KR20230136674A - 조직 및 세포를 프로세싱하기 위한 방법 및 장치 - Google Patents

조직 및 세포를 프로세싱하기 위한 방법 및 장치 Download PDF

Info

Publication number
KR20230136674A
KR20230136674A KR1020237031151A KR20237031151A KR20230136674A KR 20230136674 A KR20230136674 A KR 20230136674A KR 1020237031151 A KR1020237031151 A KR 1020237031151A KR 20237031151 A KR20237031151 A KR 20237031151A KR 20230136674 A KR20230136674 A KR 20230136674A
Authority
KR
South Korea
Prior art keywords
sample
microfluidic chip
microfluidic
support plate
carriage
Prior art date
Application number
KR1020237031151A
Other languages
English (en)
Inventor
아메드 조비
저스틴 스토브너
휴고 살라스
데이빗 두아르테
제레드 하운
앨런 위드제로우
데렉 반야드
Original Assignee
더 리전트 오브 더 유니버시티 오브 캘리포니아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 더 리전트 오브 더 유니버시티 오브 캘리포니아 filed Critical 더 리전트 오브 더 유니버시티 오브 캘리포니아
Publication of KR20230136674A publication Critical patent/KR20230136674A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • B01L9/527Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for microfluidic devices, e.g. used for lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0407Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B9/00Drives specially designed for centrifuges; Arrangement or disposition of transmission gearing; Suspending or balancing rotary bowls
    • B04B9/10Control of the drive; Speed regulating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00495Centrifuges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0446Combinations of the above
    • G01N2035/0449Combinations of the above using centrifugal transport of liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Fluid Mechanics (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Centrifugal Separators (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Filtration Of Liquid (AREA)
  • Devices For Use In Laboratory Experiments (AREA)

Abstract

여러 실시양태에서, 모터 구동 회전 처크를 사용하여 지지체 플레이트 상에 마운팅된 하나 이상의 마이크로유체 칩을 회전시키는 것을 포함하는, 샘플을 프로세싱하기 위한 장치 및 방법이 본원에서 제공된다. 하나 이상의 마이크로유체 칩을 제어된 방식으로 공통의 회전 중심 주위로 스피닝시킴으로써, 높은 유량 (및 높은 전단력)이 제어된 방식으로 샘플에 부여된다. 각각의 마이크로유체 칩은, 샘플이 마이크로유체 장치를 통해 앞뒤로 진행될 수 있도록 지지체 플레이트 상에서 180° 회전될 수 있다. 지지체 플레이트가 비교적 높은 RPM으로 구동될 수 있기 때문에, 마이크로유체 칩 내에 높은 유량이 생성된다. 이는 샘플 상의 전단력을 증가시키고, 샘플이 마이크로유체 칩(들)의 전단-유도 특징부를 빠르게 통과할 수 있음에 따라, 또한 관련 프로세싱 시간을 감소시킨다.

Description

조직 및 세포를 프로세싱하기 위한 방법 및 장치{METHOD AND DEVICE FOR PROCESSING TISSUES AND CELLS}
관련 출원
본 출원은 2016년 6월 8일 출원된 미국 특허 가출원 번호 62/347,290을 우선권 청구하며, 이는 그 전문이 본원에 참고로 포함된다. 우선권은 35 U.S.C. § 119 및 임의의 다른 적용가능 법령에 따라 청구된다.
기술 분야
기술 분야는 일반적으로 살아있는 세포, 및/또는 조직, 시약, 입자, 및 유체에 전단 응력을 인가하기 위한 장치 및 방법에 관한 것이다. 특히, 기술 분야는 살아있는 세포, 및/또는 조직, 시약, 입자, 및 유체에 전단 응력을 인가하기 위한 마이크로유체에 기초한 장치와 함께 회전력의 이용에 관한 것이다.
조직의 프로세싱에는 다양한 기술 및 절차가 사용된다. 일부 응용에서, 조직의 보다 큰 덩어리 또는 응집물을 보다 작은 단편으로 파쇄하기 위해 화학물질 또는 효소가 조직에 첨가된다. 예를 들어, 조직, 예컨대 지방질 조직을 소화시키기 위해 소화 효소, 예컨대 콜라게나제, 트립신, 또는 디스파제가 사용된다. 이러한 효소적 프로세싱은 전형적으로 세척 후 효소적 분해 및 원심분리를 포함한다. 이 효소적 접근법은 소화 효소의 상이한 활성 수준으로 인해 가변성을 가질 수 있다. 또한, 이들 방법은 박테리아로부터 유래되는 고가의 효소를 포함한 시약에 대한 추가 비용을 필요로 하고, 완료되기까지 상당한 시간이 걸릴 뿐만 아니라 효소 오염 효과를 최소화하기 위한 추가의 프로세싱 및/또는 세척 단계를 필요로 한다.
지방 조직을 포함한 조직의 프로세싱을 위해 비-효소적 접근법이 또한 개발되어 있다. 예를 들어, 지방질 조직으로부터의 기질 혈관 분획의 단리를 위해 초음파 캐비테이션이 제안되어 있다. 미국 특허 번호 8,440,440 (이는 그 전문이 본원에 참조로 포함됨)을 참조한다. 또한 다른 방법은, 국체 특허출원 공개 번호 WO2014-036094 (이는 그 전문이 본원에 참조로 포함됨)에 개시된 것과 같은 지방질 조직의 균질화를 위한 비드의 사용을 포함한다. 미국 특허 번호 9,580,678 (이는 그 전문이 본원에 참조로 포함됨)에는, 종양 조직을 파쇄하기 위해 사용되는 확장 및 수축 영역을 갖는 복수의 연속 배열된 채널 또는 스테이지를 사용하는 마이크로유체 종양 해리 장치가 개시되어 있다. 시린지 펌프를 사용하여 종양 조직을 마이크로유체 장치를 통해 앞뒤로 통과시킨다.
지방 조직과 같은 조직의 프로세싱은, 지방 조직을 하나의 장소로부터 또 다른 장소로 전달하여 연질 조직 결함을 채우는 (즉, 지방 그래프팅) 플라스틱 및 재건 수술 분야에서 특히 중요성을 갖는다. 세포-보조 지방이식 (CAL)은, 지방 그래프트에 대한 기질 혈관 분획 (SVF)의 첨가를 포함하는 기술이고, 이는 지방 그래프트 보유에 있어 현저한 개선을 제공하였다. 전형적으로, SVF는 효소 콜라게나제를 사용하는 짧은 소화 단계에 의해 지방질 조직으로부터 수확된다. 보다 최근에는, '나노지방 그래프팅'이라 불리는 기술이 개발되었고, 이로써 표준 지방흡인물을 2개의 연결된 시린지 사이에서 활발히 수동 통과시킴으로써 이를 균질화시키고, 이어서 표면 주름 및 색소침착의 보정을 위해 균질화된 지방흡인물을 인간 환자에게 재주입한다. 또한, 나노지방 프로세싱 방법이, 다능성 또는 심지어 만능성 개체군 생성을 위해 세포에 응력부여하면서 또한 SVF를 기계적으로 해리시키는 수단으로서 제공될 수 있음이 발견되었다. 예를 들어, 나노지방-유래 SVF는 보다 큰 비율의 중간엽 줄기 세포 (MSC), 지방질 유래 줄기 세포 (ADSC), 내피 전구 세포 (EPC), 및 뮤즈(Muse) 세포를 갖는 것으로 공지되어 있다. 세포에게 인가되는 응력의 양이 줄기-유사 특성과 직접 상관됨이 상정되었다.
예를 들어, MSC는, 당뇨병 궤양의 치료에 사용될 수 있다. 동종이식편과 같은, 현재의 당뇨병 족부 궤양의 치료는 고비용이 들고, 환자에 의한 잠재적 거부로 인해 효과적이지 않을 수 있다. 이러한 궤양이 치료되지 않고 남아있는 경우, 환자는 수족 절제를 받아야 하고, 이는 또한, 추가의 건강 합병증을 초래한다. 이들 궤양의 치료를 위한 하나의 혁신적 해결책은 이들 궤양의 직접적 치료를 위한 MSC의 사용을 통한 것이다. 그러나, 이러한 세포를 얻는 현재의 접근법은 장황하고, 복잡하고, 세포 수율, 양 및 재현성과 관련하여 가변적 결과를 제공한다. 프로세싱된 조직을 얻기 위한 빠르고 비용-효율적인 방법이 필요하다.
효율적이고, 효과적이고 재현가능한 방식으로 조직을 프로세싱하기 위한 장치, 시스템 및 방법에 대한 필요성을 고려하여, 이러한 장치, 방법 및 시스템, 뿐만 아니라 대상체로의 투여 또는 치료를 위한 세포를 발생시키거나, 생성하거나, 또는 다른 방식으로 조제하는데 있어서의 이들의 사용에 대한 다양한 실시양태가 본원에서 제공된다.
여러 실시양태에서, 수용 부재를 포함하는 중심 부분, 각각의 영역이 복수의 캐리지와 가역적으로 상호작용하도록 구성된, 복수의 상호작용 영역을 포함하는 측면 부분을 포함하는 지지체 플레이트, 복수의 캐리지를 포함하고, 여기서 각각의 복수의 캐리지는 지지체 플레이트의 측면 부분에 작동적으로 커플링되도록 구성된 것인, 생물학적 샘플을 프로세싱하기 위한 시스템이 제공된다.
여러 실시양태에서, 수용 부재는 모터의 구동 샤프트와 가역적으로 상호작용하도록 구성되며, 모터는 지지체 플레이트에 원심 운동을 적용하도록 구성된다. 하나의 실시양태에서, 중심 부분은 모터의 구동 샤프트의 회전축에 대해 수직인 평면에 놓이고, 측면 부분은 중심 부분으로부터 방사상 연장되고, 적어도 부분적으로 중심 부분의 평면에 대해 평행인 평면 내에 놓인다.
