacaggtgat ggtaacattt tcgacagcaa taaagtgcat 9720 ggtaaccgta ttggtattgc cattcgtagt gaaaaagatg ccaatgcacg tattaccctg 9780 accaaaaatc agatttggga taacggcaaa gatatcaaac gttgtgaagc cggtggtagc 9840 tgtgttccga atcagcgtct gggtgcaatt gtttttggtg ttccggcact ggaacatgaa 9900 ggttttgttg gtagccgtgg cggtggtgtt gttattgaac cggcaaaact gcaaaaaacc 9960 tgcacccagc cgaaccagca gaattgtaat gcaattccta atcagggtat tcaggcaccg 10020 aaactgacag ttagcaaaaa acagctgacc gttgaagtta aaggcacccc taatcagcgt 10080 tataatgtgg aattttttgg caatcgtaat gccagcagca gcgaagcaga acagtatctg 10140 ggtagcattg ttgttgttac cgatcatcag ggtctggcaa aagcaaattg ggctccgaaa 10200 gttagcatgc cgagcgttac cgcaaatgtg acagatcatc tgggtgcgac cagcgaactg 10260 agcagcgcag ttaaaatgcg ttaaatgcat gcgcgccgcg ttcgcgcggc gctttttttt 10320 ggtaccgagc tcgaattcac tggccgtcgt tttacaacgt cgtgactggg aaaaccctgg 10380 cgttacccaa cttaatcgcc ttgcagcaca tccccctttc gccagctggc gtaatagcga 10440 agaggcccgc accgatcgcc cttcccaaca gttgcgcagc ctgaatggcg aatggcgcct 10500 gatgcggtat tttctcctta cgcatctgtg cggtatttca caccgcatat ggtgcactct 10560 cagtacaatc tgctctgatg ccgcatagtt aagccagccc cgacacccgc caacacccgc 10620 tgacgaattc 10630 <210> 25 <211> 6452 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(6452) <223> DNA sequence of the plasmid pMG39 <400> 25 gttgacagta agacgggtaa gcctgttgat gataccgctg ccttactggg tgcattagcc 60 agtctgaatg acctgtcacg ggataatccg aagtggtcag actggaaaat cagagggcag 120 gaactgctga acagcaaaaa gtcagatagc accacatagc agacccgcca taaaacgccc 180 tgagaagccc gtgacgggct tttcttgtat tatgggtagt ttccttgcat gaatccataa 240 aaggcgcctg tagtgccatt tacccccatt cactgccaga gccgtgagcg cagcgaactg 300 aatgtcacga aaaagacagc gactcaggtg cctgatggtc ggagacaaaa ggaatattca 360 gcgatttgcc cgagcttgcg agggtgctac ttaagccttt agggttttaa ggtctgtttt 420 gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact gactaaagta 480 gtgagttata cacagggctg ggatctattc tttttatctt tttttattct ttctttattc 540 tataaattat aaccacttga atataaacaa aaaaaacaca caaaggtcta gcggaattta 600 cagagggtct agcagaattt acaagttttc cagcaaaggt ctagcagaat ttacagatac 660 ccacaactca aaggaaaagg actagtaatt atcattgact agcccatctc aattggtata 720 gtgattaaaa tcacctagac caattgagat gtatgtctga attagttgtt ttcaaagcaa 780 atgaactagc gattagtcgc tatgacttaa cggagcatga aaccaagcta attttatgct 840 gtgtggcact actcaacccc acgattgaaa accctacaag gaaagaacgg acggtatcgt 900 tcacttataa ccaatacgct cagatgatga acatcagtag ggaaaatgct tatggtgtat 960 tagctaaagc aaccagagag ctgatgacga gaactgtgga aatcaggaat cctttggtta 1020 aaggctttga gattttccag tggacaaact atgccaagtt ctcaagcgaa aaattagaat 1080 tagtttttag tgaagagata ttgccttatc ttttccagtt aaaaaaattc ataaaatata 1140 atctggaaca tgttaagtct tttgaaaaca aatactctat gaggatttat gagtggttat 1200 taaaagaact aacacaaaag aaaactcaca aggcaaatat agagattagc cttgatgaat 1260 ttaagttcat gttaatgctt gaaaataact accatgagtt taaaaggctt aaccaatggg 1320 ttttgaaacc aataagtaaa gatttaaaca cttacagcaa tatgaaattg gtggttgata 1380 agcgaggccg cccgactgat acgttgattt tccaagttga actagataga caaatggatc 1440 tcgtaaccga acttgagaac aaccagataa aaatgaatgg tgacaaaata ccaacaacca 1500 ttacatcaga ttcctaccta cgtaacggac taagaaaaac actacacgat gctttaactg 1560 caaaaattca gctcaccagt tttgaggcaa aatttttgag tgacatgcaa agtaagcatg 1620 atctcaatgg ttcgttctca tggctcacgc aaaaacaacg aaccacacta gagaacatac 1680 tggctaaata cggaaggatc tgaggttctt atggctcttg tatctatcag tgaagcatca 1740 agactaacaa acaaaagtag aacaactgtt caccgttaga tatcaaaggg aaaactgtcc 1800 atatgcacag atgaaaacgg tgtaaaaaag atagatacat cagagctttt acgagttttt 1860 ggtgcattta aagctgttca ccatgaacag atcgacaatg taacagatga acagcatgta 1920 acacctaata gaacaggtga aaccagtaaa acaaagcaac tagaacatga aattgaacac 1980 ctgagacaac ttgttacagc tcaacagtca cacatagaca gcctgaaaca ggcgatgctg 2040 cttatcgaat caaagctgcc gacaacacgg gagccagtga cgcctcccgt ggggaaaaaa 2100 tcatggcaat tctggaagaa atagcgcttt cagccggcaa acctgaagcc ggatctgcga 2160 ttctgataac aaactagcaa caccagaaca gcccgtttgc gggcagcaaa acccgttatg 2220 cttgtaaacc gttttgtgaa aaaattttta aaataaaaaa ggggacctct agggtcccca 2280 attaattagt aatataatct attaaaggtc attcaaaagg tcatccaccg gatcaattcc 2340 cctgctcgcg caggctgggt gccaagctct cgggtaacat caaggcccga tccttggagc 2400 ccttgccctc ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg acccgcagtt 2460 gcaaaccctc actgatccgc atgcccgttc catacagaag ctgggcgaac aaacgatgct 2520 cgccttccag aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc accggcaagc 2580 gccgcgacgg ccgaggtctt ccgatctcct gaagccaggg cagatccgtg cacagcacct 2640 tgccgtagaa gaacagcaag gccgccaatg cctgacgatg cgtggagacc gaaaccttgc 2700 gctcgttcgc cagccaggac agaaatgcct cgacttcgct gctgcccaag gttgccgggt 2760 gacgcacacc gtggaaacgg atgaaggcac gaacccagtg gacataagcc tgttcggttc 2820 gtaagctgta atgcaagtag cgtatgcgct cacgcaactg gtccagaacc ttgaccgaac 2880 gcagcggtgg taacggcgca gtggcggttt tcatggcttg ttatgactgt ttttttgggg 2940 tacagtctat gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt cgatgtttga 3000 tgttatggag cagcaacgat gttacgcagc agggcagtcg ccctaaaaca aagttaaaca 3060 tcatgaggga agcggtgatc gccgaagtat cgactcaact atcagaggta gttggcgtca 3120 tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt gtacggctcc gcagtggatg 3180 gcggcctgaa gccacacagt gatattgatt tgctggttac ggtgaccgta aggcttgatg 3240 aaacaacgcg gcgagctttg atcaacgacc ttttggaaac ttcggcttcc cctggagaga 3300 gcgagattct ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc attccgtggc 3360 gttatccagc taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac attcttgcag 3420 gtatcttcga gccagccacg atcgacattg atctggctat cttgctgaca aaagcaagag 3480 aacatagcgt tgccttggta ggtccagcgg cggaggaact ctttgatccg gttcctgaac 3540 aggatctatt tgaggcgcta aatgaaacct taacgctatg gaactcgccg cccgactggg 3600 ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc gcagtaaccg 3660 gcaaaatcgc gccgaaggat gtcgctgccg actgggcaat ggagcgcctg ccggcccagt 3720 atcagcccgt catacttgaa gctagacagg cttatcttgg acaagaagaa gatcgcttgg 3780 cctcgcgcgc agatcagttg gaagaatttg tccactacgt gaaaggcgag atcaccaagg 3840 tagtcggcaa ataatgtcta acaattcgtt caagccgacg ccgcttcgcg gcgcggctta 3900 actcaagcgt tagatgcact aagcacataa ttgctcacag ccaaactatc aggtcaagtc 3960 tgcttttatt atttttaagc gtgcataata agccctacac aaattgggag atatatcatg 4020 aaaggctggc tttttcttgt tatcgcaata gttggcgaag taatcgcaac atccgcatta 4080 aaatctagcg agggctttac taagctgatc cggtggatga ccttttgaat gacctttaat 4140 agattatatt actaattaat tggggaccct agaggtcccc ttttttattt taaaaatttt 4200 ttcacaaaac ggtttacaag catacgttgg ccgattcatt aatgcagctg gcacgacagg 4260 tttcccgact ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta gctcactcat 4320 taggcacccc aggctttaca ctttatgctt ccggctcgta tgttgtgtgg aattgtgagc 4380 ggataacaat ttcacacagg aaacagctat gaccatgatt acgccaagct tgcatgcctg 4440 caggtcgact ctagaggatc cgcctaccta gcttccaaga aagatatcct aacagcacaa 4500 gagcggaaag atgttttgtt ctacatccag aacaacctct gctaaaattc ctgaaaaatt 4560 ttgcaaaaag ttgttgactt tatctacaag gtgtggtata ataatcttaa caacagcagg 4620 acgctcccgg gttgaggaaa acctaatgaa actgaccagc ctgcgtgtta gcctgctggc 4680 actgggtctg gttaccagcg gttttgcagc agcagaaacc tataccgttg atcgttatca 4740 ggatgatagc gaaaaaggta gcctgcgttg ggcaattgaa cagagcaatg caaatagcgc 4800 acaagaaaac cagattctga ttcaggcagt tggtaaagca ccgtatgtta tcaaagttga 4860 taaaccgctg cctccgatta aaagcagcgt taaaatcatt ggcaccgagt gggataaaac 4920 cggtgaattt attgcaattg atggcagcaa ctatatcaaa ggcgaaggtg aaaaagcatg 4980 tccgggtgca aatccgggtc agtatggcac caatgttcgt accatgaccc tgcctggtct 5040 ggttctgcaa gatgttaatg gtgttaccct gaaaggtctg gatgttcatc gtttttgtat 5100 tggtgttctg gttaatcgca gcagcaataa cctgattcag cataatcgta tcagcaacaa 5160 ttatggtggt gccggtgtta tgattaccgg tgatgatggt aaaggtaatc cgaccagcac 5220 caccaccaat aataacaaag ttctggataa cgtgttcatc gataatggtg atggtctgga 5280 actgacccgt ggtgcagcat ttaatctgat tgcaaataac ctgtttacca gcacaaaagc 5340 caatccggaa ccgagccagg gtattgaaat tctgtggggt aatgataatg ccgtggtggg 5400 taacaaattc gaaaactatt cagatggcct gcaaatcaat tggggtaaac gtaactatat 5460 cgcctataac gaactgacca ataacagcct gggtttcaat ctgacaggtg atggtaacat 5520 tttcgacagc aataaagtgc atggtaaccg tattggtatt gccattcgta gtgaaaaaga 5580 tgccaatgca cgtattaccc tgaccaaaaa tcagatttgg gataacggca aagatatcaa 5640 acgttgtgaa gccggtggta gctgtgttcc gaatcagcgt ctgggtgcaa ttgtttttgg 5700 tgttccggca ctggaacatg aaggttttgt tggtagccgt ggcggtggtg ttgttattga 5760 accggcaaaa ctgcaaaaaa cctgcaccca gccgaaccag cagaattgta atgcaattcc 5820 taatcagggt attcaggcac cgaaactgac agttagcaaa aaacagctga ccgttgaagt 5880 taaaggcacc cctaatcagc gttataatgt ggaatttttt ggcaatcgta atgccagcag 5940 cagcgaagca gaacagtatc tgggtagcat tgttgttgtt accgatcatc agggtctggc 6000 aaaagcaaat tgggctccga aagttagcat gccgagcgtt accgcaaatg tgacagatca 6060 tctgggtgcg accagcgaac tgagcagcgc agttaaaatg cgttaaatgc atgcgcgccg 6120 cgttcgcgcg gcgctttttt ttggtaccga gctcgaattc actggccgtc gttttacaac 6180 gtcgtgactg ggaaaaccct ggcgttaccc aacttaatcg ccttgcagca catccccctt 6240 tcgccagctg gcgtaatagc gaagaggccc gcaccgatcg cccttcccaa cagttgcgca 6300 gcctgaatgg cgaatggcgc ctgatgcggt attttctcct tacgcatctg tgcggtattt 6360 cacaccgcat atggtgcact ctcagtacaa tctgctctga tgccgcatag ttaagccagc 6420 cccgacaccc gccaacaccc gctgacgaat tc 6452 <210> 26 <211> 10012 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(10012) <223> DNA sequence of the plasmid pMG47 <400> 26 gttgacagta agacgggtaa gcctgttgat gataccgctg ccttactggg tgcattagcc 60 agtctgaatg acctgtcacg ggataatccg aagtggtcag actggaaaat cagagggcag 120 gaactgctga acagcaaaaa gtcagatagc accacatagc agacccgcca taaaacgccc 180 tgagaagccc gtgacgggct tttcttgtat tatgggtagt ttccttgcat gaatccataa 240 aaggcgcctg tagtgccatt tacccccatt cactgccaga gccgtgagcg cagcgaactg 300 aatgtcacga aaaagacagc gactcaggtg cctgatggtc ggagacaaaa ggaatattca 360 gcgatttgcc cgagcttgcg agggtgctac ttaagccttt agggttttaa ggtctgtttt 420 gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact gactaaagta 480 gtgagttata cacagggctg ggatctattc tttttatctt tttttattct ttctttattc 540 tataaattat aaccacttga atataaacaa aaaaaacaca caaaggtcta gcggaattta 600 cagagggtct agcagaattt acaagttttc cagcaaaggt ctagcagaat ttacagatac 660 ccacaactca aaggaaaagg actagtaatt atcattgact agcccatctc aattggtata 720 gtgattaaaa tcacctagac caattgagat gtatgtctga attagttgtt ttcaaagcaa 780 atgaactagc gattagtcgc tatgacttaa cggagcatga aaccaagcta attttatgct 840 gtgtggcact actcaacccc acgattgaaa accctacaag gaaagaacgg acggtatcgt 900 tcacttataa ccaatacgct cagatgatga acatcagtag ggaaaatgct tatggtgtat 960 tagctaaagc aaccagagag ctgatgacga gaactgtgga aatcaggaat cctttggtta 1020 aaggctttga gattttccag tggacaaact atgccaagtt ctcaagcgaa aaattagaat 1080 tagtttttag tgaagagata ttgccttatc ttttccagtt aaaaaaattc ataaaatata 1140 atctggaaca tgttaagtct tttgaaaaca aatactctat gaggatttat gagtggttat 1200 taaaagaact aacacaaaag aaaactcaca aggcaaatat agagattagc cttgatgaat 1260 ttaagttcat gttaatgctt gaaaataact accatgagtt taaaaggctt aaccaatggg 1320 ttttgaaacc aataagtaaa gatttaaaca cttacagcaa tatgaaattg gtggttgata 1380 agcgaggccg cccgactgat acgttgattt tccaagttga actagataga caaatggatc 1440 tcgtaaccga acttgagaac aaccagataa aaatgaatgg tgacaaaata ccaacaacca 1500 ttacatcaga ttcctaccta cgtaacggac taagaaaaac actacacgat gctttaactg 1560 caaaaattca gctcaccagt tttgaggcaa aatttttgag tgacatgcaa agtaagcatg 1620 atctcaatgg ttcgttctca tggctcacgc aaaaacaacg aaccacacta gagaacatac 1680 tggctaaata cggaaggatc tgaggttctt atggctcttg tatctatcag tgaagcatca 1740 agactaacaa acaaaagtag aacaactgtt caccgttaga tatcaaaggg aaaactgtcc 1800 atatgcacag atgaaaacgg tgtaaaaaag atagatacat cagagctttt acgagttttt 1860 ggtgcattta aagctgttca ccatgaacag atcgacaatg taacagatga acagcatgta 1920 acacctaata gaacaggtga aaccagtaaa acaaagcaac tagaacatga aattgaacac 1980 ctgagacaac ttgttacagc tcaacagtca cacatagaca gcctgaaaca ggcgatgctg 2040 cttatcgaat caaagctgcc gacaacacgg gagccagtga cgcctcccgt ggggaaaaaa 2100 tcatggcaat tctggaagaa atagcgcttt cagccggcaa acctgaagcc ggatctgcga 2160 ttctgataac aaactagcaa caccagaaca gcccgtttgc gggcagcaaa acccgttatg 2220 cttgtaaacc gttttgtgaa aaaattttta aaataaaaaa ggggacctct agggtcccca 2280 attaattagt aatataatct attaaaggtc attcaaaagg tcatccaccg gatcaattcc 2340 cctgctcgcg caggctgggt gccaagctct cgggtaacat caaggcccga tccttggagc 2400 ccttgccctc ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg acccgcagtt 2460 gcaaaccctc actgatccgc atgcccgttc catacagaag ctgggcgaac aaacgatgct 2520 cgccttccag aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc accggcaagc 2580 gccgcgacgg ccgaggtctt ccgatctcct gaagccaggg cagatccgtg cacagcacct 2640 tgccgtagaa gaacagcaag gccgccaatg cctgacgatg cgtggagacc gaaaccttgc 2700 gctcgttcgc cagccaggac agaaatgcct cgacttcgct gctgcccaag gttgccgggt 2760 gacgcacacc gtggaaacgg atgaaggcac gaacccagtg gacataagcc tgttcggttc 2820 gtaagctgta atgcaagtag cgtatgcgct cacgcaactg gtccagaacc ttgaccgaac 2880 gcagcggtgg taacggcgca gtggcggttt tcatggcttg ttatgactgt ttttttgggg 2940 tacagtctat gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt cgatgtttga 3000 tgttatggag cagcaacgat gttacgcagc agggcagtcg ccctaaaaca aagttaaaca 3060 tcatgaggga agcggtgatc gccgaagtat cgactcaact atcagaggta gttggcgtca 3120 tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt gtacggctcc gcagtggatg 3180 gcggcctgaa gccacacagt gatattgatt tgctggttac ggtgaccgta aggcttgatg 3240 aaacaacgcg gcgagctttg atcaacgacc ttttggaaac ttcggcttcc cctggagaga 3300 gcgagattct ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc attccgtggc 3360 gttatccagc taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac attcttgcag 3420 gtatcttcga gccagccacg atcgacattg atctggctat cttgctgaca aaagcaagag 3480 aacatagcgt tgccttggta ggtccagcgg cggaggaact ctttgatccg gttcctgaac 3540 aggatctatt tgaggcgcta aatgaaacct taacgctatg gaactcgccg cccgactggg 3600 ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc gcagtaaccg 3660 gcaaaatcgc gccgaaggat gtcgctgccg actgggcaat ggagcgcctg ccggcccagt 3720 atcagcccgt catacttgaa gctagacagg cttatcttgg acaagaagaa gatcgcttgg 3780 cctcgcgcgc agatcagttg gaagaatttg tccactacgt gaaaggcgag atcaccaagg 3840 tagtcggcaa ataatgtcta acaattcgtt caagccgacg ccgcttcgcg gcgcggctta 3900 actcaagcgt tagatgcact aagcacataa ttgctcacag ccaaactatc aggtcaagtc 3960 tgcttttatt atttttaagc gtgcataata agccctacac aaattgggag atatatcatg 4020 aaaggctggc tttttcttgt tatcgcaata gttggcgaag taatcgcaac atccgcatta 4080 aaatctagcg agggctttac taagctgatc cggtggatga ccttttgaat gacctttaat 4140 agattatatt actaattaat tggggaccct agaggtcccc ttttttattt taaaaatttt 4200 ttcacaaaac ggtttacaag catacgttgg ccgattcatt aatgcagctg gcacgacagg 4260 tttcccgact ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta gctcactcat 4320 taggcacccc aggctttaca ctttatgctt ccggctcgta tgttgtgtgg aattgtgagc 4380 ggataacaat ttcacacagg aaacagctat gaccatgatt acgccaagct tgctattgac 4440 gacagctatg gttcactgtc caccaaccaa aactgtgctc agtaccgcca atatttctcc 4500 cttgaggggt acaaagaggt gtccctagaa gagatccacg ctgtgtaaaa attttacaaa 4560 aaggtattga ctttccctac agggtgtgta ataatttaat tacaggcggg ggcaaccccg 4620 cctgttctgc agaggaggaa tatagccatg gaagtgaaaa tcttcaacac ccaggatgtt 4680 caggattttc tgcgtgttgc aagcggtctg gaacaagagg gtggtaatcc gcgtgttaaa 4740 caaattattc atcgtgttct gagcgacctg tataaagcaa ttgaagatct gaatatcacc 4800 agcgacgaat attgggcagg cgttgcatat ctgaatcagc tgggtgcaaa tcaagaagca 4860 ggtctgctga gtccgggtct gggttttgat cattatctgg atatgcgtat ggatgcagaa 4920 gatgcagcac tgggtattga aaatgcaaca ccgcgtacca ttgaaggtcc gctgtatgtt 4980 gcgggtgcac cggaaagcgt tggttatgca cgcatggatg atggtagcga tccgaatggt 5040 cataccctga ttctgcatgg caccattttt gatgcagatg gtaaaccgct gccgaatgca 5100 aaagttgaaa tttggcatgc aaacaccaaa ggcttttata gccattttga tccgaccggt 5160 gaacagcagg cctttaatat gcgtcgtagc attattaccg atgagaatgg tcagtatcgt 5220 gttcgtacca ttctgcctgc cggttatggt tgtcctccgg aaggtccgac ccagcaactg 5280 ctgaaccaac tgggtcgtca tggtaatcgt ccggcacata ttcattattt tgttagcgca 5340 gatggtcacc gtaaactgac cacccagatt aatgttgccg gtgatccgta tacctatgat 5400 gattttgcat atgccacccg tgaaggtctg gttgttgatg cagttgaaca taccgatccg 5460 gaagcaatta aagccaatga tgtggaaggt ccttttgccg aaatggtgtt tgatctgaaa 5520 ctgacccgtc tggttgatgg tgttgataat caggttgtgg atcgtccgcg tctggcagtt 5580 taatacacca aaatggttca aaattatcag gcgagtgatc atgatcactg gcctgttttt 5640 atttcaggga agggtggaga caattacgtg gataatcaga tcatccaaga aaccgtggat 5700 aaaattctga gcgttctgcc gaatcaggca ggtcagctgg cacgtctggt gcgtctgatg 5760 caatttgcat gcgatccgac cattaccgtt attggcaaat ataaccatgg taaaagccgt 5820 ctgctgaatg aactgattgg caccgatatc tttagcgttg cagataaacg tgaaaccatt 5880 cagctggccg aacataaaca ggatcaggtt cgttggctgg atgcacctgg tctggatgcc 5940 gatgttgcag cagttgatga tcgtcatgca tttgaagcag tttggaccca ggcagatatt 6000 cgtctgtttg ttcatagcgt tcgtgaaggt gaactggatg caaccgaaca ccatctgctg 6060 caacagctga ttgaagatgc cgatcatagc cgtcgtcaga ccattctggt tctgacccag 6120 attgatcaga ttccggatca gaccatcctg acacagatta aaaccagcat tgcacagcag 6180 gttccgaaac tggatatttg ggcagttagc gcaacccgtc atcgtcaggg cattgaaaac 6240 ggtaaaaccc tgctgatcga aaaaagcggt attggtgcac tgcgccatac cctggaacag 6300 gcactggcac aggtgccgag cgcacgtacc tatgaaaaaa atcgtctgct gtcagatctg 6360 caccatcagc tgaaacaact gctgctggat cagaaacatg ttctgcaaca actgcaacag 6420 acacagcaac agcagctgca tgattttgat accggtctga ttaacattct ggacaaaatt 6480 cgtgttgatc tggaaccgat tgtgaatatt gatggtcagg atcaagcact gaatccggat 6540 agctttgcaa ccatgtttaa aaacaccgca gcaaaacagc agcgtgccaa agttcagatt 6600 gcatatagcc gtgcatgcat tgaaatcaac agccatctga ttcgccatgg tgttgttggt 6660 ctgcctgcgg aacagcagac caccattaaa agcattgata ccgtgattgt tgccgtgttt 6720 ggtatcagcg ttaaatttcg tgatcagctg cgtgccctgt tttataccga taccgaacgt 6780 cagcgtctgc aacgtgaatt tcgtttctat tttgaaaaaa gtgccggtcg catgattctg 6840 gcagcaaaaa ttgaacagac catgcgtcag cagggctgta ttcagaatgc catgatggca 6900 ctgcaacaaa tggaaagcgc agcataaaaa cacggacgcc gcaaacggcg tccgaatttc 6960 ttggtcgacc gttaaatcta tcaccgcaag ggataaatat ctaacaccgt gcgtgttgac 7020 tattttacct ctggcggtga taatggttgc atgtactaat ctagataagg aatatagcca 7080 tgaccgcacc gattcaggat ctgcgtgatg caattgccct gctgcaacag catgataatc 7140 agtatctgga aaccgatcat ccggttgatc cgaatgcaga actggcaggc gtttatcgtc 7200 atattggtgc cggtggcacc gttaaacgtc cgacccgtat tggtccggca atgatgttta 7260 ataacattaa aggttatccg cacagccgta ttctggttgg tatgcatgca agccgtcagc 7320 gtgcagcact gctgctgggt tgtgaagcaa gtcagctggc actggaagtt ggtaaagcag 7380 ttaaaaaacc ggttgcaccg gtggttgttc cggcaagcag cgcaccgtgt caagagcaga 7440 tttttctggc agatgatccg gattttgatc tgcgtaccct gctgcctgca cataccaata 7500 ccccgattga tgcaggtccg tttttttgtc tgggtctggc cctggcaagc gatccggtgg 7560 atgcaagcct gaccgatgtt accattcatc gtctgtgtgt tcagggtcgt gatgaactga 7620 gcatgttcct ggcagcaggt cgccatattg aagtttttcg tcagaaagca gaagcagcag 7680 gtaaaccgct gccgattacc attaatatgg gtctggaccc agcaatctat attggcgcat 7740 gttttgaagc accgaccacc ccgtttggtt ataatgaact gggtgttgcc ggtgcactgc 7800 gtcagcgtcc ggttgaactg gttcagggtg ttagcgttcc ggaaaaagca attgcacgtg 7860 ccgaaattgt tattgaaggt gaactgctgc ctggtgttcg tgttcgtgaa gatcagcata 7920 ccaattcagg tcatgcaatg ccggaatttc cgggttattg tggtggtgca aatccgagcc 7980 tgccggttat taaagttaaa gccgttacca tgcgcaataa cgcaattctg caaaccctgg 8040 ttggtccggg tgaagaacat accaccctgg caggtctgcc gaccgaagca agcatttgga 8100 atgcagttga agcagcaatt ccgggttttc tgcaaaatgt ttatgcccat accgcaggcg 8160 gtggtaaatt tctgggtatt ctgcaagtga aaaaacgtca gcctgccgat gaaggtcgtc 8220 agggtcaggc agccctgctg gcgctggcaa cctatagcga actgaaaaat atcattctgg 8280 tggatgagga tgtggacatt tttgatagtg atgatattct gtgggcaatg accacccgta 8340 tgcagggtga tgttagcatt accaccattc cgggtattcg cggtcatcag ctggacccga 8400 gccagacacc ggaatattca ccgagcattc gtggtaatgg tattagctgc aaaaccatct 8460 ttgattgtac cgttccgtgg gcactgaaaa gccattttga acgtgcaccg tttgcagatg 8520 ttgatccgcg tccgtttgca cctgaatatt ttgcacgtct ggaaaaaaat cagggcagcg 8580 caaaataagc taataacagg cctgctggta atcgcaggaa tttttatttg gatggatccg 8640 cctacctagc ttccaagaaa gatatcctaa cagcacaaga gcggaaagat gttttgttct 8700 acatccagaa caacctctgc taaaattcct gaaaaatttt gcaaaaagtt gttgacttta 8760 tctacaaggt gtggtataat aatcttaaca acagcaggac gctcccgggt tgaggaaaac 8820 ctaatgaaat atagcctgtg caccattagc tttcgtcacc agctgattag ctttaccgat 8880 attgttcagt ttgcctatga aaacggcttt gaaggtattg aactgtgggg cacccatgca 8940 cagaatctgt atatgcaaga atatgaaacc accgaacgtg aactgaattg cctgaaagat 9000 aaaaccctgg aaattaccat gatcagcgat tatctggata ttagcctgag cgcagatttt 9060 gaaaaaacca tcgaaaaatg tgaacagctg gcaattctgg ccaattggtt taaaacgaac 9120 aaaattcgta cctttgccgg tcagaaaggt agtgcagatt ttagccagca agaacgtcaa 9180 gagtatgtga atcgtattcg catgatttgt gaactgtttg cccagcataa tatgtatgtt 9240 ctgctggaaa cccatccgaa taccctgacc gataccctgc cgagcaccct ggaactgctg 9300 ggtgaagttg atcatccgaa tctgaaaatc aacctggatt ttctgcatat ctgggaaagc 9360 ggtgcagatc cggttgatag ctttcagcag ctgcgtccgt ggattcagca ttatcacttt 9420 aaaaacatta gcagcgcaga ctatctgcat gtgtttgaac cgaataatgt ttatgcagca 9480 gcaggtaatc gtaccggtat ggttccgctg tttgaaggca ttgttaacta tgatgaaatc 9540 atccaagaag tgcgcgatac cgatcatttt gcaagcctgg aatggtttgg tcataacgca 9600 aaagatattc tgaaagccga aatgaaagtg ctgaccaatc gtaatctgga agttgttacc 9660 agctaaatgc atgcgcgccg cgttcgcgcg gcgctttttt ttggtaccga gctcgaattc 9720 actggccgtc gttttacaac gtcgtgactg ggaaaaccct ggcgttaccc aacttaatcg 9780 ccttgcagca catccccctt tcgccagctg gcgtaatagc gaagaggccc gcaccgatcg 9840 cccttcccaa cagttgcgca gcctgaatgg cgaatggcgc ctgatgcggt attttctcct 9900 tacgcatctg tgcggtattt cacaccgcat atggtgcact ctcagtacaa tctgctctga 9960 tgccgcatag ttaagccagc cccgacaccc gccaacaccc gctgacgaat tc 10012 <210> 27 <211> 10249 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(10249) <223> DNA sequence of the plasmid pMG70 <400> 27 gttgacagta agacgggtaa gcctgttgat gataccgctg ccttactggg tgcattagcc 60 agtctgaatg acctgtcacg ggataatccg aagtggtcag actggaaaat cagagggcag 120 gaactgctga acagcaaaaa gtcagatagc accacatagc agacccgcca taaaacgccc 180 tgagaagccc gtgacgggct tttcttgtat tatgggtagt ttccttgcat gaatccataa 240 aaggcgcctg tagtgccatt tacccccatt cactgccaga gccgtgagcg cagcgaactg 300 aatgtcacga aaaagacagc gactcaggtg cctgatggtc ggagacaaaa ggaatattca 360 gcgatttgcc cgagcttgcg agggtgctac ttaagccttt agggttttaa ggtctgtttt 420 gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact gactaaagta 480 gtgagttata cacagggctg ggatctattc tttttatctt tttttattct ttctttattc 540 tataaattat aaccacttga atataaacaa aaaaaacaca caaaggtcta gcggaattta 600 cagagggtct agcagaattt acaagttttc cagcaaaggt ctagcagaat ttacagatac 660 ccacaactca aaggaaaagg actagtaatt atcattgact agcccatctc aattggtata 720 gtgattaaaa tcacctagac caattgagat gtatgtctga attagttgtt ttcaaagcaa 780 atgaactagc gattagtcgc tatgacttaa cggagcatga aaccaagcta attttatgct 840 gtgtggcact actcaacccc acgattgaaa accctacaag gaaagaacgg acggtatcgt 900 tcacttataa ccaatacgct cagatgatga acatcagtag ggaaaatgct tatggtgtat 960 tagctaaagc aaccagagag ctgatgacga gaactgtgga aatcaggaat cctttggtta 1020 aaggctttga gattttccag tggacaaact atgccaagtt ctcaagcgaa aaattagaat 1080 tagtttttag tgaagagata ttgccttatc ttttccagtt aaaaaaattc ataaaatata 1140 atctggaaca tgttaagtct tttgaaaaca aatactctat gaggatttat gagtggttat 1200 taaaagaact aacacaaaag aaaactcaca aggcaaatat agagattagc cttgatgaat 1260 ttaagttcat gttaatgctt gaaaataact accatgagtt taaaaggctt aaccaatggg 1320 ttttgaaacc aataagtaaa gatttaaaca cttacagcaa tatgaaattg gtggttgata 1380 agcgaggccg cccgactgat acgttgattt tccaagttga actagataga caaatggatc 1440 tcgtaaccga acttgagaac aaccagataa aaatgaatgg tgacaaaata ccaacaacca 1500 ttacatcaga ttcctaccta cgtaacggac taagaaaaac actacacgat gctttaactg 1560 caaaaattca gctcaccagt tttgaggcaa aatttttgag tgacatgcaa agtaagcatg 1620 atctcaatgg ttcgttctca tggctcacgc aaaaacaacg aaccacacta gagaacatac 1680 tggctaaata cggaaggatc tgaggttctt atggctcttg tatctatcag tgaagcatca 1740 agactaacaa acaaaagtag aacaactgtt caccgttaga tatcaaaggg aaaactgtcc 1800 atatgcacag atgaaaacgg tgtaaaaaag atagatacat cagagctttt acgagttttt 1860 ggtgcattta aagctgttca ccatgaacag atcgacaatg taacagatga acagcatgta 1920 acacctaata gaacaggtga aaccagtaaa acaaagcaac tagaacatga aattgaacac 1980 ctgagacaac ttgttacagc tcaacagtca cacatagaca gcctgaaaca ggcgatgctg 2040 cttatcgaat caaagctgcc gacaacacgg gagccagtga cgcctcccgt ggggaaaaaa 2100 tcatggcaat tctggaagaa atagcgcttt cagccggcaa acctgaagcc ggatctgcga 2160 ttctgataac aaactagcaa caccagaaca gcccgtttgc gggcagcaaa acccgttatg 2220 cttgtaaacc gttttgtgaa aaaattttta aaataaaaaa ggggacctct agggtcccca 2280 attaattagt aatataatct attaaaggtc attcaaaagg tcatccaccg gatcaattcc 2340 cctgctcgcg caggctgggt gccaagctct cgggtaacat caaggcccga tccttggagc 2400 ccttgccctc ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg acccgcagtt 2460 gcaaaccctc actgatccgc atgcccgttc catacagaag ctgggcgaac aaacgatgct 2520 cgccttccag aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc accggcaagc 2580 gccgcgacgg ccgaggtctt ccgatctcct gaagccaggg cagatccgtg cacagcacct 2640 tgccgtagaa gaacagcaag gccgccaatg cctgacgatg cgtggagacc gaaaccttgc 2700 gctcgttcgc cagccaggac agaaatgcct cgacttcgct gctgcccaag gttgccgggt 2760 gacgcacacc gtggaaacgg atgaaggcac gaacccagtg gacataagcc tgttcggttc 2820 gtaagctgta atgcaagtag cgtatgcgct cacgcaactg gtccagaacc ttgaccgaac 2880 gcagcggtgg taacggcgca gtggcggttt tcatggcttg ttatgactgt ttttttgggg 2940 tacagtctat gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt cgatgtttga 3000 tgttatggag cagcaacgat gttacgcagc agggcagtcg ccctaaaaca aagttaaaca 3060 tcatgaggga agcggtgatc gccgaagtat cgactcaact atcagaggta gttggcgtca 3120 tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt gtacggctcc gcagtggatg 3180 gcggcctgaa gccacacagt gatattgatt tgctggttac ggtgaccgta aggcttgatg 3240 aaacaacgcg gcgagctttg atcaacgacc ttttggaaac ttcggcttcc cctggagaga 3300 gcgagattct ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc attccgtggc 3360 gttatccagc taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac attcttgcag 3420 gtatcttcga gccagccacg atcgacattg atctggctat cttgctgaca aaagcaagag 3480 aacatagcgt tgccttggta ggtccagcgg cggaggaact ctttgatccg gttcctgaac 3540 aggatctatt tgaggcgcta aatgaaacct taacgctatg gaactcgccg cccgactggg 3600 ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc gcagtaaccg 3660 gcaaaatcgc gccgaaggat gtcgctgccg actgggcaat ggagcgcctg ccggcccagt 3720 atcagcccgt catacttgaa gctagacagg cttatcttgg acaagaagaa gatcgcttgg 3780 cctcgcgcgc agatcagttg gaagaatttg tccactacgt gaaaggcgag atcaccaagg 3840 tagtcggcaa ataatgtcta acaattcgtt caagccgacg ccgcttcgcg gcgcggctta 3900 actcaagcgt tagatgcact aagcacataa ttgctcacag ccaaactatc aggtcaagtc 3960 tgcttttatt atttttaagc gtgcataata agccctacac aaattgggag atatatcatg 4020 aaaggctggc tttttcttgt tatcgcaata gttggcgaag taatcgcaac atccgcatta 4080 aaatctagcg agggctttac taagctgatc cggtggatga ccttttgaat gacctttaat 4140 agattatatt actaattaat tggggaccct agaggtcccc ttttttattt taaaaatttt 4200 ttcacaaaac ggtttacaag catacgttgg ccgattcatt aatgcagctg gcacgacagg 4260 tttcccgact ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta gctcactcat 4320 taggcacccc aggctttaca ctttatgctt ccggctcgta tgttgtgtgg aattgtgagc 4380 ggataacaat ttcacacagg aaacagctat gaccatgatt acgccaagct tgctattgac 4440 gacagctatg gttcactgtc caccaaccaa aactgtgctc agtaccgcca atatttctcc 4500 cttgaggggt acaaagaggt gtccctagaa gagatccacg ctgtgtaaaa attttacaaa 4560 aaggtattga ctttccctac agggtgtgta ataatttaat tacaggcggg ggcaaccccg 4620 cctgttctgc agaggaggaa tatagccatg gaagtgaaaa tcttcaacac ccaggatgtt 4680 caggattttc tgcgtgttgc aagcggtctg gaacaagagg gtggtaatcc gcgtgttaaa 4740 caaattattc atcgtgttct gagcgacctg tataaagcaa ttgaagatct gaatatcacc 4800 agcgacgaat attgggcagg cgttgcatat ctgaatcagc tgggtgcaaa tcaagaagca 4860 ggtctgctga gtccgggtct gggttttgat cattatctgg atatgcgtat ggatgcagaa 4920 gatgcagcac tgggtattga aaatgcaaca ccgcgtacca ttgaaggtcc gctgtatgtt 4980 gcgggtgcac cggaaagcgt tggttatgca cgcatggatg atggtagcga tccgaatggt 5040 cataccctga ttctgcatgg caccattttt gatgcagatg gtaaaccgct gccgaatgca 5100 aaagttgaaa tttggcatgc aaacaccaaa ggcttttata gccattttga tccgaccggt 5160 gaacagcagg cctttaatat gcgtcgtagc attattaccg atgagaatgg tcagtatcgt 5220 gttcgtacca ttctgcctgc cggttatggt tgtcctccgg aaggtccgac ccagcaactg 5280 ctgaaccaac tgggtcgtca tggtaatcgt ccggcacata ttcattattt tgttagcgca 5340 gatggtcacc gtaaactgac cacccagatt aatgttgccg gtgatccgta tacctatgat 5400 gattttgcat atgccacccg tgaaggtctg gttgttgatg cagttgaaca taccgatccg 5460 gaagcaatta aagccaatga tgtggaaggt ccttttgccg aaatggtgtt tgatctgaaa 5520 ctgacccgtc tggttgatgg tgttgataat caggttgtgg atcgtccgcg tctggcagtt 5580 taatacacca aaatggttca aaattatcag gcgagtgatc atgatcactg gcctgttttt 5640 atttcaggga agggtggaga caattacgtg gataatcaga tcatccaaga aaccgtggat 5700 aaaattctga gcgttctgcc gaatcaggca ggtcagctgg cacgtctggt gcgtctgatg 5760 caatttgcat gcgatccgac cattaccgtt attggcaaat ataaccatgg taaaagccgt 5820 ctgctgaatg aactgattgg caccgatatc tttagcgttg cagataaacg tgaaaccatt 5880 cagctggccg aacataaaca ggatcaggtt cgttggctgg atgcacctgg tctggatgcc 5940 gatgttgcag cagttgatga tcgtcatgca tttgaagcag tttggaccca ggcagatatt 6000 cgtctgtttg ttcatagcgt tcgtgaaggt gaactggatg caaccgaaca ccatctgctg 6060 caacagctga ttgaagatgc cgatcatagc cgtcgtcaga ccattctggt tctgacccag 6120 attgatcaga ttccggatca gaccatcctg acacagatta aaaccagcat tgcacagcag 6180 gttccgaaac tggatatttg ggcagttagc gcaacccgtc atcgtcaggg cattgaaaac 6240 ggtaaaaccc tgctgatcga aaaaagcggt attggtgcac tgcgccatac cctggaacag 6300 gcactggcac aggtgccgag cgcacgtacc tatgaaaaaa atcgtctgct gtcagatctg 6360 caccatcagc tgaaacaact gctgctggat cagaaacatg ttctgcaaca actgcaacag 6420 acacagcaac agcagctgca tgattttgat accggtctga ttaacattct ggacaaaatt 6480 cgtgttgatc tggaaccgat tgtgaatatt gatggtcagg atcaagcact gaatccggat 6540 agctttgcaa ccatgtttaa aaacaccgca gcaaaacagc agcgtgccaa agttcagatt 6600 gcatatagcc gtgcatgcat tgaaatcaac agccatctga ttcgccatgg tgttgttggt 6660 ctgcctgcgg aacagcagac caccattaaa agcattgata ccgtgattgt tgccgtgttt 6720 ggtatcagcg ttaaatttcg tgatcagctg cgtgccctgt tttataccga taccgaacgt 6780 cagcgtctgc aacgtgaatt tcgtttctat tttgaaaaaa gtgccggtcg catgattctg 6840 gcagcaaaaa ttgaacagac catgcgtcag cagggctgta ttcagaatgc catgatggca 6900 ctgcaacaaa tggaaagcgc agcataaaaa cacggacgcc gcaaacggcg tccgaatttc 6960 ttggtcgacc gttaaatcta tcaccgcaag ggataaatat ctaacaccgt gcgtgttgac 7020 tattttacct ctggcggtga taatggttgc atgtactaat ctagataagg aatatagcca 7080 tgaccgcacc gattcaggat ctgcgtgatg caattgccct gctgcaacag catgataatc 7140 agtatctgga aaccgatcat ccggttgatc cgaatgcaga actggcaggc gtttatcgtc 7200 atattggtgc cggtggcacc gttaaacgtc cgacccgtat tggtccggca atgatgttta 7260 ataacattaa aggttatccg cacagccgta ttctggttgg tatgcatgca agccgtcagc 7320 gtgcagcact gctgctgggt tgtgaagcaa gtcagctggc actggaagtt ggtaaagcag 7380 ttaaaaaacc ggttgcaccg gtggttgttc cggcaagcag cgcaccgtgt caagagcaga 7440 tttttctggc agatgatccg gattttgatc tgcgtaccct gctgcctgca cataccaata 7500 ccccgattga tgcaggtccg tttttttgtc tgggtctggc cctggcaagc gatccggtgg 7560 atgcaagcct gaccgatgtt accattcatc gtctgtgtgt tcagggtcgt gatgaactga 7620 gcatgttcct ggcagcaggt cgccatattg aagtttttcg tcagaaagca gaagcagcag 7680 gtaaaccgct gccgattacc attaatatgg gtctggaccc agcaatctat attggcgcat 