여러 실시양태에서, 각각의 복수의 캐리지는 제1 단부 및 제2 단부 및 제1 단부와 제2 단부 사이에서 연장되는 베이스 부분, 및 프로세싱을 위한 샘플을 수용하도록 구성된 적어도 하나의 샘플 챔버에 유체 커플링된 마이크로유체 칩과 가역적으로 상호작용하도록 구성된 수용 영역을 포함한다. 여러 실시양태에서, 각각의 복수의 캐리지는, 베이스 부분으로부터 실질적으로 직각으로 연장되고, 측면 부분의 복수의 상호작용 영역 중 하나와 상호작용하도록 (예를 들어, 연결되거나, 부착되거나, 또는 다른 방식으로 상호작용을 일으키도록) 구성된 포스트, 로드, 샤프트, 또는 다른 연장부를 포함한다. 여러 실시양태에서, 각각의 복수의 캐리지는 복수의 축 중 하나를 중심으로 동축 배치되고, 여기서 작동 동안 각각의 축은 모터의 구동 샤프트의 회전축에 대해 실질적으로 평행하게 연장되고, 또한 여기서 각각의 복수의 캐리지는 적어도, 복수의 축 중 하나를 중심으로 간헐적으로 회전가능하다. 실시양태에 따라, 캐리지는 다양한 각도로 회전할 수 있다. 예를 들어, 여러 실시양태에서, 캐리지는 약 180도의 아크를 통해 회전하도록 유도된다.
여러 실시양태에서, 시스템은, 시스템에 따라 샘플을 보유하고 프로세싱하기 위해 제공되는 적어도 하나의 마이크로유체 칩을 추가로 포함한다. 여러 실시양태에서, 각각의 마이크로유체 칩은 제1 단부와 제2 단부 사이에 배치된 중심 본체 부분 및 제1 단부와 제2 단부 사이에서 연장되는 적어도 하나의 마이크로유체 채널을 포함하며, 적어도 하나의 채널은 다양한 치수를 포함하고 샘플의 제1 단부로부터 제2 단부로의 통과를 가능하게 하도록 구성된다. 여러 실시양태에서, 각각의 제1 및 제2 단부는 샘플 챔버와 유체 상호작용하도록 구성된다. 용이한 사용을 위해, 각각의 개개의 마이크로유체 칩은 상응하는 캐리지 상의 상응하는 수용 영역 내에 핏팅되도록 치수조절된다. 여러 실시양태에서, 각각의 마이크로유체 칩은 각각의 제1 및 제2 단부 상의 샘플 챔버에 가역적으로 유체 커플링된다.
임의로, 일부 실시양태는 벤트 및 샘플 챔버의 내부에 유체 연결된 벤트 채널을 포함하는 샘플 챔버를 포함한다. 여러 실시양태에서, 각각의 샘플 챔버는 어댑터를 통해 마이크로유체 칩에 가역적으로 유체 커플링된다.
여러 실시양태에서, 각각의 캐리지는 캐리지의 제1 및 제2 단부 상의 캡쳐 부재를 포함하며, 캡쳐 부재는 지지체 플레이트의 측면 부분 상의 해제 부재와 소통되도록 구성되고, 여기서 캡쳐 부재와 해제 부재 사이의 소통은 각각의 복수의 캐리지의 간헐적 회전을 가능하게 한다. 다시 말해서, 캡쳐 부재는, 캡쳐 부재가 맞물림해제하거나 다른 방식으로 해제 부재와의 상호작용을 멈추는 것을 가능하게 하는 신호 (또는 힘, 또는 그의 결핍)가 존재하는 등의 시간까지 요망되는 위치에서 캐리지를 유지하도록 제공되고, 이는 이후에는 캐리지의 회전을 가능하게 하고, 그 후 캐리지의 운동을 정지시키기 위해 캡쳐 부재의 재맞물림이 이어진다 (일부 실시양태에서, 이는 조직 프로세싱 프로토콜에서 요망되는 시간에 180도의 아크를 통한 캐리지의 회전을 가능하게 함). 여러 실시양태에서, 캡쳐 부재는 제1 극성의 자석을 포함하고, 해제 부재는 반대 극성의 자석을 포함한다.
여러 실시양태에서, 지지체 플레이트의 측면 부분은 디스크를 포함하고, 이는 디스크를 중심으로 원주방향으로 이격된 상호작용 영역을 갖는다. 이러한 일부 실시양태에서, 측면 부분 및 중심 부분은 단일 구조체이지만, 다른 실시양태에서 지지체 플레이트는 사용 전에 연결 또는 통합되는 다수의 단편을 포함한다.
여러 실시양태에서, 지지체 플레이트의 측면 부분은 복수의 아암을 포함하며, 각각의 아암은 상응하는 상호작용 영역을 포함한다. 하나의 실시양태에서, 아암 및 중심 부분은 단일 구조체이다. 추가의 실시양태에서, 아암 및 중심 부분은 함께 연결된 별도의 구조체이다. 일부 실시양태에서, 아암은 중심 부분에 대해 힌지결합되어 있다. 이러한 일부 실시양태에서, 힌지는 아암이 작동 동안 모터의 구동 샤프트의 회전축에 대해 실질적으로 평행한 축의 평면 내로 이동하는 것을 가능하게 한다. 여러 실시양태에서, 이는 원심력의 급속한 인가 또는 제거가 세포/조직 샘플을 파괴하지 않도록 온화한 시동 및 정지 과정을 가능하게 한다.
여러 실시양태에서, 측면 부분의 상호작용 영역은 상응하는 캐리지로부터의 포스트 (또는 다른 구조체)를 수용하는 관통 홀을 포함한다. 여러 실시양태에서, 수용 영역은 캐리지의 베이스 부분의 상부 표면 상에 배치된다. 여러 실시양태에서, 포스트는 캐리지의 베이스 부분의 저부 표면으로부터 연장된다. 이러한 실시양태에서, 포스트 (또는 다른 구조체)는 캐리지의 저부로부터 연장되고, 측면 부분 (예를 들어, 아암)의 관통 홀 (수용 영역)을 통과하고, 예를 들어 너트, 핀, 클램프 또는 다른 이러한 메커니즘에 의해 고정된다 (그러나, 측면 부분에 대한 회전도 가능하게 함). 여러 실시양태에서, 각각의 캐리지의 간헐적 회전은, 각각의 캐리지의 회전을 유도하는 고정된 톱니와 측면 부분 상에 배치된 기어의 상호작용을 통해 달성된다.
여러 실시양태에서, 측면 부분은 적어도 3개의 아암을 포함하며, 각각의 3개의 아암은 제1 및 제2 단부를 포함하는 적어도 3개의 캐리지 중 하나와 상호작용하도록 구성된 상호작용 영역을 포함하고, 각각의 캐리지는 적어도 3개의 마이크로유체 칩 중 하나와 가역적으로 상호작용하도록 구성되고, 각각의 칩은 제1 단부, 제2 단부, 및 이들 사이의 본체를 포함하고, 마이크로유체 칩의 각각의 단부는 샘플 챔버에 유체 커플링되고, 칩의 본체는 제1 단부와 제2 단부 사이에서 연장되는 복수의 마이크로유체 경로를 포함하고, 여기서 캐리지는, 제1 단부가 중심 부분의 수용 부재로부터 제1 거리에 있는 제1 장소에 배치된 제1 위치와, 제1 단부가 중심 부분의 수용 부재로부터 제2 거리에 있는 제2 장소에 배치된 제2 위치 사이에서 간헐적으로 회전하도록 구성되고, 여기서 제1 거리는 제2 거리보다 크다.
실시양태에 따라, 시스템은 임의로 엔클로저를 포함할 수 있고, 여기서 엔클로저는 시스템을 외부 환경으로부터 분리한다.
실시양태에 따라, 시스템은 임의로, 구동 샤프트에 작동가능하게 연결된 모터를 추가로 포함한다. 여러 실시양태에서, 모터는 모터의 회전 속도의 제어를 가능하게 하는 컨트롤러 유닛에 의해 제어되며, 컨트롤러 유닛은 사용자가 조직을 프로세싱하기 위해 프로토콜을 프로그래밍 (또는 프로그래밍된 것으로부터 선택)하는 것을 가능하게 하는 인터페이스를 포함한다.