7740 gttttgaagc accgaccacc ccgtttggtt ataatgaact gggtgttgcc ggtgcactgc 7800 gtcagcgtcc ggttgaactg gttcagggtg ttagcgttcc ggaaaaagca attgcacgtg 7860 ccgaaattgt tattgaaggt gaactgctgc ctggtgttcg tgttcgtgaa gatcagcata 7920 ccaattcagg tcatgcaatg ccggaatttc cgggttattg tggtggtgca aatccgagcc 7980 tgccggttat taaagttaaa gccgttacca tgcgcaataa cgcaattctg caaaccctgg 8040 ttggtccggg tgaagaacat accaccctgg caggtctgcc gaccgaagca agcatttgga 8100 atgcagttga agcagcaatt ccgggttttc tgcaaaatgt ttatgcccat accgcaggcg 8160 gtggtaaatt tctgggtatt ctgcaagtga aaaaacgtca gcctgccgat gaaggtcgtc 8220 agggtcaggc agccctgctg gcgctggcaa cctatagcga actgaaaaat atcattctgg 8280 tggatgagga tgtggacatt tttgatagtg atgatattct gtgggcaatg accacccgta 8340 tgcagggtga tgttagcatt accaccattc cgggtattcg cggtcatcag ctggacccga 8400 gccagacacc ggaatattca ccgagcattc gtggtaatgg tattagctgc aaaaccatct 8460 ttgattgtac cgttccgtgg gcactgaaaa gccattttga acgtgcaccg tttgcagatg 8520 ttgatccgcg tccgtttgca cctgaatatt ttgcacgtct ggaaaaaaat cagggcagcg 8580 caaaataagc taataacagg cctgctggta atcgcaggaa tttttatttg gatggatccg 8640 cctacctagc ttccaagaaa gatatcctaa cagcacaaga gcggaaagat gttttgttct 8700 acatccagaa caacctctgc taaaattcct gaaaaatttt gcaaaaagtt gttgacttta 8760 tctacaaggt gtggtataat aatcttaaca acagcaggac gctcccgggt tgaggaaaac 8820 ctaatgccga gcaaactggc aattagcagc atgagcctgg gtcgttgttt tgcaggtcat 8880 agcctggata gtaaactgga tgcagcacag cgttatggtt atctgggtat tgaactgttt 8940 tatgaggatc tggttgatgt tgcagaacat ctgagcaatg aacgtccgag tccggaaggt 9000 ccgtttgttg aagcacagat tgcagcagca cgtcatattc tgcaaatgtg tcaggcacgt 9060 ggtctggaag ttgtttgtct gcaaccgttt atgcattatg atggtctgaa tgatcgtgcc 9120 gaacatgaac gtcgtctgga aaaactggca ctgtggattg aactggcaca tgaactgcat 9180 accgatatta ttcagattcc ggcaaatttt ctgcctgcaa atcaggttag cgataatctg 9240 gatctgattg ttagcgatct gtgtaaagtt gcagatattg gtgcacaggc actgcctccg 9300 attcgttttg catatgaaag cctgtgttgg agcacccgtg ttgatctgtg ggaacgttgt 9360 tgggatattg ttcagcgtgt ggatcgtccg aattttggta tttgtctgga tacctttaac 9420 atcctgggtc gcatttatgc agatccgacc agcccgagcg gtcgtacccc gaatgcaaaa 9480 gaagcagttc gtaaaagcat tgccaatctg gttagccgtg tggatgttag caaagttttt 9540 tatgttcagg ttgtggatgc cgaacgtctg agtaaaccgc tgctgcctgg tcatccgtat 9600 tataacccgg aacagcctgc acgtatgagc tggtcacgta attgtcgtct gttctatggt 9660 gaaaccgaat atggtgcata tctgccggtt aaagaagttg cacgcgcact gtttcatggt 9720 attggttttg aaggttgggt tagcctggaa ctgtttaatc gtcgtatgag cgaagaaggt 9780 ccggaagttc ctgaagaact ggccatgcgt ggtgcaatta gctgggcaaa actggttcag 9840 gatctgcgta ttccggttga aggtccgctg gttaccatgc ctcgtgttag cgcaagcctg 9900 taaatgcatg cgcgccgcgt tcgcgcggcg cttttttttg gtaccgagct cgaattcact 9960 ggccgtcgtt ttacaacgtc gtgactggga aaaccctggc gttacccaac ttaatcgcct 10020 tgcagcacat ccccctttcg ccagctggcg taatagcgaa gaggcccgca ccgatcgccc 10080 ttcccaacag ttgcgcagcc tgaatggcga atggcgcctg atgcggtatt ttctccttac 10140 gcatctgtgc ggtatttcac accgcatatg gtgcactctc agtacaatct gctctgatgc 10200 cgcatagtta agccagcccc gacacccgcc aacacccgct gacgaattc 10249 <210> 28 <211> 7623 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(7623) <223> DNA sequence of the plasmid pCP32AMP <400> 28 acatgaatgg tcttcggttt ccgtgtttcg taaagtctgg aaacgcggaa gtcagcgccc 60 tgcaccatta tgttccggat ctgcatcgca ggatgctgct ggctaccctg tggaacacct 120 acatctgtat taacgaagcg ctggcattga ccctgagtga tttttctctg gtcccgccgc 180 atccataccg ccagttgttt accctcacaa cgttccagta accgggcatg ttcatcatca 240 gtaacccgta tcgtgagcat cctctctcgt ttcatcggta tcattacccc catgaacaga 300 aattccccct tacacggagg catcaagtga ccaaacagga aaaaaccgcc cttaacatgg 360 cccgctttat cagaagccag acattaacgc ttctggagaa actcaacgag ctggacgcgg 420 atgaacaggc agacatctgt gaatcgcttc acgaccacgc tgatgagctt taccgcagct 480 gcctcgcgcg tttcggtgat gacggtgaaa acctctgaca catgcagctc ccggagacgg 540 tcacagcttg tctgtaagcg gatgccggga gcagacaagc ccgtcagggc gcgtcagcgg 600 gtgttggcgg gtgtcggggc gcagccatga cccagtcacg tagcgatagc ggagtgtata 660 ctggcttaac tatgcggcat cagagcagat tgtactgaga gtgcaccata tgcggtgtga 720 aataccgcac agatgcgtaa ggagaaaata ccgcatcagg cgctcttccg cttcctcgct 780 cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc actcaaaggc 840 ggtaatacgg ttatccacag aatcagggga taacgcagga aagaacatgt gagcaaaagg 900 ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg 960 cccccctgac gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg 1020 actataaaga taccaggcgt ttccccctgg aagctccctc gtgcgctctc ctgttccgac 1080 cctgccgctt accggatacc tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca 1140 tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt 1200 gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc 1260 caacccggta agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag 1320 agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac 1380 tagaaggaca gtatttggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt 1440 tggtagctct tgatccggca aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa 1500 gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg 1560 gtctgacgct cagtggaacg aaaactcacg ttaagggatt ttggtcatga gattatcaaa 1620 aaggatcttc acctagatcc ttttaaatta aaaatgaagt tttaaatcaa tctaaagtat 1680 atatgagtaa acttggtctg acagttacca atgcttaatc agtgaggcac ctatctcagc 1740 gatctgtcta tttcgttcat ccatagttgc ctgactcccc gtcgtgtaga taactacgat 1800 acgggagggc ttaccatctg gccccagtgc tgcaatgata ccgcgagacc cacgctcacc 1860 ggctccagat ttatcagcaa taaaccagcc agccggaagg gccgagcgca gaagtggtcc 1920 tgcaacttta tccgcctcca tccagtctat taattgttgc cgggaagcta gagtaagtag 1980 ttcgccagtt aatagtttgc gcaacgttgt tgccattgct gcaggcatcg tggtgtcacg 2040 ctcgtcgttt ggtatggctt cattcagctc cggttcccaa cgatcaaggc gagttacatg 2100 atcccccatg ttgtgcaaaa aagcggttag ctccttcggt cctccgatcg ttgtcagaag 2160 taagttggcc gcagtgttat cactcatggt tatggcagca ctgcataatt ctcttactgt 2220 catgccatcc gtaagatgct tttctgtgac tggtgagtac tcaaccaagt cattctgaga 2280 atagtgtatg cggcgaccga gttgctcttg cccggcgtca acacgggata ataccgcgcc 2340 acatagcaga actttaaaag tgctcatcat tggaaaacgt tcttcggggc gaaaactctc 2400 aaggatctta ccgctgttga gatccagttc gatgtaaccc actcgtgcac ccaactgatc 2460 ttcagcatct tttactttca ccagcgtttc tgggtgagca aaaacaggaa ggcaaaatgc 2520 cgcaaaaaag ggaataaggg cgacacggaa atgttgaata ctcatactct tcctttttca 2580 atattattga agcatttatc agggttattg tctcatgagc ggatacatat ttgaatgtat 2640 ttagaaaaat aaacaaatag gggttccgcg cacatttccc cgaaaagtgc cacctgacgt 2700 ctaagaaacc attattatca tgacattaac ctataaaaat aggcgtatca cgaggccctt 2760 tcgtcttcaa gaattctgaa ccagtcctaa aacgagtaaa taggaccggc aattcttcaa 2820 gcaataaaca ggaataccaa ttattaaaag ataacttagt cagatcgtac aataaagctt 2880 tgaagaaaaa tgcgccttat tcaatctttg ctataaaaaa tggcccaaaa tctcacattg 2940 gaagacattt gatgacctca tttctttcaa tgaagggcct aacggagttg actaatgttg 3000 tgggaaattg gagcgataag cgtgcttctg ccgtggccag gacaacgtat actcatcaga 3060 taacagcaat acctgatcac tacttcgcac tagtttctcg gtactatgca tatgatccaa 3120 tatcaaagga aatgatagca ttgaaggatg agactaatcc aattgaggag tggcagcata 3180 tagaacagct aaagggtagt gctgaaggaa gcatacgata ccccgcatgg aatgggataa 3240 tatcacagga ggtactagac tacctttcat cctacataaa tagacgcata taagtacgca 3300 tttaagcata aacacgcact atgccgttct tctcatgtat atatatatac aggcaacacg 3360 cagatatagg tgcgacgtga acagtgagct gtatgtgcgc agctcgcgtt gcattttcgg 3420 aagcgctcgt tttcggaaac gctttgaagt tcctattccg aagttcctat tctctagaaa 3480 gtataggaac ttcagagcgc ttttgaaaac caaaagcgct ctgaagacgc actttcaaaa 3540 aaccaaaaac gcaccggact gtaacgagct actaaaatat tgcgaatacc gcttccacaa 3600 acattgctca aaagtatctc tttgctatat atctctgtgc tatatcccta tataacctac 3660 ccatccacct ttcgctcctt gaacttgcat ctaaactcga cctctacatt ttttatgttt 3720 atctctagta ttactcttta gacaaaaaaa ttgtagtaag aactattcat agagtgaatc 3780 gaaaacaata cgaaaatgta aacatttcct atacgtagta tatagagaca aaatagaaga 3840 aaccgttcat aattttctga ccaatgaaga atcatcaacg ctatcacttt ctgttcacaa 3900 agtatgcgca atccacatcg gtatagaata taatcgggga tgcctttatc ttgaaaaaat 3960 gcacccgcag cttcgctagt aatcagtaaa cgcgggaagt ggagtcaggc tttttttatg 4020 gaagagaaaa tagacaccaa agtagccttc ttctaacctt aacggaccta cagtgcaaaa 4080 agttatcaag agactgcatt atagagcgca caaaggagaa aaaaagtaat ctaagatgct 4140 ttgttagaaa aatagcgctc tcgggatgca tttttgtaga acaaaaaaga agtatagatt 4200 ctttgttggt aaaatagcgc tctcgcgttg catttctgtt ctgtaaaaat gcagctcaga 4260 ttctttgttt gaaaaattag cgctctcgcg ttgcattttt gttttacaaa aatgaagcac 4320 agattcttcg ttggtaaaat agcgctttcg cgttgcattt ctgttctgta aaaatgcagc 4380 tcagattctt tgtttgaaaa attagcgctc tcgcgttgca tttttgttct acaaaatgaa 4440 gcacagatgc ttcgttaaca aagatatgct attgaagtgc aagatggaaa cgcagaaaat 4500 gaaccgggga tgcgacgtgc aagattacct atgcaataga tgcaatagtt tctccaggaa 4560 ccgaaataca tacattgtct tccgtaaagc gctagactat atattattat acaggttcaa 4620 atatactatc tgtttcaggg aaaactccca ggttcggatg ttcaaaattc aatgatgggt 4680 aacaagtacg atcgtaaatc tgtaaaacag tttgtcggat attaggctgt atctcctcaa 4740 agcgtattcg aatatcattg agaagctgca gcgtcacatc ggataataat gatggcagcc 4800 attgtagaag tgccttttgc atttctagtc tctttctcgg tctagctagt tttactacat 4860 cgcgaagata gaatcttaga tcacactgcc tttgctgagc tggatcaata gagtaacaaa 4920 agagtggtaa ggcctcgtta aaggacaagg acctgagcgg aagtgtatcg tacagtagac 4980 ggagtatact agtatagtct atagtccgtg gaattctcat gtttgacagc ttatcatcga 5040 taagcttttc aattcaattc atcatttttt ttttattctt ttttttgatt tcggtttctt 5100 tgaaattttt ttgattcggt aatctccgaa cagaaggaag aacgaaggaa ggagcacaga 5160 cttagattgg tatatatacg catatgtagt gttgaagaaa catgaaattg cccagtattc 5220 ttaacccaac tgcacagaac aaaaacctgc aggaaacgaa gataaatcat gtcgaaagct 5280 acatataagg aacgtgctgc tactcatcct agtcctgttg ctgccaagct atttaatatc 5340 atgcacgaaa agcaaacaaa cttgtgtgct tcattggatg ttcgtaccac caaggaatta 5400 ctggagttag ttgaagcatt aggtcccaaa atttgtttac taaaaacaca tgtggatatc 5460 ttgactgatt tttccatgga gggcacagtt aagccgctaa aggcattatc cgccaagtac 5520 aattttttac tcttcgaaga cagaaaattt gctgacattg gtaatacagt caaattgcag 5580 tactctgcgg gtgtatacag aatagcagaa tgggcagaca ttacgaatgc acacggtgtg 5640 gtgggcccag gtattgttag cggtttgaag caggcggcag aagaagtaac aaaggaacct 5700 agaggccttt tgatgttagc agaattgtca tgcaagggct ccctatctac tggagaatat 5760 actaagggta ctgttgacat tgcgaagagc gacaaagatt ttgttatcgg ctttattgct 5820 caaagagaca tgggtggaag agatgaaggt tacgattggt tgattatgac acccggtgtg 5880 ggtttagatg acaagggaga cgcattgggt caacagtata gaaccgtgga tgatgtggtc 5940 tctacaggat ctgacattat tattgttgga agaggactat ttgcaaaggg aagggatgct 6000 aaggtagagg gtgaacgtta cagaaaagca ggctgggaag catatttgag aagatgcggc 6060 cagcaaaact aaaaaactgt attataagta aatgcatgta tactaaactc acaaattaga 6120 gcttcaattt aattatatca gttattaccc gggaatctcg gtcgtaatga cttgaaataa 6180 ttaacaaaca aaggagttac agttagaaat tgtaggagag atctcgtttt tcgcgacaat 6240 ctggcgtttt tcttgctaat tccaggatta atccgttcat agtgtaaaac cccgtttaca 6300 cattctgacg gaagatatag attggaagta ttgcattcac taagataagt atggcaacac 6360 tggaacagac atgaattatc agaacgacga tttacgcatc aaagaaatca aagagttact 6420 tcctcctgtc gcattgctgg aaaaattccc cgctactgaa aatgccgcga atacggttgc 6480 ccatgcccga aaagcgatcc ataagatcct gaaaggtaat gatgatcgcc tgttggttgt 6540 gattggccca tgctcaattc atgatcctgt cgcggcaaaa gagtatgcca ctcgcttgct 6600 ggcgctgcgt gaagagctga aagatgagct ggaaatcgta atgcgcgtct attttgaaaa 6660 gccgcgtacc acggtgggct ggaaagggct gattaacgat ccgcatatgg ataatagctt 6720 ccagatcaac gacggtctgc gtatagcccg taaattgctg cttgatatta acgacagcgg 6780 tctgccagcg gcaggtgagt ttctcgatat gatcacccca caatatctcg ctgacctgat 6840 gagctggggc gcaattggcg cacgtaccac cgaatcgcag gtgcaccgcg aactggcatc 6900 agggctttct tgtccggtcg gcttcaaaaa tggcaccgac ggtacgatta aagtggctat 6960 cgatgccatt aatgccgccg gtgcgccgca ctgcttcctg tccgtaacga aatgggggca 7020 ttcggcgatt gtgaatacca gcggtaacgg cgattgccat atcattctgc gcggcggtaa 7080 agagcctaac tacagcgcga agcacgttgc tgaagtgaaa gaagggctga acaaagcagg 7140 cctgccagca caggtgatga tcgatttcag ccatgctaac tcgtccaaac aattcaaaaa 7200 gcagatggat gtttgtgctg acgtttgcca gcagattgcc ggtggcgaaa aggccattat 7260 tggcgtgatg gtggaaagcc atctggtgga aggcaatcag agcctcgaga gcggggagcc 7320 gctggcctac ggtaagagca tcaccgatgc ctgcatcggc tgggaagata ccgatgctct 7380 gttacgtcaa ctggcgaatg cagtaaaagc gcgtcgcggg taaggtttaa ttgtcggatg 7440 cgccgtcaga gtggcgtatc cgatgaatca ccacaggcct gataagtcgc gcagcgtcgc 7500 atcaggcaat gtgctccatt gttagcaaca aaaaagccga ctcacttgca gtcggctttc 7560 tcattttaaa cgaatgacgt ttacttcgct ttaccctggt ttgcaaccgc cgctgctttc 7620 gct 7623 <210> 29 <211> 7630 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(7630) <223> DNA sequence of the plasmid pCP14 <400> 29 ctcgaggcta ttgacgacag ctatggttca ctgtccacca accaaaactg tgctcagtac 60 cgccaatatt tctcccttga ggggtacaaa gaggtgtccc tagaagagat ccacgctgtg 120 taaaaatttt acaaaaaggt attgactttc cctacagggt gtgtaataat ttaattacag 180 gcgggggcaa ccccgcctgt tctagaggag gaggaatcgc catggagagg attgtcgtta 240 ctctcgggga acgtagttac ccaattacca tcgcatctgg tttgtttaat gaaccagctt 300 cattcttacc gctgaaatcg ggcgagcagg tcatgttggt caccaacgaa accctggctc 360 ctctgtatct cgataaggtc cgcggcgtac ttgaacaggc gggtgttaac gtcgatagcg 420 ttatcctccc tgacggcgag cagtataaaa gcctggctgt actcgatacc gtctttacgg 480 cgttgttaca aaagccgcat ggtcgcgata ctacgctggt ggcgcttggc ggcggcgtag 540 tgggcgatct gaccggcttc gcggcggcga gttatcagcg cggtgttcgt ttcattcaag 600 tcccgacgac gttactgtcg caggtcgatt cctccgttgg cggcaaaact gcggtcaacc 660 atcccctcgg taaaaacatg attggcgcgt tctaccagcc tgcttcagtg gtggtggatc 720 tcgactgtct gaaaacgctt cccccgcgtg agttagcgtc ggggctggca gaagtcatca 780 aatacggcat tattcttgac ggtgcgtttt tcaactggct ggaagagaat ctggatgcgt 840 tgttgcgtct ggacggtccg gcaatggcgt actgtattcg ccgttgttgt gaactgaagg 900 cagaagttgt cgccgccgac gagcgcgaaa ccgggttacg tgctttactg aatctgggac 960 acacctttgg tcatgccatt gaagctgaaa tggggtatgg caattggtta catggtgaag 1020 cggtcgctgc gggtatggtg atggcggcgc ggacgtcgga acgtctcggg cagtttagtt 1080 ctgccgaaac gcagcgtatt ataaccctgc tcacgcgggc tgggttaccg gtcaatgggc 1140 cgcgcgaaat gtccgcgcag gcgtatttac cgcatatgct gcgtgacaag aaagtccttg 1200 cgggagagat gcgcttaatt cttccgttgg caattggtaa gagtgaagtt cgcagcggcg 1260 tttcgcacga gcttgttctt aacgccattg ccgattgtca atcagcgtaa tcatcgttca 1320 tgcctgatgc cgctatgtag gccggataag gcgttcacgc cgcatccggc aaccgatgcc 1380 tgatgcgacg cggtcgcgtc ttatcaggcc tacaggtcga tgccgatatg tacatcgtat 1440 tcggcaatta atacatagca acatgaatgg tcttcggttt ccgtgtttcg taaagtctgg 1500 aaacgcggaa gtcagcgccc tgcaccatta tgttccggat ctgcatcgca ggatgctgct 1560 ggctaccctg tggaacacct acatctgtat taacgaagcg ctggcattga ccctgagtga 1620 tttttctctg gtcccgccgc atccataccg ccagttgttt accctcacaa cgttccagta 1680 accgggcatg ttcatcatca gtaacccgta tcgtgagcat cctctctcgt ttcatcggta 1740 tcattacccc catgaacaga aattccccct tacacggagg catcaagtga ccaaacagga 1800 aaaaaccgcc cttaacatgg cccgctttat cagaagccag acattaacgc ttctggagaa 1860 actcaacgag ctggacgcgg atgaacaggc agacatctgt gaatcgcttc acgaccacgc 1920 tgatgagctt taccgcagct gcctcgcgcg tttcggtgat gacggtgaaa acctctgaca 1980 catgcagctc ccggagacgg tcacagcttg tctgtaagcg gatgccggga gcagacaagc 2040 ccgtcagggc gcgtcagcgg gtgttggcgg gtgtcggggc gcagccatga cccagtcacg 2100 tagcgatagc ggagtgtata ctggcttaac tatgcggcat cagagcagat tgtactgaga 2160 gtgcaccata tgcggtgtga aataccgcac agatgcgtaa ggagaaaata ccgcatcagg 2220 cgctcttccg cttcctcgct cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg 2280 gtatcagctc actcaaaggc ggtaatacgg ttatccacag aatcagggga taacgcagga 2340 aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg 2400 gcgtttttcc ataggctccg cccccctgac gagcatcaca aaaatcgacg ctcaagtcag 2460 aggtggcgaa acccgacagg actataaaga taccaggcgt ttccccctgg aagctccctc 2520 gtgcgctctc ctgttccgac cctgccgctt accggatacc tgtccgcctt tctcccttcg 2580 ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt 2640 cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc 2700 ggtaactatc gtcttgagtc caacccggta agacacgact tatcgccact ggcagcagcc 2760 actggtaaca ggattagcag agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg 2820 tggcctaact acggctacac tagaaggaca gtatttggta tctgcgctct gctgaagcca 2880 gttaccttcg gaaaaagagt tggtagctct tgatccggca aacaaaccac cgctggtagc 2940 ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat 3000 cctttgatct tttctacggg gtctgacgct cagtggaacg aaaactcacg ttaagggatt 3060 ttggtcatga gattatcaaa aaggatcttc acctagatcc ttttaaatta aaaatgaagt 3120 tttaaatcaa tctaaagtat atatgagtaa acttggtctg acagttacca atgcttaatc 3180 agtgaggcac ctatctcagc gatctgtcta tttcgttcat ccatagttgc ctgactcccc 3240 gtcgtgtaga taactacgat acgggagggc ttaccatctg gccccagtgc tgcaatgata 3300 ccgcgagacc cacgctcacc ggctccagat ttatcagcaa taaaccagcc agccggaagg 3360 gccgagcgca gaagtggtcc tgcaacttta tccgcctcca tccagtctat taattgttgc 3420 cgggaagcta gagtaagtag ttcgccagtt aatagtttgc gcaacgttgt tgccattgct 3480 gcaggcatcg tggtgtcacg ctcgtcgttt ggtatggctt cattcagctc cggttcccaa 3540 cgatcaaggc gagttacatg atcccccatg ttgtgcaaaa aagcggttag ctccttcggt 3600 cctccgatcg ttgtcagaag taagttggcc gcagtgttat cactcatggt tatggcagca 3660 ctgcataatt ctcttactgt catgccatcc gtaagatgct tttctgtgac tggtgagtac 3720 tcaaccaagt cattctgaga atagtgtatg cggcgaccga gttgctcttg cccggcgtca 3780 acacgggata ataccgcgcc acatagcaga actttaaaag tgctcatcat tggaaaacgt 3840 tcttcggggc gaaaactctc aaggatctta ccgctgttga gatccagttc gatgtaaccc 3900 actcgtgcac ccaactgatc ttcagcatct tttactttca ccagcgtttc tgggtgagca 3960 aaaacaggaa ggcaaaatgc cgcaaaaaag ggaataaggg cgacacggaa atgttgaata 4020 ctcatactct tcctttttca atattattga agcatttatc agggttattg tctcatgagc 4080 ggatacatat ttgaatgtat ttagaaaaat aaacaaatag gggttccgcg cacatttccc 4140 cgaaaagtgc cacctgacgt ctaagaaacc attattatca tgacattaac ctataaaaat 4200 aggcgtatca cgaggccctt tcgtcttcaa gaattctgaa ccagtcctaa aacgagtaaa 4260 taggaccggc aattcttcaa gcaataaaca ggaataccaa ttattaaaag ataacttagt 4320 cagatcgtac aataaagctt tgaagaaaaa tgcgccttat tcaatctttg ctataaaaaa 4380 tggcccaaaa tctcacattg gaagacattt gatgacctca tttctttcaa tgaagggcct 4440 aacggagttg actaatgttg tgggaaattg gagcgataag cgtgcttctg ccgtggccag 4500 gacaacgtat actcatcaga taacagcaat acctgatcac tacttcgcac tagtttctcg 4560 gtactatgca tatgatccaa tatcaaagga aatgatagca ttgaaggatg agactaatcc 4620 aattgaggag tggcagcata tagaacagct aaagggtagt gctgaaggaa gcatacgata 4680 ccccgcatgg aatgggataa tatcacagga ggtactagac tacctttcat cctacataaa 4740 tagacgcata taagtacgca tttaagcata aacacgcact atgccgttct tctcatgtat 4800 atatatatac aggcaacacg cagatatagg tgcgacgtga acagtgagct gtatgtgcgc 4860 agctcgcgtt gcattttcgg aagcgctcgt tttcggaaac gctttgaagt tcctattccg 4920 aagttcctat tctctagaaa gtataggaac ttcagagcgc ttttgaaaac caaaagcgct 4980 ctgaagacgc actttcaaaa aaccaaaaac gcaccggact gtaacgagct actaaaatat 5040 tgcgaatacc gcttccacaa acattgctca aaagtatctc tttgctatat atctctgtgc 5100 tatatcccta tataacctac ccatccacct ttcgctcctt gaacttgcat ctaaactcga 5160 cctctacatt ttttatgttt atctctagta ttactcttta gacaaaaaaa ttgtagtaag 5220 aactattcat agagtgaatc gaaaacaata cgaaaatgta aacatttcct atacgtagta 5280 tatagagaca aaatagaaga aaccgttcat aattttctga ccaatgaaga atcatcaacg 5340 ctatcacttt ctgttcacaa agtatgcgca atccacatcg gtatagaata taatcgggga 5400 tgcctttatc ttgaaaaaat gcacccgcag cttcgctagt aatcagtaaa cgcgggaagt 5460 ggagtcaggc tttttttatg gaagagaaaa tagacaccaa agtagccttc ttctaacctt 5520 aacggaccta cagtgcaaaa agttatcaag agactgcatt atagagcgca caaaggagaa 5580 aaaaagtaat ctaagatgct ttgttagaaa aatagcgctc tcgggatgca tttttgtaga 5640 acaaaaaaga agtatagatt ctttgttggt aaaatagcgc tctcgcgttg catttctgtt 5700 ctgtaaaaat gcagctcaga ttctttgttt gaaaaattag cgctctcgcg ttgcattttt 5760 gttttacaaa aatgaagcac agattcttcg ttggtaaaat agcgctttcg cgttgcattt 5820 ctgttctgta aaaatgcagc tcagattctt tgtttgaaaa attagcgctc tcgcgttgca 5880 tttttgttct acaaaatgaa gcacagatgc ttcgttaaca aagatatgct attgaagtgc 5940 aagatggaaa cgcagaaaat gaaccgggga tgcgacgtgc aagattacct atgcaataga 6000 tgcaatagtt tctccaggaa ccgaaataca tacattgtct tccgtaaagc gctagactat 6060 atattattat acaggttcaa atatactatc tgtttcaggg aaaactccca ggttcggatg 6120 ttcaaaattc aatgatgggt aacaagtacg atcgtaaatc tgtaaaacag tttgtcggat 6180 attaggctgt atctcctcaa agcgtattcg aatatcattg agaagctgca gcgtcacatc 6240 ggataataat gatggcagcc attgtagaag tgccttttgc atttctagtc tctttctcgg 6300 tctagctagt tttactacat cgcgaagata gaatcttaga tcacactgcc tttgctgagc 6360 tggatcaata gagtaacaaa agagtggtaa ggcctcgtta aaggacaagg acctgagcgg 6420 aagtgtatcg tacagtagac ggagtatact agtatagtct atagtccgtg gaattctcat 6480 gtttgacagc ttatcatcga taagcttttc aattcaattc atcatttttt ttttattctt 6540 ttttttgatt tcggtttctt tgaaattttt ttgattcggt aatctccgaa cagaaggaag 6600 aacgaaggaa ggagcacaga cttagattgg tatatatacg catatgtagt gttgaagaaa 6660 catgaaattg cccagtattc ttaacccaac tgcacagaac aaaaacctgc aggaaacgaa 6720 gataaatcat gtcgaaagct acatataagg aacgtgctgc tactcatcct agtcctgttg 6780 ctgccaagct atttaatatc atgcacgaaa agcaaacaaa cttgtgtgct tcattggatg 6840 ttcgtaccac caaggaatta ctggagttag ttgaagcatt aggtcccaaa atttgtttac 6900 taaaaacaca tgtggatatc ttgactgatt tttccatgga gggcacagtt aagccgctaa 6960 aggcattatc cgccaagtac aattttttac tcttcgaaga cagaaaattt gctgacattg 7020 gtaatacagt caaattgcag tactctgcgg gtgtatacag aatagcagaa tgggcagaca 7080 ttacgaatgc acacggtgtg gtgggcccag gtattgttag cggtttgaag caggcggcag 7140 aagaagtaac aaaggaacct agaggccttt tgatgttagc agaattgtca tgcaagggct 7200 ccctatctac tggagaatat actaagggta ctgttgacat tgcgaagagc gacaaagatt 7260 ttgttatcgg ctttattgct caaagagaca tgggtggaag agatgaaggt tacgattggt 7320 tgattatgac acccggtgtg ggtttagatg acaagggaga cgcattgggt caacagtata 7380 gaaccgtgga tgatgtggtc tctacaggat ctgacattat tattgttgga agaggactat 7440 ttgcaaaggg aagggatgct aaggtagagg gtgaacgtta cagaaaagca ggctgggaag 7500 catatttgag aagatgcggc cagcaaaact aaaaaactgt attataagta aatgcatgta 7560 tactaaactc acaaattaga gcttcaattt aattatatca gttattaccc gggaatctcg 7620 gtcgtaatga 7630 <210> 30 <211> 10015 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(10015) <223> DNA sequence of the plasmid pCP50 <400> 30 cttgaaataa ttaacaaaca aaggagttac agttagaaat tgtaggagag atctcgtttt 60 tcgcgacaat ctggcgtttt tcttgctaat tccaggatta atccgttcat agtgtaaaac 120 cccgtttaca cattctgacg gaagatatag attggaagta ttgcattcac taagataagt 180 atggcaacac tggaacagac atgaattatc agaacgacga tttacgcatc aaagaaatca 240 aagagttact tcctcctgtc gcattgctgg aaaaattccc cgctactgaa aatgccgcga 300 atacggttgc ccatgcccga aaagcgatcc ataagatcct gaaaggtaat gatgatcgcc 360 tgttggttgt gattggccca tgctcaattc atgatcctgt cgcggcaaaa gagtatgcca 420 ctcgcttgct ggcgctgcgt gaagagctga aagatgagct ggaaatcgta atgcgcgtct 480 attttgaaaa gccgcgtacc acggtgggct ggaaagggct gattaacgat ccgcatatgg 540 ataatagctt ccagatcaac gacggtctgc gtatagcccg taaattgctg cttgatatta 600 acgacagcgg tctgccagcg gcaggtgagt ttctcgatat gatcacccca caatatctcg 660 ctgacctgat gagctggggc gcaattggcg cacgtaccac cgaatcgcag gtgcaccgcg 720 aactggcatc agggctttct tgtccggtcg gcttcaaaaa tggcaccgac ggtacgatta 780 aagtggctat cgatgccatt aatgccgccg gtgcgccgca ctgcttcctg tccgtaacga 840 aatgggggca ttcggcgatt gtgaatacca gcggtaacgg cgattgccat atcattctgc 900 gcggcggtaa agagcctaac tacagcgcga agcacgttgc tgaagtgaaa gaagggctga 960 acaaagcagg cctgccagca caggtgatga tcgatttcag ccatgctaac tcgtccaaac 1020 aattcaaaaa gcagatggat gtttgtgctg acgtttgcca gcagattgcc ggtggcgaaa 1080 aggccattat tggcgtgatg gtggaaagcc atctggtgga aggcaatcag agcctcgaga 1140 gcggggagcc gctggcctac ggtaagagca tcaccgatgc ctgcatcggc tgggaagata 1200 ccgatgctct gttacgtcaa ctggcgaatg cagtaaaagc gcgtcgcggg taaggtttaa 1260 ttgtcggatg cgccgtcaga gtggcgtatc cgatgaatca ccacaggcct gataagtcgc 1320 gcagcgtcgc atcaggcaat gtgctccatt gttagcaaca aaaaagccga ctcacttgca 1380 gtcggctttc tcattttaaa cgaatgacgt ttacttcgct ttaccctggt ttgcaaccgc 1440 cgctgctttc gctacatgaa tggtcttcgg tttccgtgtt tcgtaaagtc tggaaacgcg 1500 gaagtcagcg ccctgcacca ttatgttccg gatctgcatc gcaggatgct gctggctacc 1560 ctgtggaaca cctacatctg tattaacgaa gcgctggcat tgaccctgag tgatttttct 1620 ctggtcccgc cgcatccata ccgccagttg tttaccctca caacgttcca gtaaccgggc 1680 atgttcatca tcagtaaccc gtatcgtgag catcctctct cgtttcatcg gtatcattac 1740 ccccatgaac agaaattccc ccttacacgg aggcatcaag tgaccaaaca ggaaaaaacc 1800 gcccttaaca tggcccgctt tatcagaagc cagacattaa cgcttctgga gaaactcaac 1860 gagctggacg cggatgaaca ggcagacatc tgtgaatcgc ttcacgacca cgctgatgag 1920 ctttaccgca gctgcctcgc gcgtttcggt gatgacggtg aaaacctctg acacatgcag 1980 ctcccggaga cggtcacagc ttgtctgtaa gcggatgccg ggagcagaca agcccgtcag 2040 ggcgcgtcag cgggtgttgg cgggtgtcgg ggcgcagcca tgacccagtc acgtagcgat 2100 agcggagtgt atactggctt aactatgcgg catcagagca gattgtactg agagtgcacc 2160 atatgcggtg tgaaataccg cacagatgcg taaggagaaa ataccgcatc aggcgctctt 2220 ccgcttcctc gctcactgac tcgctgcgct cggtcgttcg gctgcggcga gcggtatcag 2280 ctcactcaaa ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca 2340 tgtgagcaaa aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt 2400 tccataggct ccgcccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc 2460 gaaacccgac aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct 2520 ctcctgttcc gaccctgccg cttaccggat acctgtccgc ctttctccct tcgggaagcg 2580 tggcgctttc tcatagctca cgctgtaggt atctcagttc ggtgtaggtc gttcgctcca 2640 agctgggctg tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta tccggtaact 2700 atcgtcttga gtccaacccg gtaagacacg acttatcgcc actggcagca gccactggta 2760 acaggattag cagagcgagg tatgtaggcg gtgctacaga gttcttgaag tggtggccta 2820 actacggcta cactagaagg acagtatttg gtatctgcgc tctgctgaag ccagttacct 2880 tcggaaaaag agttggtagc tcttgatccg gcaaacaaac caccgctggt agcggtggtt 2940 tttttgtttg caagcagcag attacgcgca gaaaaaaagg atctcaagaa gatcctttga 3000 tcttttctac ggggtctgac gctcagtgga acgaaaactc acgttaaggg attttggtca 3060 tgagattatc aaaaaggatc ttcacctaga tccttttaaa ttaaaaatga agttttaaat 3120 caatctaaag tatatatgag taaacttggt ctgacagtta ccaatgctta atcagtgagg 3180 cacctatctc agcgatctgt ctatttcgtt catccatagt tgcctgactc cccgtcgtgt 3240 agataactac gatacgggag ggcttaccat ctggccccag tgctgcaatg ataccgcgag 3300 acccacgctc accggctcca gatttatcag caataaacca gccagccgga agggccgagc 3360 gcagaagtgg tcctgcaact ttatccgcct ccatccagtc tattaattgt tgccgggaag 3420 ctagagtaag tagttcgcca gttaatagtt tgcgcaacgt tgttgccatt gctgcaggca 3480 tcgtggtgtc acgctcgtcg tttggtatgg cttcattcag ctccggttcc caacgatcaa 3540 ggcgagttac atgatccccc atgttgtgca aaaaagcggt tagctccttc ggtcctccga 3600 tcgttgtcag aagtaagttg gccgcagtgt tatcactcat ggttatggca gcactgcata 3660 attctcttac tgtcatgcca tccgtaagat gcttttctgt gactggtgag tactcaacca 3720 agtcattctg agaatagtgt atgcggcgac cgagttgctc ttgcccggcg tcaacacggg 3780 ataataccgc gccacatagc agaactttaa aagtgctcat cattggaaaa cgttcttcgg 3840 ggcgaaaact ctcaaggatc ttaccgctgt tgagatccag ttcgatgtaa cccactcgtg 3900 cacccaactg atcttcagca tcttttactt tcaccagcgt ttctgggtga gcaaaaacag 3960 gaaggcaaaa tgccgcaaaa aagggaataa gggcgacacg gaaatgttga atactcatac 4020 tcttcctttt tcaatattat tgaagcattt atcagggtta ttgtctcatg agcggataca 4080 tatttgaatg tatttagaaa aataaacaaa taggggttcc gcgcacattt ccccgaaaag 4140 tgccacctga cgtctaagaa accattatta tcatgacatt aacctataaa aataggcgta 4200 tcacgaggcc ctttcgtctt caagaattct gaaccagtcc taaaacgagt aaataggacc 4260 ggcaattctt caagcaataa acaggaatac caattattaa aagataactt agtcagatcg 4320 tacaataaag ctttgaagaa aaatgcgcct tattcaatct ttgctataaa aaatggccca 4380 aaatctcaca ttggaagaca tttgatgacc tcatttcttt caatgaaggg cctaacggag 4440 ttgactaatg ttgtgggaaa ttggagcgat aagcgtgctt ctgccgtggc caggacaacg 4500 tatactcatc agataacagc aatacctgat cactacttcg cactagtttc tcggtactat 4560 gcatatgatc caatatcaaa ggaaatgata gcattgaagg atgagactaa tccaattgag 4620 gagtggcagc atatagaaca gctaaagggt agtgctgaag gaagcatacg ataccccgca 4680 tggaatggga taatatcaca ggaggtacta gactaccttt catcctacat aaatagacgc 4740 atataagtac gcatttaagc ataaacacgc actatgccgt tcttctcatg tatatatata 4800 tacaggcaac acgcagatat aggtgcgacg tgaacagtga gctgtatgtg cgcagctcgc 4860 gttgcatttt cggaagcgct cgttttcgga aacgctttga agttcctatt ccgaagttcc 4920 tattctctag aaagtatagg aacttcagag cgcttttgaa aaccaaaagc gctctgaaga 4980 cgcactttca aaaaaccaaa aacgcaccgg actgtaacga gctactaaaa tattgcgaat 5040 accgcttcca caaacattgc tcaaaagtat ctctttgcta tatatctctg tgctatatcc 5100 ctatataacc tacccatcca cctttcgctc cttgaacttg catctaaact cgacctctac 5160 attttttatg tttatctcta gtattactct ttagacaaaa aaattgtagt aagaactatt 5220 catagagtga atcgaaaaca atacgaaaat gtaaacattt cctatacgta gtatatagag 5280 acaaaataga agaaaccgtt cataattttc tgaccaatga agaatcatca acgctatcac 5340 tttctgttca caaagtatgc gcaatccaca tcggtataga atataatcgg ggatgccttt 5400 atcttgaaaa aatgcacccg cagcttcgct agtaatcagt aaacgcggga agtggagtca 5460 ggcttttttt atggaagaga aaatagacac caaagtagcc ttcttctaac cttaacggac 5520 ctacagtgca aaaagttatc aagagactgc attatagagc gcacaaagga gaaaaaaagt 5580 aatctaagat gctttgttag aaaaatagcg ctctcgggat gcatttttgt agaacaaaaa 5640 agaagtatag attctttgtt ggtaaaatag cgctctcgcg ttgcatttct gttctgtaaa 5700 aatgcagctc agattctttg tttgaaaaat tagcgctctc gcgttgcatt tttgttttac 5760 aaaaatgaag cacagattct tcgttggtaa aatagcgctt tcgcgttgca tttctgttct 5820 gtaaaaatgc agctcagatt ctttgtttga aaaattagcg ctctcgcgtt gcatttttgt 5880 tctacaaaat gaagcacaga tgcttcgtta acaaagatat gctattgaag tgcaagatgg 5940 aaacgcagaa aatgaaccgg ggatgcgacg tgcaagatta cctatgcaat agatgcaata 6000 gtttctccag gaaccgaaat acatacattg tcttccgtaa agcgctagac tatatattat 6060 tatacaggtt caaatatact atctgtttca gggaaaactc ccaggttcgg atgttcaaaa 6120 ttcaatgatg ggtaacaagt acgatcgtaa atctgtaaaa cagtttgtcg gatattaggc 6180 tgtatctcct caaagcgtat tcgaatatca ttgagaagct gcagcgtcac atcggataat 6240 aatgatggca gccattgtag aagtgccttt tgcatttcta gtctctttct cggtctagct 6300 agttttacta catcgcgaag atagaatctt agatcacact gcctttgctg agctggatca 6360 atagagtaac aaaagagtgg taaggcctcg ttaaaggaca aggacctgag cggaagtgta 6420 tcgtacagta gacggagtat actagtatag tctatagtcc gtggaattct catgtttgac 6480 agcttatcat cgataagctt ttcaattcaa ttcatcattt tttttttatt cttttttttg 6540 atttcggttt ctttgaaatt tttttgattc ggtaatctcc gaacagaagg aagaacgaag 6600 gaaggagcac agacttagat tggtatatat acgcatatgt agtgttgaag aaacatgaaa 6660 ttgcccagta ttcttaaccc aactgcacag aacaaaaacc tgcaggaaac gaagataaat 6720 catgtcgaaa gctacatata aggaacgtgc tgctactcat cctagtcctg ttgctgccaa 6780 gctatttaat atcatgcacg aaaagcaaac aaacttgtgt gcttcattgg atgttcgtac 6840 caccaaggaa ttactggagt tagttgaagc attaggtccc aaaatttgtt tactaaaaac 6900 acatgtggat atcttgactg atttttccat ggagggcaca gttaagccgc taaaggcatt 6960 atccgccaag tacaattttt tactcttcga agacagaaaa tttgctgaca ttggtaatac 7020 agtcaaattg cagtactctg cgggtgtata cagaatagca gaatgggcag acattacgaa 7080 tgcacacggt gtggtgggcc caggtattgt tagcggtttg aagcaggcgg cagaagaagt 7140 aacaaaggaa cctagaggcc ttttgatgtt agcagaattg tcatgcaagg gctccctatc 7200 tactggagaa tatactaagg gtactgttga cattgcgaag agcgacaaag attttgttat 7260 cggctttatt gctcaaagag acatgggtgg aagagatgaa ggttacgatt ggttgattat 7320 gacacccggt gtgggtttag atgacaaggg agacgcattg ggtcaacagt atagaaccgt 7380 ggatgatgtg gtctctacag gatctgacat tattattgtt ggaagaggac tatttgcaaa 7440 gggaagggat gctaaggtag agggtgaacg ttacagaaaa gcaggctggg aagcatattt 7500 gagaagatgc ggccagcaaa actaaaaaac tgtattataa gtaaatgcat gtatactaaa 7560 ctcacaaatt agagcttcaa tttaattata tcagttatta cccgggaatc tcggtcgtaa 7620 tgaaaggaaa agcgcaacgg acgggcgagt agattgcgca acatgcgagc atgatccaga 7680 gatttctgaa gcagcaaaag gatgttccat gtacatgacg cgcggcttgc ggtaaattgt 7740 tggcaaattt tccggcgtag cccaaaacgc gctgtcgtca agtcgttaag ggcgtgccct 7800 tcatcatccg atctggagtc aaaatgtcct cacgtaaaga gcttgccaat gctattcgtg 7860 cgctgagcat ggacgcagta cagaaagcca aatccggtca cccgggtgcc cctatgggta 7920 tggctgacat tgccgaagtc ctgtggcgtg atttcctgaa acacaacccg cagaatccgt 7980 cctgggctga ccgtgaccgc ttcgtgctgt ccaacggcca cggctccatg ctgatctaca 8040 gcctgctgca cctcaccggt tacgatctgc cgatggaaga actgaaaaac ttccgtcagc 8100 tgcactctaa aactccgggc cacccggaag taggttatac cgctggtgtg gaaaccacca 8160 ccggtccgct gggtcagggt attgccaacg cagtcggtat ggcgattgca gaaaaaacgc 8220 tggcggcgca gtttaaccgt ccaggtcacg acattgtcga ccactacacc tacgccttca 8280 tgggcgacgg ctgcatgatg gaaggcatct cccacgaagt ttgctctctg gcgggtacgc 8340 tgaagctggg taaactgatt gcgttctacg atgacaacgg tatctcaatc gatggtcacg 8400 ttgaaggctg gttcactgac gacaccgcaa tgcgtttcga agcttacggc tggcacgtta 8460 ttcgcgacat cgacggtcat gacgcggcat ccatcaaacg cgcagtagaa gaagcgcgcg 8520 cagtgactga caaaccgtcc ctgctgatgt gcaaaaccat catcggtttc ggttccccga 8580 acaaagccgg tacccacgac tcccacggtg cgccgctggg cgacgctgaa attgccctga 8640 cccgcgaaca gctgggctgg aaatacgcgc cgttcgaaat cccgtctgaa atctatgctc 8700 agtgggatgc gaaagaagca ggccaggcga aagaatctgc atggaatgag aagtttgcgg 8760 cttacgcgaa agcttatccg caggaagcgg ctgaatttac ccgccgtatg aaaggcgaaa 8820 tgccgtctga cttcgacgcc aaagcgaaag agtttatcgc taaactgcag gctaatccgg 8880 cgaaaatcgc cagccgtaaa gcgtcgcaga atgctatcga agcgttcggc ccgctgttgc 8940 ctgaattcct cggcggctct gctgacctgg caccgtctaa cctgaccctg tggtctggtt 9000 ctaaagcaat caacgaagat gctgcaggta actacatcca ctacggtgtt cgcgagttcg 9060 gtatgaccgc gattgctaac ggtatctccc tgcacggtgg tttcctgccg tacacctcca 9120 ccttcctgat gttcgtggaa tacgcacgta acgccgtacg tatggctgcg ctgatgaaac 9180 agcgtcaggt gatggtttac acccacgact ccatcggtct gggcgaagat ggcccgactc 9240 accagccggt tgagcaggtc gcttctctgc gcgtgacccc gaacatgtct acatggcgtc 9300 cgtgtgacca ggttgaatcc gcggtcgcgt ggaaatacgg cgttgagcgt caggacggcc 9360 cgactgcgct tatcctctcc cgtcagaacc tggcgcagca ggaacgaact gaagagcaac 9420 tggcaaacat cgcgcgcggt ggttatgtgc tgaaagactg cgccggtcag ccggaactga 9480 ttttcatcgc taccggttca gaagttgaac tggctgttgc tgcctacgaa aaactgactg 9540 ccgaaggcgt gaaagcgcgc gtggtgtcca tgccgtctac cgacgcattt gacaagcagg 9600 atgctgctta ccgtgaatcc gtactgccga aagcggttac tgcacgcgtt gctgtagaag 9660 cgggtattgc tgactactgg tacaagtatg ttggcctgaa cggtgctatc gtcggtatga 9720 ccaccttcgg tgaatctgct ccggcagagc tgctgtttga agagttcggc ttcactgttg 9780 ataacgttgt tgcgaaagca aaagaactgc tgtaattagc atttcgggta aaaaggtcgc 9840 ttcggcgacc ttttttatta ccttgatatg tccgtttgcg gacaagcaat agataaagcg 9900 tgttgtagat cacaaatatt tatatgcaat aaatatcaat tatgtaatat gcatcacgat 9960 atgcgtattg acatttgttg ttataactat aactcaatgt tatataagaa attaa 10015 <210> 31 <211> 9065 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(9065) <223> DNA sequence of the plasmid pCP54 <400> 31 acatgaatgg tcttcggttt ccgtgtttcg taaagtctgg aaacgcggaa gtcagcgccc 60 tgcaccatta tgttccggat ctgcatcgca ggatgctgct ggctaccctg tggaacacct 120 acatctgtat taacgaagcg ctggcattga ccctgagtga tttttctctg gtcccgccgc 180 atccataccg ccagttgttt accctcacaa cgttccagta accgggcatg ttcatcatca 240 gtaacccgta tcgtgagcat cctctctcgt ttcatcggta tcattacccc catgaacaga 300 aattccccct tacacggagg catcaagtga ccaaacagga aaaaaccgcc cttaacatgg 360 cccgctttat cagaagccag acattaacgc ttctggagaa actcaacgag ctggacgcgg 420 atgaacaggc agacatctgt gaatcgcttc acgaccacgc tgatgagctt taccgcagct 480 gcctcgcgcg tttcggtgat gacggtgaaa acctctgaca catgcagctc ccggagacgg 540 tcacagcttg tctgtaagcg gatgccggga gcagacaagc ccgtcagggc gcgtcagcgg 600 gtgttggcgg gtgtcggggc gcagccatga cccagtcacg tagcgatagc ggagtgtata 660 ctggcttaac tatgcggcat cagagcagat tgtactgaga gtgcaccata tgcggtgtga 720 aataccgcac agatgcgtaa ggagaaaata ccgcatcagg cgctcttccg cttcctcgct 780 cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc actcaaaggc 840 ggtaatacgg ttatccacag aatcagggga taacgcagga aagaacatgt gagcaaaagg 900 ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg 960 cccccctgac gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg 1020 actataaaga taccaggcgt ttccccctgg aagctccctc gtgcgctctc ctgttccgac 1080 cctgccgctt accggatacc tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca 1140 tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt 1200 gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc 1260 caacccggta agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag 1320 agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac 1380 tagaaggaca gtatttggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt 1440 tggtagctct tgatccggca aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa 1500 gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg 1560 gtctgacgct cagtggaacg aaaactcacg ttaagggatt ttggtcatga gattatcaaa 1620 aaggatcttc acctagatcc ttttaaatta aaaatgaagt tttaaatcaa tctaaagtat 1680 atatgagtaa acttggtctg agtggcggtt ttcatggctt gttatgactg tttttttggg 1740 gtacagtcta tgcctcgggc atccaagcag caagcgcgtt acgccgtggg tcgatgtttg 1800 atgttatgga gcagcaacga tgttacgcag cagggcagtc gccctaaaac aaagttaaac 1860 atcatgaggg aagcggtgat cgccgaagta tcgactcaac tatcagaggt agttggcgtc 1920 atcgagcgcc atctcgaacc gacgttgctg gccgtacatt tgtacggctc cgcagtggat 1980 ggcggcctga agccacacag tgatattgat ttgctggtta cggtgaccgt aaggcttgat 2040 gaaacaacgc ggcgagcttt gatcaacgac cttttggaaa cttcggcttc ccctggagag 2100 agcgagattc tccgcgctgt agaagtcacc attgttgtgc acgacgacat cattccgtgg 2160 cgttatccag ctaagcgcga actgcaattt ggagaatggc agcgcaatga cattcttgca 2220 ggtatcttcg agccagccac gatcgacatt gatctggcta tcttgctgac aaaagcaaga 2280 gaacatagcg ttgccttggt aggtccagcg gcggaggaac tctttgatcc ggttcctgaa 2340 caggatctat ttgaggcgct aaatgaaacc ttaacgctat ggaactcgcc gcccgactgg 2400 gctggcgatg agcgaaatgt agtgcttacg ttgtcccgca tttggtacag cgcagtaacc 2460 ggcaaaatcg cgccgaagga tgtcgctgcc gactgggcaa tggagcgcct gccggcccag 2520 tatcagcccg tcatacttga agctagacag gcttatcttg gacaagaaga agatcgcttg 2580 gcctcgcgcg cagatcagtt ggaagaattt gtccactacg tgaaaggcga gatcaccaag 2640 gtagtcggca aataatgtct aacaattcgt tcaagccgac gccgcttcgc ggcgcggctt 2700 aactcaagcg ttagatgcac taagcacata attgctcaca gccaaactat cagaattctg 2760 aaccagtcct aaaacgagta aataggaccg gcaattcttc aagcaataaa caggaatacc 2820 aattattaaa agataactta gtcagatcgt acaataaagc tttgaagaaa aatgcgcctt 2880 attcaatctt tgctataaaa aatggcccaa aatctcacat tggaagacat ttgatgacct 2940 catttctttc aatgaagggc ctaacggagt tgactaatgt tgtgggaaat tggagcgata 3000 agcgtgcttc tgccgtggcc aggacaacgt atactcatca gataacagca atacctgatc 3060 actacttcgc actagtttct cggtactatg catatgatcc aatatcaaag gaaatgatag 3120 cattgaagga tgagactaat ccaattgagg agtggcagca tatagaacag ctaaagggta 3180 gtgctgaagg aagcatacga taccccgcat ggaatgggat aatatcacag gaggtactag 3240 actacctttc atcctacata aatagacgca tataagtacg catttaagca taaacacgca 3300 ctatgccgtt cttctcatgt atatatatat acaggcaaca cgcagatata ggtgcgacgt 3360 gaacagtgag ctgtatgtgc gcagctcgcg ttgcattttc ggaagcgctc gttttcggaa 3420 acgctttgaa gttcctattc cgaagttcct attctctaga aagtatagga acttcagagc 3480 gcttttgaaa accaaaagcg ctctgaagac gcactttcaa aaaaccaaaa acgcaccgga 3540 ctgtaacgag ctactaaaat attgcgaata ccgcttccac aaacattgct caaaagtatc 3600 tctttgctat atatctctgt gctatatccc tatataacct acccatccac ctttcgctcc 3660 ttgaacttgc atctaaactc gacctctaca ttttttatgt ttatctctag tattactctt 3720 tagacaaaaa aattgtagta agaactattc atagagtgaa tcgaaaacaa tacgaaaatg 3780 taaacatttc ctatacgtag tatatagaga caaaatagaa gaaaccgttc ataattttct 3840 gaccaatgaa gaatcatcaa cgctatcact ttctgttcac aaagtatgcg caatccacat 3900 cggtatagaa tataatcggg gatgccttta tcttgaaaaa atgcacccgc agcttcgcta 3960 gtaatcagta aacgcgggaa gtggagtcag gcttttttta tggaagagaa aatagacacc 4020 aaagtagcct tcttctaacc ttaacggacc tacagtgcaa aaagttatca agagactgca 4080 ttatagagcg cacaaaggag aaaaaaagta atctaagatg ctttgttaga aaaatagcgc 4140 tctcgggatg catttttgta gaacaaaaaa gaagtataga ttctttgttg gtaaaatagc 4200 gctctcgcgt tgcatttctg ttctgtaaaa atgcagctca gattctttgt ttgaaaaatt 4260 agcgctctcg cgttgcattt ttgttttaca aaaatgaagc acagattctt cgttggtaaa 4320 atagcgcttt cgcgttgcat ttctgttctg taaaaatgca gctcagattc tttgtttgaa 4380 aaattagcgc tctcgcgttg catttttgtt ctacaaaatg aagcacagat gcttcgttaa 4440 caaagatatg ctattgaagt gcaagatgga aacgcagaaa atgaaccggg gatgcgacgt 4500 gcaagattac ctatgcaata gatgcaatag tttctccagg aaccgaaata catacattgt 4560 cttccgtaaa gcgctagact atatattatt atacaggttc aaatatacta tctgtttcag 4620 ggaaaactcc caggttcgga tgttcaaaat tcaatgatgg gtaacaagta cgatcgtaaa 4680 tctgtaaaac agtttgtcgg atattaggct gtatctcctc aaagcgtatt cgaatatcat 4740 tgagaagctg cagcgtcaca tcggataata atgatggcag ccattgtaga agtgcctttt 4800 gcatttctag tctctttctc ggtctagcta gttttactac atcgcgaaga tagaatctta 4860 gatcacactg cctttgctga gctggatcaa tagagtaaca aaagagtggt aaggcctcgt 4920 taaaggacaa ggacctgagc ggaagtgtat cgtacagtag acggagtata ctagtatagt 4980 ctatagtccg tggaattctc atgtttgaca gcttatcatc gataagcttt tcaattcaat 5040 tcatcatttt ttttttattc ttttttttga tttcggtttc tttgaaattt ttttgattcg 5100 gtaatctccg aacagaagga agaacgaagg aaggagcaca gacttagatt ggtatatata 5160 cgcatatgta gtgttgaaga aacatgaaat tgcccagtat tcttaaccca actgcacaga 5220 acaaaaacct gcaggaaacg aagataaatc atgtcgaaag ctacatataa ggaacgtgct 5280 gctactcatc ctagtcctgt tgctgccaag ctatttaata tcatgcacga aaagcaaaca 5340 aacttgtgtg cttcattgga tgttcgtacc accaaggaat tactggagtt agttgaagca 5400 ttaggtccca aaatttgttt actaaaaaca catgtggata tcttgactga tttttccatg 5460 gagggcacag ttaagccgct aaaggcatta tccgccaagt acaatttttt actcttcgaa 5520 gacagaaaat ttgctgacat tggtaataca gtcaaattgc agtactctgc gggtgtatac 5580 agaatagcag aatgggcaga cattacgaat gcacacggtg tggtgggccc aggtattgtt 5640 agcggtttga agcaggcggc agaagaagta acaaaggaac ctagaggcct tttgatgtta 5700 gcagaattgt catgcaaggg ctccctatct actggagaat atactaaggg tactgttgac 5760 attgcgaaga gcgacaaaga ttttgttatc ggctttattg ctcaaagaga catgggtgga 5820 agagatgaag gttacgattg gttgattatg acacccggtg tgggtttaga tgacaaggga 5880 gacgcattgg gtcaacagta tagaaccgtg gatgatgtgg tctctacagg atctgacatt 5940 attattgttg gaagaggact atttgcaaag ggaagggatg ctaaggtaga gggtgaacgt 6000 tacagaaaag caggctggga agcatatttg agaagatgcg gccagcaaaa ctaaaaaact 6060 gtattataag taaatgcatg tatactaaac tcacaaatta gagcttcaat ttaattatat 6120 cagttattac ccgggaatct cggtcgtaat gacttgaaat aattaacaaa caaaggagtt 6180 acagttagaa attgtaggag agatctcgtt tttcgcgaca atctggcgtt tttcttgcta 6240 attccaggat taatccgttc atagtgtaaa accccgttta cacattctga cggaagatat 6300 agattggaag tattgcattc actaagataa gtatggcaac actggaacag acatgaatta 6360 tcagaacgac gatttacgca tcaaagaaat caaagagtta cttcctcctg tcgcattgct 6420 ggaaaaattc cccgctactg aaaatgccgc gaatacggtt gcccatgccc gaaaagcgat 6480 ccataagatc ctgaaaggta atgatgatcg cctgttggtt gtgattggcc catgctcaat 6540 tcatgatcct gtcgcggcaa aagagtatgc cactcgcttg ctggcgctgc gtgaagagct 6600 gaaagatgag ctggaaatcg taatgcgcgt ctattttgaa aagccgcgta ccacggtggg 6660 ctggaaaggg ctgattaacg atccgcatat ggataatagc ttccagatca acgacggtct 6720 gcgtatagcc cgtaaattgc tgcttgatat taacgacagc ggtctgccag cggcaggtga 6780 gtttctcgat atgatcaccc cacaatatct cgctgacctg atgagctggg gcgcaattgg 6840 cgcacgtacc accgaatcgc aggtgcaccg cgaactggca tcagggcttt cttgtccggt 6900 cggcttcaaa aatggcaccg acggtacgat taaagtggct atcgatgcca ttaatgccgc 6960 cggtgcgccg cactgcttcc tgtccgtaac gaaatggggg cattcggcga ttgtgaatac 7020 cagcggtaac ggcgattgcc atatcattct gcgcggcggt aaagagccta actacagcgc 7080 gaagcacgtt gctgaagtga aagaagggct gaacaaagca ggcctgccag cacaggtgat 7140 gatcgatttc agccatgcta actcgtccaa acaattcaaa aagcagatgg atgtttgtgc 7200 tgacgtttgc cagcagattg ccggtggcga aaaggccatt attggcgtga tggtggaaag 7260 ccatctggtg gaaggcaatc agagcctcga gagcggggag ccgctggcct acggtaagag 7320 catcaccgat gcctgcatcg gctgggaaga taccgatgct ctgttacgtc aactggcgaa 7380 tgcagtaaaa gcgcgtcgcg ggtaaggttt aattgtcgga tgcgccgtca gagtggcgta 7440 tccgatgaat caccacaggc ctgataagtc gcgcagcgtc gcatcaggca atgtgctcca 7500 ttgttagcaa caaaaaagcc gactcacttg cagtcggctt tctcatttta aacgaatgac 7560 gtttacttcg ctttaccctg gtttgcaacc gccgctgctt tcgctctcga ggctattgac 7620 gacagctatg gttcactgtc caccaaccaa aactgtgctc agtaccgcca atatttctcc 7680 cttgaggggt acaaagaggt gtccctagaa gagatccacg ctgtgtaaaa attttacaaa 7740 aaggtattga ctttccctac agggtgtgta ataatttaat tacaggcggg ggcaaccccg 7800 cctgttctag aggaggagga atcgccatgg agaggattgt cgttactctc ggggaacgta 7860 gttacccaat taccatcgca tctggtttgt ttaatgaacc agcttcattc ttaccgctga 7920 aatcgggcga gcaggtcatg ttggtcacca acgaaaccct ggctcctctg tatctcgata 7980 aggtccgcgg cgtacttgaa caggcgggtg ttaacgtcga tagcgttatc ctccctgacg 8040 gcgagcagta taaaagcctg gctgtactcg ataccgtctt tacggcgttg ttacaaaagc 8100 cgcatggtcg cgatactacg ctggtggcgc ttggcggcgg cgtagtgggc gatctgaccg 8160 gcttcgcggc ggcgagttat cagcgcggtg ttcgtttcat tcaagtcccg acgacgttac 8220 tgtcgcaggt cgattcctcc gttggcggca aaactgcggt caaccatccc ctcggtaaaa 8280 acatgattgg cgcgttctac cagcctgctt cagtggtggt ggatctcgac tgtctgaaaa 8340 cgcttccccc gcgtgagtta gcgtcggggc tggcagaagt catcaaatac ggcattattc 8400 ttgacggtgc gtttttcaac tggctggaag agaatctgga tgcgttgttg cgtctggacg 8460 gtccggcaat ggcgtactgt attcgccgtt gttgtgaact gaaggcagaa gttgtcgccg 8520 ccgacgagcg cgaaaccggg ttacgtgctt tactgaatct gggacacacc tttggtcatg 8580 ccattgaagc tgaaatgggg tatggcaatt ggttacatgg tgaagcggtc gctgcgggta 8640 tggtgatggc ggcgcggacg tcggaacgtc tcgggcagtt tagttctgcc gaaacgcagc 8700 gtattataac cctgctcacg cgggctgggt taccggtcaa tgggccgcgc gaaatgtccg 8760 cgcaggcgta tttaccgcat atgctgcgtg acaagaaagt ccttgcggga gagatgcgct 8820 taattcttcc gttggcaatt ggtaagagtg aagttcgcag cggcgtttcg cacgagcttg 8880 ttcttaacgc cattgccgat tgtcaatcag cgtaatcatc gttcatgcct gatgccgcta 8940 tgtaggccgg ataaggcgtt cacgccgcat ccggcaaccg atgcctgatg cgacgcggtc 9000 gcgtcttatc aggcctacag gtcgatgccg atatgtacat cgtattcggc aattaataca 9060 tagca 9065 <210> 32 <211> 11475 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(11475) <223> DNA sequence of the plasmid pCP55 <400> 32 acatgaatgg tcttcggttt ccgtgtttcg taaagtctgg aaacgcggaa gtcagcgccc 60 tgcaccatta tgttccggat ctgcatcgca ggatgctgct ggctaccctg tggaacacct 120 acatctgtat taacgaagcg ctggcattga ccctgagtga tttttctctg gtcccgccgc 180 atccataccg ccagttgttt accctcacaa cgttccagta accgggcatg ttcatcatca 240 gtaacccgta tcgtgagcat cctctctcgt ttcatcggta tcattacccc catgaacaga 300 aattccccct tacacggagg catcaagtga ccaaacagga aaaaaccgcc cttaacatgg 360 cccgctttat cagaagccag acattaacgc ttctggagaa actcaacgag ctggacgcgg 420 atgaacaggc agacatctgt gaatcgcttc acgaccacgc tgatgagctt taccgcagct 480 gcctcgcgcg tttcggtgat gacggtgaaa acctctgaca catgcagctc ccggagacgg 540 tcacagcttg tctgtaagcg gatgccggga gcagacaagc ccgtcagggc gcgtcagcgg 600 gtgttggcgg gtgtcggggc gcagccatga cccagtcacg tagcgatagc ggagtgtata 660 ctggcttaac tatgcggcat cagagcagat tgtactgaga gtgcaccata tgcggtgtga 720 aataccgcac agatgcgtaa ggagaaaata ccgcatcagg cgctcttccg cttcctcgct 780 cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc actcaaaggc 840 ggtaatacgg ttatccacag aatcagggga taacgcagga aagaacatgt gagcaaaagg 900 ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg 960 cccccctgac gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg 1020 actataaaga taccaggcgt ttccccctgg aagctccctc gtgcgctctc ctgttccgac 1080 cctgccgctt accggatacc tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca 1140 tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt 1200 gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc 1260 caacccggta agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag 1320 agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac 1380 tagaaggaca gtatttggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt 1440 tggtagctct tgatccggca aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa 1500 gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg 1560 gtctgacgct cagtggaacg aaaactcacg ttaagggatt ttggtcatga gattatcaaa 1620 aaggatcttc acctagatcc ttttaaatta aaaatgaagt tttaaatcaa tctaaagtat 1680 atatgagtaa acttggtctg acagttacca atgcttaatc agtgaggcac ctatctcagc 1740 gatctgtcta tttcgttcat ccatagttgc ctgactcccc gtcgtgtaga taactacgat 1800 acgggagggc ttaccatctg gccccagtgc tgcaatgata ccgcgagacc cacgctcacc 1860 ggctccagat ttatcagcaa taaaccagcc agccggaagg gccgagcgca gaagtggtcc 1920 tgcaacttta tccgcctcca tccagtctat taattgttgc cgggaagcta gagtaagtag 1980 ttcgccagtt aatagtttgc gcaacgttgt tgccattgct gcaggcatcg tggtgtcacg 2040 ctcgtcgttt ggtatggctt cattcagctc cggttcccaa cgatcaaggc gagttacatg 2100 atcccccatg ttgtgcaaaa aagcggttag ctccttcggt cctccgatcg ttgtcagaag 2160 taagttggcc gcagtgttat cactcatggt tatggcagca ctgcataatt ctcttactgt 2220 catgccatcc gtaagatgct tttctgtgac tggtgagtac tcaaccaagt cattctgaga 2280 atagtgtatg cggcgaccga gttgctcttg cccggcgtca acacgggata ataccgcgcc 2340 acatagcaga actttaaaag tgctcatcat tggaaaacgt tcttcggggc gaaaactctc 2400 aaggatctta ccgctgttga gatccagttc gatgtaaccc actcgtgcac ccaactgatc 2460 ttcagcatct tttactttca ccagcgtttc tgggtgagca aaaacaggaa ggcaaaatgc 2520 cgcaaaaaag ggaataaggg cgacacggaa atgttgaata ctcatactct tcctttttca 2580 atattattga agcatttatc agggttattg tctcatgagc ggatacatat ttgaatgtat 2640 ttagaaaaat aaacaaatag gggttccgcg cacatttccc cgaaaagtgc cacctgacgt 2700 ctaagaaacc attattatca tgacattaac ctataaaaat aggcgtatca cgaggccctt 2760 tcgtcttcaa gaattctgaa ccagtcctaa aacgagtaaa taggaccggc aattcttcaa 2820 gcaataaaca ggaataccaa ttattaaaag ataacttagt cagatcgtac aataaagctt 2880 tgaagaaaaa tgcgccttat tcaatctttg ctataaaaaa tggcccaaaa tctcacattg 2940 gaagacattt gatgacctca tttctttcaa tgaagggcct aacggagttg actaatgttg 3000 tgggaaattg gagcgataag cgtgcttctg ccgtggccag gacaacgtat actcatcaga 3060 taacagcaat acctgatcac tacttcgcac tagtttctcg gtactatgca tatgatccaa 3120 tatcaaagga aatgatagca ttgaaggatg agactaatcc aattgaggag tggcagcata 3180 tagaacagct aaagggtagt gctgaaggaa gcatacgata ccccgcatgg aatgggataa 3240 tatcacagga ggtactagac tacctttcat cctacataaa tagacgcata taagtacgca 3300 tttaagcata aacacgcact atgccgttct tctcatgtat atatatatac aggcaacacg 3360 cagatatagg tgcgacgtga acagtgagct gtatgtgcgc agctcgcgtt gcattttcgg 3420 aagcgctcgt tttcggaaac gctttgaagt tcctattccg aagttcctat tctctagaaa 3480 gtataggaac ttcagagcgc ttttgaaaac caaaagcgct ctgaagacgc actttcaaaa 3540 aaccaaaaac gcaccggact gtaacgagct actaaaatat tgcgaatacc gcttccacaa 3600 acattgctca aaagtatctc tttgctatat atctctgtgc tatatcccta tataacctac 3660 ccatccacct ttcgctcctt gaacttgcat ctaaactcga cctctacatt ttttatgttt 3720 atctctagta ttactcttta gacaaaaaaa ttgtagtaag aactattcat agagtgaatc 3780 gaaaacaata cgaaaatgta aacatttcct atacgtagta tatagagaca aaatagaaga 3840 aaccgttcat aattttctga ccaatgaaga atcatcaacg ctatcacttt ctgttcacaa 3900 agtatgcgca atccacatcg gtatagaata taatcgggga tgcctttatc ttgaaaaaat 3960 gcacccgcag cttcgctagt aatcagtaaa cgcgggaagt ggagtcaggc tttttttatg 4020 gaagagaaaa tagacaccaa agtagccttc ttctaacctt aacggaccta cagtgcaaaa 4080 agttatcaag agactgcatt atagagcgca caaaggagaa aaaaagtaat ctaagatgct 4140 ttgttagaaa aatagcgctc tcgggatgca tttttgtaga acaaaaaaga agtatagatt 4200 ctttgttggt aaaatagcgc tctcgcgttg catttctgtt ctgtaaaaat gcagctcaga 4260 ttctttgttt gaaaaattag cgctctcgcg ttgcattttt gttttacaaa aatgaagcac 4320 agattcttcg ttggtaaaat agcgctttcg cgttgcattt ctgttctgta aaaatgcagc 4380 tcagattctt tgtttgaaaa attagcgctc tcgcgttgca tttttgttct acaaaatgaa 4440 gcacagatgc ttcgttaaca aagatatgct attgaagtgc aagatggaaa cgcagaaaat 4500 gaaccgggga tgcgacgtgc aagattacct atgcaataga tgcaatagtt tctccaggaa 4560 ccgaaataca tacattgtct tccgtaaagc gctagactat atattattat acaggttcaa 4620 atatactatc tgtttcaggg aaaactccca ggttcggatg ttcaaaattc aatgatgggt 4680 aacaagtacg atcgtaaatc tgtaaaacag tttgtcggat attaggctgt atctcctcaa 4740 agcgtattcg aatatcattg agaagctgca gcgtcacatc ggataataat gatggcagcc 4800 attgtagaag tgccttttgc atttctagtc tctttctcgg tctagctagt tttactacat 4860 cgcgaagata gaatcttaga tcacactgcc tttgctgagc tggatcaata gagtaacaaa 4920 agagtggtaa ggcctcgtta aaggacaagg acctgagcgg aagtgtatcg tacagtagac 4980 ggagtatact agtatagtct atagtccgtg gaattctcat gtttgacagc ttatcatcga 5040 taagcttttc aattcaattc atcatttttt ttttattctt ttttttgatt tcggtttctt 5100 tgaaattttt ttgattcggt aatctccgaa cagaaggaag aacgaaggaa ggagcacaga 5160 cttagattgg tatatatacg catatgtagt gttgaagaaa catgaaattg cccagtattc 5220 ttaacccaac tgcacagaac aaaaacctgc aggaaacgaa gataaatcat gtcgaaagct 5280 acatataagg aacgtgctgc tactcatcct agtcctgttg ctgccaagct atttaatatc 5340 atgcacgaaa agcaaacaaa cttgtgtgct tcattggatg ttcgtaccac caaggaatta 5400 ctggagttag ttgaagcatt aggtcccaaa atttgtttac taaaaacaca tgtggatatc 5460 ttgactgatt tttccatgga gggcacagtt aagccgctaa aggcattatc cgccaagtac 5520 aattttttac tcttcgaaga cagaaaattt gctgacattg gtaatacagt caaattgcag 5580 tactctgcgg gtgtatacag aatagcagaa tgggcagaca ttacgaatgc acacggtgtg 5640 gtgggcccag gtattgttag cggtttgaag caggcggcag aagaagtaac aaaggaacct 5700 agaggccttt tgatgttagc agaattgtca tgcaagggct ccctatctac tggagaatat 5760 actaagggta ctgttgacat tgcgaagagc gacaaagatt ttgttatcgg ctttattgct 5820 caaagagaca tgggtggaag agatgaaggt tacgattggt tgattatgac acccggtgtg 5880 ggtttagatg acaagggaga cgcattgggt caacagtata gaaccgtgga tgatgtggtc 5940 tctacaggat ctgacattat tattgttgga agaggactat ttgcaaaggg aagggatgct 6000 aaggtagagg gtgaacgtta cagaaaagca ggctgggaag catatttgag aagatgcggc 6060 cagcaaaact aaaaaactgt attataagta aatgcatgta tactaaactc acaaattaga 6120 gcttcaattt aattatatca gttattaccc gggaatctcg gtcgtaatga aaggaaaagc 6180 gcaacggacg ggcgagtaga ttgcgcaaca tgcgagcatg atccagagat ttctgaagca 6240 gcaaaaggat gttccatgta catgacgcgc ggcttgcggt aaattgttgg caaattttcc 6300 ggcgtagccc aaaacgcgct gtcgtcaagt cgttaagggc gtgcccttca tcatccgatc 6360 tggagtcaaa atgtcctcac gtaaagagct tgccaatgct attcgtgcgc tgagcatgga 6420 cgcagtacag aaagccaaat ccggtcaccc gggtgcccct atgggtatgg ctgacattgc 6480 cgaagtcctg tggcgtgatt tcctgaaaca caacccgcag aatccgtcct gggctgaccg 6540 tgaccgcttc gtgctgtcca acggccacgg ctccatgctg atctacagcc tgctgcacct 6600 caccggttac gatctgccga tggaagaact gaaaaacttc cgtcagctgc actctaaaac 6660 tccgggccac ccggaagtag gttataccgc tggtgtggaa accaccaccg gtccgctggg 6720 tcagggtatt gccaacgcag tcggtatggc gattgcagaa aaaacgctgg cggcgcagtt 6780 taaccgtcca ggtcacgaca ttgtcgacca ctacacctac gccttcatgg gcgacggctg 6840 catgatggaa ggcatctccc acgaagtttg ctctctggcg ggtacgctga agctgggtaa 6900 actgattgcg ttctacgatg acaacggtat ctcaatcgat ggtcacgttg aaggctggtt 6960 cactgacgac accgcaatgc gtttcgaagc ttacggctgg cacgttattc gcgacatcga 7020 cggtcatgac gcggcatcca tcaaacgcgc agtagaagaa gcgcgcgcag tgactgacaa 7080 accgtccctg ctgatgtgca aaaccatcat cggtttcggt tccccgaaca aagccggtac 7140 ccacgactcc cacggtgcgc cgctgggcga cgctgaaatt gccctgaccc gcgaacagct 7200 gggctggaaa tacgcgccgt tcgaaatccc gtctgaaatc tatgctcagt gggatgcgaa 7260 agaagcaggc caggcgaaag aatctgcatg gaatgagaag tttgcggctt acgcgaaagc 7320 ttatccgcag gaagcggctg aatttacccg ccgtatgaaa ggcgaaatgc cgtctgactt 7380 cgacgccaaa gcgaaagagt ttatcgctaa actgcaggct aatccggcga aaatcgccag 7440 ccgtaaagcg tcgcagaatg ctatcgaagc gttcggcccg ctgttgcctg aattcctcgg 7500 cggctctgct gacctggcac cgtctaacct gaccctgtgg tctggttcta aagcaatcaa 7560 cgaagatgct gcaggtaact acatccacta cggtgttcgc gagttcggta tgaccgcgat 7620 tgctaacggt atctccctgc acggtggttt cctgccgtac acctccacct tcctgatgtt 7680 cgtggaatac gcacgtaacg ccgtacgtat ggctgcgctg atgaaacagc gtcaggtgat 7740 ggtttacacc cacgactcca tcggtctggg cgaagatggc ccgactcacc agccggttga 7800 gcaggtcgct tctctgcgcg tgaccccgaa catgtctaca tggcgtccgt gtgaccaggt 7860 tgaatccgcg gtcgcgtgga aatacggcgt tgagcgtcag gacggcccga ctgcgcttat 7920 cctctcccgt cagaacctgg cgcagcagga acgaactgaa gagcaactgg caaacatcgc 7980 gcgcggtggt tatgtgctga aagactgcgc cggtcagccg gaactgattt tcatcgctac 8040 cggttcagaa gttgaactgg ctgttgctgc ctacgaaaaa ctgactgccg aaggcgtgaa 8100 agcgcgcgtg gtgtccatgc cgtctaccga cgcatttgac aagcaggatg ctgcttaccg 8160 tgaatccgta ctgccgaaag cggttactgc acgcgttgct gtagaagcgg gtattgctga 8220 ctactggtac aagtatgttg gcctgaacgg tgctatcgtc ggtatgacca ccttcggtga 8280 atctgctccg gcagagctgc tgtttgaaga gttcggcttc actgttgata acgttgttgc 8340 gaaagcaaaa gaactgctgt aattagcatt tcgggtaaaa aggtcgcttc ggcgaccttt 8400 tttattacct tgatatgtcc gtttgcggac aagcaataga taaagcgtgt tgtagatcac 8460 aaatatttat atgcaataaa tatcaattat gtaatatgca tcacgatatg cgtattgaca 8520 tttgttgtta taactataac tcaatgttat ataagaaatt aacttgaaat aattaacaaa 8580 caaaggagtt acagttagaa attgtaggag agatctcgtt tttcgcgaca atctggcgtt 8640 tttcttgcta attccaggat taatccgttc atagtgtaaa accccgttta cacattctga 8700 cggaagatat agattggaag tattgcattc actaagataa gtatggcaac actggaacag 8760 acatgaatta tcagaacgac gatttacgca tcaaagaaat caaagagtta cttcctcctg 8820 tcgcattgct ggaaaaattc cccgctactg aaaatgccgc gaatacggtt gcccatgccc 8880 gaaaagcgat ccataagatc ctgaaaggta atgatgatcg cctgttggtt gtgattggcc 8940 catgctcaat tcatgatcct gtcgcggcaa aagagtatgc cactcgcttg ctggcgctgc 9000 gtgaagagct gaaagatgag ctggaaatcg taatgcgcgt ctattttgaa aagccgcgta 9060 ccacggtggg ctggaaaggg ctgattaacg atccgcatat ggataatagc ttccagatca 9120 acgacggtct gcgtatagcc cgtaaattgc tgcttgatat taacgacagc ggtctgccag 9180 cggcaggtga gtttctcgat atgatcaccc cacaatatct cgctgacctg atgagctggg 9240 gcgcaattgg cgcacgtacc accgaatcgc aggtgcaccg cgaactggca tcagggcttt 9300 cttgtccggt cggcttcaaa aatggcaccg acggtacgat taaagtggct atcgatgcca 9360 ttaatgccgc cggtgcgccg cactgcttcc tgtccgtaac gaaatggggg cattcggcga 9420 ttgtgaatac cagcggtaac ggcgattgcc atatcattct gcgcggcggt aaagagccta 9480 actacagcgc gaagcacgtt gctgaagtga aagaagggct gaacaaagca ggcctgccag 9540 cacaggtgat gatcgatttc agccatgcta actcgtccaa acaattcaaa aagcagatgg 9600 atgtttgtgc tgacgtttgc cagcagattg ccggtggcga aaaggccatt attggcgtga 9660 tggtggaaag ccatctggtg gaaggcaatc agagcctcga gagcggggag ccgctggcct 9720 acggtaagag catcaccgat gcctgcatcg gctgggaaga taccgatgct ctgttacgtc 9780 aactggcgaa tgcagtaaaa gcgcgtcgcg ggtaaggttt aattgtcgga tgcgccgtca 9840 gagtggcgta tccgatgaat caccacaggc ctgataagtc gcgcagcgtc gcatcaggca 9900 atgtgctcca ttgttagcaa caaaaaagcc gactcacttg cagtcggctt tctcatttta 9960 aacgaatgac gtttacttcg ctttaccctg gtttgcaacc gccgctgctt tcgctctcga 10020 ggctattgac gacagctatg gttcactgtc caccaaccaa aactgtgctc agtaccgcca 10080 atatttctcc cttgaggggt acaaagaggt gtccctagaa gagatccacg ctgtgtaaaa 10140 attttacaaa aaggtattga ctttccctac agggtgtgta ataatttaat tacaggcggg 10200 ggcaaccccg cctgttctag aggaggagga atcgccatgg agaggattgt cgttactctc 10260 ggggaacgta gttacccaat taccatcgca tctggtttgt ttaatgaacc agcttcattc 10320 ttaccgctga aatcgggcga gcaggtcatg ttggtcacca acgaaaccct ggctcctctg 10380 tatctcgata aggtccgcgg cgtacttgaa caggcgggtg ttaacgtcga tagcgttatc 10440 ctccctgacg gcgagcagta taaaagcctg gctgtactcg ataccgtctt tacggcgttg 10500 ttacaaaagc cgcatggtcg cgatactacg ctggtggcgc ttggcggcgg cgtagtgggc 10560 gatctgaccg gcttcgcggc ggcgagttat cagcgcggtg ttcgtttcat tcaagtcccg 10620 acgacgttac tgtcgcaggt cgattcctcc gttggcggca aaactgcggt caaccatccc 10680 ctcggtaaaa acatgattgg cgcgttctac cagcctgctt cagtggtggt ggatctcgac 10740 tgtctgaaaa cgcttccccc gcgtgagtta gcgtcggggc tggcagaagt catcaaatac 10800 ggcattattc ttgacggtgc gtttttcaac tggctggaag agaatctgga tgcgttgttg 10860 cgtctggacg gtccggcaat ggcgtactgt attcgccgtt gttgtgaact gaaggcagaa 10920 gttgtcgccg ccgacgagcg cgaaaccggg ttacgtgctt tactgaatct gggacacacc 10980 tttggtcatg ccattgaagc tgaaatgggg tatggcaatt ggttacatgg tgaagcggtc 11040 gctgcgggta tggtgatggc ggcgcggacg tcggaacgtc tcgggcagtt tagttctgcc 11100 gaaacgcagc gtattataac cctgctcacg cgggctgggt taccggtcaa tgggccgcgc 11160 gaaatgtccg cgcaggcgta tttaccgcat atgctgcgtg acaagaaagt ccttgcggga 11220 gagatgcgct taattcttcc gttggcaatt ggtaagagtg aagttcgcag cggcgtttcg 11280 cacgagcttg ttcttaacgc cattgccgat tgtcaatcag cgtaatcatc gttcatgcct 11340 gatgccgcta tgtaggccgg ataaggcgtt cacgccgcat ccggcaaccg atgcctgatg 11400 cgacgcggtc gcgtcttatc aggcctacag gtcgatgccg atatgtacat cgtattcggc 11460 aattaataca tagca 11475 <210> 33 <211> 7769 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(7769) <223> DNA sequence of the plasmid YEP24 <400> 33 gaattctgaa ccagtcctaa aacgagtaaa taggaccggc aattcttcaa gcaataaaca 60 ggaataccaa ttattaaaag ataacttagt cagatcgtac aataaagctt tgaagaaaaa 120 tgcgccttat tcaatctttg ctataaaaaa tggcccaaaa tctcacattg gaagacattt 180 gatgacctca tttctttcaa tgaagggcct aacggagttg actaatgttg tgggaaattg 240 gagcgataag cgtgcttctg ccgtggccag gacaacgtat actcatcaga taacagcaat 300 acctgatcac tacttcgcac tagtttctcg gtactatgca tatgatccaa tatcaaagga 360 aatgatagca ttgaaggatg agactaatcc aattgaggag tggcagcata tagaacagct 420 aaagggtagt gctgaaggaa gcatacgata ccccgcatgg aatgggataa tatcacagga 480 ggtactagac tacctttcat cctacataaa tagacgcata taagtacgca tttaagcata 540 aacacgcact atgccgttct tctcatgtat atatatatac aggcaacacg cagatatagg 600 tgcgacgtga acagtgagct gtatgtgcgc agctcgcgtt gcattttcgg aagcgctcgt 660 tttcggaaac gctttgaagt tcctattccg aagttcctat tctctagaaa gtataggaac 720 ttcagagcgc ttttgaaaac caaaagcgct ctgaagacgc actttcaaaa aaccaaaaac 780 gcaccggact gtaacgagct actaaaatat tgcgaatacc gcttccacaa acattgctca 840 aaagtatctc tttgctatat atctctgtgc tatatcccta tataacctac ccatccacct 900 ttcgctcctt gaacttgcat ctaaactcga cctctacatt ttttatgttt atctctagta 960 ttactcttta gacaaaaaaa ttgtagtaag aactattcat agagtgaatc gaaaacaata 1020 cgaaaatgta aacatttcct atacgtagta tatagagaca aaatagaaga aaccgttcat 1080 aattttctga ccaatgaaga atcatcaacg ctatcacttt ctgttcacaa agtatgcgca 1140 atccacatcg gtatagaata taatcgggga tgcctttatc ttgaaaaaat gcacccgcag 1200 cttcgctagt aatcagtaaa cgcgggaagt ggagtcaggc tttttttatg gaagagaaaa 1260 tagacaccaa agtagccttc ttctaacctt aacggaccta cagtgcaaaa agttatcaag 1320 agactgcatt atagagcgca caaaggagaa aaaaagtaat ctaagatgct ttgttagaaa 1380 aatagcgctc tcgggatgca tttttgtaga acaaaaaaga agtatagatt ctttgttggt 1440 aaaatagcgc tctcgcgttg catttctgtt ctgtaaaaat gcagctcaga ttctttgttt 1500 gaaaaattag cgctctcgcg ttgcattttt gttttacaaa aatgaagcac agattcttcg 1560 ttggtaaaat agcgctttcg cgttgcattt ctgttctgta aaaatgcagc tcagattctt 1620 tgtttgaaaa attagcgctc tcgcgttgca tttttgttct acaaaatgaa gcacagatgc 1680 ttcgttaaca aagatatgct attgaagtgc aagatggaaa cgcagaaaat gaaccgggga 1740 tgcgacgtgc aagattacct atgcaataga tgcaatagtt tctccaggaa ccgaaataca 1800 tacattgtct tccgtaaagc gctagactat atattattat acaggttcaa atatactatc 1860 tgtttcaggg aaaactccca ggttcggatg ttcaaaattc aatgatgggt aacaagtacg 1920 atcgtaaatc tgtaaaacag tttgtcggat attaggctgt atctcctcaa agcgtattcg 1980 aatatcattg agaagctgca gcgtcacatc ggataataat gatggcagcc attgtagaag 2040 tgccttttgc atttctagtc tctttctcgg tctagctagt tttactacat cgcgaagata 2100 gaatcttaga tcacactgcc tttgctgagc tggatcaata gagtaacaaa agagtggtaa 2160 ggcctcgtta aaggacaagg acctgagcgg aagtgtatcg tacagtagac ggagtatact 2220 agtatagtct atagtccgtg gaattctcat gtttgacagc ttatcatcga taagcttttc 2280 aattcaattc atcatttttt ttttattctt ttttttgatt tcggtttctt tgaaattttt 2340 ttgattcggt aatctccgaa cagaaggaag aacgaaggaa ggagcacaga cttagattgg 2400 tatatatacg catatgtagt gttgaagaaa