또한, 생물학적 샘플을 프로세싱하는 방법이 본원에서 제공된다. 예를 들어, 여러 실시양태에서, 마이크로유체 칩에 유체 커플링되도록 구성된 제1 샘플 챔버 내로 생물학적 샘플을 로딩하는 단계이며, 여기서 칩은 제1 단부와 제2 단부 사이에 배치된 중심 본체 부분으로서, 제1 단부는 제1 샘플 챔버에 유체 커플링되고, 제2 단부는 제2 샘플 챔버와 유체 커플링되도록 구성된 것인 중심 본체 부분, 제1 단부와 제2 단부 사이에서 연장되는 적어도 하나의 마이크로유체 채널로서, 다양한 치수를 포함하고, 제1 단부로부터 제2 단부로의 샘플의 통과를 가능하게 하도록 구성된 적어도 하나의 채널을 포함하는 것인 단계; 마이크로유체 칩을 원심 장치의 부분인 복수의 캐리지 중 하나의 수용 영역과 가역적으로 커플링시키는 단계이며, 여기서 원심 장치는 중심 부분 및 측면 부분을 포함하는 지지체 플레이트를 포함하며, 측면 부분은 중심 부분으로부터 방사상 연장되고 중심 부분의 평면에 대해 평행한 평면 내에 놓이고, 각각의 캐리지는 지지체 플레이트의 측면 부분에 작동적으로 커플링되고, 제1 단부, 제2 단부, 및 제1 단부와 제2 단부 사이에서 연장되는 베이스 부분을 포함하며, 베이스 부분은 수용 영역을 포함하고, 각각의 캐리지는 중심 부분의 평면에 대해 실질적으로 수직인 축을 중심으로 회전가능하게 되도록 구성되고, 여기서 캐리지는 제1 단부가 지지체 플레이트의 중심 부분으로부터 제1 거리에 배치된 제1 위치에서 출발하고, 제2 단부가 지지체 플레이트의 중심 부분으로부터 제1 거리에 배치되도록 제2 단부가 배치된 제2 위치로 회전가능한 것인 단계; 원심 장치에 회전력을 인가함으로써, 샘플을, 마이크로유체 칩의 제1 단부에 커플링된 제1 샘플 챔버로부터 제1 단부와 제2 단부 사이에서 연장되는 적어도 하나의 마이크로유체 채널을 통해 제2 샘플 챔버 내로 통과시키는 단계; 제1 위치와 제2 위치 사이에서 캐리지의 회전을 가능하게 하는 단계; 및 추가의 회전력을 인가하여, 샘플을, 제2 샘플 챔버로부터 제2 단부와 제1 단부 사이에서 연장되는 적어도 하나의 마이크로유체 채널을 통해 다시 제1 샘플 챔버 내로 통과시키는 단계를 포함하는, 생물학적 샘플을 프로세싱하는 방법이 제공된다. 여러 실시양태에서, 생물학적 샘플은 지방질 조직을 포함하지만, 다른 조직 유형이 본원에 개시된 시스템 및 방법을 사용하여 프로세싱될 수 있다. 예를 들어, 지방질 조직, 종양 조직, 세포 조제물, 지방흡인물, 배양된 세포 등이 쉽게 프로세싱될 수 있다.
또한, 일부 실시양태에서, 수직으로 배향된 회전가능 처크에 커플링된 모터; 지지체 플레이트를 중심으로 방사상 배치된 복수의 회전가능 캐리지를 함유하는 지지체 플레이트로서, 회전가능 처크 상에 마운팅되거나 그에 고정되는 지지체 플레이트; 및 회전가능 캐리지 중 하나 상에 배치된 적어도 하나의 마이크로유체 칩으로서, 마이크로유체 칩의 제1 포트와 마이크로유체 칩의 반대쪽 단부에 위치한 제2 포트 사이에서 연장되고 그 안에 배치된 하나 이상의 마이크로유체 채널에 의해 형성된 유체 경로를 한정하는 적어도 하나의 마이크로유체 칩을 포함하는, 샘플을 프로세싱하기 위한 시스템이 제공된다.
여러 실시양태에서, 이러한 시스템은 회전가능 캐리지 내에 배치된 제1 샘플 보유 챔버 및 제2 샘플 보유 챔버를 추가로 포함할 수 있으며, 제1 샘플 보유 챔버는 제1 포트를 통해 적어도 하나의 마이크로유체 칩에 유체 커플링되고, 제2 샘플 보유 챔버는 제2 포트를 통해 적어도 하나의 마이크로유체 칩에 유체 커플링된다. 여러 실시양태에서, 제1 샘플 보유 챔버 및 제2 샘플 보유 챔버는, 제1 포트와 제1 샘플 보유 챔버 사이 및 제2 포트와 제2 샘플 보유 챔버 사이에 개재된 각각의 어댑터를 통해 적어도 하나의 마이크로유체 칩에 유체 커플링된다. 여러 실시양태에서, 적어도 하나의 마이크로유체 칩은 적어도 하나의 마이크로유체 칩 내에 배치된 제1 샘플 보유 챔버 및 제2 샘플 보유 챔버를 포함한다.
여러 실시양태에서, 지지체 플레이트는 복수의 아암을 포함하고, 여기서 각각의 복수의 아암은 회전가능 캐리지를 보유한다. 이러한 일부 실시양태에서, 복수의 아암은 별도의 중심 허브에 고정된다. 여러 실시양태에서, 지지체 플레이트는 그 안에 또는 그 위에 배치되고 회전가능 캐리지의 단부에 인접하여 배치된 제1 자기 부재를 포함하고, 회전가능 캐리지는 그 안에 또는 그 위에 배치된 제2 자기 부재를 추가로 포함한다.
대안으로, 일부 실시양태에서, 회전가능 캐리지는 지지체 플레이트에 마운팅된 기어 어셈블리 내에 배치된 기어 세트에 커플링되고, 여기서 기어 세트는 기어 어셈블리의 방사상 외부를 향하는 부분 상의 노출 기어를 포함한다. 여러 실시양태에서, 기어 어셈블리 또는 지지체 플레이트는 그 안에 배치된 정지 자석을 추가로 포함하고, 회전가능 캐리지는 그의 반대쪽 단부에 배치된 한 쌍의 자기 부재를 함유한다.
여러 실시양태에서, 복수의 회전가능 캐리지는 지지체 플레이트의 회전 평면에 대해 실질적으로 평행한 평면에서 회전가능하다. 여러 실시양태에서, 복수의 회전가능 캐리지는 지지체 플레이트의 회전 평면에 대해 실질적으로 직각인 평면에서 회전가능하다.
여러 실시양태에서, 시스템은 각각의 복수의 회전가능 캐리지 아래에서 지지체 플레이트 내에 배치된 전자석을 추가로 포함하고, 여기서 회전가능 캐리지는 지지체 플레이트 내에 형성된 구멍을 통해 연장되는 자기 포스트 부재를 포함한다.
여러 실시양태에서, 마이크로유체 칩은, 유체 경로의 중심 영역 내의 좁아진 수축부 내에서 연결되는 한 쌍의 테이퍼링된 영역에 의해 형성된 마이크로유체 채널을 포함하는 유체 경로를 갖는다. 여러 실시양태에서, 테이퍼링된 영역은 연속적 테이퍼링된 영역을 포함한다. 하나의 실시양태에서, 테이퍼링된 영역은 단계적 테이퍼링된 영역을 포함한다. 추가의 실시양태에서, 유체 경로는 채널의 길이를 따라 나타나는 복수의 확장 및 수축 영역을 갖는 마이크로유체 채널을 포함한다. 여러 실시양태에서, 복수의 확장 및 수축 영역은 마이크로유체 채널 내의 곡선 벽에 의해 한정된다. 여러 실시양태에서, 복수의 확장 및 수축 영역은 마이크로유체 채널 내의 각진 벽에 의해 한정된다. 여러 실시양태에서, 유체 경로는 마이크로유체 채널의 길이를 따라 배치된 복수의 지느러미 형상의 포켓을 갖는 마이크로유체 채널을 포함한다. 여러 실시양태에서, 유체 경로는 증가된 치수의 복수의 분지화 채널과 재조합되는 감소된 치수의 복수의 분지화 채널을 포함한다. 하나의 실시양태에서, 각각의 분지화 채널은 분기부를 포함한다. 추가의 실시양태에서, 각각의 분기부는 예리한 연부를 포함한다.
여러 실시양태에서, 제1 샘플 보유 챔버 및 제2 샘플 보유 챔버 중 적어도 하나는 시린지 배럴, 예를 들어 표준 2 mL, 5 mL, 10 mL, 20 mL, 또는 60 mL 시린지 배럴을 포함한다. 여러 실시양태에서, 적어도 하나의 마이크로유체 칩과 제1 샘플 보유 챔버 또는 제2 샘플 보유 챔버 중 하나 사이에 개재된 필터가 추가로 포함된다. 일부 실시양태에서, 필터는 마이크로유체 칩의 상류 또는 이전에 위치하고, 마이크로유체 칩의 클로깅을 방지하기 위해 샘플을 여과하도록 구성된다. 일부 예에서, 상류 필터는, 샘플이 클로깅 없이 마이크로유체 칩을 통과하는 것을 가능하게 하기 위해 조직 또는 조직 단편을 절단하거나 마이크로화하도록 구성된 메쉬를 포함할 수 있다. 샘플의 절단 또는 마이크로화는 마이크로유체 칩에서의 마이크로유체 전단의 목적상 거시적 응집물을 생성하도록 구성된다. 일부 실시양태에서, 필터는, 단지 특정 크기조절된 샘플이 수집을 위해 장치 외부로 통과하는 것을 가능하게 하도록 마이크로유체 칩의 하류 또는 이후에 위치한다.
여러 실시양태에서, 시스템은 또한, 회전가능 캐리지 내에 배치되고 마이크로유체 칩의 제1 포트에 커플링된 샘플 보유 챔버 및 마이크로유체 칩의 제2 포트에 커플링된 시린지를 포함하고, 여기서 시린지는 마이크로유체 칩의 회전 평면에 대해 일반적으로 수직으로 마운팅된다. 여러 실시양태에서, 본원에 개시된 시스템은 임의로, 시린지의 플런저에 커플링된 수직으로 이동가능한 플레이트 또는 고리를 포함할 수 있다. 여러 실시양태에서, 수직으로 이동가능한 플레이트 또는 고리는 회전가능한 스레드형 로드 상에 마운팅된 내부 스레드형 베어링을 포함한다. 임의로, 특정 실시양태는 스레드형 로드에 커플링된 제2 모터를 추가로 포함한다.
일부 실시양태에서, 시스템은 그 안에 배치된 1-방향 밸브를 갖는 유입구를 포함하는 제1 샘플 보유 챔버 및 제2 샘플 보유 챔버 중 적어도 하나를 갖는다.
여러 실시양태에서, 샘플이 제1 포트를 통해 적어도 하나의 마이크로유체 칩의 하나 이상의 마이크로유체 채널 내로 및 제2 포트 외부로 이동하도록 지지체 플레이트를 회전시키는 단계, 적어도 하나의 마이크로유체 칩을 함유하는 회전가능 캐리지를 대략 180° 회전시키는 단계, 샘플이 제2 포트를 통해 하나 이상의 마이크로유체 채널 내로 및 제1 포트 외부로 이동하도록 지지체 플레이트를 회전시키는 단계, 적어도 하나의 마이크로유체 칩을 함유하는 회전가능 캐리지를 대략 180° 회전시키는 단계, 및 샘플이 요망되는 정도로 프로세싱될 때까지 이들 단계를 복수회 반복하는 단계를 포함하는, 본원에 개시된 시스템을 사용하는 방법이 제공된다.