catgaaattg cccagtattc ttaacccaac 2460 tgcacagaac aaaaacctgc aggaaacgaa gataaatcat gtcgaaagct acatataagg 2520 aacgtgctgc tactcatcct agtcctgttg ctgccaagct atttaatatc atgcacgaaa 2580 agcaaacaaa cttgtgtgct tcattggatg ttcgtaccac caaggaatta ctggagttag 2640 ttgaagcatt aggtcccaaa atttgtttac taaaaacaca tgtggatatc ttgactgatt 2700 tttccatgga gggcacagtt aagccgctaa aggcattatc cgccaagtac aattttttac 2760 tcttcgaaga cagaaaattt gctgacattg gtaatacagt caaattgcag tactctgcgg 2820 gtgtatacag aatagcagaa tgggcagaca ttacgaatgc acacggtgtg gtgggcccag 2880 gtattgttag cggtttgaag caggcggcag aagaagtaac aaaggaacct agaggccttt 2940 tgatgttagc agaattgtca tgcaagggct ccctatctac tggagaatat actaagggta 3000 ctgttgacat tgcgaagagc gacaaagatt ttgttatcgg ctttattgct caaagagaca 3060 tgggtggaag agatgaaggt tacgattggt tgattatgac acccggtgtg ggtttagatg 3120 acaagggaga cgcattgggt caacagtata gaaccgtgga tgatgtggtc tctacaggat 3180 ctgacattat tattgttgga agaggactat ttgcaaaggg aagggatgct aaggtagagg 3240 gtgaacgtta cagaaaagca ggctgggaag catatttgag aagatgcggc cagcaaaact 3300 aaaaaactgt attataagta aatgcatgta tactaaactc acaaattaga gcttcaattt 3360 aattatatca gttattaccc gggaatctcg gtcgtaatga tttttataat gacgaaaaaa 3420 aaaaaattgg aaagaaaaag ctttaatgcg gtagtttatc acagttaaat tgctaacgca 3480 gtcaggcacc gtgtatgaaa tctaacaatg cgctcatcgt catcctcggc accgtcaccc 3540 tggatgctgt aggcataggc ttggttatgc cggtactgcc gggcctcttg cgggatatcg 3600 tccattccga cagcatcgcc agtcactatg gcgtgctgct agcgctatat gcgttgatgc 3660 aatttctatg cgcacccgtt ctcggagcac tgtccgaccg ctttggccgc cgcccagtcc 3720 tgctcgcttc gctacttgga gccactatcg actacgcgat catggcgacc acacccgtcc 3780 tgtggatcct ctacgccgga cgcatcgtgg ccggcatcac cggcgccaca ggtgcggttg 3840 ctggcgccta tatcgccgac atcaccgatg gggaagatcg ggctcgccac ttcgggctca 3900 tgagcgcttg tttcggcgtg ggtatggtgg caggccccgt ggccggggga ctgttgggcg 3960 ccatctcctt gcatgcacca ttccttgcgg cggcggtgct caacggcctc aacctactac 4020 tgggctgctt cctaatgcag gagtcgcata agggagagcg tcgaccgatg cccttgagag 4080 ccttcaaccc agtcagctcc ttccggtggg cgcggggcat gactatcgtc gccgcactta 4140 tgactgtctt ctttatcatg caactcgtag gacaggtgcc ggcagcgctc tgggtcattt 4200 tcggcgagga ccgctttcgc tggagcgcga cgatgatcgg cctgtcgctt gcggtattcg 4260 gaatcttgca cgccctcgct caagccttcg tcactggtcc cgccaccaaa cgtttcggcg 4320 agaagcaggc cattatcgcc ggcatggcgg ccgacgcgct gggctacgtc ttgctggcgt 4380 tcgcgacgcg aggctggatg gccttcccca ttatgattct tctcgcttcc ggcggcatcg 4440 ggatgcccgc gttgcaggcc atgctgtcca ggcaggtaga tgacgaccat cagggacagc 4500 ttcaaggatc gctcgcggct cttaccagcc taacttcgat cactggaccg ctgatcgtca 4560 cggcgattta tgccgcctcg gcgagcacat ggaacgggtt ggcatggatt gtaggcgccg 4620 ccctatacct tgtctgcctc cccgcgttgc gtcgcggtgc atggagccgg gccacctcga 4680 cctgaatgga agccggcggc acctcgctaa cggattcacc actccaagaa ttggagccaa 4740 tcaattcttg cggagaactg tgaatgcgca aaccaaccct tggcagaaca tatccatcgc 4800 gtccgccatc tccagcagcc gcacgcggcg catctcgggc agcgttgggt cctggccacg 4860 ggtgcgcatg atcgtgctcc tgtcgttgag gacccggcta ggctggcggg gttgccttac 4920 tggttagcag aatgaatcac cgatacgcga gcgaacgtga agcgactgct gctgcaaaac 4980 gtctgcgacc tgagcaacaa catgaatggt cttcggtttc cgtgtttcgt aaagtctgga 5040 aacgcggaag tcagcgccct gcaccattat gttccggatc tgcatcgcag gatgctgctg 5100 gctaccctgt ggaacaccta catctgtatt aacgaagcgc tggcattgac cctgagtgat 5160 ttttctctgg tcccgccgca tccataccgc cagttgttta ccctcacaac gttccagtaa 5220 ccgggcatgt tcatcatcag taacccgtat cgtgagcatc ctctctcgtt tcatcggtat 5280 cattaccccc atgaacagaa attccccctt acacggaggc atcaagtgac caaacaggaa 5340 aaaaccgccc ttaacatggc ccgctttatc agaagccaga cattaacgct tctggagaaa 5400 ctcaacgagc tggacgcgga tgaacaggca gacatctgtg aatcgcttca cgaccacgct 5460 gatgagcttt accgcagctg cctcgcgcgt ttcggtgatg acggtgaaaa cctctgacac 5520 atgcagctcc cggagacggt cacagcttgt ctgtaagcgg atgccgggag cagacaagcc 5580 cgtcagggcg cgtcagcggg tgttggcggg tgtcggggcg cagccatgac ccagtcacgt 5640 agcgatagcg gagtgtatac tggcttaact atgcggcatc agagcagatt gtactgagag 5700 tgcaccatat gcggtgtgaa ataccgcaca gatgcgtaag gagaaaatac cgcatcaggc 5760 gctcttccgc ttcctcgctc actgactcgc tgcgctcggt cgttcggctg cggcgagcgg 5820 tatcagctca ctcaaaggcg gtaatacggt tatccacaga atcaggggat aacgcaggaa 5880 agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg 5940 cgtttttcca taggctccgc ccccctgacg agcatcacaa aaatcgacgc tcaagtcaga 6000 ggtggcgaaa cccgacagga ctataaagat accaggcgtt tccccctgga agctccctcg 6060 tgcgctctcc tgttccgacc ctgccgctta ccggatacct gtccgccttt ctcccttcgg 6120 gaagcgtggc gctttctcat agctcacgct gtaggtatct cagttcggtg taggtcgttc 6180 gctccaagct gggctgtgtg cacgaacccc ccgttcagcc cgaccgctgc gccttatccg 6240 gtaactatcg tcttgagtcc aacccggtaa gacacgactt atcgccactg gcagcagcca 6300 ctggtaacag gattagcaga gcgaggtatg taggcggtgc tacagagttc ttgaagtggt 6360 ggcctaacta cggctacact agaaggacag tatttggtat ctgcgctctg ctgaagccag 6420 ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa acaaaccacc gctggtagcg 6480 gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa aaaaggatct caagaagatc 6540 ctttgatctt ttctacgggg tctgacgctc agtggaacga aaactcacgt taagggattt 6600 tggtcatgag attatcaaaa aggatcttca cctagatcct tttaaattaa aaatgaagtt 6660 ttaaatcaat ctaaagtata tatgagtaaa cttggtctga cagttaccaa tgcttaatca 6720 gtgaggcacc tatctcagcg atctgtctat ttcgttcatc catagttgcc tgactccccg 6780 tcgtgtagat aactacgata cgggagggct taccatctgg ccccagtgct gcaatgatac 6840 cgcgagaccc acgctcaccg gctccagatt tatcagcaat aaaccagcca gccggaaggg 6900 ccgagcgcag aagtggtcct gcaactttat ccgcctccat ccagtctatt aattgttgcc 6960 gggaagctag agtaagtagt tcgccagtta atagtttgcg caacgttgtt gccattgctg 7020 caggcatcgt ggtgtcacgc tcgtcgtttg gtatggcttc attcagctcc ggttcccaac 7080 gatcaaggcg agttacatga tcccccatgt tgtgcaaaaa agcggttagc tccttcggtc 7140 ctccgatcgt tgtcagaagt aagttggccg cagtgttatc actcatggtt atggcagcac 7200 tgcataattc tcttactgtc atgccatccg taagatgctt ttctgtgact ggtgagtact 7260 caaccaagtc attctgagaa tagtgtatgc ggcgaccgag ttgctcttgc ccggcgtcaa 7320 cacgggataa taccgcgcca catagcagaa ctttaaaagt gctcatcatt ggaaaacgtt 7380 cttcggggcg aaaactctca aggatcttac cgctgttgag atccagttcg atgtaaccca 7440 ctcgtgcacc caactgatct tcagcatctt ttactttcac cagcgtttct gggtgagcaa 7500 aaacaggaag gcaaaatgcc gcaaaaaagg gaataagggc gacacggaaa tgttgaatac 7560 tcatactctt cctttttcaa tattattgaa gcatttatca gggttattgt ctcatgagcg 7620 gatacatatt tgaatgtatt tagaaaaata aacaaatagg ggttccgcgc acatttcccc 7680 gaaaagtgcc acctgacgtc taagaaacca ttattatcat gacattaacc tataaaaata 7740 ggcgtatcac gaggcccttt cgtcttcaa 7769 <210> 34 <211> 2000 <212> DNA <213> Escherichia coli <220> <221> gene <222> (1)..(2000) <223> DNA sequence of the deleted aroE region <400> 34 actacgtccg tcctctgaaa tcttcagcgg atggacatat cgtcaaagtt ctggaggggc 60 aggtttgccc tgcatgtggc gcaaatctgg tattacgcca gggacgcttt ggtatgttta 120 ttggttgcat taactaccct gaatgcgaac ataccgaact tatcgataaa ccggacgaaa 180 cagcaattac atgcccccaa tgtcggacgg gccatctggt ccagcgccgc tcccgttatg 240 gcaaaacatt tcactcttgt gatcgctacc cggagtgtca atttgccatt aacttcaaac 300 ccatagctgg agaatgccct gagtgtcatt atccgctact catcgaaaag aaaaccgcgc 360 agggtgtaaa acacttttgt gccagtaaac aatgtggaaa gccggtttcg gcggaataat 420 aacgtgaata ataacctgca aagagacgct atcgcagctg cgatagatgt tctcaatgaa 480 gaacgtgtca tcgcctatcc aacggaagcc gttttcggtg ttgggtgcga tcctgatagc 540 gaaacagcag tgatgcgact gttggagtta aaacagcgtc cggttgataa ggggctgatt 600 ttaatcgcag caaattacga gcagcttaaa ccctatattg atgacaccat gttgactgac 660 gtgcagcgtg aaaccatttt ttcccgctgg ccaggtcctg tcacctttgt ctttcccgcg 720 cctgcgacaa caccgcgctg gttgacgggc cgctttgatt cgcttgctgt acgagtcacc 780 gaccatccgt tggtggttgc tttgtgccag gcttatggta aaccgctggt ttctaccagt 840 gccaacttga gtggattgcc accttgtcga acagtagacg aagttcgcgc acaatttggc 900 gcggcgttcc cggttgtgcc tggtgaaacg ggggggcgtt taaatccttc agaaatccgc 960 gatgccctga cgggtgaact gtttcgacag gggtaacata atcaggccat ccagtttccg 1020 gacagggaag agtgggacga gaataaaaaa tgtgtatgtt ttcccgctct cgtgaatggt 1080 atgcaactga catgcgcgat ctctggcgag agtctggcgt atcgctttac tggagatacg 1140 ccagaacagt ggttagcgag ttttcgtcag catcgctggg acctggaaga agaagcggaa 1200 aacttaattc aggaacaaag tgaagatgat caaggctggg tctggttacc ctgatccaga 1260 tattcgtcct tccatttcac gtaattattc gcggaatagc gtaacccagc cttctcttca 1320 tcacttaacg ggcggatctg tttgacgggg ctaccgagat acagatatcc gctctccagc 1380 cgtttatttt gtgggaccag actacccgca ccaatcatca catcatcttc tactattgcg 1440 ccatcaagta aaattgagcc catcccaacc aaaactcgat tgccaatggt gcagccgtgg 1500 agcatcacct tgtgaccaac agtgacatct tcgccaatgg ttaatgggtt gccatctggg 1560 ttgtacgagg atttatgagt gacatgcaac atactgccat cctggatatt ggtgcgtgct 1620 ccgatctgta cataatgtac atctccacga atcacaacga gcggccagat ccccacatca 1680 tcagccagac gaacgtcacc aatcacgaca ctgctatcgt cgatcattac gcgctgaccg 1740 atttgtggaa aaagatcgcg gtatgggcgt aaaacatcag acatacttac ctcagcaata 1800 aatgatttac taatgacttt gggggcatta ttggccttgt gcaagtcttt tagtatgcaa 1860 aaaagcaccg ttttgtgtgc gattgcagca aaaagggtga aaaaacaaca aacagaaaaa 1920 aagatcaaaa aaatacttgt gcaaaaaatt gggatcccta taatgcgcct ccgttgagac 1980 gacaacgtga aacacttcac 2000 <210> 35 <211> 2460 <212> DNA <213> Escherichia coli <220> <221> gene <222> (1)..(2460) <223> DNA sequence of the integrated cassette ack::P15aroB <400> 35 gatcggcggc ataaaacgga tcgcataacg cgtcatcttg ataacgcgat tttcgacaaa 60 gaccggggca aggcgttttt ccagcggcca cgtctttgag taatgctgtc cccggcgaaa 120 caagctaaaa aaattaacag aacgattatc cggcgttgac atgcttcacc tcaacttcac 180 atataaagat tcaaaaattt gtgcaaattc acaactcagc gggacaacgt tcaaaacatt 240 ttgtcttcca tacccactat caggtatcct ttagcagcct gaaggcctaa gtagtacata 300 ttcattgagt cgtcaaattc atatacatta tgccattggc tgaaaattac gcaaaatggc 360 atagactcaa gatatttctt ccatcatgca aaaaaaaatt tgcagtgcat gatgttaatc 420 ataaatgtcg gtgtcatcat gcgctacgct ctatggctcc ctgacgtttt tttagccacg 480 tatcaattat aggtacttcc ctcgaggcta ttgacgacag ctatggttca ctgtccacca 540 accaaaactg tgctcagtac cgccaatatt tctcccttga ggggtacaaa gaggtgtccc 600 tagaagagat ccacgctgtg taaaaatttt acaaaaaggt attgactttc cctacagggt 660 gtgtaataat ttaattacag gcgggggcaa ccccgcctgt tctagaggag gaggaatcgc 720 catggagagg attgtcgtta ctctcgggga acgtagttac ccaattacca tcgcatctgg 780 tttgtttaat gaaccagctt cattcttacc gctgaaatcg ggcgagcagg tcatgttggt 840 caccaacgaa accctggctc ctctgtatct cgataaggtc cgcggcgtac ttgaacaggc 900 gggtgttaac gtcgatagcg ttatcctccc tgacggcgag cagtataaaa gcctggctgt 960 actcgatacc gtctttacgg cgttgttaca aaagccgcat ggtcgcgata ctacgctggt 1020 ggcgcttggc ggcggcgtag tgggcgatct gaccggcttc gcggcggcga gttatcagcg 1080 cggtgttcgt ttcattcaag tcccgacgac gttactgtcg caggtcgatt cctccgttgg 1140 cggcaaaact gcggtcaacc atcccctcgg taaaaacatg attggcgcgt tctaccagcc 1200 tgcttcagtg gtggtggatc tcgactgtct gaaaacgctt cccccgcgtg agttagcgtc 1260 ggggctggca gaagtcatca aatacggcat tattcttgac ggtgcgtttt tcaactggct 1320 ggaagagaat ctggatgcgt tgttgcgtct ggacggtccg gcaatggcgt actgtattcg 1380 ccgttgttgt gaactgaagg cagaagttgt cgccgccgac gagcgcgaaa ccgggttacg 1440 tgctttactg aatctgggac acacctttgg tcatgccatt gaagctgaaa tggggtatgg 1500 caattggtta catggtgaag cggtcgctgc gggtatggtg atggcggcgc ggacgtcgga 1560 acgtctcggg cagtttagtt ctgccgaaac gcagcgtatt ataaccctgc tcacgcgggc 1620 tgggttaccg gtcaatgggc cgcgcgaaat gtccgcgcag gcgtatttac cgcatatgct 1680 gcgtgacaag aaagtccttg cgggagagat gcgcttaatt cttccgttgg caattggtaa 1740 gagtgaagtt cgcagcggcg tttcgcacga gcttgttctt aacgccattg ccgattgtca 1800 atcagcgtaa tcatcgttca tgcctgatgc cgctatgtag gccggataag gcgttcacgc 1860 cgcatccggc aaccgatgcc tgatgcgacg cggtcgcgtc ttatcaggcc tacaggtcga 1920 tgccgatatg tacatcgtat tcggcaatta atacatagca tttcacaccg ccagctcagc 1980 tggcggtgct gttttgtaac ccgccaaatc ggcggtaacg aaagaggata aaccgtgtcc 2040 cgtattatta tgctgatccc taccggaacc agcgtcggtc tgaccagcgt cagccttggc 2100 gtgatccgtg caatggaacg caaaggcgtt cgtctgagcg ttttcaaacc tatcgctcag 2160 ccgcgtaccg gtggcgatgc gcccgatcag actacgacta tcgtgcgtgc gaactcttcc 2220 accacgacgg ccgctgaacc gctgaaaatg agctacgttg aaggtctgct ttccagcaat 2280 cagaaagatg tgctgatgga agagatcgtc gcaaactacc acgctaacac caaagacgct 2340 gaagtcgttc tggttgaagg tctggtcccg acacgtaagc accagtttgc ccagtctctg 2400 aactacgaaa tcgctaaaac gctgaatgcg gaaatcgtct tcgttatgtc tcagggcact 2460 2460 <210> 36 <211> 1000 <212> DNA <213> Escherichia coli <220> <221> gene <222> (1)..(1000) <223> DNA sequence of the poxB region <400> 36 gcggcccggc tccgtatatg gattgggtag agcaggaagt gaaagcgctc ggcgtgacgc 60 gtttctttaa agagaaattc ttcaccccag tagcggaagc agcgaccagc ggtctgaaat 120 tcaccaaact gcaaccggca cgagaatttt acgccccggt tggcaccacg ctactggagg 180 cgctggaaag caataacgtt ccggttgtcg ccgcctgccg tgcgggtgtt tgcggctgct 240 gtaagacaaa agtggtttcc ggtgaatata cggtgagcag cacaatgacg ctgaccgacg 300 ccgaaatcgc tgaaggttac gtactggcct gctcctgcca tccgcagggg gatttggttc 360 tcgcataatc gccttatgcc cgatgatatt cctttcatcg ggctatttaa ccgttagtgc 420 ctcctttctc tcccatccct tccccctccg tcagatgaac taaacttgtt accgttatca 480 cattcaggag atggagaacc aaagggtggc atttcccgtc ataataagga catgccatga 540 ttgatttacg cagtgatacc gttacccgac cgagccgcgc catgctcgaa gcaatgatgg 600 ccgccccggt tggggacgac gtttacggag acgaccctac cgttaatgct ctgcaggact 660 acgccgcaga gctttccggt aaagaagccg ccatttttct gccgaccggc actcaggcca 720 acctggtcgc tctgctcagt cactgcgaac gtggcgaaga gtatattgtc ggtcaggccg 780 cgcataacta tctgtttgaa gccggtggcg cagcggtgct gggcagtatt cagccgcaac 840 ccatcgacgc ggctgccgac ggcacgctac cgctggataa agtggcgatg aaaatcaaac 900 ccgacgatat ccatttcgcc cgcaccaaat tactcagtct ggaaaacacc cacaacggca 960 aagtgctgcc gcgtgaatac ctgaaagaag catgggaatt 1000 <210> 37 <211> 3392 <212> DNA <213> Escherichia coli <220> <221> gene <222> (1)..(3392) <223> DNA sequence of the integrated cassette poxB::tktA <400> 37 gcggcccggc tccgtatatg gattgggtag agcaggaagt gaaagcgctc ggcgtgacgc 60 gtttctttaa agagaaattc ttcaccccag tagcggaagc agcgaccagc ggtctgaaat 120 tcaccaaact gcaaccggca cgagaatttt acgccccggt tggcaccacg ctactggagg 180 cgctggaaag caataacgtt ccggttgtcg ccgcctgccg tgcgggtgtt tgcggctgct 240 gtaagacaaa agtggtttcc ggtgaatata cggtgagcag cacaatgacg ctgaccgacg 300 ccgaaatcgc tgaaggttac gtactggcct gctcctgcca tccgcagggg gatttggttc 360 tcgcataatc gccttatgcc cgatgatatt cctttcatcg ggctatttaa ccgttagtgc 420 ctcctttctc tcccatccct tccccctccg tcagatgaac taaacttgtt accgttatca 480 cattcaggag atggagaacc aaggaaaagc gcaacggacg ggcgagtaga ttgcgcaaca 540 tgcgagcatg atccagagat ttctgaagca gcaaaaggat gttccatgta catgacgcgc 600 ggcttgcggt aaattgttgg caaattttcc ggcgtagccc aaaacgcgct gtcgtcaagt 660 cgttaagggc gtgcccttca tcatccgatc tggagtcaaa atgtcctcac gtaaagagct 720 tgccaatgct attcgtgcgc tgagcatgga cgcagtacag aaagccaaat ccggtcaccc 780 gggtgcccct atgggtatgg ctgacattgc cgaagtcctg tggcgtgatt tcctgaaaca 840 caacccgcag aatccgtcct gggctgaccg tgaccgcttc gtgctgtcca acggccacgg 900 ctccatgctg atctacagcc tgctgcacct caccggttac gatctgccga tggaagaact 960 gaaaaacttc cgtcagctgc actctaaaac tccgggccac ccggaagtag gttataccgc 1020 tggtgtggaa accaccaccg gtccgctggg tcagggtatt gccaacgcag tcggtatggc 1080 gattgcagaa aaaacgctgg cggcgcagtt taaccgtcca ggtcacgaca ttgtcgacca 1140 ctacacctac gccttcatgg gcgacggctg catgatggaa ggcatctccc acgaagtttg 1200 ctctctggcg ggtacgctga agctgggtaa actgattgcg ttctacgatg acaacggtat 1260 ctcaatcgat ggtcacgttg aaggctggtt cactgacgac accgcaatgc gtttcgaagc 1320 ttacggctgg cacgttattc gcgacatcga cggtcatgac gcggcatcca tcaaacgcgc 1380 agtagaagaa gcgcgcgcag tgactgacaa accgtccctg ctgatgtgca aaaccatcat 1440 cggtttcggt tccccgaaca aagccggtac ccacgactcc cacggtgcgc cgctgggcga 1500 cgctgaaatt gccctgaccc gcgaacagct gggctggaaa tacgcgccgt tcgaaatccc 1560 gtctgaaatc tatgctcagt gggatgcgaa agaagcaggc caggcgaaag aatctgcatg 1620 gaatgagaag tttgcggctt acgcgaaagc ttatccgcag gaagcggctg aatttacccg 1680 ccgtatgaaa ggcgaaatgc cgtctgactt cgacgccaaa gcgaaagagt ttatcgctaa 1740 actgcaggct aatccggcga aaatcgccag ccgtaaagcg tcgcagaatg ctatcgaagc 1800 gttcggcccg ctgttgcctg aattcctcgg cggctctgct gacctggcac cgtctaacct 1860 gaccctgtgg tctggttcta aagcaatcaa cgaagatgct gcaggtaact acatccacta 1920 cggtgttcgc gagttcggta tgaccgcgat tgctaacggt atctccctgc acggtggttt 1980 cctgccgtac acctccacct tcctgatgtt cgtggaatac gcacgtaacg ccgtacgtat 2040 ggctgcgctg atgaaacagc gtcaggtgat ggtttacacc cacgactcca tcggtctggg 2100 cgaagatggc ccgactcacc agccggttga gcaggtcgct tctctgcgcg tgaccccgaa 2160 catgtctaca tggcgtccgt gtgaccaggt tgaatccgcg gtcgcgtgga aatacggcgt 2220 tgagcgtcag gacggcccga ctgcgcttat cctctcccgt cagaacctgg cgcagcagga 2280 acgaactgaa gagcaactgg caaacatcgc gcgcggtggt tatgtgctga aagactgcgc 2340 cggtcagccg gaactgattt tcatcgctac cggttcagaa gttgaactgg ctgttgctgc 2400 ctacgaaaaa ctgactgccg aaggcgtgaa agcgcgcgtg gtgtccatgc cgtctaccga 2460 cgcatttgac aagcaggatg ctgcttaccg tgaatccgta ctgccgaaag cggttactgc 2520 acgcgttgct gtagaagcgg gtattgctga ctactggtac aagtatgttg gcctgaacgg 2580 tgctatcgtc ggtatgacca ccttcggtga atctgctccg gcagagctgc tgtttgaaga 2640 gttcggcttc actgttgata acgttgttgc gaaagcaaaa gaactgctgt aattagcatt 2700 tcgggtaaaa aggtcgcttc ggcgaccttt tttattacct tgatatgtcc gtttgcggac 2760 aagcaataga taaagcgtgt tgtagatcac aaatatttat atgcaataaa tatcaattat 2820 gtaatatgca tcacgatatg cgtattgaca tttgttgtta taactataac tcaatgttat 2880 ataagaaatt aaaaagggtg gcatttcccg tcataataag gacatgccat gattgattta 2940 cgcagtgata ccgttacccg accgagccgc gccatgctcg aagcaatgat ggccgccccg 3000 gttggggacg acgtttacgg agacgaccct accgttaatg ctctgcagga ctacgccgca 3060 gagctttccg gtaaagaagc cgccattttt ctgccgaccg gcactcaggc caacctggtc 3120 gctctgctca gtcactgcga acgtggcgaa gagtatattg tcggtcaggc cgcgcataac 3180 tatctgtttg aagccggtgg cgcagcggtg ctgggcagta ttcagccgca acccatcgac 3240 gcggctgccg acggcacgct accgctggat aaagtggcga tgaaaatcaa acccgacgat 3300 atccatttcg cccgcaccaa attactcagt ctggaaaaca cccacaacgg caaagtgctg 3360 ccgcgtgaat acctgaaaga agcatgggaa tt 3392 <210> 38 <211> 1045 <212> DNA <213> Escherichia coli <220> <221> gene <222> (1)..(1045) <223> DNA sequence of the ptsHI region <400> 38 gaagatgaaa gctttaccaa caagaatatt gtggttattc taccatcatc gggtgagcgt 60 tatttaagca ccgcattgtt tgccgatctc ttcactgaga aagaattgca acagtaatgc 120 cagcttgtta aaaatgcgta aaaaagcacc tttttaggtg cttttttgtg gcctgcttca 180 aactttcgcc cctcctggca ttgattcagc ctgtcggaac tggtatttaa ccagactaat 240 tattttgatg cgcgaaatta atcgttacag gaaaagccaa agctgaatcg attttatgat 300 ttggttcaat tcttccttta gcggcataat gtttaatgac gtacgaaacg tcagcggtca 360 acacccgcca gcaatggact gtattgcgct cttcgtgcgt cgcgtctgtt aaaaactggc 420 gctaacaata caggctaaag tcgaaccgcc aggctagact ttagttccac aacactaaac 480 ctataagttg gggaaataca atgttccagc aagaagttac cattaccgct ccgacaatct 540 gctaatccac gagatgcggc ccaatttact gcttaggaga agatcatggg tttgttcgat 600 aaactgaaat ctctggtttc cgacgacaag aaggataccg gaactattga gatcattgct 660 ccgctctctg gcgagatcgt caatatcgaa gacgtgccgg atgtcgtttt tgcggaaaaa 720 atcgttggtg atggtattgc tatcaaacca acgggtaaca aaatggtcgc gccagtagac 780 ggcaccattg gtaaaatctt tgaaaccaac cacgcattct ctatcgaatc tgatagcggc 840 gttgaactgt tcgtccactt cggtatcgac accgttgaac tgaaaggcga aggcttcaag 900 cgtattgctg aagaaggtca gcgcgtgaaa gttggcgata ctgtcattga atttgatctg 960 ccgctgctgg aagagaaagc caagtctacc ctgactccgg ttgttatctc caacatggac 1020 gaaatcaaag aactgatcaa actgt 1045 <210> 39 <211> 4595 <212> DNA <213> Escherichia coli <220> <221> gene <222> (1)..(4595) <223> DNA sequence of the integrated cassette tdc::glf-glk <400> 39 ctgatttctt tgtcgctgat cccttactgg aactctgcag ttatcgacca ggttgacctc 60 ggttcgctgt cgttaaccgg tcatgacggt atcctgatca ctgtctggct ggggatttcc 120 atcatggttt tctcctttaa cttctcgcca atcgtctctt ccttcgtggt ttctaaacgt 180 gaagagtatg agaaagactt cggtcgcgac ttcaccgaac gtaaatgttc ccaaatcatt 240 tctcgtgcca gcatgctgat ggttgcagtg gtgatgttct ttgcctttag ctgcctgttt 300 actctgtctc cggccaacat ggcggaagcc aaagcgcaga atattccagt gctttcttat 360 ctggctaacc actttgcgtc catgaccggt accaaaacaa cgttcgcgat tacactggaa 420 tatgcggctt ccatcatcgc actcgtggct atcttcaaat ctttcttcgg tcactatctg 480 gggacgctgg aaggcttgaa tggtctgatt ctgaagttcg gttataaagg tgacaaaacc 540 aaagtgtcgc tgggtaaact gaatactctc agcatgatct tcatcatggg ctccacctgg 600 gttgttgcct acgccaaccc gaacatcctc gacctgattg aagccatggg cgcaccgatt 660 atcgcatccc tgctgtgcct gttgccgatg tatgccatcc gtaaagcgcc gtctctggcg 720 aaataccgtg gtcgtctgga taacgtgttt gttaccgtga ttggtctgct gaccatcctg 780 aacatcgtat acaaactgtt ttaatccgta actcaggatg agaaaagaga tgaatgaatt 840 tccggttgtt ttggttatta actgtggttc gtcttcgatt aagttttccg tactcgatgc 900 cagcgactgt gaagtattaa tgtcaggtat tgccgacggt attaactcgg aaaatgcatt 960 cttatccgta aatgggggag agccagcacc gctggctcac cacagctacg aaggtgcatt 1020 gaaggcaatt gcatttgaac tggaaaaacg gagtttaaat gacagcgtgg ccttaattgg 1080 tgcaaaagtg gctgtgactg taaaaagaaa tcgaaaaaga ccgttttgtg tgaaaacggt 1140 ctttttgttt ccttttaacc aactgccata actcgaggcc tacctagctt ccaagaaaga 1200 tatcctaaca gcacaagagc ggaaagatgt tttgttctac atccagaaca acctctgcta 1260 aaattcctga aaaattttgc aaaaagttgt tgactttatc tacaaggtgt ggtataataa 1320 tcttaacaac agcaggacgc tctagaggga gaggaatcgc catgagttct gaaagtagtc 1380 agggtctagt cacgcgacta gccctaatcg ctgctatagg cggcttgctt ttcggttacg 1440 attcagcggt tatcgctgca atcggtacac cggttgatat ccattttatt gcccctcgtc 1500 acctgtctgc tacggctgcg gcttcccttt ctgggatggt cgttgttgct gttttggtcg 1560 gttgtgttac cggttctttg ctgtctggct ggattggtat tcgcttcggt cgtcgcggcg 1620 gattgttgat gagttccatt tgtttcgtcg ccgccggttt tggtgctgcg ttaaccgaaa 1680 aattatttgg aaccggtggt tcggctttac aaattttttg ctttttccgg tttcttgccg 1740 gtttaggtat cggtgtcgtt tcaaccttga ccccaaccta tattgctgaa attgctccgc 1800 cagacaaacg tggtcagatg gtttctggtc agcagatggc cattgtgacg ggtgctttaa 1860 ccggttatat ctttacctgg ttactggctc atttcggttc tatcgattgg gttaatgcca 1920 gtggttggtg ctggtctccg gcttcagaag gcctgatcgg tattgccttc ttattgctgc 1980 tgttaaccgc accggatacg ccgcattggt tggtgatgaa gggacgtcat tccgaggcta 2040 gcaaaatcct tgctcgtctg gaaccgcaag ccgatcctaa tctgacgatt caaaagatta 2100 aagctggctt tgataaagcc atggacaaaa gcagcgcagg tttgtttgct tttggtatca 2160 ccgttgtttt tgccggtgta tccgttgctg ccttccagca gttagtcggt attaacgccg 2220 tgctgtatta tgcaccgcag atgttccaga atttaggttt tggagctgat acggcattat 2280 tgcagaccat ctctatcggt gttgtgaact tcatcttcac catgattgct tcccgtgttg 2340 ttgaccgctt cggccgtaaa cctctgctta tttggggtgc tctcggtatg gctgcaatga 2400 tggctgtttt aggctgctgt ttctggttca aagtcggtgg tgttttgcct ttggcttctg 2460 tgcttcttta tattgcagtc tttggtatgt catggggccc tgtctgctgg gttgttctgt 2520 cagaaatgtt cccgagttcc atcaagggcg cagctatgcc tatcgctgtt accggacaat 2580 ggttagctaa tatcttggtt aacttcctgt ttaaggttgc cgatggttct ccagcattga 2640 atcagacttt caaccacggt ttctcctatc tcgttttcgc agcattaagt atcttaggtg 2700 gcttgattgt tgctcgcttc gtgccggaaa ccaaaggtcg gagcctggat gaaatcgagg 2760 agatgtggcg ctcccagaag tagttaaact tgctttggct gaatcctttt gtctttttta 2820 gataagtctt aaccaattat actttttgtt tacaacgatg gtataaagcg ggcggactta 2880 ttttacctgt tgggtagcct tctgatttca gaaaggaatt attatggaaa ttgttgcgat 2940 tgacatcggt ggaacgcatg cgcgtttctc tattgcggaa gtaagcaatg gtcgggttct 3000 ttctcttgga gaagaaacaa cttttaaaac ggcagaacat gctagcttgc agttagcttg 3060 ggaacgtttc ggtgaaaaac tgggtcgtcc tctgccacgt gccgcagcta ttgcatgggc 3120 tggcccggtt catggtgaag ttttaaaact taccaataac ccttgggtat taagaccagc 3180 tactctgaat gaaaagctgg acatcgatac gcatgttctg atcaatgact tcggcgcggt 3240 tgcccacgcg gttgcgcata tggattcttc ttatctggat catatttgtg gtcctgatga 3300 agcgcttcct agcgatggtg ttatcactat tcttggtccg ggaacgggct tgggtgttgc 3360 ccatctgttg cggactgaag gccgttattt cgtcatcgaa actgaaggcg gtcatatcga 3420 ctttgctccg cttgacagac ttgaagacaa aattctggca cgtttacgtg aacgtttccg 3480 ccgcgtttct atcgaacgca ttatttctgg cccgggtctt ggtaatatct acgaagcact 3540 ggctgccatt gaaggcgttc cgttcagctt gctggatgat attaaattat ggcagatggc 3600 tttggaaggt aaagacaacc ttgctgaagc cgctttggat cgcttctgct tgagccttgg 3660 cgctatcgct ggtgatcttg ctttggcaca gggtcgaacc agtgttgtta ttggcggtgg 3720 tgtcggtctt cgtatcgctt cccatttgcc agaatctggt ttccgtcagc gctttgtttc 3780 aaaaggacgc tttgaacgcg tcatgtccaa gattccggtt aagttgatta cttatccgca 3840 gcctggactg ttgggtgcgc agctgcctat gccaacaaat attctgaagt tgaataatat 3900 tttttaatat tatgaactga atttaagagg ctgccttccg ataaaatcgg gaggtggcct 3960 tttttatatt ttttactaaa aaatgaagac aaaaaagtct taagtaagaa taatattatt 4020 attaactttt gatatatttt gtattagtgg atccgccctc ccgctggaaa ttgaagccat 4080 cgcagtacgt agtgcgtaaa gcctcgtgag cgggacggtc gtaaggtcgt tccgctccac 4140 ttcactgaac ggcaatccga gggtgtggat atgattagtg cattcgatat tttcaaaatt 4200 gggattggtc cctccagttc gcataccgtg gggccaatga atgccggaaa aagttttatt 4260 gatcggctgg aaagtagcgg cttattaacc gcgacgagcc atattgtggt cgatctgtac 4320 gggtcgttgt cactgacggg caaaggccat gccacggatg tcgccatcat catgggactg 4380 gcaggaaaca gtccgcagga tgttgtcatt gatgagatcc ctgcatttat agagttagta 4440 acgcgcagcg ggcggctgcc agtggcatct ggtgcgcata ttgttgattt tcctgtagca 4500 aagaacatta tcttccatcc cgaaatgttg cctcgccatg agaacggaat gcggatcact 4560 gcctggaagg gacaggaaga gctattaagt aaaac 4595 <210> 40 <211> 1069 <212> DNA <213> Escherichia coli <220> <221> gene <222> (1)..(1069) <223> DNA sequence of the galP region <400> 40 actttggtcg tgaacatttc ccgtgggaaa aaaccgacaa agcgcagctg ctgcgcgatg 60 ctgccggtct gaagtaatct ttcttcacct gcgttcaaag gccagcctcg cgctggcctt 120 tttcttttgg ataggcgttc acgccgcatc cggcaaaaaa accgcccgca caataacatc 180 attcttcctg atcacgtttc accgcagatt atcatcacaa ctgaaaccga ttacaccaac 240 cacaacagac aaagatttgt aatattttca tattattatt cggttttcac agttgttaca 300 tttcttttca gtaaagtctt aattgcagat aacagcgttt aatctatgat gatataactc 360 aattattttc atgcacttaa atcataacta agataaatgt tagtgtaagc gattacactg 420 atgtgatttg cttcacatct ttttacgtcg tactcaccta tcttaattca caataaaaaa 480 taaccatatt ggagggcatc atgcctgacg ctaaaaaaca ggggcggtca aacaaggcaa 540 tgacgtttga aataggcgct cacgattaat ctccccaagc ttcctcccat cgcggaggaa 600 gccacctctt gcagtcatct tttcttcgct ctatcctctg ccgctatgaa aacatcccgt 660 ctccctatcg ccatccaaca ggccgttatg cgtcgcctgc gggaaaaact cgcccaggcc 720 aacctgaagc tagggcgtaa ctacccggag ccaaaactct cttacaccca gcgcggaacc 780 tccgccggaa cggcctggct ggaaagctat gaaattcgcc tcaatcccgt tttgctgttg 840 gaaaacagtg aagcttttat tgaagaagtg gtaccgcacg aactggcaca tttgctggta 900 tggaaacatt tcggccgcgt agcgccacat ggcaaagagt ggaagtggat gatggaaaac 960 gtgctgggtg ttcccgcccg tcgtacgcat cagttcgaac tgcaatccgt gcgtcgcaac 1020 accttcccct accgctgcaa gtgccaggag catcagctta ccgtacgcc 1069 <210> 41 <211> 6100 <212> DNA <213> Escherichia coli <220> <221> gene <222> (1)..(6100) <223> MYR352 adhE::P15-catAX , PR-aroY, P26-quiC <400> 41 ttgattttca taggttaagc aaatcatcac cgcactgact atactctcgt attcgagcag 60 atgatttact aaaaaagttt aacattatca ggagagcatt agcttgctat tgacgacagc 120 tatggttcac tgtccaccaa ccaaaactgt gctcagtacc gccaatattt ctcccttgag 180 gggtacaaag aggtgtccct agaagagatc cacgctgtgt aaaaatttta caaaaaggta 240 ttgactttcc ctacagggtg tgtaataatt taattacagg cgggggcaac cccgcctgtt 300 ctgcagagga ggaatatagc catggaagtg aaaatcttca acacccagga tgttcaggat 360 tttctgcgtg ttgcaagcgg tctggaacaa gagggtggta atccgcgtgt taaacaaatt 420 attcatcgtg ttctgagcga cctgtataaa gcaattgaag atctgaatat caccagcgac 480 gaatattggg caggcgttgc atatctgaat cagctgggtg caaatcaaga agcaggtctg 540 ctgagtccgg gtctgggttt tgatcattat ctggatatgc gtatggatgc agaagatgca 600 gcactgggta ttgaaaatgc aacaccgcgt accattgaag gtccgctgta tgttgcgggt 660 gcaccggaaa gcgttggtta tgcacgcatg gatgatggta gcgatccgaa tggtcatacc 720 ctgattctgc atggcaccat ttttgatgca gatggtaaac cgctgccgaa tgcaaaagtt 780 gaaatttggc atgcaaacac caaaggcttt tatagccatt ttgatccgac cggtgaacag 840 caggccttta atatgcgtcg tagcattatt accgatgaga atggtcagta tcgtgttcgt 900 accattctgc ctgccggtta tggttgtcct ccggaaggtc cgacccagca actgctgaac 960 caactgggtc gtcatggtaa tcgtccggca catattcatt attttgttag cgcagatggt 1020 caccgtaaac tgaccaccca gattaatgtt gccggtgatc cgtataccta tgatgatttt 1080 gcatatgcca cccgtgaagg tctggttgtt gatgcagttg aacataccga tccggaagca 1140 attaaagcca atgatgtgga aggtcctttt gccgaaatgg tgtttgatct gaaactgacc 1200 cgtctggttg atggtgttga taatcaggtt gtggatcgtc cgcgtctggc agtttaatac 1260 accaaaatgg ttcaaaatta tcaggcgagt gatcatgatc actggcctgt ttttatttca 1320 gggaagggtg gagacaatta cgtggataat cagatcatcc aagaaaccgt ggataaaatt 1380 ctgagcgttc tgccgaatca ggcaggtcag ctggcacgtc tggtgcgtct gatgcaattt 1440 gcatgcgatc cgaccattac cgttattggc aaatataacc atggtaaaag ccgtctgctg 1500 aatgaactga ttggcaccga tatctttagc gttgcagata aacgtgaaac cattcagctg 1560 gccgaacata aacaggatca ggttcgttgg ctggatgcac ctggtctgga tgccgatgtt 1620 gcagcagttg atgatcgtca tgcatttgaa gcagtttgga cccaggcaga tattcgtctg 1680 tttgttcata gcgttcgtga aggtgaactg gatgcaaccg aacaccatct gctgcaacag 1740 ctgattgaag atgccgatca tagccgtcgt cagaccattc tggttctgac ccagattgat 1800 cagattccgg atcagaccat cctgacacag attaaaacca gcattgcaca gcaggttccg 1860 aaactggata tttgggcagt tagcgcaacc cgtcatcgtc agggcattga aaacggtaaa 1920 accctgctga tcgaaaaaag cggtattggt gcactgcgcc ataccctgga acaggcactg 1980 gcacaggtgc cgagcgcacg tacctatgaa aaaaatcgtc tgctgtcaga tctgcaccat 2040 cagctgaaac aactgctgct ggatcagaaa catgttctgc aacaactgca acagacacag 2100 caacagcagc tgcatgattt tgataccggt ctgattaaca ttctggacaa aattcgtgtt 2160 gatctggaac cgattgtgaa tattgatggt caggatcaag cactgaatcc ggatagcttt 2220 gcaaccatgt ttaaaaacac cgcagcaaaa cagcagcgtg ccaaagttca gattgcatat 2280 agccgtgcat gcattgaaat caacagccat ctgattcgcc atggtgttgt tggtctgcct 2340 gcggaacagc agaccaccat taaaagcatt gataccgtga ttgttgccgt gtttggtatc 2400 agcgttaaat ttcgtgatca gctgcgtgcc ctgttttata ccgataccga acgtcagcgt 2460 ctgcaacgtg aatttcgttt ctattttgaa aaaagtgccg gtcgcatgat tctggcagca 2520 aaaattgaac agaccatgcg tcagcagggc tgtattcaga atgccatgat ggcactgcaa 2580 caaatggaaa gcgcagcata aaaacacgga cgccgcaaac ggcgtccgaa tttcttggtc 2640 gaccgttaaa tctatcaccg caagggataa atatctaaca ccgtgcgtgt tgactatttt 2700 acctctggcg gtgataatgg ttgcatgtac taatctagat aaggaatata gccatgaccg 2760 caccgattca ggatctgcgt gatgcaattg ccctgctgca acagcatgat aatcagtatc 2820 tggaaaccga tcatccggtt gatccgaatg cagaactggc aggcgtttat cgtcatattg 2880 gtgccggtgg caccgttaaa cgtccgaccc gtattggtcc ggcaatgatg tttaataaca 2940 ttaaaggtta tccgcacagc cgtattctgg ttggtatgca tgcaagccgt cagcgtgcag 3000 cactgctgct gggttgtgaa gcaagtcagc tggcactgga agttggtaaa gcagttaaaa 3060 aaccggttgc accggtggtt gttccggcaa gcagcgcacc gtgtcaagag cagatttttc 3120 tggcagatga tccggatttt gatctgcgta ccctgctgcc tgcacatacc aataccccga 3180 ttgatgcagg tccgtttttt tgtctgggtc tggccctggc aagcgatccg gtggatgcaa 3240 gcctgaccga tgttaccatt catcgtctgt gtgttcaggg tcgtgatgaa ctgagcatgt 3300 tcctggcagc aggtcgccat attgaagttt ttcgtcagaa agcagaagca gcaggtaaac 3360 cgctgccgat taccattaat atgggtctgg acccagcaat ctatattggc gcatgttttg 3420 aagcaccgac caccccgttt ggttataatg aactgggtgt tgccggtgca ctgcgtcagc 3480 gtccggttga actggttcag ggtgttagcg ttccggaaaa agcaattgca cgtgccgaaa 3540 ttgttattga aggtgaactg ctgcctggtg ttcgtgttcg tgaagatcag cataccaatt 3600 caggtcatgc aatgccggaa tttccgggtt attgtggtgg tgcaaatccg agcctgccgg 3660 ttattaaagt taaagccgtt accatgcgca ataacgcaat tctgcaaacc ctggttggtc 3720 cgggtgaaga acataccacc ctggcaggtc tgccgaccga agcaagcatt tggaatgcag 3780 ttgaagcagc aattccgggt tttctgcaaa atgtttatgc ccataccgca ggcggtggta 3840 aatttctggg tattctgcaa gtgaaaaaac gtcagcctgc cgatgaaggt cgtcagggtc 3900 aggcagccct gctggcgctg gcaacctata gcgaactgaa aaatatcatt ctggtggatg 3960 aggatgtgga catttttgat agtgatgata ttctgtgggc aatgaccacc cgtatgcagg 4020 gtgatgttag cattaccacc attccgggta ttcgcggtca tcagctggac ccgagccaga 4080 caccggaata ttcaccgagc attcgtggta atggtattag ctgcaaaacc atctttgatt 4140 gtaccgttcc gtgggcactg aaaagccatt ttgaacgtgc accgtttgca gatgttgatc 4200 cgcgtccgtt tgcacctgaa tattttgcac gtctggaaaa aaatcagggc agcgcaaaat 4260 aagctaataa caggcctgct ggtaatcgca ggaattttta tttggatgga tccgcctacc 4320 tagcttccaa gaaagatatc ctaacagcac aagagcggaa agatgttttg ttctacatcc 4380 agaacaacct ctgctaaaat tcctgaaaaa ttttgcaaaa agttgttgac tttatctaca 4440 aggtgtggta taataatctt aacaacagca ggacgctccc gggttgagga aaacctaatg 4500 aaactgacca gcctgcgtgt tagcctgctg gcactgggtc tggttaccag cggttttgca 4560 gcagcagaaa cctataccgt tgatcgttat caggatgata gcgaaaaagg tagcctgcgt 4620 tgggcaattg aacagagcaa tgcaaatagc gcacaagaaa accagattct gattcaggca 4680 gttggtaaag caccgtatgt tatcaaagtt gataaaccgc tgcctccgat taaaagcagc 4740 gttaaaatca ttggcaccga gtgggataaa accggtgaat ttattgcaat tgatggcagc 4800 aactatatca aaggcgaagg tgaaaaagca tgtccgggtg caaatccggg tcagtatggc 4860 accaatgttc gtaccatgac cctgcctggt ctggttctgc aagatgttaa tggtgttacc 4920 ctgaaaggtc tggatgttca tcgtttttgt attggtgttc tggttaatcg cagcagcaat 4980 aacctgattc agcataatcg tatcagcaac aattatggtg gtgccggtgt tatgattacc 5040 ggtgatgatg gtaaaggtaa tccgaccagc accaccacca ataataacaa agttctggat 5100 aacgtgttca tcgataatgg tgatggtctg gaactgaccc gtggtgcagc atttaatctg 5160 attgcaaata acctgtttac cagcacaaaa gccaatccgg aaccgagcca gggtattgaa 5220 attctgtggg gtaatgataa tgccgtggtg ggtaacaaat tcgaaaacta ttcagatggc 5280 ctgcaaatca attggggtaa acgtaactat atcgcctata acgaactgac caataacagc 5340 ctgggtttca atctgacagg tgatggtaac attttcgaca gcaataaagt gcatggtaac 5400 cgtattggta ttgccattcg tagtgaaaaa gatgccaatg cacgtattac cctgaccaaa 5460 aatcagattt gggataacgg caaagatatc aaacgttgtg aagccggtgg tagctgtgtt 5520 ccgaatcagc gtctgggtgc aattgttttt ggtgttccgg cactggaaca tgaaggtttt 5580 gttggtagcc gtggcggtgg tgttgttatt gaaccggcaa aactgcaaaa aacctgcacc 5640 cagccgaacc agcagaattg taatgcaatt cctaatcagg gtattcaggc accgaaactg 5700 acagttagca aaaaacagct gaccgttgaa gttaaaggca cccctaatca gcgttataat 5760 gtggaatttt ttggcaatcg taatgccagc agcagcgaag cagaacagta tctgggtagc 5820 attgttgttg ttaccgatca tcagggtctg gcaaaagcaa attgggctcc gaaagttagc 5880 atgccgagcg ttaccgcaaa tgtgacagat catctgggtg cgaccagcga actgagcagc 5940 gcagttaaaa tgcgttaaat gcatgcgcgc cgcgttcgcg cggcgctttt ttttggtact 6000 cagtagcgct gtctggcaac ataaacggcc ccttctgggc aatgccgatc agttaaggat 6060 tagttgaccg atccttaaac tgaggcacta taacggcttc 6100 <210> 42 <211> 594 <212> DNA <213> Klebsiella pneumoniae <220> <221> gene <222> (1)..