이러한 여러 방법에서, 샘플은 제1 포트에 유체 커플링된 제1 샘플 보유 챔버와 제2 포트에 유체 커플링된 제2 샘플 보유 챔버 사이에서 이동한다. 여러 실시양태에서, 제1 샘플 보유 챔버 및 제2 샘플 보유 챔버 중 적어도 하나는 시린지 배럴을 포함한다.
여러 실시양태에서, 샘플은 종양 조직을 포함한다. 여러 실시양태에서, 샘플은 지방 조직을 포함한다. 여러 실시양태에서, 샘플은 하나 이상의 시약을 갖는 유체를 포함한다. 여러 실시양태에서, 샘플은 입자 (예를 들어, 나노입자, 자기 입자, 시약 또는 항체로 코팅된 입자 등)를 포함한다. 여러 실시양태에서, 샘플은 세포 함유 유체를 포함한다.
일부 실시양태에서, 본원에 개시된 방법은, 조직의 프로세싱 후, 프로세싱된 조직 (예를 들어, 지방질 조직)을 대상체 내로 주입하는 것을 추가로 포함한다.
상기에 기재된 시스템, 장치 및 방법에 추가로, 또한, 지지체 플레이트로부터 방사상 연장되는 복수의 아암을 포함하는 지지체 플레이트; 지지체 플레이트에 커플링되고 지지체 플레이트를 회전시키도록 구성된 모터; 및 복수의 캐리지를 포함하고, 여기서 각각의 복수의 캐리지는 지지체 플레이트 상의 복수의 아암 중 하나 상에 배열되고, 여기서 각각의 복수의 캐리지는 복수의 축 중 하나를 중심으로 동축 배치되고, 여기서 각각의 축은 캐리지가 배열되어 있는 아암으로부터 수직으로 연장되고, 여기서 각각의 복수의 캐리지는 마이크로유체 칩 및 프로세싱을 위한 샘플을 수용하기 위한 적어도 하나의 샘플 챔버를 수용하도록 구성되고, 여기서 적어도 하나의 샘플 챔버는 마이크로유체 칩에 유체 연결된 개구를 포함하고, 여기서 각각의 복수의 캐리지는 복수의 축 중 하나를 중심으로 회전가능한 것인, 샘플을 프로세싱하기 위한 시스템이 본원에서 제공된다.
여러 실시양태에서, 시스템은 모터를 구동시키도록 구성된 컨트롤러를 추가로 포함하고, 여기서 컨트롤러는 모터의 회전 속도 또는 분당 회전수 (RPM)를 조정하도록 구성된다. 여러 실시양태에서, 컨트롤러는 미리 정해진 스핀 프로그램 또는 작동 순서로 조정가능 또는 프로그래밍가능하다. 여러 실시양태에서, 컨트롤러는, 모터의 스핀 속도를, 샘플이 마이크로유체 칩의 제1 단부로부터 마이크로유체 칩의 제2 단부로 유동하도록 구성되게 하는 RPM 속도로 상승시키도록 구성된다 (구성가능하다). 여러 실시양태에서, 컨트롤러는, 각각의 복수의 캐리지가 복수의 축 중 하나를 중심으로 회전하도록 구성되도록, 모터의 RPM을 가속 또는 감소시키도록 구성된다.
여러 실시양태에서, 각각의 복수의 캐리지는 복수의 축 중 하나를 중심으로 180도 회전하도록 구성된다. 또한, 일부 실시양태에서, 각각의 복수의 캐리지는 제1 샘플 챔버 및 제2 샘플 챔버를 수용하도록 구성되고, 여기서 제1 샘플 챔버는 마이크로유체 챔버의 제1 단부 상에 배치되고, 여기서 제2 샘플 챔버는 마이크로유체 챔버의 제2 단부 상에 배치된다.
일부 실시양태는, 어댑터를 사용하여 마이크로유체 칩의 단부에 부착되는 적어도 하나의 샘플 챔버를 포함한다. 어댑터는 루어 슬립, 슬립 팁 커넥터, 루어 락, 및 회전형 칼라 중 임의의 하나를 포함할 수 있다. 어댑터는, 실시양태에 따라, 또한 마이크로유체 칩이 일회용인지 재사용가능 (예를 들어, 멸균될 수 있음)한지에 따라 금속 또는 중합체 물질을 포함할 수 있다.
여러 실시양태에서, 지지체 플레이트는 인케이스먼트 내부에 배치되며, 인케이스먼트는 샘플을 프로세싱하기 위한 시스템으로부터 사용자를 보호하도록 구성된 다. 인케이스먼트는 임의의 물질, 예컨대 플라스틱 물질 또는 금속을 포함하고, 물질은 감소된 진공 압력, 저온, 열 변화, 또는 지지체 플레이트의 원심 회전에 의해 생성된 잔해에 의한 인케이스먼트의 침투 또는 파괴를 방지하기에 충분한 두께로 제공된다. 여러 실시양태에서, 인케이스먼트는 필요한 경우 샘플 배치, 샘플 제거, 또는 하나 이상의 캐리지의 수동 회전을 위해 개방 및 폐쇄되도록 구성된다. 여러 실시양태에서, 인케이스먼트는 광학적으로 투명하고, 샘플을 프로세싱하기 위한 시스템의 작동이 모니터링되는 것을 가능하게 한다.
복수의 아암을 포함하는 실시양태에서, 이러한 일부 실시양태에서, 각각의 복수의 아암은 제1 맞물림 구조체, 및 제1 맞물림 구조체로부터 일정 거리에 위치한 제2 맞물림 구조체를 추가로 포함하고, 여기서 제1 맞물림 구조체 및 제2 맞물림 구조체는 각각 캐리지의 제1 단부 상에 위치한 제1 구조체 및 캐리지의 제2 단부 상에 위치한 제2 구조체 중 하나와 맞물리도록 구성된다. 이러한 여러 실시양태에서, 제1 및 제2 맞물림 구조체는, 캐리지가 복수의 축 중 하나를 중심으로 복수의 배향 사이에서 이동하도록 구성되도록, 상호교환가능하게 제1 구조체 및 제2 구조체를 해제시키고 맞물리게 하도록 구성된다.
여러 실시양태에서, 제1 맞물림 구조체 및 제2 맞물림 구조체는 자석이고, 제1 구조체 및 제2 구조체는 자기 반응성 물질을 포함한다. 여러 실시양태에서, 제1 맞물림 구조체 및 제2 맞물림 구조체는 자기 반응성 물질을 포함하고, 제1 구조체 및 제2 구조체는 자석이다. 여러 실시양태에서, 제1 맞물림 구조체는 각각의 복수의 아암의 길이를 따라 제2 맞물림 구조체로부터 원위에 위치한다. 캐리지(들)를 이동시키기 위해, 일부 실시양태에서, 가속력 또는 감속력이 캐리지를 복수의 배향 사이에서 이동시키도록 구성된다. 여러 실시양태에서, 캐리지는 기어 어셈블리를 포함하고, 기어 어셈블리는 캐리지를 복수의 배향 사이에서 이동시키도록 구성된다. 일부 실시양태에서, 캐리지는 구심 래칫을 포함하며, 구심 래칫은 캐리지를 복수의 배향 사이에서 이동시키도록 구성된다.
마이크로유체 칩(들)을 통한 샘플의 적당한 유동을 가능하게 하기 위해, 일부 실시양태에서, 적어도 하나의 샘플 챔버는 벤트 및 샘플 채널의 내부에 유체 연결된 벤트 채널을 포함하고, 여기서 벤트는 (예를 들어, 진공을 방지함으로써) 샘플 챔버를 통한 층류를 제공하도록 구성된다. 여러 실시양태에서, 벤트는 개구로서 샘플 챔버의 반대쪽 단부 상에 위치한다. 실시양태에 따라, 샘플 챔버는 직사각형, 정사각형, 타원체, 원기둥, 타원, 또는 임의의 다각형 형상을 포함한 임의의 요망되는 형상일 수 있다. 하나의 실시양태에서, 샘플 챔버는 직사각형이다. 일부 대안적 실시양태에서, 샘플 챔버는 시린지이다. 이러한 일부 실시양태에서, 시린지는 마이크로유체 칩에 유체 연결되도록 구성된 개구를 갖는 어댑터 단부를 갖는 챔버; 및 챔버 내에 배치된 시일을 포함하는 플런저; 및 플런저의 원위 단부에 부착되고 플런저를 전진 및 후진시키도록 구성된 디프레서를 포함한다. 일부 실시양태에서, 시린지는 벤트 및 챔버의 내부에 유체 연결된 벤트 채널을 포함하고, 여기서 벤트는 시린지를 통한 층류를 제공하도록 구성된다. 추가로, 일부 실시양태에서, 시린지는 임의로 부차적 시린지 플런저를 포함할 수 있으며, 부차적 시린지 플런저는 벤트 채널 내에 배치되고, 벤트 채널을 선택적으로 개방 및 폐쇄하도록 구성된다. 이러한 실시양태에서, 부차적 시린지는 임의로, 디프레서의 이동이 플런저 및 부차적 플런저 둘 다를 전진 및 후진시키도록 구성되도록 디프레서에 커플링된다. 여러 실시양태에서, 시린지의 어댑터 단부는 니들을 수용하도록 구성된다. 여러 실시양태에서, 시린지는 마이크로유체 칩으로부터 제거가능하도록 구성되고, 샘플은 주입 부위 내로 직접 주입되도록 구성된다.
여러 실시양태에서, 각각의 복수의 챔버 (예를 들어, 마이크로유체 칩을 보유하기 위한 챔버)는 각각의 복수의 아암의 개구 내에 보유되고, 여기서 각각의 복수의 챔버는 각각의 복수의 아암의 개구를 통해 연장된다. 여러 실시양태에서, 각각의 복수의 챔버는 각각의 복수의 아암의 평면을 따라 보유된다. 여러 실시양태에서, 각각의 복수의 챔버는, 각각의 복수의 챔버에 대한 면외 회전을 가능하게 하도록 구성된 적어도 하나의 핀과 함께 각각의 복수의 아암의 개구 내에 보유된다. 여러 실시양태에서, 각각의 복수의 챔버의 면외 회전은, 각각의 복수의 챔버를 복수의 배향 사이에서 이동시키도록 구성된다. 여러 실시양태에서, 각각의 복수의 챔버는 180도의 회전 사이에서 (평면내 또는 평면외) 이동한다. 여러 실시양태에서, 각각의 복수의 챔버는, 각각의 복수의 챔버가 각각의 복수의 아암의 평면을 따라 놓이는 배향 사이에서 이동한다.
여러 실시양태에서, 본원에 개시된 시스템은, 보다 큰 크기조절된 샘플 성분이 마이크로유체 칩 내로 통과되고 마이크로유체 칩을 클로깅하는 것을 방지하도록 구성된 적어도 하나의 필터를 추가로 포함한다. 여러 실시양태에서, 필터는, 샘플이 마이크로유체 칩의 마이크로유체 통로 내로 통과하기 전에 샘플을 여과하기 위해 샘플 챔버에 부착된다. 일부 실시양태에서, 필터는 마이크로유체 칩의 상류 또는 이전에 위치하고, 마이크로유체 칩의 클로깅을 방지하기 위해 샘플을 여과하도록 구성된다. 일부 예에서, 상류 필터는, 샘플이 클로깅 없이 마이크로유체 칩을 통과하는 것을 가능하게 하기 위해 조직 또는 조직 단편을 절단하거나 마이크로화하도록 구성된 메쉬를 포함할 수 있다. 샘플의 절단 또는 마이크로화는 마이크로유체 칩에서의 마이크로유체 전단의 목적상 거시적 응집물을 생성하도록 구성된다. 일부 실시양태에서, 필터는, 단지 특정 크기조절된 샘플이 수집을 위해 장치 외부로 통과하는 것을 가능하게 하도록 마이크로유체 칩의 하류 또는 이후에 위치한다.
추가의 시스템이 또한 본원에서 제공된다. 예를 들어, 지지체 플레이트; 지지체 플레이트에 커플링되고 지지체 플레이트를 회전시키도록 구성된 모터; 및 지지체 플레이트 상에 배열된 적어도 하나의 캐리지로서, 마이크로유체 칩 및 프로세싱을 위한 샘플을 수용하기 위한 적어도 하나의 샘플 챔버를 수용하도록 구성되고, 지지체 플레이트의 평면에 대해 평행한 평면에서 회전하도록 구성된 적어도 하나의 캐리지를 포함하는, 샘플을 프로세싱하기 위한 시스템이 제공된다.
또한, 지지체 플레이트; 지지체 플레이트에 커플링되고 지지체 플레이트를 회전시키도록 구성된 모터; 지지체 플레이트 상에 배열된 적어도 하나의 캐리지로서, 지지체 플레이트의 평면에 대해 평행한 평면에서 회전하도록 구성된 적어도 하나의 캐리지; 적어도 하나의 캐리지 내에 수용된 마이크로유체 칩으로서, 포트 및 마이크로유체 칩의 길이를 따라 연장되는 적어도 하나의 마이크로유체 채널을 포함하는 마이크로유체 칩; 및 프로세싱을 위한 샘플을 수용하기 위한 적어도 하나의 샘플 챔버로서, 마이크로유체 칩의 제1 포트에 유체 연결되고, 샘플이 적어도 하나의 샘플 챔버로부터 마이크로유체 칩의 길이를 따라 유동하는 것을 가능하게 하도록 구성된 적어도 하나의 샘플 챔버를 포함하는, 샘플을 프로세싱하기 위한 시스템이 제공된다.
여러 실시양태에서, 마이크로유체 칩은 약 10 mm 내지 100 mm의 길이를 갖는다. 여러 실시양태에서, 적어도 하나의 마이크로유체 채널의 길이는 마이크로유체 칩의 길이 미만 (또는 그와 동일함)이다. 여러 실시양태에서, 마이크로유체 채널의 폭 및 깊이는 5 μm 내지 8 mm의 범위 내이다. 일부 실시양태에서 마이크로유체 칩은 제거가능함을 인지할 것이다.
마이크로유체 채널은, 실시양태, 및 프로세싱되는 조직에 따라, 다양한 구성을 가질 수 있다. 예를 들어, 하나의 실시양태에서, 마이크로유체 채널(들)은 모래시계 구성을 갖는다. 여러 실시양태에서, 적어도 하나의 마이크로유체 채널은 적어도 하나의 마이크로유체 채널의 길이를 따라 폭이 점진적으로 감소하는 단계적 테이퍼를 포함하는 제1 영역, 수축 영역, 및 적어도 하나의 마이크로유체 채널의 길이를 따라 폭이 점진적으로 증가하는 단계적 테이퍼를 포함하는 제2 영역을 포함한다. 추가의 실시양태에서, 적어도 하나의 마이크로유체 채널은 일련의 폭 증가 영역 및 폭 감소 영역을 갖는다. 여러 실시양태에서, 적어도 하나의 마이크로유체 채널은 다이아몬드 패턴을 갖는다. 여러 실시양태에서, 적어도 하나의 마이크로유체 채널은, 임의로 지느러미 형상을 갖는, 복수의 포켓을 포함한다. 여러 실시양태에서, 적어도 하나의 마이크로유체 채널은 일련의 분기부를 포함하는 제1 영역 및 분기된 채널의 쌍이 재조합되는 제2 영역을 포함한다. 추가의 실시양태에서, 적어도 하나의 마이크로유체 채널은 복수의 웰을 포함하고, 여기서 복수의 웰은 미리 정해진 크기의 샘플의 부분을 분류하도록 구성된다.
또한 추가의 방법, 예컨대, 샘플을 샘플 챔버 내에 제공하는 단계; 샘플 챔버를 복수의 캐리지 중 적어도 하나 내로 삽입하는 단계이며, 여기서 샘플 챔버는 적어도 하나의 마이크로유체 채널을 포함하는 마이크로유체 칩에 유체 연결되고, 여기서 복수의 캐리지 중 하나는 지지체 플레이트에 부착되며, 지지체 플레이트는 제1 축을 중심으로 회전하도록 구성되고, 여기서 복수의 캐리지 중 적어도 하나는 제1 축에 대해 평행한 제2 축을 중심으로 회전하도록 구성된 것인 단계; 및 지지체 플레이트를 제1 축을 중심으로 회전시키는 단계이며, 여기서 회전은 샘플을 샘플 챔버로부터 적어도 하나의 마이크로유체 채널을 통해 샘플 챔버로부터 멀어지는 제1 방향으로 구동시키도록 구성된 것인 단계를 포함하는, 샘플을 프로세싱하는 방법이 본원에서 제공된다. 여러 실시양태에서, 방법은, 복수의 캐리지 중 적어도 하나를 제2 축을 중심으로 제2 배향으로 회전시키는 것을 추가로 포함한다. 여러 실시양태에서, 방법은, 지지체 플레이트를 제1 축을 중심으로 회전시키는 것을 추가로 포함하고, 여기서 회전은 샘플을 적어도 하나의 마이크로유체 채널을 통해 샘플 챔버를 향하는 제2 방향으로 구동시키도록 구성된다. 추가로, 방법은 임의로, 복수의 캐리지 중 적어도 하나로부터 샘플 챔버를 제거하는 것을 추가로 포함한다.
지지체 플레이트로부터 방사상 연장되는 복수의 아암을 포함하는 지지체 플레이트, 지지체 플레이트에 커플링되고 지지체 플레이트를 회전시키도록 구성된 모터, 복수의 캐리지, 및 샘플을 프로세싱하기 위한 시스템으로부터 사용자를 보호하도록 구성된, 지지체 플레이트를 수용하도록 구성된 인케이스먼트를 포함하고, 여기서 각각의 복수의 캐리지는 지지체 플레이트 상의 복수의 아암 중 하나 상에 배열되고, 여기서 각각의 복수의 캐리지는 복수의 축 중 하나를 중심으로 동축 배치되고, 여기서 각각의 축은 캐리지가 배열되어 있는 아암으로부터 수직으로 연장되고, 여기서 각각의 복수의 캐리지는 마이크로유체 칩 및 프로세싱을 위한 샘플을 수용하기 위한 적어도 하나의 샘플 챔버를 수용하도록 구성되고, 여기서 각각의 복수의 캐리지는 복수의 축 중 하나를 중심으로 회전가능하고, 여기서 인케이스먼트는 샘플 챔버에 대한 접근을 제공하도록 구성된 개구를 포함하는 것인 추가의 시스템이 제공된다. 여러 실시양태에서, 적어도 하나의 샘플 챔버는 벤트 및 샘플 챔버의 내부에 유체 연결된 벤트 채널을 포함하고, 여기서 벤트는 샘플 챔버를 통한 층류를 제공하도록 구성된다. 여러 실시양태에서, 적어도 하나의 샘플 챔버는 마이크로유체 칩에 유체 연결된 개구를 포함한다. 여러 실시양태에서, 적어도 하나의 샘플 챔버는, 프로세싱을 위한 샘플이 적어도 하나의 샘플 챔버에 삽입되거나 그로부터 제거되는 것을 가능하게 하도록 구성된 유입구를 포함한다. 하나의 실시양태에서, 유입구는 개구의 반대쪽에 위치하지만, 다른 위치가 임의로 사용될 수 있다. 여러 실시양태에서, 적어도 하나의 샘플 챔버는, 샘플이 프로세싱 동안 챔버 내부에 체류되는 것을 보장하도록 구성된 1-방향 밸브를 포함한다. 여러 실시양태에서, 샘플 챔버의 내부는 유입구에 인접한 경사진, 비스듬한, 또는 다른 형상의 표면을 포함하며, 표면은 프로세싱 후 샘플의 용이한 제거를 위해 샘플을 유입구에 인접하여 응집시키도록 구성된다. 하나의 실시양태에서, 벤트는 개구로서 샘플 챔버의 반대쪽 단부 상에 위치한다. 일부 실시양태에서, 유입구는 시린지와 맞물리도록 구성되고, 시린지는, 샘플을 제거하고 샘플이 표적 부위 내로 직접 주입되는 것을 가능하게 하도록 구성된다.