(594) <223> Nucleotide sequence of Klebsiella pneumoniae kpdB gene. <400> 42 atgaaactga ttattgggat gacgggggcc accggggcac cgcttggggt ggcattgctg 60 caggcgctgc gcgatatgcc ggaggtggaa acccatctgg tgatgtcgaa atgggccaaa 120 accaccatcg agctggaaac gccctggacg gcgcgcgaag tggccgcgct ggcggacttt 180 tcccacagcc cggcagacca ggccgccacc atctcatccg gttcatttcg taccgacggc 240 atgatcgtta ttccctgcag tatgaaaacg cttgcaggca ttcgcgcggg ttatgccgaa 300 gggctggtgg gccgcgcggc ggacgtggtg ctcaaagagg ggcgcaagct ggtgttggtc 360 ccgcgggaaa tgccgctcag cacgatccat ctggagaaca tgctggcgct gtcccgcatg 420 ggcgtggcga tggtcccgcc gatgccagct tactacaacc acccggagac ggttgacgat 480 atcaccaatc atatcgtcac ccgggtgctg gatcagtttg gcctcgacta tcacaaagcg 540 cgccgctgga acggcttgcg cacggcagaa caatttgcac aggagatcga ataa 594 <210> 43 <211> 197 <212> PRT <213> Klebsiella pneumoniae <220> <221> PEPTIDE <222> (1)..(197) <223> Amino acid sequence of KpdB protein of Klebsiella pneumoniae <400> 43 Met Lys Leu Ile Ile Gly Met Thr Gly Ala Thr Gly Ala Pro Leu Gly 1 5 10 15 Val Ala Leu Leu Gln Ala Leu Arg Asp Met Pro Glu Val Glu Thr His 20 25 30 Leu Val Met Ser Lys Trp Ala Lys Thr Thr Ile Glu Leu Glu Thr Pro 35 40 45 Trp Thr Ala Arg Glu Val Ala Ala Leu Ala Asp Phe Ser His Ser Pro 50 55 60 Ala Asp Gln Ala Ala Thr Ile Ser Ser Gly Ser Phe Arg Thr Asp Gly 65 70 75 80 Met Ile Val Ile Pro Cys Ser Met Lys Thr Leu Ala Gly Ile Arg Ala 85 90 95 Gly Tyr Ala Glu Gly Leu Val Gly Arg Ala Ala Asp Val Val Leu Lys 100 105 110 Glu Gly Arg Lys Leu Val Leu Val Pro Arg Glu Met Pro Leu Ser Thr 115 120 125 Ile His Leu Glu Asn Met Leu Ala Leu Ser Arg Met Gly Val Ala Met 130 135 140 Val Pro Pro Met Pro Ala Tyr Tyr Asn His Pro Glu Thr Val Asp Asp 145 150 155 160 Ile Thr Asn His Ile Val Thr Arg Val Leu Asp Gln Phe Gly Leu Asp 165 170 175 Tyr His Lys Ala Arg Arg Trp Asn Gly Leu Arg Thr Ala Glu Gln Phe 180 185 190 Ala Gln Glu Ile Glu 195 <210> 44 <211> 570 <212> DNA <213> Escherichia coli <220> <221> gene <222> (1)..(570) <223> Nucleotide sequence of Escherichia coli ubiX gene <400> 44 atgaaacgac tcattgtagg catcagcggt gccagcggcg cgatttatgg cgtgcgctta 60 ttacaggttc tgcgcgatgt cgcagatatc gaaacgcatc tggtgatgag ccaggcggcg 120 cgccagacct tatccctcga aacgggtttt tccctgcgcg aagtgcaggc attagctgat 180 gtcacgcacg atgcgcgcga tattgccgcc agcatctctt ccggttcttt ccagacgctg 240 gggatggtta ttttaccctg ttcaatcaaa accctttccg gcattgtcca tagctacacc 300 gatggtttac tgacccgtgc ggcagatgtg gtgctgaaag agcgtcgccc gttggtgctc 360 tgcgtgcgtg aaacaccatt gcacttaggc catctgcgtt taatgactca ggcagcagaa 420 atcggtgcgg tgattatgcc tcccgttccg gcgttttatc atcgcccaca gtcccttgat 480 gatgtgataa atcagacggt taatcgtgtt cttgaccagt ttgcgataac ccttcctgaa 540 gatctctttg cccgctggca gggcgcataa 570 <210> 45 <211> 189 <212> PRT <213> Escherichia coli <220> <221> PEPTIDE <222> (1)..(189) <400> 45 Met Lys Arg Leu Ile Val Gly Ile Ser Gly Ala Ser Gly Ala Ile Tyr 1 5 10 15 Gly Val Arg Leu Leu Gln Val Leu Arg Asp Val Ala Asp Ile Glu Thr 20 25 30 His Leu Val Met Ser Gln Ala Ala Arg Gln Thr Leu Ser Leu Glu Thr 35 40 45 Gly Phe Ser Leu Arg Glu Val Gln Ala Leu Ala Asp Val Thr His Asp 50 55 60 Ala Arg Asp Ile Ala Ala Ser Ile Ser Ser Gly Ser Phe Gln Thr Leu 65 70 75 80 Gly Met Val Ile Leu Pro Cys Ser Ile Lys Thr Leu Ser Gly Ile Val 85 90 95 His Ser Tyr Thr Asp Gly Leu Leu Thr Arg Ala Ala Asp Val Val Leu 100 105 110 Lys Glu Arg Arg Pro Leu Val Leu Cys Val Arg Glu Thr Pro Leu His 115 120 125 Leu Gly His Leu Arg Leu Met Thr Gln Ala Ala Glu Ile Gly Ala Val 130 135 140 Ile Met Pro Pro Val Pro Ala Phe Tyr His Arg Pro Gln Ser Leu Asp 145 150 155 160 Asp Val Ile Asn Gln Thr Val Asn Arg Val Leu Asp Gln Phe Ala Ile 165 170 175 Thr Leu Pro Glu Asp Leu Phe Ala Arg Trp Gln Gly Ala 180 185 <210> 46 <211> 594 <212> DNA <213> Escherichia coli <220> <221> gene <222> (1)..(594) <223> Nucleotide sequence of Escherichia coli Wstrain elw gene <400> 46 atgaaactga tcgtcgggat gacaggggct accggtgcgc ctcttggtgt ggcattactg 60 caagcgctgc gggagatgcc gaatgtcgag actcatctgg tgatgtcgaa gtgggcgaaa 120 accaccattg aactggaaac gccttacagc gctcgcgatg ttgctgccct cgcagacttc 180 agccataacc cggcggatca ggcggcgatc atctcatccg gttcttttcg taccgacggc 240 atgatcgtta ttccgtgcag tatgaaaacg ctcgccggta tccgcgctgg ttacgccgat 300 ggcctggtag ggcgcgcggc ggacgtcgtg ctcaaagaag gccgcaaact ggtgctggtg 360 ccgcgtgaaa tgccgcttag caccatccat ctcgaaaata tgctcgcact ttcacgcatg 420 ggcgtggcga tggtgccgcc gatgcctgcc ttttataacc atcccgaaac ggtagatgac 480 attgtccacc atgtggtagc ccgcgtgctg gatcaatttg gcctcgaaca tccccacgcc 540 aggcgctggc aaggattgcc gcaggcccgg aatttttctc aggagaatga ataa 594 <210> 47 <211> 197 <212> PRT <213> Escherichia coli <220> <221> PEPTIDE <222> (1)..(197) <223> Amino acid sequence of Elw protein of Escherichia coli W strain <400> 47 Met Lys Leu Ile Val Gly Met Thr Gly Ala Thr Gly Ala Pro Leu Gly 1 5 10 15 Val Ala Leu Leu Gln Ala Leu Arg Glu Met Pro Asn Val Glu Thr His 20 25 30 Leu Val Met Ser Lys Trp Ala Lys Thr Thr Ile Glu Leu Glu Thr Pro 35 40 45 Tyr Ser Ala Arg Asp Val Ala Ala Leu Ala Asp Phe Ser His Asn Pro 50 55 60 Ala Asp Gln Ala Ala Ile Ile Ser Ser Gly Ser Phe Arg Thr Asp Gly 65 70 75 80 Met Ile Val Ile Pro Cys Ser Met Lys Thr Leu Ala Gly Ile Arg Ala 85 90 95 Gly Tyr Ala Asp Gly Leu Val Gly Arg Ala Ala Asp Val Val Leu Lys 100 105 110 Glu Gly Arg Lys Leu Val Leu Val Pro Arg Glu Met Pro Leu Ser Thr 115 120 125 Ile His Leu Glu Asn Met Leu Ala Leu Ser Arg Met Gly Val Ala Met 130 135 140 Val Pro Pro Met Pro Ala Phe Tyr Asn His Pro Glu Thr Val Asp Asp 145 150 155 160 Ile Val His His Val Val Ala Arg Val Leu Asp Gln Phe Gly Leu Glu 165 170 175 His Pro His Ala Arg Arg Trp Gln Gly Leu Pro Gln Ala Arg Asn Phe 180 185 190 Ser Gln Glu Asn Glu 195 <210> 48 <211> 579 <212> DNA <213> Klebsiella oxytoca <220> <221> gene <222> (1)..(579) <223> Nucleotide sequence of Klebsiella oxytoca kox gene <400> 48 atgacggcac gcatcatcat tggtatcagc ggcgcatccg ggtttcagta cggcgttaag 60 gcgctggagc tactgcgccc gcatcccgtt gaagtccacc tggtcgtctc taaaggcgcg 120 gaaaaaacct gcgagctgga gacggatcac cgcctggacg aggtgatggc gctggccgac 180 gtggtgcatc ccatcgcgaa tcttggggcg gctatctcca gcggttcgtt taaaacgctg 240 ggaatgttga tcgcgccgtg ttcaatgcgt tctttaggcg ccatcgccca ctgcctgacc 300 gacaacctgc tcacccgcgc tgcggacgtg gtgctgaaag agcgtcgccg cctggtgctg 360 ctggcccggg aaacaccgct gaaccttggc catatccgca atatggccgc cgtaaccgaa 420 atgggcggaa ttatctttcc gccggtcccg gcactttacc agcgtccgca aacggcggac 480 gacatcgtta cccatagcgt caatcgcgcg ctcgatctgt ttgacctgca ggtcaacaac 540 atcccccgct ggggtgaagg cgagctacgt tttaattaa 579 <210> 49 <211> 192 <212> PRT <213> Klebsiella oxytoca <220> <221> PEPTIDE <222> (1)..(192) <223> Amino acid sequence of Kox protein of Klebsiella oxytoca. <400> 49 Met Thr Ala Arg Ile Ile Ile Gly Ile Ser Gly Ala Ser Gly Phe Gln 1 5 10 15 Tyr Gly Val Lys Ala Leu Glu Leu Leu Arg Pro His Pro Val Glu Val 20 25 30 His Leu Val Val Ser Lys Gly Ala Glu Lys Thr Cys Glu Leu Glu Thr 35 40 45 Asp His Arg Leu Asp Glu Val Met Ala Leu Ala Asp Val Val His Pro 50 55 60 Ile Ala Asn Leu Gly Ala Ala Ile Ser Ser Gly Ser Phe Lys Thr Leu 65 70 75 80 Gly Met Leu Ile Ala Pro Cys Ser Met Arg Ser Leu Gly Ala Ile Ala 85 90 95 His Cys Leu Thr Asp Asn Leu Leu Thr Arg Ala Ala Asp Val Val Leu 100 105 110 Lys Glu Arg Arg Arg Leu Val Leu Leu Ala Arg Glu Thr Pro Leu Asn 115 120 125 Leu Gly His Ile Arg Asn Met Ala Ala Val Thr Glu Met Gly Gly Ile 130 135 140 Ile Phe Pro Pro Val Pro Ala Leu Tyr Gln Arg Pro Gln Thr Ala Asp 145 150 155 160 Asp Ile Val Thr His Ser Val Asn Arg Ala Leu Asp Leu Phe Asp Leu 165 170 175 Gln Val Asn Asn Ile Pro Arg Trp Gly Glu Gly Glu Leu Arg Phe Asn 180 185 190 <210> 50 <211> 564 <212> DNA <213> Lactobacillus plantarum <220> <221> gene <222> (1)..(564) <223> Nucleotide sequence of Lactobacillus plantarum lpl gene <400> 50 atgaaacgaa ttgttgtggg aatcacggga gcgtccggta cgatttacgc ggtcgactta 60 ttagaaaagt tacatcagcg gccagatgtt gaagttcatc tggtaatgag tgcgtgggct 120 aaaaaaaact tggagttaga gactgattac tcgctcgcgc agctgacggc gctcgcggat 180 gctacttatc gggctaatga ccaaggcgca gcgattgcca gcggttcgtt tttgaatgac 240 ggaatggtca ttgtcccagc tagtatgaag acggtagcag ggattgcgta cggcttcggt 300 gataatttaa tatcgcgggc tgctgatgtc acgattaaag aacaacgtaa acttgtgatt 360 gttccacgtg aaacaccgtt aagcgtgatt catttagaaa atctaacgaa gttggcaaaa 420 ctcggtgccc aaattattcc accgattccc gcgttttata atcatccgca atccattcag 480 gatctggtca atcatcaaac catgaaaatt ttagatgcgt ttcatattca taatgaaact 540 gatcgccgtt gggaggggga ttaa 564 <210> 51 <211> 187 <212> PRT <213> Lactobacillus plantarum <220> <221> PEPTIDE <222> (1)..(187) <223> Amino acid sequence of Lpl protein of Lactobacillus plantarum <400> 51 Met Lys Arg Ile Val Val Gly Ile Thr Gly Ala Ser Gly Thr Ile Tyr 1 5 10 15 Ala Val Asp Leu Leu Glu Lys Leu His Gln Arg Pro Asp Val Glu Val 20 25 30 His Leu Val Met Ser Ala Trp Ala Lys Lys Asn Leu Glu Leu Glu Thr 35 40 45 Asp Tyr Ser Leu Ala Gln Leu Thr Ala Leu Ala Asp Ala Thr Tyr Arg 50 55 60 Ala Asn Asp Gln Gly Ala Ala Ile Ala Ser Gly Ser Phe Leu Asn Asp 65 70 75 80 Gly Met Val Ile Val Pro Ala Ser Met Lys Thr Val Ala Gly Ile Ala 85 90 95 Tyr Gly Phe Gly Asp Asn Leu Ile Ser Arg Ala Ala Asp Val Thr Ile 100 105 110 Lys Glu Gln Arg Lys Leu Val Ile Val Pro Arg Glu Thr Pro Leu Ser 115 120 125 Val Ile His Leu Glu Asn Leu Thr Lys Leu Ala Lys Leu Gly Ala Gln 130 135 140 Ile Ile Pro Pro Ile Pro Ala Phe Tyr Asn His Pro Gln Ser Ile Gln 145 150 155 160 Asp Leu Val Asn His Gln Thr Met Lys Ile Leu Asp Ala Phe His Ile 165 170 175 His Asn Glu Thr Asp Arg Arg Trp Glu Gly Asp 180 185 <210> 52 <211> 200 <212> DNA <213> Escherichia coli <220> <221> promoter <222> (1)..(200) <223> Nucleotide sequence of Pgi promoter <400> 52 agcggggcgg ttgtcaacga tggggtcatg cggatttttc atccactcct ggcggtcagt 60 agttcagcta ataaatgctt cactgcgcta agggtttaca ctcaacatta cgctaacggc 120 actaaaacca tcacattttt ctgtgactgg cgctacaatc ttccaaagtc acaattctca 180 tgcagaggag gaatatagcc 200 <210> 53 <211> 3537 <212> DNA <213> Saccharomyces cerevisiae <220> <221> gene <222> (1)..(3537) <223> Nucleotide sequence of Saccharomyces cerevisiae pyc gene <400> 53 atgtcgcaaa gaaaattcgc cggcttgaga gataacttca atctcttggg tgaaaagaac 60 aaaatattgg tggctaatag aggagaaatt ccaatcagaa tttttcgtac cgctcatgaa 120 ctgtctatgc agacggtagc tatatattct catgaagatc gtctttcaac gcacaaacaa 180 aaggctgacg aagcatacgt cataggtgaa gtaggccaat atacccccgt cggcgcttat 240 ttggccattg acgaaatcat ttccattgcc caaaaacacc aggtagattt catccatcca 300 ggttatgggt tcttgtctga aaattcggaa tttgccgaca aagtagtgaa ggccggtatc 360 acttggattg gccctccagc tgaagttatt gactccgtgg gtgataaggt ctcagctaga 420 aacctggcag caaaagctaa tgtgcccacc gttcctggta caccaggtcc tatagaaact 480 gtagaggaag cacttgactt cgtcaatgaa tacggctacc cggtgatcat taaggccgcc 540 tttggtggtg gtggtagagg tatgagagtc gttagagaag gtgacgacgt ggcagatgcc 600 tttcaacgtg ctacctccga agcccgtact gccttcggta atggtacctg ctttgtggaa 660 agattcttgg acaagccaaa gcatattgaa gttcaattgt tggccgataa ccacggaaac 720 gtggttcatc ttttcgaaag agactgttcc gtgcagagaa gacaccaaaa ggttgtcgaa 780 gtggccccag caaagacttt accccgtgaa gtccgtgacg ccattttgac agatgcagtt 840 aaattggcca aagagtgtgg ctacagaaat gcgggtactg ctgaattctt ggttgataac 900 caaaatagac actatttcat tgaaattaat ccaagaatcc aagtggaaca taccatcaca 960 gaagaaatta ccggtataga tattgtggcg gctcagatcc aaattgcggc aggtgcctct 1020 ctaccccagc tgggcctatt ccaggacaaa attacgactc gtggctttgc cattcagtgc 1080 cgtattacca cggaagaccc tgctaagaac ttccaaccag ataccggtag aatagaagtg 1140 taccgttctg caggtggtaa tggtgttaga ctggatggtg gtaacgccta tgcaggaaca 1200 ataatctcac ctcattacga ctcaatgctg gtcaaatgct catgctccgg ttccacctac 1260 gaaatcgttc gtagaaaaat gattcgtgca ttaatcgagt tcagaattag aggtgtcaag 1320 accaacattc ccttcctatt gactcttttg accaatccag tatttattga gggtacatac 1380 tggacgactt ttattgacga caccccacaa ctgttccaaa tggtttcatc acaaaacaga 1440 gcccaaaaac ttttacatta cctcgccgac gtggcagtca atggttcatc tatcaagggt 1500 caaattggct tgccaaaatt aaaatcaaat ccaagtgtcc cccatttgca cgatgctcag 1560 ggcaatgtca tcaacgttac aaagtctgca ccaccatccg gatggaggca agtgctacta 1620 gaaaaggggc cagctgaatt tgccagacaa gttagacagt tcaatggtac tttattgatg 1680 gacaccacct ggagagacgc tcatcaatct ctacttgcaa caagagtcag aacccacgat 1740 ttggctacaa tcgctccaac aaccgcacat gcccttgcag gtcgtttcgc cttagaatgt 1800 tggggtggtg ccacattcga tgttgcaatg agatttttgc atgaggatcc atgggaacgt 1860 ttgagaaaat taagatctct ggtgcctaat attccattcc aaatgttatt gcgtggtgcc 1920 aatggtgtgg cttattcttc attgcctgac aatgctattg accatttcgt caagcaagcc 1980 aaggataatg gtgttgatat atttagagtc tttgatgcct taaatgactt ggaacaattg 2040 aaggtcggtg tagatgctgt gaagaaggca ggtggtgttg tagaagccac tgtttgtttc 2100 tctggggata tgcttcagcc aggcaagaaa tacaatttgg attactactt ggaaattgct 2160 gaaaaaattg tccaaatggg cactcatatc ctgggtatca aagatatggc aggtaccatg 2220 aagccagcag ctgccaaact actgattgga tctttgaggg ctaagtaccc tgatctccca 2280 atacatgttc acactcacga ttctgcaggt actgctgttg catcaatgac tgcgtgtgct 2340 ctggcgggcg ccgatgtcgt tgatgttgcc atcaactcaa tgtctggttt aacttcacaa 2400 ccatcaatca atgctctgtt ggcttcatta gaaggtaata ttgacactgg tattaacgtt 2460 gagcatgtcc gtgaactaga tgcatattgg gcagagatga gattgttata ctcttgtttc 2520 gaggctgact tgaagggccc agatccagaa gtttatcaac atgaaatccc aggtggtcaa 2580 ttgacaaact tgttgtttca agcccaacaa ttgggtcttg gagaacaatg ggccgaaaca 2640 aaaagagctt acagagaagc caattattta ttgggtgata ttgtcaaagt taccccaact 2700 tcgaaggtcg ttggtgatct ggcacaattt atggtctcca ataaattaac ttccgatgat 2760 gtgagacgcc tggctaattc tttggatttc cctgactctg ttatggattt cttcgaaggc 2820 ttaatcggcc aaccatatgg tgggttccca gaaccattta gatcagacgt tttaaggaac 2880 aagagaagaa agttgacttg tcgtccaggc ctggaactag agccatttga tctcgaaaaa 2940 attagagaag acttgcagaa tagatttggt gatgttgatg agtgcgacgt tgcttcttat 3000 aacatgtacc caagagttta tgaagacttc caaaagatga gagaaacgta tggtgattta 3060 tctgtattgc caacaagaag ctttttgtct ccactagaga ctgacgaaga aattgaagtt 3120 gtaatcgaac aaggtaaaac gctaattatc aagctacagg ctgtgggtga tttgaacaaa 3180 aagaccggtg aaagagaagt ttactttgat ttgaatggtg aaatgagaaa aattcgtgtt 3240 gctgacagat cacaaaaagt ggaaactgtt actaaatcca aagcagacat gcatgatcca 3300 ttacacattg gtgcaccaat ggcaggtgtc attgttgaag ttaaagttca taaaggatca 3360 ctaataaaga agggccaacc tgtagccgta ttaagcgcca tgaaaatgga aatgattata 3420 tcttctccat ccgatggaca agttaaagaa gtgtttgtct ctgatggtga aaatgtggac 3480 tcttctgatt tattagttct attagaagac caagttcctg ttgaaactaa ggcatga 3537 <210> 54 <211> 1178 <212> PRT <213> Escherichia coli <220> <221> PEPTIDE <222> (1)..(1178) <223> Amino acid sequence of Pyc protein of Saccharomyces cerevisiae <400> 54 Met Ser Gln Arg Lys Phe Ala Gly Leu Arg Asp Asn Phe Asn Leu Leu 1 5 10 15 Gly Glu Lys Asn Lys Ile Leu Val Ala Asn Arg Gly Glu Ile Pro Ile 20 25 30 Arg Ile Phe Arg Thr Ala His Glu Leu Ser Met Gln Thr Val Ala Ile 35 40 45 Tyr Ser His Glu Asp Arg Leu Ser Thr His Lys Gln Lys Ala Asp Glu 50 55 60 Ala Tyr Val Ile Gly Glu Val Gly Gln Tyr Thr Pro Val Gly Ala Tyr 65 70 75 80 Leu Ala Ile Asp Glu Ile Ile Ser Ile Ala Gln Lys His Gln Val Asp 85 90 95 Phe Ile His Pro Gly Tyr Gly Phe Leu Ser Glu Asn Ser Glu Phe Ala 100 105 110 Asp Lys Val Val Lys Ala Gly Ile Thr Trp Ile Gly Pro Pro Ala Glu 115 120 125 Val Ile Asp Ser Val Gly Asp Lys Val Ser Ala Arg Asn Leu Ala Ala 130 135 140 Lys Ala Asn Val Pro Thr Val Pro Gly Thr Pro Gly Pro Ile Glu Thr 145 150 155 160 Val Glu Glu Ala Leu Asp Phe Val Asn Glu Tyr Gly Tyr Pro Val Ile 165 170 175 Ile Lys Ala Ala Phe Gly Gly Gly Gly Arg Gly Met Arg Val Val Arg 180 185 190 Glu Gly Asp Asp Val Ala Asp Ala Phe Gln Arg Ala Thr Ser Glu Ala 195 200 205 Arg Thr Ala Phe Gly Asn Gly Thr Cys Phe Val Glu Arg Phe Leu Asp 210 215 220 Lys Pro Lys His Ile Glu Val Gln Leu Leu Ala Asp Asn His Gly Asn 225 230 235 240 Val Val His Leu Phe Glu Arg Asp Cys Ser Val Gln Arg Arg His Gln 245 250 255 Lys Val Val Glu Val Ala Pro Ala Lys Thr Leu Pro Arg Glu Val Arg 260 265 270 Asp Ala Ile Leu Thr Asp Ala Val Lys Leu Ala Lys Glu Cys Gly Tyr 275 280 285 Arg Asn Ala Gly Thr Ala Glu Phe Leu Val Asp Asn Gln Asn Arg His 290 295 300 Tyr Phe Ile Glu Ile Asn Pro Arg Ile Gln Val Glu His Thr Ile Thr 305 310 315 320 Glu Glu Ile Thr Gly Ile Asp Ile Val Ala Ala Gln Ile Gln Ile Ala 325 330 335 Ala Gly Ala Ser Leu Pro Gln Leu Gly Leu Phe Gln Asp Lys Ile Thr 340 345 350 Thr Arg Gly Phe Ala Ile Gln Cys Arg Ile Thr Thr Glu Asp Pro Ala 355 360 365 Lys Asn Phe Gln Pro Asp Thr Gly Arg Ile Glu Val Tyr Arg Ser Ala 370 375 380 Gly Gly Asn Gly Val Arg Leu Asp Gly Gly Asn Ala Tyr Ala Gly Thr 385 390 395 400 Ile Ile Ser Pro His Tyr Asp Ser Met Leu Val Lys Cys Ser Cys Ser 405 410 415 Gly Ser Thr Tyr Glu Ile Val Arg Arg Lys Met Ile Arg Ala Leu Ile 420 425 430 Glu Phe Arg Ile Arg Gly Val Lys Thr Asn Ile Pro Phe Leu Leu Thr 435 440 445 Leu Leu Thr Asn Pro Val Phe Ile Glu Gly Thr Tyr Trp Thr Thr Phe 450 455 460 Ile Asp Asp Thr Pro Gln Leu Phe Gln Met Val Ser Ser Gln Asn Arg 465 470 475 480 Ala Gln Lys Leu Leu His Tyr Leu Ala Asp Val Ala Val Asn Gly Ser 485 490 495 Ser Ile Lys Gly Gln Ile Gly Leu Pro Lys Leu Lys Ser Asn Pro Ser 500 505 510 Val Pro His Leu His Asp Ala Gln Gly Asn Val Ile Asn Val Thr Lys 515 520 525 Ser Ala Pro Pro Ser Gly Trp Arg Gln Val Leu Leu Glu Lys Gly Pro 530 535 540 Ala Glu Phe Ala Arg Gln Val Arg Gln Phe Asn Gly Thr Leu Leu Met 545 550 555 560 Asp Thr Thr Trp Arg Asp Ala His Gln Ser Leu Leu Ala Thr Arg Val 565 570 575 Arg Thr His Asp Leu Ala Thr Ile Ala Pro Thr Thr Ala His Ala Leu 580 585 590 Ala Gly Arg Phe Ala Leu Glu Cys Trp Gly Gly Ala Thr Phe Asp Val 595 600 605 Ala Met Arg Phe Leu His Glu Asp Pro Trp Glu Arg Leu Arg Lys Leu 610 615 620 Arg Ser Leu Val Pro Asn Ile Pro Phe Gln Met Leu Leu Arg Gly Ala 625 630 635 640 Asn Gly Val Ala Tyr Ser Ser Leu Pro Asp Asn Ala Ile Asp His Phe 645 650 655 Val Lys Gln Ala Lys Asp Asn Gly Val Asp Ile Phe Arg Val Phe Asp 660 665 670 Ala Leu Asn Asp Leu Glu Gln Leu Lys Val Gly Val Asp Ala Val Lys 675 680 685 Lys Ala Gly Gly Val Val Glu Ala Thr Val Cys Phe Ser Gly Asp Met 690 695 700 Leu Gln Pro Gly Lys Lys Tyr Asn Leu Asp Tyr Tyr Leu Glu Ile Ala 705 710 715 720 Glu Lys Ile Val Gln Met Gly Thr His Ile Leu Gly Ile Lys Asp Met 725 730 735 Ala Gly Thr Met Lys Pro Ala Ala Ala Lys Leu Leu Ile Gly Ser Leu 740 745 750 Arg Ala Lys Tyr Pro Asp Leu Pro Ile His Val His Thr His Asp Ser 755 760 765 Ala Gly Thr Ala Val Ala Ser Met Thr Ala Cys Ala Leu Ala Gly Ala 770 775 780 Asp Val Val Asp Val Ala Ile Asn Ser Met Ser Gly Leu Thr Ser Gln 785 790 795 800 Pro Ser Ile Asn Ala Leu Leu Ala Ser Leu Glu Gly Asn Ile Asp Thr 805 810 815 Gly Ile Asn Val Glu His Val Arg Glu Leu Asp Ala Tyr Trp Ala Glu 820 825 830 Met Arg Leu Leu Tyr Ser Cys Phe Glu Ala Asp Leu Lys Gly Pro Asp 835 840 845 Pro Glu Val Tyr Gln His Glu Ile Pro Gly Gly Gln Leu Thr Asn Leu 850 855 860 Leu Phe Gln Ala Gln Gln Leu Gly Leu Gly Glu Gln Trp Ala Glu Thr 865 870 875 880 Lys Arg Ala Tyr Arg Glu Ala Asn Tyr Leu Leu Gly Asp Ile Val Lys 885 890 895 Val Thr Pro Thr Ser Lys Val Val Gly Asp Leu Ala Gln Phe Met Val 900 905 910 Ser Asn Lys Leu Thr Ser Asp Asp Val Arg Arg Leu Ala Asn Ser Leu 915 920 925 Asp Phe Pro Asp Ser Val Met Asp Phe Phe Glu Gly Leu Ile Gly Gln 930 935 940 Pro Tyr Gly Gly Phe Pro Glu Pro Phe Arg Ser Asp Val Leu Arg Asn 945 950 955 960 Lys Arg Arg Lys Leu Thr Cys Arg Pro Gly Leu Glu Leu Glu Pro Phe 965 970 975 Asp Leu Glu Lys Ile Arg Glu Asp Leu Gln Asn Arg Phe Gly Asp Val 980 985 990 Asp Glu Cys Asp Val Ala Ser Tyr Asn Met Tyr Pro Arg Val Tyr Glu 995 1000 1005 Asp Phe Gln Lys Met Arg Glu Thr Tyr Gly Asp Leu Ser Val Leu Pro 1010 1015 1020 Thr Arg Ser Phe Leu Ser Pro Leu Glu Thr Asp Glu Glu Ile Glu Val 1025 1030 1035 1040 Val Ile Glu Gln Gly Lys Thr Leu Ile Ile Lys Leu Gln Ala Val Gly 1045 1050 1055 Asp Leu Asn Lys Lys Thr Gly Glu Arg Glu Val Tyr Phe Asp Leu Asn 1060 1065 1070 Gly Glu Met Arg Lys Ile Arg Val Ala Asp Arg Ser Gln Lys Val Glu 1075 1080 1085 Thr Val Thr Lys Ser Lys Ala Asp Met His Asp Pro Leu His Ile Gly 1090 1095 1100 Ala Pro Met Ala Gly Val Ile Val Glu Val Lys Val His Lys Gly Ser 1105 1110 1115 1120 Leu Ile Lys Lys Gly Gln Pro Val Ala Val Leu Ser Ala Met Lys Met 1125 1130 1135 Glu Met Ile Ile Ser Ser Pro Ser Asp Gly Gln Val Lys Glu Val Phe 1140 1145 1150 Val Ser Asp Gly Glu Asn Val Asp Ser Ser Asp Leu Leu Val Leu Leu 1155 1160 1165 Glu Asp Gln Val Pro Val Glu Thr Lys Ala 1170 1175 <210> 55 <211> 6273 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(6273) <223> DNA sequence of the plasmid pCAT350 <400> 55 tgaatgacct ttaatagatt atattactaa ttaattgggg accctagagg tccccttttt 60 tattttaaaa attttttcac aaaacggttt acaagcatac gttggccgat tcattaatgc 120 agctggcacg acaggtttcc cgactggaaa gcgggcagtg agcgcaacgc aattaatgtg 180 agttagctca ctcattaggc accccaggct ttacacttta tgcttccggc tcgtatgttg 240 tgtggaattg tgagcggata acaatttcac acaggaaaca gctatgacca tgattacgcc 300 aagcttgcat gcctgcaggt cgactctaga ggatccccgg gtaccgagct cgaattcact 360 ggccgtcgtt ttacaacgtc gtgactggga aaaccctggc gttacccaac ttaatcgcct 420 tgcagcacat ccccctttcg ccagctggcg taatagcgaa gaggcccgca ccgatcgccc 480 ttcccaacag ttgcgcagcc tgaatggcga atggcgcctg atgcggtatt ttctccttac 540 gcatctgtgc ggtatttcac accgcatatg gtgcactctc agtacaatct gctctgatgc 600 cgcatagtta agccagcccc gacacccgcc aacacccgct gacgaattcg ttgacagtaa 660 gacgggtaag cctgttgatg ataccgctgc cttactgggt gcattagcca gtctgaatga 720 cctgtcacgg gataatccga agtggtcaga ctggaaaatc agagggcagg aactgctgaa 780 cagcaaaaag tcagatagca ccacatagca gacccgccat aaaacgccct gagaagcccg 840 tgacgggctt ttcttgtatt atgggtagtt tccttgcatg aatccataaa aggcgcctgt 900 agtgccattt acccccattc actgccagag ccgtgagcgc agcgaactga atgtcacgaa 960 aaagacagcg actcaggtgc ctgatggtcg gagacaaaag gaatattcag cgatttgccc 1020 gagcttgcga gggtgctact taagccttta gggttttaag gtctgttttg tagaggagca 1080 aacagcgttt gcgacatcct tttgtaatac tgcggaactg actaaagtag tgagttatac 1140 acagggctgg gatctattct ttttatcttt ttttattctt tctttattct ataaattata 1200 accacttgaa tataaacaaa aaaaacacac aaaggtctag cggaatttac agagggtcta 1260 gcagaattta caagttttcc agcaaaggtc tagcagaatt tacagatacc cacaactcaa 1320 aggaaaagga ctagtaatta tcattgacta gcccatctca attggtatag tgattaaaat 1380 cacctagacc aattgagatg tatgtctgaa ttagttgttt tcaaagcaaa tgaactagcg 1440 attagtcgct atgacttaac ggagcatgaa accaagctaa ttttatgctg tgtggcacta 1500 ctcaacccca cgattgaaaa ccctacaagg aaagaacgga cggtatcgtt cacttataac 1560 caatacgctc agatgatgaa catcagtagg gaaaatgctt atggtgtatt agctaaagca 1620 accagagagc tgatgacgag aactgtggaa atcaggaatc ctttggttaa aggctttgag 1680 attttccagt ggacaaacta tgccaagttc tcaagcgaaa aattagaatt agtttttagt 1740 gaagagatat tgccttatct tttccagtta aaaaaattca taaaatataa tctggaacat 1800 gttaagtctt ttgaaaacaa atactctatg aggatttatg agtggttatt aaaagaacta 1860 acacaaaaga aaactcacaa ggcaaatata gagattagcc ttgatgaatt taagttcatg 1920 ttaatgcttg aaaataacta ccatgagttt aaaaggctta accaatgggt tttgaaacca 1980 ataagtaaag atttaaacac ttacagcaat atgaaattgg tggttgataa gcgaggccgc 2040 ccgactgata cgttgatttt ccaagttgaa ctagatagac aaatggatct cgtaaccgaa 2100 cttgagaaca accagataaa aatgaatggt gacaaaatac caacaaccat tacatcagat 2160 tcctacctac gtaacggact aagaaaaaca ctacacgatg ctttaactgc aaaaattcag 2220 ctcaccagtt ttgaggcaaa atttttgagt gacatgcaaa gtaagcatga tctcaatggt 2280 tcgttctcat ggctcacgca aaaacaacga accacactag agaacatact ggctaaatac 2340 ggaaggatct gaggttctta tggcaaacac ggacgccgca aacggcgtcc gaatttcttg 2400 gtcgaccgtt aaatctatca ccgcaaggga taaatatcta acaccgtgcg tgttgactat 2460 tttacctctg gcggtgataa tggttgcatg tactaatcta gataaggaat atagccatgg 2520 aagtgaaaat cttcaacacc caggatgttc aggattttct gcgtgttgca agcggtctgg 2580 aacaagaggg tggtaatccg cgtgttaaac aaattattca tcgtgttctg agcgacctgt 2640 ataaagcaat tgaagatctg aatatcacca gcgacgaata ttgggcaggc gttgcatatc 2700 tgaatcagct gggtgcaaat caagaagcag gtctgctgag tccgggtctg ggttttgatc 2760 attatctgga tatgcgtatg gatgcagaag atgcagcact gggtattgaa aatgcaacac 2820 cgcgtaccat tgaaggtccg ctgtatgttg cgggtgcacc ggaaagcgtt ggttatgcac 2880 gcatggatga tggtagcgat ccgaatggtc ataccctgat tctgcatggc accatttttg 2940 atgcagatgg taaaccgctg ccgaatgcaa aagttgaaat ttggcatgca aacaccaaag 3000 gcttttatag ccattttgat ccgaccggtg aacagcaggc ctttaatatg cgtcgtagca 3060 ttattaccga tgagaatggt cagtatcgtg ttcgtaccat tctgcctgcc ggttatggtt 3120 gtcctccgga aggtccgacc cagcaactgc tgaaccaact gggtcgtcat ggtaatcgtc 3180 cggcacatat tcattatttt gttagcgcag atggtcaccg taaactgacc acccagatta 3240 atgttgccgg tgatccgtat acctatgatg attttgcata tgccacccgt gaaggtctgg 3300 ttgttgatgc agttgaacat accgatccgg aagcaattaa agccaatgat gtggaaggtc 3360 cttttgccga aatggtgttt gatctgaaac tgacccgtct ggttgatggt gttgataatc 3420 aggttgtgga tcgtccgcgt ctggcagttt aatacaccaa aatggttcaa aattatcagg 3480 cgagtgatca tgatcactgg cctgttttta tttcagggaa gggtggagac aattacgtgg 3540 ataatcagat catccaagaa accgtggata aaattctgag cgttctgccg aatcaggcag 3600 gtcagctggc acgtctggtg cgtctgatgc aatttgcatg cgatccgacc attaccgtta 3660 ttggcaaata taaccatggt aaaagccgtc tgctgaatga actgattggc accgatatct 3720 ttagcgttgc agataaacgt gaaaccattc agctggccga acataaacag gatcaggttc 3780 gttggctgga tgcacctggt ctggatgccg atgttgcagc agttgatgat cgtcatgcat 3840 ttgaagcagt ttggacccag gcagatattc gtctgtttgt tcatagcgtt cgtgaaggtg 3900 aactggatgc aaccgaacac catctgctgc aacagctgat tgaagatgcc gatcatagcc 3960 gtcgtcagac cattctggtt ctgacccaga ttgatcagat tccggatcag accatcctga 4020 cacagattaa aaccagcatt gcacagcagg ttccgaaact ggatatttgg gcagttagcg 4080 caacccgtca tcgtcagggc attgaaaacg gtaaaaccct gctgatcgaa aaaagcggta 4140 ttggtgcact gcgccatacc ctggaacagg cactggcaca ggtgccgagc gcacgtacct 4200 atgaaaaaaa tcgtctgctg tcagatctgc accatcagct gaaacaactg ctgctggatc 4260 agaaacatgt tctgcaacaa ctgcaacaga cacagcaaca gcagctgcat gattttgata 4320 ccggtctgat taacattctg gacaaaattc gtgttgatct ggaaccgatt gtgaatattg 4380 atggtcagga tcaagcactg aatccggata gctttgcaac catgtttaaa aacaccgcag 4440 caaaacagca gcgtgccaaa gttcagattg catatagccg tgcatgcatt gaaatcaaca 4500 gccatctgat tcgccatggt gttgttggtc tgcctgcgga acagcagacc accattaaaa 4560 gcattgatac cgtgattgtt gccgtgtttg gtatcagcgt taaatttcgt gatcagctgc 4620 gtgccctgtt ttataccgat accgaacgtc agcgtctgca acgtgaattt cgtttctatt 4680 ttgaaaaaag tgccggtcgc atgattctgg cagcaaaaat tgaacagacc atgcgtcagc 4740 agggctgtat tcagaatgcc atgatggcac tgcaacaaat ggaaagcgca gcataagtct 4800 gacaggtgcc ggatttcata tccggcactt actttcctta actcttcgcc ttaacgcaaa 4860 atctcacact gatgatcctg aatttcctcg gctgaagcac ggttaagcgt cagtagattt 4920 cgttgtgtcg ccagcaatac aaatgatgga cataagcctg ttcggttcgt aagctgtaat 4980 gcaagtagcg tatgcgctca cgcaactggt ccagaacctt gaccgaacgc agcggtggta 5040 acggcgcagt ggcggttttc atggcttgtt atgactgttt ttttggggta cagtctatgc 5100 ctcgggcatc caagcagcaa gcgcgttacg ccgtgggtcg atgtttgatg ttatggagca 5160 gcaacgatgt tacgcagcag ggcagtcgcc ctaaaacaaa gttaaacatc atgagggaag 5220 cggtgatcgc cgaagtatcg actcaactat cagaggtagt tggcgtcatc gagcgccatc 5280 tcgaaccgac gttgctggcc gtacatttgt acggctccgc agtggatggc ggcctgaagc 5340 cacacagtga tattgatttg ctggttacgg tgaccgtaag gcttgatgaa acaacgcggc 5400 gagctttgat caacgacctt ttggaaactt cggcttcccc tggagagagc gagattctcc 5460 gcgctgtaga agtcaccatt gttgtgcacg acgacatcat tccgtggcgt tatccagcta 5520 agcgcgaact gcaatttgga gaatggcagc gcaatgacat tcttgcaggt atcttcgagc 5580 cagccacgat cgacattgat ctggctatct tgctgacaaa agcaagagaa catagcgttg 5640 ccttggtagg tccagcggcg gaggaactct ttgatccggt tcctgaacag gatctatttg 5700 aggcgctaaa tgaaacctta acgctatgga actcgccgcc cgactgggct ggcgatgagc 5760 gaaatgtagt gcttacgttg tcccgcattt ggtacagcgc agtaaccggc aaaatcgcgc 5820 cgaaggatgt cgctgccgac tgggcaatgg agcgcctgcc ggcccagtat cagcccgtca 5880 tacttgaagc tagacaggct tatcttggac aagaagaaga tcgcttggcc tcgcgcgcag 5940 atcagttgga agaatttgtc cactacgtga aaggcgagat caccaaggta gtcggcaaat 6000 aatgtctaac aattcgttca agccgacgcc gcttcgcggc gcggcttaac tcaagcgtta 6060 gatgcactaa gcacataatt gctcacagcc aaactatcag gtcaagtctg cttttattat 6120 ttttaagcgt gcataataag ccctacacaa attgggagat atatcatgaa aggctggctt 6180 tttcttgtta tcgcaatagt tggcgaagta atcgcaacat ccgcattaaa atctagcgag 6240 ggctttacta agctgatccg gtggatgacc ttt 6273 <210> 56 <211> 3943 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(3943) <223> DNA sequence of the plasmid pCP165 <400> 56 tgaatgacct ttaatagatt atattactaa ttaattgggg accctagagg tccccttttt 60 tattttaaaa attttttcac aaaacggttt acaagcatac gttggccgat tcattaatgc 120 agctggcacg acaggtttcc cgactggaaa gcgggcagtg agcgcaacgc aattaatgtg 180 agttagctca ctcattaggc accccaggct ttacacttta tgcttccggc tcgtatgttg 240 tgtggaattg tgagcggata acaatttcac acaggaaaca gctatgacca tgattacgcc 300 aagcttgcat gcctgcaggt cgactctaga ggatccccgg gtaccgagct cgaattcact 360 ggccgtcgtt ttacaacgtc gtgactggga aaaccctggc gttacccaac ttaatcgcct 420 tgcagcacat ccccctttcg ccagctggcg taatagcgaa gaggcccgca ccgatcgccc 480 ttcccaacag ttgcgcagcc tgaatggcga atggcgcctg atgcggtatt ttctccttac 540 gcatctgtgc ggtatttcac accgcatatg gtgcactctc agtacaatct gctctgatgc 600 cgcatagtta agccagcccc gacacccgcc aacacccgct gacgaattcg ttgacagtaa 660 gacgggtaag cctgttgatg ataccgctgc cttactgggt gcattagcca gtctgaatga 720 cctgtcacgg gataatccga agtggtcaga ctggaaaatc agagggcagg aactgctgaa 780 cagcaaaaag tcagatagca ccacatagca gacccgccat aaaacgccct gagaagcccg 840 tgacgggctt ttcttgtatt atgggtagtt tccttgcatg aatccataaa aggcgcctgt 900 agtgccattt acccccattc actgccagag ccgtgagcgc agcgaactga atgtcacgaa 960 aaagacagcg actcaggtgc ctgatggtcg gagacaaaag gaatattcag cgatttgccc 1020 gagcttgcga gggtgctact taagccttta gggttttaag gtctgttttg tagaggagca 1080 aacagcgttt gcgacatcct tttgtaatac tgcggaactg actaaagtag tgagttatac 1140 acagggctgg gatctattct ttttatcttt ttttattctt tctttattct ataaattata 1200 accacttgaa tataaacaaa aaaaacacac aaaggtctag cggaatttac agagggtcta 1260 gcagaattta caagttttcc agcaaaggtc tagcagaatt tacagatacc cacaactcaa 1320 aggaaaagga ctagtaatta tcattgacta gcccatctca attggtatag tgattaaaat 1380 cacctagacc aattgagatg tatgtctgaa ttagttgttt tcaaagcaaa tgaactagcg 1440 attagtcgct atgacttaac ggagcatgaa accaagctaa ttttatgctg tgtggcacta 1500 ctcaacccca cgattgaaaa ccctacaagg aaagaacgga cggtatcgtt cacttataac 1560 caatacgctc agatgatgaa catcagtagg gaaaatgctt atggtgtatt agctaaagca 1620 accagagagc tgatgacgag aactgtggaa atcaggaatc ctttggttaa aggctttgag 1680 attttccagt ggacaaacta tgccaagttc tcaagcgaaa aattagaatt agtttttagt 1740 gaagagatat tgccttatct tttccagtta aaaaaattca taaaatataa tctggaacat 1800 gttaagtctt ttgaaaacaa atactctatg aggatttatg agtggttatt aaaagaacta 1860 acacaaaaga aaactcacaa ggcaaatata gagattagcc ttgatgaatt taagttcatg 1920 ttaatgcttg aaaataacta ccatgagttt aaaaggctta accaatgggt tttgaaacca 1980 ataagtaaag atttaaacac ttacagcaat atgaaattgg tggttgataa gcgaggccgc 2040 ccgactgata cgttgatttt ccaagttgaa ctagatagac aaatggatct cgtaaccgaa 2100 cttgagaaca accagataaa aatgaatggt gacaaaatac caacaaccat tacatcagat 2160 tcctacctac gtaacggact aagaaaaaca ctacacgatg ctttaactgc aaaaattcag 2220 ctcaccagtt ttgaggcaaa atttttgagt gacatgcaaa gtaagcatga tctcaatggt 2280 tcgttctcat ggctcacgca aaaacaacga accacactag agaacatact ggctaaatac 2340 ggaaggatct gaggttctta tggcaaacac ggacgccgca aacggcgtcc gaatttcttg 2400 gtcgaccgtt aaatctatca ccgcaaggga taaatatcta acaccgtgcg tgttgactat 2460 tttacctctg gcggtgataa tggttgcatg tactaatcta gataaggaat atagccttag 2520 atttgactga aatcgtacag taaaaagcgt acaataaagg ctccacgaaa gtggggcctt 2580 ttttagcgcg agagcctttt ttgtcagcta tctatatgga cataagcctg ttcggttcgt 2640 aagctgtaat gcaagtagcg tatgcgctca cgcaactggt ccagaacctt gaccgaacgc 2700 agcggtggta acggcgcagt ggcggttttc atggcttgtt atgactgttt ttttggggta 2760 cagtctatgc ctcgggcatc caagcagcaa gcgcgttacg ccgtgggtcg atgtttgatg 2820 ttatggagca gcaacgatgt tacgcagcag ggcagtcgcc ctaaaacaaa gttaaacatc 2880 atgagggaag cggtgatcgc cgaagtatcg actcaactat cagaggtagt tggcgtcatc 2940 gagcgccatc tcgaaccgac gttgctggcc gtacatttgt acggctccgc agtggatggc 3000 ggcctgaagc cacacagtga tattgatttg ctggttacgg tgaccgtaag gcttgatgaa 3060 acaacgcggc gagctttgat caacgacctt ttggaaactt cggcttcccc tggagagagc 3120 gagattctcc gcgctgtaga agtcaccatt gttgtgcacg acgacatcat tccgtggcgt 3180 tatccagcta agcgcgaact gcaatttgga gaatggcagc gcaatgacat tcttgcaggt 3240 atcttcgagc cagccacgat cgacattgat ctggctatct tgctgacaaa agcaagagaa 3300 catagcgttg ccttggtagg tccagcggcg gaggaactct ttgatccggt tcctgaacag 3360 gatctatttg aggcgctaaa tgaaacctta acgctatgga actcgccgcc cgactgggct 3420 ggcgatgagc gaaatgtagt gcttacgttg tcccgcattt ggtacagcgc agtaaccggc 3480 aaaatcgcgc cgaaggatgt cgctgccgac tgggcaatgg agcgcctgcc ggcccagtat 3540 cagcccgtca tacttgaagc tagacaggct tatcttggac aagaagaaga tcgcttggcc 3600 tcgcgcgcag atcagttgga agaatttgtc cactacgtga aaggcgagat caccaaggta 3660 gtcggcaaat aatgtctaac aattcgttca agccgacgcc gcttcgcggc gcggcttaac 3720 tcaagcgtta gatgcactaa gcacataatt gctcacagcc aaactatcag gtcaagtctg 3780 cttttattat ttttaagcgt gcataataag ccctacacaa attgggagat atatcatgaa 3840 aggctggctt tttcttgtta tcgcaatagt tggcgaagta atcgcaacat ccgcattaaa 3900 atctagcgag ggctttacta agctgatccg gtggatgacc ttt 3943 <210> 57 <211> 10863 <212> DNA <213> Escherichia coli <220> <221> misc_feature <222> (1)..(10863) <223> DNA sequence of the plasmid pCP140 <400> 57 tggacataag cctgttcggt tcgtaagctg taatgcaagt agcgtatgcg ctcacgcaac 60 tggtccagaa ccttgaccga acgcagcggt ggtaacggcg cagtggcggt tttcatggct 120 tgttatgact gtttttttgg ggtacagtct atgcctcggg catccaagca gcaagcgcgt 180 tacgccgtgg gtcgatgttt gatgttatgg agcagcaacg atgttacgca gcagggcagt 240 cgccctaaaa caaagttaaa catcatgagg gaagcggtga tcgccgaagt atcgactcaa 300 ctatcagagg tagttggcgt catcgagcgc catctcgaac cgacgttgct ggccgtacat 360 ttgtacggct ccgcagtgga tggcggcctg aagccacaca gtgatattga tttgctggtt 420 acggtgaccg taaggcttga tgaaacaacg cggcgagctt tgatcaacga ccttttggaa 480 acttcggctt cccctggaga gagcgagatt ctccgcgctg tagaagtcac cattgttgtg 540 cacgacgaca tcattccgtg gcgttatcca gctaagcgcg aactgcaatt tggagaatgg 600 cagcgcaatg acattcttgc aggtatcttc gagccagcca cgatcgacat tgatctggct 660 atcttgctga caaaagcaag agaacatagc gttgccttgg taggtccagc ggcggaggaa 720 ctctttgatc cggttcctga acaggatcta tttgaggcgc taaatgaaac cttaacgcta 780 tggaactcgc cgcccgactg ggctggcgat gagcgaaatg tagtgcttac gttgtcccgc 840 atttggtaca gcgcagtaac cggcaaaatc gcgccgaagg atgtcgctgc cgactgggca 900 atggagcgcc tgccggccca gtatcagccc gtcatacttg aagctagaca ggcttatctt 960 ggacaagaag aagatcgctt ggcctcgcgc gcagatcagt tggaagaatt tgtccactac 1020 gtgaaaggcg agatcaccaa ggtagtcggc aaataatgtc taacaattcg ttcaagccga 1080 cgccgcttcg cggcgcggct taactcaagc gttagatgca ctaagcacat aattgctcac 1140 agccaaacta tcaggtcaag tctgctttta ttatttttaa gcgtgcataa taagccctac 1200 acaaattggg agatatatca tgaaaggctg gctttttctt gttatcgcaa tagttggcga 1260 agtaatcgca acatccgcat taaaatctag cgagggcttt actaagctga tccggtggat 1320 gaccttttga atgaccttta atagattata ttactaatta attggggacc ctagaggtcc 1380 ccttttttat tttaaaaatt ttttcacaaa acggtttaca agcatacgtt ggccgattca 1440 ttaatgcagc tggcacgaca ggtttcccga ctggaaagcg ggcagtgagc gcaacgcaat 1500 taatgtgagt tagctcactc attaggcacc ccaggcttta cactttatgc ttccggctcg 1560 tatgttgtgt ggaattgtga gcggataaca atttcacaca ggaaacagct atgaccatga 1620 ttacgccatc gaccgttaaa tctatcaccg caagggataa atatctaaca ccgtgcgtgt 1680 tgactatttt acctctggcg gtgataatgg ttgcatgtac taatctagat aaggaatata 1740 gccatggaag tgaaaatctt caacacccag gatgttcagg attttctgcg tgttgcaagc 1800 ggtctggaac aagagggtgg taatccgcgt gttaaacaaa ttattcatcg tgttctgagc 1860 gacctgtata aagcaattga agatctgaat atcaccagcg acgaatattg ggcaggcgtt 1920 gcatatctga atcagctggg tgcaaatcaa gaagcaggtc tgctgagtcc gggtctgggt 1980 tttgatcatt atctggatat gcgtatggat gcagaagatg cagcactggg tattgaaaat 2040 gcaacaccgc gtaccattga aggtccgctg tatgttgcgg gtgcaccgga aagcgttggt 2100 tatgcacgca tggatgatgg tagcgatccg aatggtcata ccctgattct gcatggcacc 2160 atttttgatg cagatggtaa accgctgccg aatgcaaaag ttgaaatttg gcatgcaaac 2220 accaaaggct tttatagcca ttttgatccg accggtgaac agcaggcctt taatatgcgt 2280 cgtagcatta ttaccgatga gaatggtcag tatcgtgttc gtaccattct gcctgccggt 2340 tatggttgtc ctccggaagg tccgacccag caactgctga accaactggg tcgtcatggt 2400 aatcgtccgg cacatattca ttattttgtt agcgcagatg gtcaccgtaa actgaccacc 2460 cagattaatg ttgccggtga tccgtatacc tatgatgatt ttgcatatgc cacccgtgaa 2520 ggtctggttg ttgatgcagt tgaacatacc gatccggaag caattaaagc caatgatgtg 2580 gaaggtcctt ttgccgaaat ggtgtttgat ctgaaactga cccgtctggt tgatggtgtt 2640 gataatcagg ttgtggatcg tccgcgtctg gcagtttaat acaccaaaat ggttcaaaat 2700 tatcaggcga gtgatcatga tcactggcct gtttttattt cagggaaggg tggagacaat 2760 tacgtggata atcagatcat ccaagaaacc gtggataaaa ttctgagcgt tctgccgaat 2820 caggcaggtc agctggcacg tctggtgcgt ctgatgcaat ttgcatgcga tccgaccatt 2880 accgttattg gcaaatataa ccatggtaaa agccgtctgc tgaatgaact gattggcacc 2940 gatatcttta gcgttgcaga taaacgtgaa accattcagc tggccgaaca taaacaggat 3000 caggttcgtt ggctggatgc acctggtctg gatgccgatg ttgcagcagt tgatgatcgt 3060 catgcatttg aagcagtttg gacccaggca gatattcgtc tgtttgttca tagcgttcgt 3120 gaaggtgaac tggatgcaac cgaacaccat ctgctgcaac agctgattga agatgccgat 3180 catagccgtc gtcagaccat tctggttctg acccagattg atcagattcc ggatcagacc 3240 atcctgacac agattaaaac cagcattgca cagcaggttc cgaaactgga tatttgggca 3300 gttagcgcaa cccgtcatcg tcagggcatt gaaaacggta aaaccctgct gatcgaaaaa 3360 agcggtattg gtgcactgcg ccataccctg gaacaggcac tggcacaggt gccgagcgca 3420 cgtacctatg aaaaaaatcg tctgctgtca gatctgcacc atcagctgaa acaactgctg 3480 ctggatcaga aacatgttct gcaacaactg caacagacac agcaacagca gctgcatgat 3540 tttgataccg gtctgattaa cattctggac aaaattcgtg ttgatctgga accgattgtg 3600 aatattgatg gtcaggatca agcactgaat ccggatagct ttgcaaccat gtttaaaaac 3660 accgcagcaa aacagcagcg tgccaaagtt cagattgcat atagccgtgc atgcattgaa 3720 atcaacagcc atctgattcg ccatggtgtt gttggtctgc ctgcggaaca gcagaccacc 3780 attaaaagca ttgataccgt gattgttgcc gtgtttggta tcagcgttaa atttcgtgat 3840 cagctgcgtg ccctgtttta taccgatacc gaacgtcagc gtctgcaacg tgaatttcgt 3900 ttctattttg aaaaaagtgc cggtcgcatg attctggcag caaaaattga acagaccatg 3960 cgtcagcagg gctgtattca gaatgccatg atggcactgc aacaaatgga aagcgcagca 4020 taaaaacacg gacgccgcaa acggcgtccg aatttcttgg tcgactctag aggatccccg 4080 ggtaccgagc tcgaattcac tggccgtcgt tttacaacgt cgtgactggg aaaaccctgg 4140 cgttacccaa cttaatcgcc ttgcagcaca tccccctttc gccagctggc gtaatagcga 4200 agaggcccgc accgatcgcc cttcccaaca gttgcgcagc ctgaatggcg aatggcgcct 4260 gatgcggtat tttctcctta cgcatctgtg cggtatttca caccgcatat ggtgcactct 4320 cagtacaatc tgctctgatg ccgcatagtt aagccagccc cgacacccgc caacacccgc 4380 tgacgaattc gttgacagta agacgggtaa gcctgttgat gataccgctg ccttactggg 4440 tgcattagcc agtctgaatg acctgtcacg ggataatccg aagtggtcag actggaaaat 4500 cagagggcag gaactgctga acagcaaaaa gtcagatagc accacatagc agacccgcca 4560 taaaacgccc tgagaagccc gtgacgggct tttcttgtat tatgggtagt ttccttgcat 4620 gaatccataa aaggcgcctg tagtgccatt tacccccatt cactgccaga gccgtgagcg 4680 cagcgaactg aatgtcacga aaaagacagc gactcaggtg cctgatggtc ggagacaaaa 4740 ggaatattca gcgatttgcc cgagcttgcg agggtgctac ttaagccttt agggttttaa 4800 ggtctgtttt gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact 4860 gactaaagta gtgagttata cacagggctg ggatctattc tttttatctt tttttattct 4920 ttctttattc tataaattat aaccacttga atataaacaa aaaaaacaca caaaggtcta 4980 gcggaattta cagagggtct agcagaattt acaagttttc cagcaaaggt ctagcagaat 5040 ttacagatac ccacaactca aaggaaaagg actagtaatt atcattgact agcccatctc 5100 aattggtata gtgattaaaa tcacctagac caattgagat gtatgtctga attagttgtt 5160 ttcaaagcaa atgaactagc gattagtcgc tatgacttaa cggagcatga aaccaagcta 5220 attttatgct gtgtggcact actcaacccc acgattgaaa accctacaag gaaagaacgg 5280 acggtatcgt tcacttataa ccaatacgct cagatgatga acatcagtag ggaaaatgct 5340 tatggtgtat tagctaaagc aaccagagag ctgatgacga gaactgtgga aatcaggaat 5400 cctttggtta aaggctttga gattttccag tggacaaact atgccaagtt ctcaagcgaa 5460 aaattagaat tagtttttag tgaagagata ttgccttatc ttttccagtt aaaaaaattc 5520 ataaaatata atctggaaca tgttaagtct tttgaaaaca aatactctat gaggatttat 5580 gagtggttat taaaagaact aacacaaaag aaaactcaca aggcaaatat agagattagc 5640 cttgatgaat ttaagttcat gttaatgctt gaaaataact accatgagtt taaaaggctt 5700 aaccaatggg ttttgaaacc aataagtaaa gatttaaaca cttacagcaa tatgaaattg 5760 gtggttgata agcgaggccg cccgactgat acgttgattt tccaagttga actagataga 5820 caaatggatc tcgtaaccga acttgagaac aaccagataa aaatgaatgg tgacaaaata 5880 ccaacaacca ttacatcaga ttcctaccta cgtaacggac taagaaaaac actacacgat 5940 gctttaactg caaaaattca gctcaccagt tttgaggcaa aatttttgag tgacatgcaa 6000 agtaagcatg atctcaatgg ttcgttctca tggctcacgc aaaaacaacg aaccacacta 6060 gagaacatac tggctaaata cggaaggatc tgaggttctt atggcccggc gtagcccaaa 6120 acgcgctgtc gtcaagtcgt taagggcgtg cccttcatca tccgatctgg agtcaaaatg 6180 tcctcacgta aagagcttgc caatgctatt cgtgcgctga gcatggacgc agtacagaaa 6240 gccaaatccg gtcacccggg tgcccctatg ggtatggctg acattgccga agtcctgtgg 6300 cgtgatttcc tgaaacacaa cccgcagaat ccgtcctggg ctgaccgtga ccgcttcgtg 6360 ctgtccaacg gccacggctc catgctgatc tacagcctgc tgcacctcac cggttacgat 6420 ctgccgatgg aagaactgaa aaacttccgt cagctgcact ctaaaactcc gggccacccg 6480 gaagtaggtt ataccgctgg tgtggaaacc accaccggtc cgctgggtca gggtattgcc 6540 aacgcagtcg gtatggcgat tgcagaaaaa acgctggcgg cgcagtttaa ccgtccaggt 6600 cacgacattg tcgaccacta cacctacgcc ttcatgggcg acggctgcat gatggaaggc 6660 atctcccacg aagtttgctc tctggcgggt acgctgaagc tgggtaaact gattgcgttc 6720 tacgatgaca acggtatctc aatcgatggt cacgttgaag gctggttcac tgacgacacc 6780 gcaatgcgtt tcgaagctta cggctggcac gttattcgcg acatcgacgg tcatgacgcg 6840 gcatccatca aacgcgcagt agaagaagcg cgcgcagtga ctgacaaacc gtccctgctg 6900 atgtgcaaaa ccatcatcgg tttcggttcc ccgaacaaag ccggtaccca cgactcccac 6960 ggtgcgccgc tgggcgacgc tgaaattgcc ctgacccgcg aacagctggg ctggaaatac 7020 gcgccgttcg aaatcccgtc tgaaatctat gctcagtggg atgcgaaaga agcaggccag 7080 gcgaaagaat ctgcatggaa tgagaagttt gcggcttacg cgaaagctta tccgcaggaa 7140 gcggctgaat ttacccgccg tatgaaaggc gaaatgccgt ctgacttcga cgccaaagcg 7200 aaagagttta tcgctaaact gcaggctaat ccggcgaaaa tcgccagccg taaagcgtcg 7260 cagaatgcta tcgaagcgtt cggcccgctg ttgcctgaat tcctcggcgg ctctgctgac 7320 ctggcaccgt ctaacctgac cctgtggtct ggttctaaag caatcaacga agatgctgca 7380 ggtaactaca tccactacgg tgttcgcgag ttcggtatga ccgcgattgc taacggtatc 7440 tccctgcacg gtggtttcct gccgtacacc tccaccttcc tgatgttcgt ggaatacgca 7500 cgtaacgccg tacgtatggc tgcgctgatg aaacagcgtc aggtgatggt ttacacccac 7560 gactccatcg gtctgggcga agatggcccg actcaccagc cggttgagca ggtcgcttct 7620 ctgcgcgtga ccccgaacat gtctacatgg cgtccgtgtg accaggttga atccgcggtc 7680 gcgtggaaat acggcgttga gcgtcaggac ggcccgactg cgcttatcct ctcccgtcag 7740 aacctggcgc agcaggaacg aactgaagag caactggcaa acatcgcgcg cggtggttat 7800 gtgctgaaag actgcgccgg tcagccggaa ctgattttca tcgctaccgg ttcagaagtt 7860 gaactggctg ttgctgccta cgaaaaactg actgccgaag gcgtgaaagc gcgcgtggtg 7920 tccatgccgt ctaccgacgc atttgacaag caggatgctg cttaccgtga atccgtactg 7980 ccgaaagcgg ttactgcacg cgttgctgta gaagcgggta ttgctgacta ctggtacaag 8040 tatgttggcc tgaacggtgc tatcgtcggt atgaccacct tcggtgaatc tgctccggca 8100 gagctgctgt ttgaagagtt cggcttcact gttgataacg ttgttgcgaa agcaaaagaa 8160 ctgctgtaat tagcatttcg ggtaaaaagg tcgcttcggc gacctttttt attaccttga 8220 tatgtccgtt tgcggacaag caatagataa agcgtgttgt agatcacaaa tatttatatg 8280 caataaatat caattatgta atatgcatca cgatatgcgt attgacattt gttgttataa 8340 ctataactca atgttatata agaaattaac tcgaggctat tgacgacagc tatggttcac 8400 tgtccaccaa ccaaaactgt gctcagtacc gccaatattt ctcccttgag gggtacaaag 8460 aggtgtccct agaagagatc cacgctgtgt aaaaatttta caaaaaggta ttgactttcc 8520 ctacagggtg tgtaataatt taattacagg cgggggcaac cccgcctgtt ctagaggagg 8580 aggaatcgcc atggagagga ttgtcgttac tctcggggaa cgtagttacc caattaccat 8640 cgcatctggt ttgtttaatg aaccagcttc attcttaccg ctgaaatcgg gcgagcaggt 8700 catgttggtc accaacgaaa ccctggctcc tctgtatctc gataaggtcc gcggcgtact 8760 tgaacaggcg ggtgttaacg tcgatagcgt tatcctccct gacggcgagc agtataaaag 8820 cctggctgta ctcgataccg tctttacggc gttgttacaa aagccgcatg gtcgcgatac 8880 tacgctggtg gcgcttggcg gcggcgtagt gggcgatctg accggcttcg cggcggcgag 8940 ttatcagcgc ggtgttcgtt tcattcaagt cccgacgacg ttactgtcgc aggtcgattc 9000 ctccgttggc ggcaaaactg cggtcaacca tcccctcggt aaaaacatga ttggcgcgtt 9060 ctaccagcct gcttcagtgg tggtggatct cgactgtctg aaaacgcttc ccccgcgtga 9120 gttagcgtcg gggctggcag aagtcatcaa atacggcatt attcttgacg gtgcgttttt 9180 caactggctg gaagagaatc tggatgcgtt gttgcgtctg gacggtccgg caatggcgta 9240 ctgtattcgc cgttgttgtg aactgaaggc agaagttgtc gccgccgacg agcgcgaaac 9300 cgggttacgt gctttactga atctgggaca cacctttggt catgccattg aagctgaaat 9360 ggggtatggc aattggttac atggtgaagc ggtcgctgcg ggtatggtga tggcggcgcg 9420 gacgtcggaa cgtctcgggc agtttagttc tgccgaaacg cagcgtatta taaccctgct 9480 cacgcgggct gggttaccgg tcaatgggcc gcgcgaaatg tccgcgcagg cgtatttacc 9540 gcatatgctg cgtgacaaga aagtccttgc gggagagatg cgcttaattc ttccgttggc 9600 aattggtaag agtgaagttc gcagcggcgt ttcgcacgag cttgttctta acgccattgc 9660 cgattgtcaa tcagcgtaat catcgttcat gcctgatgcc gctatgtagg ccggataagg 9720 cgttcacgcc gcatccggca accgatgcct gatgcgacgc ggtcgcgtct tatcaggcct 9780 acaggtcgat gccgatatgt acatcgtatt cggcaattaa tacatagcac tcgaggccta 9840 cctagcttcc aagaaagata tcctaacagc acaagagcgg aaagatgttt tgttctacat 9900 ccagaacaac ctctgctaaa attcctgaaa aattttgcaa aaagttgttg actttatcta 9960 caaggtgtgg tataataatc ttaacaacag caggacgctc tagaatgaaa accgtaactg 10020 taaaagatct cgtcattggt acgggcgcac ctaaaatcat cgtctcgctg atggcgaaag 10080 atatcgccag cgtgaaatcc gaagctctcg cctatcgtga agcggacttt gatattctgg 10140 aatggcgtgt ggaccactat gccgacctct ccaatgtgga gtctgtcatg gcggcagcaa 10200 aaattctccg tgagaccatg ccagaaaaac cgctgctgtt taccttccgc agtgccaaag 10260 aaggcggcga gcaggcgatt tccaccgagg cttatattgc actcaatcgt gcagccatcg 10320 acagcggcct ggttgatatg atcgatctgg agttatttac cggtgatgat caggttaaag 10380 aaaccgtcgc ctacgcccac gcgcatgatg tgaaagtagt catgtccaac catgacttcc 10440 ataaaacgcc ggaagccgaa gaaatcattg cccgtctgcg caaaatgcaa tccttcgacg 10500 ccgatattcc taagattgcg ctgatgccgc aaagtaccag cgatgtgctg acgttgcttg 10560 ccgcgaccct ggagatgcag gagcagtatg ccgatcgtcc aattatcacg atgtcgatgg 10620 caaaaactgg cgtaatttct cgtctggctg gtgaagtatt tggctcggcg gcaacttttg 10680 gtgcggtaaa aaaagcgtct gcgccagggc aaatctcggt aaatgatttg cgcacggtat 10740 taactatttt acaccaggca taagcaataa tatttcggcg ggaacaccct ccccgccgaa 10800 ctaaaaaata tattcaatcg tatttaataa aaatatttcg tgagtctctg tgcgctaatt 10860 ctc 10863 <210> 58 <211> 5500 <212> DNA <213> Escherichia coli <220> <221> gene <222> (1)..(5500) <223> Nucleotide sequence of ppc::PR-pyc <400> 58 cgaaccgacg tcactacaac cggtacgcgc acataaaggt catatctcta acgccatccg 60 tattcagggc cagtcggggc actccagcga tccagcacgc ggagttaacg ctatcgaact 120 aatgcacgac gccatcgggc atattttgca attgcgcgat aacctgaaag aacgttatca 180 ctacgaagcg tttaccgtgc cataccctac gctcaacctc gggcatattc acggtggcga 240 cgcttctaac cgtatttgcg cttgctgtga gttgcatatg gatattcgtc cgctgcctgg 300 catgacactc aatgaactta atggtttgct caacgatgca ttggctccgg tgagcgaacg 360 ctggccgggt cgtctgacgg tcgacgagct gcatccgccg atccctggct atgaatgccc 420 accgaatcat caactggttg aagtggttga gaaattgctc ggagcaaaaa ccgaagtggt 480 gaactactgt accgaagcgc cgtttattca aacgttatgc ccgacgctgg tgttggggcc 540 tggctcaatt aatcaggctc atcaacctga tgaatatctg gaaacacggt ttatcaagcc 600 cacccgcgaa ctgataaccc aggtaattca ccatttttgc tggcattaaa acgtaggccg 660 gataaggcgc tcgcgccgca tccggcactg ttgccaaact ccagtgccgc aataatgtcg 720 gatgcgatac ttgcgcatct tatccgacct acacctttgg tgttacttgg ggcgattttt 780 taacatttcc ataagttacg cttatttaaa gcgtcgtgaa tttaatgacg taaattcctg 840 ctatttattc gttcgttaaa tctatcaccg caagggataa atatctaaca ccgtgcgtgt 900 tgactatttt acctctggcg gtgataatgg ttgcatgtac taatctagat aaggaatata 960 gccatgtcgc aaagaaaatt cgccggcttg agagataact tcaatctctt gggtgaaaag 1020 aacaaaatat tggtggctaa tagaggagaa attccaatca gaatttttcg taccgctcat 1080 gaactgtcta tgcagacggt agctatatat tctcatgaag atcgtctttc aacgcacaaa 1140 caaaaggctg acgaagcata cgtcataggt gaagtaggcc aatatacccc cgtcggcgct 1200 tatttggcca ttgacgaaat catttccatt gcccaaaaac accaggtaga tttcatccat 1260 ccaggttatg ggttcttgtc tgaaaattcg gaatttgccg acaaagtagt gaaggccggt 1320 atcacttgga ttggccctcc agctgaagtt attgactccg tgggtgataa ggtctcagct 1380 agaaacctgg cagcaaaagc taatgtgccc accgttcctg gtacaccagg tcctatagaa 1440 actgtagagg aagcacttga cttcgtcaat gaatacggct acccggtgat cattaaggcc 1500 gcctttggtg gtggtggtag aggtatgaga gtcgttagag aaggtgacga cgtggcagat 1560 gcctttcaac gtgctacctc cgaagcccgt actgccttcg gtaatggtac ctgctttgtg 1620 gaaagattct tggacaagcc aaagcatatt gaagttcaat tgttggccga taaccacgga 1680 aacgtggttc atcttttcga aagagactgt tccgtgcaga gaagacacca aaaggttgtc 1740 gaagtggccc cagcaaagac tttaccccgt gaagtccgtg acgccatttt gacagatgca 1800 gttaaattgg ccaaagagtg tggctacaga aatgcgggta ctgctgaatt cttggttgat 1860 aaccaaaata gacactattt cattgaaatt aatccaagaa tccaagtgga acataccatc 1920 acagaagaaa ttaccggtat agatattgtg gcggctcaga tccaaattgc ggcaggtgcc 1980 tctctacccc agctgggcct attccaggac aaaattacga ctcgtggctt tgccattcag 2040 tgccgtatta ccacggaaga ccctgctaag aacttccaac cagataccgg tagaatagaa 2100 gtgtaccgtt ctgcaggtgg taatggtgtt agactggatg gtggtaacgc ctatgcagga 2160 acaataatct cacctcatta cgactcaatg ctggtcaaat gctcatgctc cggttccacc 2220 tacgaaatcg ttcgtagaaa aatgattcgt gcattaatcg agttcagaat tagaggtgtc 2280 aagaccaaca ttcccttcct attgactctt ttgaccaatc cagtatttat tgagggtaca 2340 tactggacga cttttattga cgacacccca caactgttcc aaatggtttc atcacaaaac 2400 agagcccaaa aacttttaca ttacctcgcc gacgtggcag tcaatggttc atctatcaag 2460 ggtcaaattg gcttgccaaa attaaaatca aatccaagtg tcccccattt gcacgatgct 2520 cagggcaatg tcatcaacgt tacaaagtct gcaccaccat ccggatggag gcaagtgcta 2580 ctagaaaagg ggccagctga atttgccaga caagttagac agttcaatgg tactttattg 2640 atggacacca cctggagaga cgctcatcaa tctctacttg caacaagagt cagaacccac 2700 gatttggcta caatcgctcc aacaaccgca catgcccttg caggtcgttt cgccttagaa 2760 tgttggggtg gtgccacatt cgatgttgca atgagatttt tgcatgagga tccatgggaa 2820 cgtttgagaa aattaagatc tctggtgcct aatattccat tccaaatgtt attgcgtggt 2880 gccaatggtg tggcttattc ttcattgcct gacaatgcta ttgaccattt cgtcaagcaa 2940 gccaaggata atggtgttga tatatttaga gtctttgatg ccttaaatga cttggaacaa 3000 ttgaaggtcg gtgtagatgc tgtgaagaag gcaggtggtg ttgtagaagc cactgtttgt 3060 ttctctgggg atatgcttca gccaggcaag aaatacaatt tggattacta cttggaaatt 3120 gctgaaaaaa ttgtccaaat gggcactcat atcctgggta tcaaagatat ggcaggtacc 3180 atgaagccag cagctgccaa actactgatt ggatctttga gggctaagta ccctgatctc 3240 ccaatacatg ttcacactca cgattctgca ggtactgctg ttgcatcaat gactgcgtgt 3300 gctctggcgg gcgccgatgt cgttgatgtt gccatcaact caatgtctgg tttaacttca 3360 caaccatcaa tcaatgctct gttggcttca ttagaaggta atattgacac tggtattaac 3420 gttgagcatg tccgtgaact agatgcatat tgggcagaga tgagattgtt atactcttgt 3480 ttcgaggctg acttgaaggg cccagatcca gaagtttatc aacatgaaat cccaggtggt 3540 caattgacaa acttgttgtt tcaagcccaa caattgggtc ttggagaaca atgggccgaa 3600 acaaaaagag cttacagaga agccaattat ttattgggtg atattgtcaa agttacccca 3660 acttcgaagg tcgttggtga tctggcacaa tttatggtct ccaataaatt aacttccgat 3720 gatgtgagac gcctggctaa ttctttggat ttccctgact ctgttatgga tttcttcgaa 3780 ggcttaatcg gccaaccata tggtgggttc ccagaaccat ttagatcaga cgttttaagg 3840 aacaagagaa gaaagttgac ttgtcgtcca ggcctggaac tagagccatt tgatctcgaa 3900 aaaattagag aagacttgca gaatagattt ggtgatgttg atgagtgcga cgttgcttct 3960 tataacatgt acccaagagt ttatgaagac ttccaaaaga tgagagaaac gtatggtgat 4020 ttatctgtat tgccaacaag aagctttttg tctccactag agactgacga agaaattgaa 4080 gttgtaatcg aacaaggtaa aacgctaatt atcaagctac aggctgtggg tgatttgaac 4140 aaaaagaccg gtgaaagaga agtttacttt gatttgaatg gtgaaatgag aaaaattcgt 4200 gttgctgaca gatcacaaaa agtggaaact gttactaaat ccaaagcaga catgcatgat 4260 ccattacaca ttggtgcacc aatggcaggt gtcattgttg aagttaaagt tcataaagga 4320 tcactaataa agaagggcca acctgtagcc gtattaagcg ccatgaaaat ggaaatgatt 4380 atatcttctc catccgatgg acaagttaaa gaagtgtttg tctctgatgg tgaaaatgtg 4440 gactcttctg atttattagt tctattagaa gaccaagttc ctgttgaaac taaggcatga 4500 tcttcctctt ctgcaaaccc tcgtgctttt gcgcgagggt tttctgaaat acttctgttc 4560 taacaccctc gttttcaata tatttctgtc tgcattttat tcaaattctg aatatacctt 4620 cagatatcct taaggaattg tcgttacatt cggcgatatt ttttcaagac aggttcttac 4680 tatgcattcc acagaagtcc aggctaaacc tctttttagc tggaaagccc tgggttgggc 4740 actgctctac ttttggtttt tctctactct gctacaggcc attatttaca tcagtggtta 4800 tagtggcact aacggcattc gcgactcgct gttattcagt tcgctgtggt tgatcccggt 4860 attcctcttt ccgaagcgga ttaaaattat tgccgcagta atcggcgtgg tgctatgggc 4920 ggcctctctg gcggcgctgt gctactacgt catctacggt caggagttct cgcagagcgt 4980 tctgtttgtg atgttcgaaa ccaacaccaa cgaagccagc gagtatttaa gccagtattt 5040 cagcctgaaa attgtgctta tcgcgctggc ctatacggcg gtggcagttc tgctgtggac 5100 acgcctgcgc ccggtctata ttccaaagcc gtggcgttat gttgtctctt ttgccctgct 5160 ttatggcttg attctgcatc cgatcgccat gaatacgttt atcaaaaaca agccgtttga 5220 gaaaacgttg gataacctgg cctcgcgtat ggagcctgcc gcaccgtggc aattcctgac 5280 cggctattat cagtatcgtc agcaactaaa ctcgctaaca aagttactga atgaaaataa 5340 tgccttgccg ccactggcta atttcaaaga tgaatcgggt aacgaaccgc gcactttagt 5400 gctggtgatt ggcgagtcga cccagcgcgg acgcatgagt ctgtacggtt atccgcgtga 5460 aaccacgccg gagctggatg cgctgcataa aaccgatccg 5500 <210> 59 <211> 200 <212> DNA <213> Escherichia coli <220> <221> promoter <222> (1)..(200) <223> Nucleotide sequence of acpP promoter <400> 59 cacaaaatgc tcatgttgcg cgcagtctgc gtggttatga gtaataatta gtgcaaaatg 60 atttgcgtta ttggggggta aggcctcaaa ataacgtaaa atcgtggtaa gacctgccgg 120 gatttagttg caaatttttc aacattttat acactacgaa aaccatcgcg aaagcgagtt 180 ttgataggaa atttaagagt 200 <210> 60 <211> 200 <212> DNA <213> Escherichia coli <220> <221> promoter <222> (1)..(200) <223> Nuclotide sequence of rplU promoter <400> 60 ttatggttag gaatataggg tgattgtact gaaaaaatgg cacagataaa cgttaccgta 60 caagttgtgt tttttttctt cgtgtattga ctgtagcact tgtcaaaggc gtgcgttttg 120 cgtaatattc gcgccctatt gtgaatattt atagcgcact ctgaatcatt gaaaaggtgt 180 gcgcggaagc ggagttttat 200 <210> 61 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(60) <223> Sequence of DNA primer MS604 <400> 61 aacgccgtat aatgggcgca gattaagagg ctacagtggg cttacatggc gatagctaga 60 60 <210> 62 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(60) <223> Sequence of DNA Primer MS605 <400> 62 tgtcggatcg ataaataggg caaaacaaac gcgcatcccg gaaaacgatt ccgaagccca 60 60 <210> 63 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(60) <223> Sequence of DNA Primer MS608 <400> 63 aaagtctgcc tgcaagtctg acagggcaac tatttgtggg cttacatggc gatagctaga 60 60 <210> 64 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(60) <223> Sequence of DNA Primer MS609 <400> 64 ttgcaaaatt gccctgaaac agggcaacag cggagtcccg gaaaacgatt ccgaagccca 60 60 <210> 65 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(25) <223> Sequence of DNA Primer MS461 <400> 65 ggctatattc cttatctaga ttagt 25 <210> 66 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(25) <223> Sequence of DNA Primer MS346 <400> 66 gtctgacagg tgccggattt catat 25 <210> 67 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequence of DNA Primer RP712 <400> 67 tctagataag gaatatagcc atgaccgcac cgattcagga tctgc 45 <210> 68 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequence of DNA Primer RP714 <400> 68 aaatccggca cctgtcagac ttattttgcg ctaccctggt ttttt 45 <210> 69 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(60) <223> Sequence of DNA Primer RP731 <400> 69 catgtactaa tctagataag gaatatagcc atgaaactga ttattgggat gacgggggcc 60 60 <210> 70 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(60) <223> Sequence of DNA Primer RP732 <400> 70 gccggatatg aaatccggca cctgtcagac ttattcgatc tcctgtgcaa attgttctgc 60 60 <210> 71 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequenc of DNA Primer MS669 <400> 71 tctagataag gaatatagcc atgaaacgac tcattgtagg catca 45 <210> 72 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequence of DNA Primer MS666 <400> 72 accgaacagg cttatgtcca gatagcaggt atagcggttg aatcg 45 <210> 73 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(24) <223> Sequence of DNA Primer RP607 <400> 73 tggacataag cctgttcggt tcgt 24 <210> 74 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(25) <223> Sequence of DNA Primer RP621 <400> 74 ttagatttga ctgaaatcgt acagt 25 <210> 75 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequence of DNA Primer MS676 <400> 75 tctagataag gaatatagcc atgaaactga tcgtcgggat gacag 45 <210> 76 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequence of DNA Primer MS680 <400> 76 acgatttcag tcaaatctaa ttattcattc tcctgagaaa aattc 45 <210> 77 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequence of DNA Primer MS686 <400> 77 tctagataag gaatatagcc atgacggcac gcatcatcat tggta 45 <210> 78 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequence of DNA Primer MS684 <400> 78 acgatttcag tcaaatctaa ttaattaaaa cgtagctcgc cttca 45 <210> 79 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequence of DNA Primer MS692 <400> 79 tctagataag gaatatagcc atgaaacgaa ttgttgtggg aatca 45 <210> 80 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequence of DNA Primer MS691 <400> 80 acgatttcag tcaaatctaa ttaatccccc tcccaacggc gatca 45 <210> 81 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequence of DNA Primer RP677 <400> 81 acgatttcag tcaaatctaa ttaatccccc tcccaacggc gatca 45 <210> 82 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(25) <223> Sequence of DNA Primer RP671 <400> 82 ttaatcgcct tgcagcacat ccccc 25 <210> 83 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(24) <223> Sequenc of DNA primer RP664 <400> 83 acgaaccgaa caggcttatg tcca 24 <210> 84 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequence of DNA Primer RP702 <400> 84 gccgtcgttt tacaacgtcg gatccgccta cctagcttcc aagaa 45 <210> 85 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequence of DNA Primer RP783 <400> 85 cctacaatga gtcgtttcat taggttttcc tcaacccggg agcgt 45 <210> 86 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequence of DNA primer RP781 <400> 86 cccgggttga ggaaaaccta atgaaacgac tcattgtagg catca 45 <210> 87 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequence of DNA Primer 780 <400> 87 atgtgctgca aggcgattaa gatagcaggt atagcggttg aatcg 45 <210> 88 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequence of DNA Primer RP700 <400> 88 gccgtcgttt tacaacgtcg agcggggcgg ttgtcaacga tgggg 45 <210> 89 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> misc_feature <222> (1)..(45) <223> Sequence of DNA Primer RP784 <400> 89 cctacaatga gtcgtttcat ggctatattc ctcctctgca tgaga 45 <210> 90 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequenc of DNA Primer RP779 <400> 90 tgcagaggag gaatatagcc atgaaacgac tcattgtagg catca 45 <210> 91 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequence of DNA Primer MS1383 <400> 91 gatggggtgt ctggggtaat atgtcgcaaa gaaaattcgc cggct 45 <210> 92 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequence of DNA Primer MS1384 <400> 92 gggtttgcag aagaggaaga tcatgcctta gtttcaacag gaact 45 <210> 93 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequence of DNA Primer MS1429 <400> 93 attcctgcta tttattcgtt cgttaaatct atcaccgcaa gggat 45 <210> 94 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Primer <220> <221> primer_bind <222> (1)..(45) <223> Sequence of DNA Primer MS1430 <400> 94 gcgaattttc tttgcgacat ggctatattc cttatctaga ttagt 45