여러 실시양태에서, 각각의 복수의 챔버는 각각의 복수의 아암의 개구 내에 보유되고, 여기서 각각의 복수의 챔버는 각각의 복수의 아암의 개구를 통해 연장된다. 이러한 실시양태에서, 각각의 복수의 챔버는 임의로 각각의 복수의 아암의 평면을 따라 보유된다. 여러 실시양태에서, 각각의 복수의 챔버는 임의로, 각각의 복수의 챔버에 대한 면외 회전을 가능하게 하도록 구성된 적어도 하나의 핀과 함께 각각의 복수의 아암의 개구 내에 보유된다. 이러한 여러 실시양태에서, 각각의 복수의 챔버의 면외 회전은, 각각의 복수의 챔버를 복수의 배향 사이에서 이동시키도록 구성된다. 여러 실시양태에서, 각각의 복수의 챔버는 180도의 회전 (예를 들어, 0 내지 45도, 45 내지 90도, 90 내지 135도, 135도 내지 180도 등) 사이에서 이동한다. 여러 실시양태에서, 각각의 복수의 챔버는, 각각의 복수의 챔버가 각각의 복수의 아암의 평면을 따라 놓이는 배향 사이에서 이동한다. 여러 실시양태에서, 시스템은, 보다 큰 크기조절된 샘플 성분이 마이크로유체 칩 내로 통과되고 마이크로유체 칩을 클로깅하는 것을 방지하도록 구성된 필터를 추가로 포함한다. 하나의 실시양태에서, 필터는 샘플 챔버에 부착된다. 일부 실시양태에서, 필터는 마이크로유체 칩의 상류 또는 이전에 위치하고, 마이크로유체 칩의 클로깅을 방지하기 위해 샘플을 여과하도록 구성된다. 일부 예에서, 상류 필터는, 샘플이 클로깅 없이 마이크로유체 칩을 통과하는 것을 가능하게 하기 위해 조직 또는 조직 단편을 절단하거나 마이크로화하도록 구성된 메쉬를 포함할 수 있다. 샘플의 절단 또는 마이크로화는 마이크로유체 칩에서의 마이크로유체 전단의 목적상 거시적 응집물을 생성하도록 구성된다. 일부 실시양태에서, 필터는, 단지 특정 크기조절된 샘플이 수집을 위해 장치 외부로 통과하는 것을 가능하게 하도록 마이크로유체 칩의 하류 또는 이후에 위치한다.
여러 실시양태에서, 프로세싱 시스템, 본체 부분 및 커버를 포함하는 인케이스먼트, 및 스핀 스탠드를 포함하는 샘플을 프로세싱하기 위한 시스템이 제공되며; 상기 프로세싱 시스템은, 지지체 플레이트로부터 방사상 연장되는 복수의 아암을 포함하는 지지체 플레이트, 지지체 플레이트에 커플링되고 지지체 플레이트를 회전시키도록 구성된 모터, 복수의 캐리지를 포함하고, 여기서 각각의 복수의 캐리지는 지지체 플레이트 상의 복수의 아암 중 하나 상에 배열되고, 여기서 각각의 복수의 캐리지는 복수의 축 중 하나를 중심으로 동축 배치되고, 여기서 각각의 축은 캐리지가 배열되어 있는 아암으로부터 수직으로 연장되고, 여기서 각각의 복수의 캐리지는 마이크로유체 칩 및 프로세싱을 위한 샘플을 수용하기 위한 적어도 하나의 샘플 챔버를 수용하도록 구성되고, 또한 여기서 각각의 복수의 캐리지는 복수의 축 중 하나를 중심으로 회전가능하고; 상기 인케이스먼트에서, 본체 부분은 프로세싱 시스템을 수용하도록 구성되고, 또한 여기서 커버는 본체 부분 위에 배치되고 본체 부분 내의 프로세싱 시스템을 시일링하도록 구성되고, 샘플을 프로세싱하기 위한 시스템으로부터 사용자를 보호하고; 상기 스핀 스탠드는, 모터, 모터에 부착된 외부 스레드형 로드, 시린지를 보유하기 위한 복수의 맞물림 구조체를 포함하는 플레이트를 포함하고, 여기서 모터의 회전은 외부 스레드형 로드를 회전시키고, 여기서 플레이트는 내부 스레드를 갖는 베어링에 부착되고, 내부 스레드는 로드의 외부 스레드와 맞물리도록 구성되고, 여기서 모터의 회전은 플레이트를 수직 방향으로 상승 또는 하강시키도록 구성되고, 여기서 시린지는 적어도 하나의 샘플 챔버에 유체 연결되도록 구성된 개구를 갖는 챔버, 및 챔버 내에 배치된 플런저를 포함하고, 여기서 플런저의 전진 및 후진은 프로세싱을 위한 샘플을 배출 및 유입하고, 또한 여기서 플레이트는 플런저의 원위 단부를 보유하고, 수직 방향으로의 플레이트의 이동은 시린지의 챔버 내의 플런저를 하강 또는 상승시켜 프로세싱을 위한 샘플을 배출 또는 유입한다.
여러 실시양태에서, 회전 모터는 인케이스먼트의 커버에 부착되지만, 다른 실시양태에서, 회전 모터는 인케이스먼트의 외부에 위치한다. 여러 실시양태에서, 플레이트는 원형이지만, 일부 실시양태에서, 플레이트는 복수의 아암에 의해 베어링에 부착된 고리를 포함한다. 하나의 실시양태에서, 플레이트는 중심 원형 플레이트 및 동축 고리를 포함한다. 일부 실시양태에서, 맞물림 구조체는 후크 형상이고, 플런저의 원위 단부의 용이한 삽입 및 제거를 가능하게 하도록 구성된다. 여러 실시양태에서, 시스템은, 시린지가 마이크로유체 챔버의 제1 단부 상의 적어도 하나의 샘플 챔버에 부착되었을 때 또는 이것이 마이크로유체 챔버의 제2 단부 상의 적어도 하나의 샘플 챔버에 부착되었을 때 시린지를 고정시키도록 복수의 이격된 맞물림 구조체를 포함한다. 여러 실시양태에서, 각각의 복수의 아암은 각각의 복수의 캐리지를 제1 배향으로 보유하기 위해 각각의 복수의 캐리지 상에 위치한 상응하는 구조체와 맞물리도록 구성된 맞물림 구조체를 추가로 포함한다. 여러 실시양태에서, 맞물림 구조체는, 캐리지가 복수의 축 중 하나를 중심으로 복수의 배향 사이에서 이동하도록 구성되도록, 상응하는 구조체를 해제시키고 맞물리게 하도록 구성된다. 여러 실시양태에서, 맞물림 구조체는 자석을 포함하고, 상응하는 구조체는 자기 반응성 물질을 포함한다. 역으로, 일부 실시양태에서, 맞물림 구조체는 자기 반응성 물질을 포함하고, 상응하는 구조체는 자석이다. 특정 실시양태에서, 가속력 또는 감속력이 캐리지를 복수의 배향 사이에서 이동시키도록 구성된다. 여러 실시양태에서, 캐리지는 기어 어셈블리를 포함하고, 기어 어셈블리는 캐리지를 복수의 배향 사이에서 이동시키도록 구성된다. 여러 실시양태에서, 캐리지는 구심 래칫을 포함하며, 구심 래칫은 캐리지를 복수의 배향 사이에서 이동시키도록 구성된다.
방법, 예컨대, 샘플을 적어도 하나의 샘플 챔버 내에 제공하는 단계; 샘플 챔버를 복수의 캐리지 중 적어도 하나 내로 삽입하는 단계이며, 여기서 샘플 챔버는 적어도 하나의 마이크로유체 채널을 포함하는 마이크로유체 칩에 유체 연결되고, 여기서 복수의 캐리지 중 하나는 지지체 플레이트에 부착되며, 지지체 플레이트는 제1 축을 중심으로 회전하도록 구성되고, 여기서 복수의 캐리지 중 적어도 하나는 제1 축에 대해 평행한 제2 축을 중심으로 회전하도록 구성된 것인 단계; 및 시린지를 샘플 챔버에 고정시키는 단계이며, 여기서 시린지의 개구는 샘플 챔버에 유체 연결되고, 시린지의 플런저의 원위 단부는 플레이트에 제거가능하게 부착되고, 여기서 플레이트는 모터에 부착되고, 회전가능하고 수직 방향으로 이동가능하도록 구성되고, 또한 여기서 수직 방향으로의 플레이트의 이동은 시린지의 배럴 내의 플런저를 하강 또는 상승시켜 샘플 챔버 내의 프로세싱을 위한 샘플을 배출 또는 유입하는 것인 단계; 및 지지체 플레이트를 제1 축을 중심으로 회전시키는 단계이며, 여기서 회전은 샘플을 샘플 챔버로부터 적어도 하나의 마이크로유체 채널을 통해 샘플 챔버로부터 멀어지는 제1 방향으로 구동시키도록 구성된 것인 단계를 포함하는, 샘플을 프로세싱하는 방법이 제공된다. 여러 실시양태에서, 방법은, 플런저가 시린지의 배럴 내에서 하강하여 프로세싱을 위한 샘플을 샘플 챔버 내로 배출하도록 플레이트를 수직 방향으로 하강시키는 것을 추가로 포함한다. 이러한 방법에서는, 임의로, 플런저가 시린지의 배럴 내에서 상승하여 프로세싱을 위한 샘플을 샘플 챔버로부터 제거하도록 플레이트를 수직 방향으로 상승시키는 단계가 존재한다. 여러 실시양태에서, 방법은, 복수의 캐리지 중 적어도 하나를 제2 축을 중심으로 제2 배향으로 회전시키는 것을 추가로 포함한다.