Claims (10)

  1. 3-데히드로퀴네이트 합성효소를 인코딩하는 적어도 하나의 외인성 유전자,
    데옥시아라비노-헵툴로소네이트 7-포스페이트 합성효소를 인코딩하는 적어도 하나의 외인성 유전자,
    트랜스케톨라제를 인코딩하는 적어도 하나의 외인성 유전자,
    3,4-디히드록시벤조산 탈탄산효소를 인코딩하는 적어도 하나의 외인성 유전자,
    상기 3,4-디히드록시벤조산 탈탄산효소의 활성을 증가시키는 UbiX 단백질을 인코딩하는 적어도 하나의 외인성 유전자,
    카테콜 1,2-디옥시게나제를 인코딩하는 적어도 하나의 외인성 유전자, 및
    aroZ, qa-4, asbF, quiC로 이루어진 군으로부터 선택된 3-데히드로쉬키메이트 탈수효소(3-dehydroshikimate dehydratase)를 인코딩하는 적어도 하나의 외인성 유전자
    를 포함하는 비-방향족 탄소원으로부터 뮤콘산을 생산하는 유전자 조작된 대장균(Escherichia coli) 미생물.
  2. 제 1항에 있어서, 3-데히드로퀴네이트 탈수효소를 인코딩하는 적어도 하나의 외인성 유전자를 더 포함하는, 유전자 조작된 대장균 미생물.
  3. 제 1항에 있어서, 당 이입을 위한 포스포트랜스퍼라제 시스템에서 기능하는 적어도 하나의 단백질을 인코딩하는 적어도 하나의 유전자에서 돌연변이 또는 결실을 더 포함하는, 유전자 조작된 대장균 미생물.
  4. 제 3항에 있어서, 적어도 하나의 유전자는 ptsH 유전자, ptsI 유전자 또는 이들의 조합인 것을 특징으로 하는, 유전자 조작된 대장균 미생물.
  5. 제 1항에 있어서, 당의 촉진 확산에서 기능하는 단백질을 인코딩하는 적어도 하나의 외인성 유전자를 더 포함하는, 유전자 조작된 대장균 미생물.
  6. 제 5항에 있어서, 상기 적어도 하나의 외인성 유전자는 글루코오스 촉진자를 인코딩하는 glf 유전자인 것을 특징으로 하는, 유전자 조작된 대장균 미생물.
  7. 제 5항 또는 제 6항에 있어서, 글루코키나제를 인코딩하는 glk 외인성 유전자를 더 포함하는, 유전자 조작된 대장균 미생물.
  8. 제 1항에 있어서, 양성자 공동수송체(proton symporter)를 이용하여 기능하는 당 이입자를 인코딩하는 유전자에서 결실을 더 포함하는, 유전자 조작된 대장균 미생물.
  9. 제 8항에 있어서, 상기 유전자는 galP 유전자인 것을 특징으로 하는, 유전자 조작된 대장균 미생물.
  10. 제 1항에 있어서, 피루베이트 카복실라제를 인코딩하는 적어도 하나의 외인성 유전자 및 포스포에놀피루베이트 카복실라제를 인코딩하는 유전자의 돌연변이를 더 포함하는, 유전자 조작된 대장균 미생물.
KR1020237044654A 2016-03-02 2017-03-01 유전자 조작된 미생물로부터 개선된 뮤콘산 생산 KR20240005196A (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662302558P 2016-03-02 2016-03-02
US62/302,558 2016-03-02
KR1020187028248A KR20190003939A (ko) 2016-03-02 2017-03-01 유전자 조작된 미생물로부터 개선된 뮤콘산 생산
PCT/US2017/020263 WO2017151811A1 (en) 2016-03-02 2017-03-01 Improved muconic acid production from genetically engineered microorganisms