또한 추가의 실시양태에는, 의학적 병태의 치료를 위한 프로세싱된 조직 샘플의 용도가 제공된다. 여러 실시양태에서, 병태는 당뇨병 궤양이다. 여러 실시양태에서, 병태는, 활성화된 세포, 예컨대 줄기 세포로부터 개선되거나 이득을 얻는 것이다. 여러 실시양태에서, 질환 또는 질병의 치료를 위한 의약 제조에서의 사용을 위한, 본원에 개시된 프로세싱 방법 및 시스템으로부터 유래되는 지방질 조직으로부터의 활성화된 줄기 세포의 용도가 제공된다.
도 1은 회전형 지지체 플레이트 상에 마운팅된 복수의 회전가능 마이크로유체 칩을 사용한 샘플을 프로세싱하기 위한 시스템의 하나의 실시양태의 분해도를 나타낸다.
도 2는 임의적 어댑터 및 대향하는 모듈식 샘플 챔버와 함께 마이크로유체 칩의 하나의 실시양태를 나타낸다.
도 3은 본원에 개시된 시스템 및 장치와 함께 임의로 사용되는 엔클로저 장치의 하나의 실시양태를 나타낸다.
도 4는 본원에 개시된 시스템 및 장치에 대한 마이크로유체 칩을 회전 또는 스피닝시키는 여러 사이클 동안 시간의 함수로서의 분당 회전수 (RPM)의 예시적 그래프를 나타낸다.
도 5는 회전가능 캐리지 및 그 안의 마이크로유체 칩을 보유하는 3개의 아암을 갖는 지지체 플레이트의 하나의 실시양태의 부분 분해도를 나타낸다.
도 6은 도 5의 지지체 플레이트의 단일 아암의 측면도이다.
도 7a는 하나의 실시양태에 따른 샘플 챔버의 사시도를 나타낸다.
도 7b는 하나의 실시양태에 따른 샘플 챔버의 사시도를 나타낸다.
도 7c는 하나의 실시양태에 따른 샘플 챔버의 단면도를 나타낸다.
도 8a는 캐리지 내로 로딩될 수 있는 시린지 형태의 샘플 홀더의 사시도를 나타낸다.
도 8b는 도 8a의 시린지의 단면도를 나타낸다.
도 9는, 각각의 마이크로유체 칩을 각각 함유하는, 회전가능 캐리지가 그 위에 마운팅된 3개의 아암을 갖는 지지체 플레이트의 실시양태의 탑 다운 평면도를 나타낸다. 캐리지 및 마이크로유체 칩은 180도 회전 또는 스피닝시키는 것으로 나타나 있다.
도 10a는 캐리지 및 마이크로유체 칩을 돌리기 위한 전자석이 혼입된 하부 플레이트 또는 하우징의 하나의 실시양태를 나타낸다.
도 10b는 캐리지 및 마이크로유체 칩을 돌리기 위한 구심 래칫이 혼입된 하부 플레이트 또는 하우징의 하나의 실시양태를 나타낸다.
도 11은 캐리지 및/또는 마이크로유체 칩의 면외 플리핑을 이용하는 지지체 플레이트의 또 다른 실시양태를 나타낸다.
도 12a는 회전가능 캐리지 및 그 안의 마이크로유체 칩을 보유하는 3개의 아암을 갖는 지지체 플레이트의 또 다른 실시양태의 부분 분해도를 나타낸다. 이 실시양태는 캐리지 및 마이크로유체 칩의 회전을 일으키도록 기어형 또는 톱니형 표면과 맞물리는 노출 기어와 함께 기어 어셈블리를 혼입한다.
도 12b는 지지체 플레이트의 아암 중 하나 상의 기어 어셈블리로부터 연장되는 노출 기어와 접속되는 기어형 또는 톱니형 표면의 탑 다운 평면도를 나타낸다.
도 13은 임의적 필터 부재의 하나의 실시양태의 사시도를 나타낸다.
도 14a 내지 14j는 본원에 개시된 마이크로유체 칩 내에 함유된 마이크로유체 채널(들)의 상이한 비-제한적 실시양태를 나타낸다.
도 15는 다양한 RPM에서 본원에 개시된 시스템 (예를 들어, 도 11)으로 마이크로유체 칩을 사용하여 얻어진 평균 유량 (mL/min)을 나타내는 그래프를 나타낸다. 또한, 비교를 위해, 유체를 지방 프로세싱 칩을 통해 앞뒤로 통과시키기 위한 표준 시린지 펌프를 사용하여 달성된 최대 유량이 나타나 있다.
도 16은 다양한 RPM에서 본원에 개시된 시스템 (예를 들어, 도 11)으로 마이크로유체 칩을 사용하여 얻어진 평균 전단력 (다인/cm2)을 나타내는 그래프를 나타낸다. 또한, 비교를 위해, 유체를 지방 프로세싱 칩을 통해 앞뒤로 통과시키기 위한 표준 시린지 펌프를 사용하여 달성된 최대 전단력이 나타나 있다.
도 17은, 도 5에 도시된 것과 같은, 본원에 개시된 시스템을 사용하는 2개의 상이한 마이크로유체 칩에 대한 RPM의 함수로서의 유량을 나타내는 그래프를 나타낸다.
도 18은 도 17의 마이크로유체 칩 중 하나에 대한 전단 속도의 함수로서의 유량을 나타내는 그래프를 나타낸다.
도 19는 본원에 기재된 시스템의 하나의 비-제한적 실시양태를 사용하여 3회 통과로 300 RPM에서 프로세싱된 종양 조직 (MCF7)에 대해 얻어진 현미경 이미지 (4X)이다.
도 20은 대조군으로서 사용된 비-프로세싱된 수확 종양 세포 (MCF7)에 대해 얻어진 현미경 이미지 (4X)이다.
도 21은, 세포 또는 세포 응집물을 그 안에 트랩핑하기 위해 사용되는, 표면에 위치한 복수의 저장소를 갖는 마이크로유체 칩을 나타낸다.
도 22는, 1-방향 밸브를 혼입한 또 다른 실시양태에 따른 샘플 보유 챔버의 단면도를 나타낸다.
도 23은, 회전형 지지체 플레이트 또는 디스크 상에 마운팅된 샘플 챔버로부터 샘플을 로딩/회수하기 위한 접근 포트를 사용하는 또 다른 실시양태에 따른 샘플을 프로세싱하기 위한 시스템을 나타낸다.
도 24는 또 다른 실시양태에 따른 샘플을 프로세싱하기 위한 시스템의 또 다른 실시양태를 나타낸다. 이 실시양태에서, 하나 이상의 시린지 (또는 가변 부피의 다른 샘플 용기)는 마이크로유체 칩(들)과 함께 스피닝 또는 회전되고, 180° 회전 또는 스피닝하여 샘플을 마이크로유체 칩(들)을 통해 앞뒤로 프로세싱한다. 이동가능 탑 플레이트 또는 고리가 시린지의 플런저에 고정되고, 플레이트의 이동 방향에 따라 샘플을 분출하거나 회수하기 위해 사용된다.
도 25는 도 24의 실시양태의 이동가능 탑 플레이트 또는 고리의 저부 평면도를 나타낸다.
도 26은, 마이크로유체 칩 및 시린지가 180° 회전하고 이동가능 탑 플레이트 또는 고리가 부분적으로 하강되어 시린지 플런저를 누른, 도 24의 실시양태의 사시도를 나타낸다.
도 27a는, 도 14b에 나타낸 유형의 마이크로유체 칩을 사용하여 본원에 개시된 조직 프로세싱 시스템 (예를 들어, 도 5에 나타낸 것)을 통해 진행된 지방질 조직 ("프로세싱된 지방흡인물")에 대한 세포 카운트 결과의 그래프를 나타낸다. 또한, 표준 지방흡인물 (즉, 프로세싱되지 않은 것)에 대한 세포 카운트 결과가 도 27a에 나타나 있다.
도 27b는, 도 14b에 나타낸 유형의 마이크로유체 칩을 사용하여 도 5에 나타낸 조직 프로세싱 시스템을 통해 진행된 지방질 조직 ("프로세싱된 지방흡인물")에 대한 세포 생존율 결과의 그래프를 나타낸다. 또한, 표준 지방흡인물 (즉, 프로세싱되지 않은 것)에 대한 생존율 결과가 도 27a에 나타나 있다.
도 28은 프로세싱된 지방흡인물 중의 줄기 세포의 개선된 풍부화를 표준 지방흡인물과 비교하여 나타낸 그래프이다. "*"는 p< 0.05에서의 통계적 유의성을 나타낸다.
도 29는 프로세싱된 지방흡인물 및 표준 지방흡인물 둘 다에 대한 줄기 세포 마커 (CD45, CD31, CD34, CD73, CD146, MSC, DPP4/CD55)의 그래프를 나타낸다.