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020187028248A Division KR20190003939A (ko) 2016-03-02 2017-03-01 유전자 조작된 미생물로부터 개선된 뮤콘산 생산

Publications (1)

Publication Number Publication Date
KR20240005196A true KR20240005196A (ko) 2024-01-11

Family

ID=59744431

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020237044654A KR20240005196A (ko) 2016-03-02 2017-03-01 유전자 조작된 미생물로부터 개선된 뮤콘산 생산
KR1020187028248A KR20190003939A (ko) 2016-03-02 2017-03-01 유전자 조작된 미생물로부터 개선된 뮤콘산 생산

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020187028248A KR20190003939A (ko) 2016-03-02 2017-03-01 유전자 조작된 미생물로부터 개선된 뮤콘산 생산

Country Status (8)

Country Link
US (2) US20200181658A1 (ko)
EP (1) EP3423563B1 (ko)
JP (1) JP7437116B2 (ko)
KR (2) KR20240005196A (ko)
CN (1) CN109415684B (ko)
ES (1) ES2947938T3 (ko)
SG (2) SG10202008244TA (ko)
WO (1) WO2017151811A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11518975B2 (en) 2018-04-30 2022-12-06 Alliance For Sustainable Energy, Llc Engineered microorganisms for the production of intermediates and final products
WO2019222359A1 (en) * 2018-05-15 2019-11-21 Duke University Systems and methods for genetic manipulation of akkermansia species
WO2020080467A1 (ja) * 2018-10-17 2020-04-23 国立大学法人弘前大学 ムコン酸産生形質転換微生物及びその利用
CN112300973B (zh) * 2019-08-02 2022-06-24 南京理工大学 以苯丙氨酰-tRNA合成酶基因突变体为反向筛选标记的红球菌基因编辑方法
CN112300972B (zh) * 2019-08-02 2023-06-30 南京理工大学 以木质素为原料生产粘糠酸的基因工程菌
CN111004761A (zh) * 2019-12-02 2020-04-14 天津科技大学 一种l-酪氨酸基因工程菌及其生产l-酪氨酸的方法和应用
WO2021110993A1 (en) * 2019-12-04 2021-06-10 Synbionik Gmbh An efficient shuttle vector system for the expression of heterologous and homologous proteins for the genus zymomonas
CN112266892B (zh) * 2020-10-21 2021-10-08 中国科学院天津工业生物技术研究所 AroG的突变体及其在产氨基酸基因工程菌中的应用
CN112961878B (zh) * 2021-03-08 2023-04-25 昆明理工大学 一种植物乳杆菌的基因在叶酸生物生成中的应用
CN114540396A (zh) * 2022-02-24 2022-05-27 天津大学 希瓦氏菌株中葡萄糖代谢通路的构建方法

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4480034A (en) 1982-06-10 1984-10-30 Celanese Corporation Continuous fermentation process and bioconversion-product recovery
US4535059A (en) 1983-01-13 1985-08-13 Celanese Corporation Muconic acid productivity by a stabilized mutant microorganism population
US4588688A (en) 1981-07-27 1986-05-13 Celanese Corporation Process for the production of muconic acid
US4608338A (en) 1982-06-10 1986-08-26 Celanese Corporation Process for bioconversion-product recovery
US4681852A (en) 1980-07-18 1987-07-21 Austgen-Biojet International Pty, Ltd. Novel microorganism and method
US4753883A (en) 1986-05-07 1988-06-28 Biotechnica International, Inc. Enzyme deregulation
US4833078A (en) 1984-06-22 1989-05-23 Celgene Corporation Semi-continuous fermentation process for aromatic hydrocarbon bioconversion
US4968612A (en) 1984-07-27 1990-11-06 Celgene Corporation Continuous fermentation process for aromatic hydrocarbon bioconversion
US5168056A (en) 1991-02-08 1992-12-01 Purdue Research Foundation Enhanced production of common aromatic pathway compounds
US5272073A (en) 1992-06-30 1993-12-21 Purdue Research Foundation Biocatalytic synthesis of catechol from glucose
US5487987A (en) 1993-09-16 1996-01-30 Purdue Research Foundation Synthesis of adipic acid from biomass-derived carbon sources
US6180373B1 (en) 1992-09-28 2001-01-30 Consortium f{umlaut over (u)}r elektrochemische Industrie GmbH Microorganisms for the production of tryptophan and process for the preparation thereof
US6210937B1 (en) 1997-04-22 2001-04-03 Bechtel Bwxt Idaho, Llc Development of genetically engineered bacteria for production of selected aromatic compounds
US6472169B1 (en) 1999-01-29 2002-10-29 Board Of Trustees Operating Michigan State University Biocatalytic synthesis of shikimic acid
US6600077B1 (en) 1999-01-29 2003-07-29 Board Of Trustees Operating Michigan State University Biocatalytic synthesis of quinic acid and conversion to hydroquinone
US6962794B2 (en) 1995-05-05 2005-11-08 Genecor International, Inc. Application of glucose transport mutants for production of aromatic pathway compounds
US7244593B2 (en) 2001-01-19 2007-07-17 Basf Aktiengesellschaft Microorganisms and processes for enhanced production of pantothenate
US20090191610A1 (en) 2005-08-18 2009-07-30 Evonik Degussa Gmbh Microorganisms With Increased Efficiency for Methionine Synthesis
US7638312B2 (en) 2003-12-15 2009-12-29 Cj Cheiledang Corp. E.coli mutant containing mutant genes related with tryptophan biosynthesis and production method of tryptophan by using the same
US7790431B2 (en) 2003-09-24 2010-09-07 Board Of Trustees Operating Michigan State University Methods and materials for the production of shikimic acid
US20100314243A1 (en) 2009-06-16 2010-12-16 Draths Corporation Preparation of trans,trans muconic acid and trans,trans muconates
WO2011017560A1 (en) 2009-08-05 2011-02-10 Genomatica, Inc. Semi-synthetic terephthalic acid via microorganisms that produce muconic acid
WO2011085311A1 (en) 2010-01-08 2011-07-14 Draths Corporation Methods for producing isomers of muconic acid and muconate salts
WO2011123154A2 (en) 2009-11-18 2011-10-06 Myriant Technologies Llc Metabolic evolution of escherchia coli strains that produce organic acids
WO2013116244A1 (en) 2012-01-30 2013-08-08 Myriant Corporation Production of muconic acid from genetically engineered microorganisms
US20130337519A1 (en) 2010-12-13 2013-12-19 Myriant Corporation Method of producing succinic acid and other chemicals using sucrose-containing feedstock
US20140234923A1 (en) 2011-07-22 2014-08-21 Myriant Corporation Fermentation of glycerol to organic acids
US9017976B2 (en) 2009-11-18 2015-04-28 Myriant Corporation Engineering microbes for efficient production of chemicals
US20160017381A1 (en) 2014-07-18 2016-01-21 Alliance For Sustainable Energy, Llc Biomass conversion to fuels and chemicals

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090771A (ja) 1983-10-26 1985-05-21 Tokyo Electric Co Ltd インクドツトプリンタ−
EP0190921A3 (en) 1985-02-04 1988-01-13 Engenics, Inc. Method for the overproduction of amino acids
JP2002105641A (ja) 2000-10-03 2002-04-10 Murakami Corp 複合材およびその製造方法
EP2895593B1 (en) * 2012-09-14 2019-12-11 PTT Global Chemical Public Company Limited Production of organic acids by fermentation at low ph
CN103667166A (zh) * 2012-09-21 2014-03-26 天津工业生物技术研究所 一株生产己二酸前体物顺,顺-粘康酸的大肠埃希氏菌及应用
CN104099284B (zh) * 2014-07-01 2018-12-04 江南大学 一株以葡萄糖为底物合成粘康酸的大肠杆菌工程菌

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681852A (en) 1980-07-18 1987-07-21 Austgen-Biojet International Pty, Ltd. Novel microorganism and method
US4588688A (en) 1981-07-27 1986-05-13 Celanese Corporation Process for the production of muconic acid
US4480034A (en) 1982-06-10 1984-10-30 Celanese Corporation Continuous fermentation process and bioconversion-product recovery
US4608338A (en) 1982-06-10 1986-08-26 Celanese Corporation Process for bioconversion-product recovery
US4535059A (en) 1983-01-13 1985-08-13 Celanese Corporation Muconic acid productivity by a stabilized mutant microorganism population
US4833078A (en) 1984-06-22 1989-05-23 Celgene Corporation Semi-continuous fermentation process for aromatic hydrocarbon bioconversion
US4968612A (en) 1984-07-27 1990-11-06 Celgene Corporation Continuous fermentation process for aromatic hydrocarbon bioconversion
US4753883A (en) 1986-05-07 1988-06-28 Biotechnica International, Inc. Enzyme deregulation
US5168056A (en) 1991-02-08 1992-12-01 Purdue Research Foundation Enhanced production of common aromatic pathway compounds
US5272073A (en) 1992-06-30 1993-12-21 Purdue Research Foundation Biocatalytic synthesis of catechol from glucose
US6180373B1 (en) 1992-09-28 2001-01-30 Consortium f{umlaut over (u)}r elektrochemische Industrie GmbH Microorganisms for the production of tryptophan and process for the preparation thereof
US5487987A (en) 1993-09-16 1996-01-30 Purdue Research Foundation Synthesis of adipic acid from biomass-derived carbon sources
US5616496A (en) 1993-09-16 1997-04-01 Purdue Research Foundation Bacterial cell tranformants for production of cis, cis-muconic acid and catechol
US6962794B2 (en) 1995-05-05 2005-11-08 Genecor International, Inc. Application of glucose transport mutants for production of aromatic pathway compounds
US6210937B1 (en) 1997-04-22 2001-04-03 Bechtel Bwxt Idaho, Llc Development of genetically engineered bacteria for production of selected aromatic compounds
US6613552B1 (en) 1999-01-29 2003-09-02 Board Of Trustees Operating Michigan State University Biocatalytic synthesis of shikimic acid
US6472169B1 (en) 1999-01-29 2002-10-29 Board Of Trustees Operating Michigan State University Biocatalytic synthesis of shikimic acid
US6600077B1 (en) 1999-01-29 2003-07-29 Board Of Trustees Operating Michigan State University Biocatalytic synthesis of quinic acid and conversion to hydroquinone
US7244593B2 (en) 2001-01-19 2007-07-17 Basf Aktiengesellschaft Microorganisms and processes for enhanced production of pantothenate
US7790431B2 (en) 2003-09-24 2010-09-07 Board Of Trustees Operating Michigan State University Methods and materials for the production of shikimic acid
US7638312B2 (en) 2003-12-15 2009-12-29 Cj Cheiledang Corp. E.coli mutant containing mutant genes related with tryptophan biosynthesis and production method of tryptophan by using the same
US20090191610A1 (en) 2005-08-18 2009-07-30 Evonik Degussa Gmbh Microorganisms With Increased Efficiency for Methionine Synthesis
US20100314243A1 (en) 2009-06-16 2010-12-16 Draths Corporation Preparation of trans,trans muconic acid and trans,trans muconates
WO2011017560A1 (en) 2009-08-05 2011-02-10 Genomatica, Inc. Semi-synthetic terephthalic acid via microorganisms that produce muconic acid
US8871489B2 (en) 2009-11-18 2014-10-28 Myriant Corporation Metabolic evolution of Escherichia coli strains that produce organic acids
WO2011123154A2 (en) 2009-11-18 2011-10-06 Myriant Technologies Llc Metabolic evolution of escherchia coli strains that produce organic acids
US9017976B2 (en) 2009-11-18 2015-04-28 Myriant Corporation Engineering microbes for efficient production of chemicals
WO2011085311A1 (en) 2010-01-08 2011-07-14 Draths Corporation Methods for producing isomers of muconic acid and muconate salts
US20130337519A1 (en) 2010-12-13 2013-12-19 Myriant Corporation Method of producing succinic acid and other chemicals using sucrose-containing feedstock
US20140234923A1 (en) 2011-07-22 2014-08-21 Myriant Corporation Fermentation of glycerol to organic acids
US20150044755A1 (en) 2012-01-30 2015-02-12 Myriant Corporation Production of muconic acid from genetically engineered microorganisms
WO2013116244A1 (en) 2012-01-30 2013-08-08 Myriant Corporation Production of muconic acid from genetically engineered microorganisms
US20160017381A1 (en) 2014-07-18 2016-01-21 Alliance For Sustainable Energy, Llc Biomass conversion to fuels and chemicals

Non-Patent Citations (82)

* Cited by examiner, † Cited by third party
Title
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool, J Mol Biol 215, 403-410.
Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res 25, 3389-3402.
Aussel, Laurent, Fabien Pierrel, Laurent Loiseau, Murielle Lombard, Marc Fontecave, and Frederic Barras. 2014. "Biosynthesis and Physiology of Coenzyme Q in Bacteria." Biochimica et Biophysica Acta - Bioenergetics 1837 (7): 1004-11.
Baba, Tomoya, Takeshi Ara, Miki Hasegawa, Yuki Takai, Yoshiko Okumura, Miki Baba, Kirill A Datsenko, Masaru Tomita, Barry L Wanner, and Hirotada Mori. 2006. "Construction of Escherichia Coli K-12 in-Frame, Single-Gene Knockout Mutants: The Keio Collection." Molecular Systems Biology 2: 2006.0008. doi:10.1038/msb4100050.
Barbe, V., Vallenet, D., Fonknechten, N., Kreimeyer, A., Oztas, S., Labarre, L., Cruveiller, S., Robert, C., Duprat, S., Wincker, P., Ornston, L. N., Weissenbach, J., Marliere, P., Cohen, G. N., and Medigue, C. (2004) Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium, Nucleic Acids Res 32, 5766-5779.
Bird, J. A. and Cain, R. B. (1968) cis-cis-muconate, the product inducer of catechol 1,2-oxygenase in Pseudomonas aeruginosa. Biochem. J. 109, 479-481.
Bongaerts, J., Kramer, M., Muller, U., Raven, L. and Wubbolts, M. (2001) Metabollic engineering for microbial producitnof aromatic acids and derived compunds. Met. Eng. 3, 289-300.
Chandran, S. S., Yi, J., Draths, K. M., von Daeniken, R., Weber, W. and Frost, J. W. (2003) Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol. Prog. 19, 808-814.
Chen, K., Dou, J., Tang, S., Yang, Y., Wang, H., Fang, H. and Zhou, C. (2012) Deletion of the aroK gene is essential for high shikimic acid accumulation through the shikimate in E. coli. Bioresource Technol, 119, 141-147.
Chen, R., Hatzimanikatis, V., Yap, W. M. G. J., Potma, P. W. and Bailey, J. E. (1997) Metabolic consequences of phosphotransferase (PTS) mutation in a phenylalanie-producing recombinatn Escherichia coli. Biotechnol. Prog. 13, 768-775.
Choi, W. J., Lee, E. Y., Cho, M. H., and Choi, C. Y. (1997) Enhanced production of cis, cis-muconate in a cell-recycle bioreactor. J. Fermentation and Bioengineering. 84, 70-76.
Curran, Kathleen a., John M. Leavitt, Ashty S. Karim, and Hal S. Alper. 2013. "Metabolic Engineering of Muconic Acid Production in Saccharomyces Cerevisiae." Metabolic Engineering 15 (1): 55-66.
de Berardinis, V., Vallenet, D., Castelli, V., Besnard, M., Pinet, A., Cruaud, C., Samair, S., Lechaplais, C., Gyapay, G., Richez, C., Durot, M., Kreimeyer, A., Le Fevre, F., Schachter, V., Pezo, V., Doring, V., Scarpelli, C., Medigue, C., Cohen, G. N., Marliere, P., Salanoubat, M., and Weissenbach, J. (2008) A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1, Mol Syst Biol 4, 174.
Draths, K. M., and Frost, J. W. (1995) Environmentally Compatible Synthesis of Catechol from D-Glucose, Journal of the American Chemical Society 117, 2395-2400.
Draths, K. M., Pompliano, D. L., Conley, D. L., Frost, J. W., Berry, A., Disbrow, G. L., Staversky, R. J., and Lievense, J. C. (1992) Biocatalytic Synthesis of Aromatics from D-Glucose - the Role of Transketolase, Journal of the American Chemical Society 114, 3956-3962.
Elsemore, D. A., and Ornston, L. N. (1995) Unusual ancestry of dehydratases associated with quinate catabolism in Acinetobacter calcoaceticus, J Bacteriol 177, 5971-5978.
Escalante, A., Calderon, R., Valdiva, A., de Anda, R., Hernandez, G., Ramirez, O. T., Gosset, G. and Boliver, F. (2010) Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyrvate: carbohydrate phosphotransferase system. Microbial Cell Factories 9, 21-33.
Escalante, Adelfo, Rocio Calderon, Araceli Valdivia, Ramon de Anda, Georgina Hernandez, Octavio T Ramrez, Guillermo Gosset, and Francisco Bolvar. 2010. "Metabolic Engineering for the Production of Shikimic Acid in an Evolved Escherichia Coli Strain Lacking the Phosphoenolpyruvate: Carbohydrate Phosphotransferase System." Microbial Cell Factories 9 (Ccm): 21. doi:10.1186/1475-2859-9-21.
Flores, N., Xiao, J., Berry, A., Bolivar, F. and Valle, F. (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nature Biotechn. 14, 620 - 623.
Fox, D. T., Hotta, K., Kim, C. Y., and Koppisch, A. T. (2008) The missing link in petrobactin biosynthesis: asbF encodes a (-)-3-dehydroshikimate dehydratase, Biochemistry 47, 12251-12253.
Ger, Y., Chen, S., Chiang, H., and Shiuan, D. (1994) A Single Ser-180 Mutation Desensitizes Feedback Inhibition of the Phyenylalanine-Sensitive 3-Deoxy-D-Arabino-Hepulosonate 7-Phosphate (DAHP) Synthetase in Eschericia coli, J Biochem 116, 986-990.
Grant, D. J., and Patel, J. C. (1969) The non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes), Antonie Van Leeuwenhoek 35, 325-343.
Hansen, E. H., Moller, B. L., Kock, G. R., Bunner, C. M., Kristensen, C., Jensen, O. R., Okkels, F. T., Olsen, C. E., Motawia, M. S., and Hansen, J. (2009) De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae), Appl Environ Microbiol 75, 2765-2774.
Horwitz, Andrew A., Jessica M. Walter, Max G. Schubert, Stephanie H. Kung, Kristy Hawkins, Darren M. Platt, Aaron D. Hernday, et al. 2015. "Efficient Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas." Cell Systems. 1(1): 88-96.
Hu, C., Jiang, P., Xu, J., Wu, Y., and Huang, W. (2003) Mutation analysis of the feedback inhibition site of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of Escherichia coli, J Basic Microbiol 43, 399-406.
Hu, Changyun, Peihong Jiang, Jianfeng Xu, Yongqing Wu, and Weida Huang. 2003. "Mutation Analysis of the Feedback Inhibition Site of Phenylalanine-Sensitive 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase of Escherichia Coli." Journal of Basic Microbiology 43 (5): 399-406.
Iwagami, S. G., Yang, K., and Davies, J. (2000) Characterization of the protocatechuic acid catabolic gene cluster from Streptomyces sp. strain 2065, Appl Environ Microbiol 66, 1499-1508.
Jantama, K., Haupt, M. J., Svoronos, S. A., Zhang, X., Moore, J. C., Shanmugam, K. T., and Ingram, L. O. (2008a) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate, Biotechnol Bioeng 99, 1140-1153.
Jantama, K., Zhang, X., Moore, J. C., Shanmugam, K. T., Svoronos, S. A., and Ingram, L. O. (2008b) Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C, Biotechnol Bioeng 101, 881-893.
Jimenez, Natalia, Jose Antonio Curiel, Ines Reveron, Blanca de las Rivas, and Rosario Munoz. 2013. "Uncovering the Lactobacillus Plantarum WCFS1 Gallate Decarboxylase Involved in Tannin Degradation." Applied and Environmental Microbiology 79 (14): 4253-63.
Johnson, C. W., Salvachua, D., Khanna, P., Peterson, D. J. and Beckham, G. (2016) Enhancing muconic acid production from glucose and lignin-derived aromatic compound via increased protocatechuate decarboxylase activity. Metabolic Engineering Communication. 3: 111-119.
Kaneko, A., Ishii, Y., and Kirimura, K. (2011) High-yield production of cis, cis-muconic acid from catechol in aqueous solution by biocatalyst. Chem. Lett. 40, 381-383.
Kikuchi, Y., Tsujimoto, K., and Kurahashi, O. (1997) Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli, Appl Environ Microbiol 63, 761-762.
Kojima, Y., Fujisawa, H., Nakazawa, A., Nakazawa, T., Kanetsuna, F., Taniuchi, H., Nozaki, M., and Hayaishi, O. (1967) Studies on pyrocatechase. I. Purification and spectral properties, J Biol Chem 242, 3270-3278.
Kramer, M., Bongaerts, J., Bovenberg, R., Kremer, S., Muller, U., Orf, S., Wubbolts, M. and Raeven, L. (2003) Metabolic engineering for microbial production of shikimic acid. Metabol. Eng. 5, 277-283.
Lerner, C. G., and Inouye, M. (1990) Low copy number plasmids for regulated low-level expression of cloned genes in Escherichia coli with blue/white insert screening capability, Nucleic Acids Res 18, 4631.
Li, K. and Frost, J.W. (1999) Microbial synthesis of 3-dehydroshikimic acid: A comparative analysis of D-xylose, L-arabinose, and D-glucose carbon sources. Biotechnol. Prog. 15, 876-883.
Lin, Fengming, Kyle L. Ferguson, David R. Boyer, Xiaoxia Nina Lin, and E. Neil G. Marsh. 2015. "Isofunctional Enzymes PAD1 and UbiX Catalyze Formation of a Novel Cofactor Required by Ferulic Acid Decarboxylase and 4-Hydroxy-3-Polyprenylbenzoic Acid Decarboxylase." ACS Chemical Biology 11(4): 1137-1144.
Lin, H., Ravishankar V Vadali, R. V., George N Bennett,G. N. and San, K. Y. (2004) Increasing the Acetyl-CoA Pool in the Presence of Overexpressed Phosphoenolpyruvate Carboxylase or Pyruvate Carboxylase Enhances Succinate Production in Escherichia Coli. Biotechnology Progress 20 (5): 1599-1604.
Lu, J. L., and Liao, J. C. (1997) Metabolic engineering and control analysis for production of aromatics: Role of transaldolase, Biotechnol Bioeng 53, 132-138.
Lupa, Boguslaw, Delina Lyon, Moreland D. Gibbs, Rosalind a. Reeves, and Juergen Wiegel. 2005. "Distribution of Genes Encoding the Microbial Non-Oxidative Reversible Hydroxyarylic Acid Decarboxylases/phenol Carboxylases." Genomics 86 (3): 342-51.
Lutke-Eversloh, T., and Stephanopoulos, G. (2007) L-tyrosine production by deregulated strains of Escherichia coli, Appl Microbiol Biotechnol 75, 103-110.
Mizuno, S., Yoshikawa, N., Seki, M., Mikawa, T., and Imada, Y. (1988) Microbial production of cis, cis- muconic acid from benzoic acid. Appl Microbiol Biotechnol. 28, 20-25.
Nakazawa, A., Kojima, Y., and Taniuchi, H. (1967) Purification and properties of pyrocatechase from Pseudomonas fluorescens, Biochim Biophys Acta 147, 189-199.
Neidhardt, F. C., and Curtiss, R. (1996) Escherichia coli and Salmonella : cellular and molecular biology, Vol. 22nd ed., ASM Press, Washington, D.C.
Neidle, E. L., and Ornston, L. N. (1986) Cloning and expression of Acinetobacter calcoaceticus catechol 1,2-dioxygenase structural gene catA in Escherichia coli, J Bacteriol 168, 815-820.
Niu, W., Draths, K. M., and Frost, J. W. (2002) Benzene-free synthesis of adipic acid, Biotechnol Prog 18, 201-211.
Parker, C., Barnell, W. O., Snoep, J. L., Ingram, L. O., and Conway, T. (1995) Characterization of the Zymomonas mobilis glucose facilitator gene product (glf) in recombinant Escherichia coli: examination of transport mechanism, kinetics and the role of glucokinase in glucose transport, Mol Microbiol 15, 795-802.
Parsek, M. R., Shinabarger, D. .L., Rithmel, R. K. and Chakrabarty, A. M. (1992) Roles of CatR and cis, cis-Muconate in activation of the catBC operson, which is involved in benzoate degradationin Pseudomonas putida. J. Bacteriol. 174, 7798-7806.
Patnaik, R. and Liao, J. C. (1994) Engineering of Escherichia coli central metabolism for aromatic metabolite with near theoretical yield. App. Env. Microbiol. 60, 3903-3908.
Payne, Karl a. P., Mark D. White, Karl Fisher, Basile Khara, Samuel S. Bailey, David Parker, Nicholas J. W. Rattray, et al. 2015. "New Cofactor Supports α,β-Unsaturated Acid Decarboxylation via 1,3-Dipolar Cycloaddition." Nature 522 (7557): 497-501.
Perez-Pantoja, D., De la Iglesia, R., Pieper, D. H., and Gonzalez, B. (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134, FEMS Microbiol Rev 32, 736-794.
Perez-Pantoja, D., Donoso, R., Agullo, L., Cordova, M., Seeger, M., Pieper, D. H., and Gonzalez, B. (2011) Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales, Environ Microbiol. 14.5 (2012): 1091-1117.
Pfleger, B. F., Kim, Y., Nusca, T. D., Maltseva, N., Lee, J. Y., Rath, C. M., Scaglione, J. B., Janes, B. K., Anderson, E. C., Bergman, N. H., Hanna, P. C., Joachimiak, A., and Sherman, D. H. (2008) Structural and functional analysis of AsbF: origin of the stealth 3,4-dihydroxybenzoic acid subunit for petrobactin biosynthesis, Proc Natl Acad Sci U S A 105, 17133-17138.
Pittard, J. and Wallace, B. J. (1966) Distribution and function of genes concerned with aromatic biosynthesis in Escherichia coli. J. Bacteriol. 91, 1494-1508.
Polen, T., Spelberg, M. and Bott, M. (2013) Toward bitechnological produciton of adipic acid and precursors from biorenewables, J. Biotechnol. 167(2): 75-84.
Rutledge, B. J. (1984) Molecular characterization of the qa-4 gene of Neurospora crassa, Gene 32, 275-287.
Schirmer, F., and Hillen, W. (1998) The Acinetobacter calcoaceticus NCIB8250 mop operon mRNA is differentially degraded, resulting in a higher level of the 3' CatA-encoding segment than of the 5' phenolhydroxylase-encoding portion, Mol Gen Genet 257, 330-337.
Shumilin, I. A., Bauerle, R., Wu, J., Woodard, R. W., and Kretsinger, R. H. (2004) Crystal structure of the reaction complex of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Thermotoga maritima refines the catalytic mechanism and indicates a new mechanism of allosteric regulation, J Mol Biol 341, 455-466.
Shumilin, I. A., Kretsinger, R. H., and Bauerle, R. H. (1999) Crystal structure of phenylalanine-regulated 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli, Structure 7, 865-875.
Shumilin, I. A., Zhao, C., Bauerle, R., and Kretsinger, R. H. (2002) Allosteric inhibition of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase alters the coordination of both substrates, J Mol Biol 320, 1147-1156.
Shumkova, E. S., Solyanikova, I. P., Plotnikova, E. G. and Golovleva, L. A. (2009) Phenol degrdation by Rhodococcus opacus Strain 1G. App. Biocehm. Microbiol. 45, 43-49.
Sietmann, R., Uebe, R., Boer, E., Bode, R., Kunze, G., and Schauer, F. (2010) Novel metabolic routes during the oxidation of hydroxylated aromatic acids by the yeast Arxula adeninivorans, J Appl Microbiol 108, 789-799.
Smith, M. R. and Ratledge, C. (1989) Quantitative biotransformation of catechol to cis, cis-muconate. Biotech. Lett. 11, 105-110.
Snoep, J. L., Arfman, N., Yomano, L. P., Fliege, R. K., Conway, T., and Ingram, L. O. (1994) Reconstruction of glucose uptake and phosphorylation in a glucose-negative mutant of Escherichia coli by using Zymomonas mobilis genes encoding the glucose facilitator protein and glucokinase, J Bacteriol 176, 2133-2135.
Sonoki, Tomonori, Miyuki Morooka, Kimitoshi Sakamoto, Yuichiro Otsuka, Masaya Nakamura, Jody Jellison, and Barry Goodell. 2014. Enhancement of Protocatechuate Decarboxylase Activity for the Effective Production of Muconate from Lignin-Related Aromatic Compounds. Journal of Biotechnology 192 (Part A): 71-77.
Sprenger, G. A. (1995) Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12, Arch Microbiol 164, 324-330.
Sprenger, G. A., Schorken, U., Sprenger, G., and Sahm, H. (1995a) Transketolase A of Escherichia coli K12. Purification and properties of the enzyme from recombinant strains, Eur J Biochem 230, 525-532.
Sprenger, G. A., Schorken, U., Sprenger, G., and Sahm, H. (1995b) Transaldolase B of Escherichia coli K-12: cloning of its gene, talB, and characterization of the enzyme from recombinant strains, J Bacteriol 177, 5930-5936.
Stroman, P., Reinert, W. R., and Giles, N. H. (1978) Purification and characterization of 3-dehydroshikimate dehydratase, an enzyme in the inducible quinic acid catabolic pathway of Neurospora crassa, J Biol Chem 253, 4593-4598.
Tang, J., Zhu, X., Lu, J. and Liu, P. (2012) Recruiting alternative glucose utilization pathways for improving succinate production. App Microbiol Biotechnol DOI 10, 1007/s00253-012-434.1.
Tateoka, T., and Yasuda, I. (1995) 3-Dehydroshikimate dehydratase in mung hean cultured cells, Plant Cell Reports 15, 212-217.
Vemuri, G. N., M. A. Eiteman, and E. Altman. 2002. "Effects of Growth Mode and Pyruvate Carboxylase on Succinic Acid Production by Metabolically Engineered Strains of Escherichia Coli." Applied and Environmental Microbiology 68 (4): 1715-27.
Weaver, L. M., and Herrmann, K. M. (1990) Cloning of an aroF allele encoding a tyrosine-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, J Bacteriol 172, 6581-6584.
Weber, C., Bruckner, C., Weinreb, S., Lehr, C., Essl, C. and Bole, E. (2012) Biosynthesis of cis, cis-muconic acid and its aromatic precursors catechol and proteocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae, App Environ Microbiol. 78, 8421-8430.
Wheeler, K. A., Lamb, H. K., and Hawkins, A. R. (1996) Control of metabolic flux through the quinate pathway in Aspergillus nidulans, Biochem J 315 (Pt 1), 195-205.
White, Mark D., Karl A. P. Payne, Karl Fisher, Stephen A. Marshall, David Parker, Nicholas J. W. Rattray, Drupad K. Trivedi, et al. 2015. "UbiX Is a Flavin Prenyltransferase Required for Bacterial Ubiquinone Biosynthesis." Nature 522 (7557): 502-6.
Wu, C-M., Wu, C-C., Su, C-C., Lee, S-N., Lee, Y-A. and Wu, J-Y. (2006) Microbial synthesis of cis,cis-muconic acid form benzoate by Sphingobacterium sp. Mutants. Biochem. Eng. J. 29, 35-40.
Xie, N., Hong Liang, Ri-Bo Huang, and Ping Xu. 2014. "Biotechnological Production of Muconic Acid: Current Status and Future Prospects." Biotechnology Advances 32 (3): 615-22.
Xie, N., Tang, H., Feng, J., Tao, F., Ma, C. and Xu, P. (2009) Characterization of benzoate degradationby newly isolated bacterium Pseudomonas sp. XP-M2. Biochem. Eng. J. 46, 79-82.
Yi, J., Draths, K. M., Li, K. and Frost, J. W. (2003)Altered Glucose Transport and Shikimate Pathway Product Yields in E. coli. Biotechnol. Prog. 2003, 19, 1450-1459.
Yoshikawa, N. , Mizuno, S., Ohta, K., and Suzuki, M. (1990) Microbial production of cis, cis-muconic acid. J. Biotechno. 14, 203-210.

Also Published As

Publication number Publication date
US20200181658A1 (en) 2020-06-11
CN109415684A (zh) 2019-03-01
EP3423563A4 (en) 2019-10-16
JP7437116B2 (ja) 2024-02-22
JP2019506886A (ja) 2019-03-14
SG11201807544WA (en) 2018-09-27
CN109415684B (zh) 2022-06-07
KR20190003939A (ko) 2019-01-10
SG10202008244TA (en) 2020-10-29
EP3423563A1 (en) 2019-01-09
ES2947938T3 (es) 2023-08-24
US20210277429A1 (en) 2021-09-09
US11685938B2 (en) 2023-06-27
WO2017151811A1 (en) 2017-09-08
EP3423563B1 (en) 2023-05-24

Similar Documents

Publication Publication Date Title
KR102092422B1 (ko) 유전자 조작된 미생물로부터 뮤콘산의 생산
KR20240005196A (ko) 유전자 조작된 미생물로부터 개선된 뮤콘산 생산
AU2021203008B9 (en) Genetically engineered bacterium comprising energy-generating fermentation pathway
AU2017202195B2 (en) Production of heterologous polypeptides in microalgae, microalgal extracellular bodies, compositions, and methods of making and uses thereof
KR101659101B1 (ko) 박테리아 [2Fe-2S] 다이하이드록시산 탈수효소의 동정 및 용도
AU2023270322A1 (en) Compositions and methods for modifying genomes
DK2087105T3 (da) Delta 17-desaturase og anvendelse heraf ved fremstilling af flerumættede fedtsyrer
KR101417146B1 (ko) 이소프레노이드의 생산 방법
CN109563505A (zh) 用于真核细胞的组装系统
KR20120099509A (ko) 재조합 숙주 세포에서 육탄당 키나아제의 발현
DK2324120T3 (en) Manipulating SNF1 protein kinase OF REVISION OF OIL CONTENT IN OLEAGINOUS ORGANISMS
KR20140092759A (ko) 숙주 세포 및 아이소부탄올의 제조 방법
KR20140113997A (ko) 부탄올 생성을 위한 유전자 스위치
BRPI0719748A2 (pt) Microrganismo modificados por engenharia para produzir n-butanol e métodos relacionados
KR20140099224A (ko) 케토-아이소발레레이트 데카르복실라제 효소 및 이의 이용 방법
EP2181195A2 (de) Fermentative gewinnung von aceton aus erneuerbaren rohstoffen mittels neuen stoffwechselweges
KR20130027063A (ko) Fe-s 클러스터 요구성 단백질의 활성 향상
KR20110127690A (ko) 신규 미생물 숙신산 생산자 및 숙신산의 정제
KR20110063576A (ko) 효모에서 증가된 이종성 Fe-S 효소 활성
KR20070085669A (ko) 고농도의 아라키돈산을 생성하는 야로위아 리폴리티카 균주
KR20220012327A (ko) 피토칸나비노이드 및 피토칸나비노이드 전구체의 생산을 위한 방법 및 세포
KR20120034652A (ko) 유전적으로 변형된 미생물을 발생시키는 방법
CN109996874A (zh) 10-甲基硬脂酸的异源性产生
KR20190057088A (ko) 유도 기질 부재 하의 사상 진균 세포에서의 단백질 생산
CN115698297A (zh) 多模块生物合成酶基因组合文库的制备方法

Legal Events

Date Code Title Description
A107 Divisional application of patent