도 1은 하나의 실시양태에 따른 샘플(12)의 프로세싱을 위한 시스템(10)을 나타낸다. 시스템(10)은 본원에 기재된 바와 같은 샘플(12)을 프로세싱하기 위해 사용되는 하나 이상의 마이크로유체 칩(14)을 포함한다. 샘플(12)은, 하나의 실시양태에서, 생물학적 샘플을 포함할 수 있다. 예를 들어, 하나의 특정 바람직한 실시양태에서, 샘플(12)은 지방 또는 지방질 조직 또는 종양 조직과 같은 포유류 유기체로부터 얻어진 조직 샘플을 포함할 수 있다. 또 다른 예에서, 샘플(12)은, 이후에 프로세싱되거나 마이크로유체 칩(14)을 통해 진행되는 세포를 함유할 수 있다. 샘플(12)은, 또 다른 실시양태에서, 비드 등과 같은 입자를 포함할 수 있다. 또한 또 다른 실시양태에서, 샘플(12)은 하나 이상의 유체 시약 또는 반응물을 함유할 수 있다. 또한 상이한 실시양태에서, 샘플(12)은 물 또는 수계 샘플을 함유할 수 있다.
여러 실시양태에서, 마이크로유체 칩(14)은, 예를 들어, 도 2에서 보이는 바와 같이, 기판(18) 내에 형성된 하나 이상의 마이크로유체 채널(16)을 포함한다. 마이크로유체 칩(14)은 전형적으로 약 10 mm 내지 100 mm, 예를 들어 약 10 내지 약 20 mm, 약 20 내지 약 30 mm, 약 30 내지 약 40 mm, 약 40 내지 약 50 mm, 약 50 내지 약 60 mm, 약 60 내지 약 70 mm, 약 70 내지 약 80 mm, 약 80 내지 약 90 mm, 약 90 내지 약 100 mm의 길이 (최장측을 따라), 및 종점을 포함한 이들 사이의 임의의 길이를 갖는다. 하나 이상의 마이크로유체 채널(16)은 일반적으로 마이크로유체 칩(14)의 종방향 축 (즉, 장축)을 따라 연장되고, 일반적으로 마이크로유체 칩(14)의 한쪽 단부로부터 마이크로유체 칩(14)의 반대쪽 단부로 횡단한다. 여러 실시양태에서, 마이크로유체 채널(16)의 길이는 마이크로유체 칩(14)의 총 길이 미만이다. 마이크로유체 채널(16)의 폭 및 깊이는 실시양태에 따라 약 5 μm 내지 약 8 mm의 범위 내일 수 있다. 예를 들어, 길이 (또는 폭)는 약 5 μm 내지 약 10 μm, 약 10 μm 내지 약 20 μm, 약 20 μm 내지 약 50 μm, 약 50 μm 내지 약 100 μm, 약 100 μm 내지 약 200 μm, 약 200 μm 내지 약 500 μm, 약 500 μm 내지 약 750 μm, 약 750 μm 내지 약 1000 μm, 약 1 mm 내지 약 2 mm, 약 2 mm 내지 약 3 mm, 약 3 mm 내지 약 4 mm, 약 4 mm 내지 약 5 mm, 약 5 mm 내지 약 6 mm, 약 6 mm 내지 약 7 mm, 약 7 mm 내지 약 8 mm의 범위, 및 종점을 포함한 이들 사이의 임의의 치수일 수 있다. 추가의 실시양태에서, 마이크로유체 채널의 길이 대 폭의 비율은 약 1000:1, 약 750:1, 약 500:1, 약 250:1, 약 100:1, 약 50:1, 약 25:1, 약 10:1, 약 2:1, 약 1:1, 약 1:2, 약 1:10, 약 1:25, 약 1:50, 약 1:100, 약 1:250, 약 1:500, 약 1:750, 약 1:1000의 범위, 및 열거된 것들 사이의 임의의 비율이다. 추가로, 많은 마이크로유체 칩(14) 디자인에서, 폭 및 깊이는 수축 영역, 확장 영역 등의 존재로 인해 달라진다.
도 2에 도시된 하나의 비-제한적 실시양태에서 보이는 바와 같이, 제1 포트(20)는 마이크로유체 칩(14)의 한쪽 단부에 위치하고 샘플(12)에 대한 유입구 (또는 본원에서 설명되는 바와 같이 유출구)로서 제공된다. 제2 포트(22)는 마이크로유체 칩(14)의 다른 반대쪽 단부에 위치한다. 본원에서 설명되는 바와 같이, 하나 이상의 마이크로유체 채널(16)은 임의 수의 구성으로 제공될 수 있다.
마이크로유체 칩(14)은 임의 수의 물질로부터 형성될 수 있다. 예를 들어, 마이크로유체 칩(14)은 중합체 또는 플라스틱 물질 (예를 들어, 폴리카르보네이트, 폴리(메틸 메타크릴레이트) (PMMA), 폴리옥시메틸렌, 폴리락트산 (PLA) 또는 아크릴로니트릴-부타디엔-스티렌 (ABS) 물질 등)을 사용하여 형성될 수 있다. 마이크로유체 칩(14)은 금속 (예를 들어, 알루미늄, 강철, 티타늄, 합금 등)과 같은 다른 물질을 사용하여 형성될 수 있다. 마이크로유체 칩(14)은, 함께 접합되어 완전히 둘러싸인 마이크로유체 칩(14)을 형성하도록 하나 이상의 층을 사용하여 제조될 수 있다. 따라서, 마이크로유체 칩(14)은 하나 이상의 층 또는 기판(18)으로부터 형성된 라미네이트 구조체로서 제조될 수 있다. 예를 들어, 마이크로유체 칩(14)의 제1 층은 폴리카르보네이트 또는 PMMA를 사용하여 형성될 수 있고, CNC 밀링 또는 레이저 에칭 (또는 화학적 에칭)을 사용하여 그 안에 형성된 마이크로유체 채널(16)을 갖고, 제2의 얇은 커버 층이 제1 층에 접합되거나 다른 방식으로 접착되어 완전한 마이크로유체 칩(14)을 형성할 수 있다. 양면 압력 접착제를 사용하여 두 층을 서로 접합시킬 수 있다. 접합은 또한 초음파 용접을 사용하여 달성될 수 있다. 대안으로, 마이크로유체 칩(14)은 모놀리식 기판(18)으로부터 제조될 수 있다. 마이크로유체 칩(14)은 3차원 (3D) 인쇄, 사출 성형, CNC 밀링 또는 레이저 에칭을 포함한 임의 수의 제조 방법을 사용하여 형성될 수 있다.
다시 도 1을 참조하면, 시스템(10)은, 바람직한 실시양태에서, 지지체 플레이트(30)의 중심 영역 또는 허브(31)로부터 외부를 향해 연장되는 복수의 아암 또는 윙(32)을 갖는 지지체 플레이트(30)를 포함한다. 대안적 실시양태에서, 지지체 플레이트는 단순히 내부 부분 및 측면 부분을 갖는 디스크이고, 측면 부분은 아암을 대신한다. 일부 실시양태에서, 아암 또는 윙(32)은 하나 이상의 패스너 (예를 들어, 스크류, 볼트 등)를 사용하여 허브(31)에 고정된 별도의 구조체이다. 다른 실시양태에서, 아암 또는 윙(32)은 단일 구조체로서 허브(31)와 일체화된다. 중심 영역 또는 허브(31)는 아암 또는 윙(32) 형성에 사용되는 것과 동일한 또는 상이한 물질로부터 제조될 수 있다. 예를 들어, 중심 영역 또는 허브(31)는 금속 또는 금속성 물질 (예를 들어, 알루미늄, 스테인레스 강, 강철 등) 또는 중합체 물질, 예컨대 플라스틱, 폴리(메틸 메타크릴레이트) (PMMA), 폴리카르보네이트 등으로부터 형성될 수 있다. 아암 또는 윙(32) 또한 중심 영역 또는 허브(31)에서 사용가능한 물질과 같은 금속, 금속성 물질, 또는 중합체를 사용하여 형성될 수 있다.
도 1에 나타낸 지지체 플레이트는 3개의 이러한 아암 또는 윙(32)을 포함하지만, 지지체 플레이트는 단일개 초과의 아암(32)인 임의 수의 아암(32) (예를 들어, 1 내지 10개의 아암)을 포함할 수 있음을 인지하여야 한다. 본 발명의 바람직한 실시양태에서, 지지체 플레이트(30)는, 아암(32)이 지지체 플레이트(30)의 중심 영역으로부터 방사상 연장되고 지지체 플레이트(30) 주위에 대칭적으로 배열되도록 제조된다. 예를 들어, 3개의 아암 구성에서, 각각의 아암(32)은 각각의 인접 아암으로부터 약 120° 배향된다. 여러 실시양태에서, 아암은, 작동 동안 아암이 회전축에 대해 수직인 또는 실질적으로 수직인 평면에 배치되는 아치형 패턴으로 이동하도록 힌지결합될 수 있다. 지지체 플레이트(30)의 중심 영역은, 홀 또는 구멍(33)을 통과하는 회전형 처크(34)를 수용하도록 치수조절된 홀 또는 구멍(33)을 함유한다. 지지체 플레이트(30)는 패스너(36)를 사용하여 처크(34)에 고정된다. 예를 들어, 처크(34)는 스레드형일 수 있고, 패스너(36)는, 지지체 플레이트(30)를 처크(34)에 대해 고정적으로 락킹하도록 처크(34)의 스레드와 맞물리는 스크류, 너트, 클립, 프레스 핏, 자기 맞물림 등이다. 대안으로, 패스너(36)는 핀, 자석 등을 포함할 수 있다. 추가로, 처크(34)의 샤프트는, 지지체 플레이트(30)의 홀 또는 구멍(33)과 매칭되거나 락킹되어 두 구성요소를 함께 락킹하는 것을 보조하는 기하학적 프로파일을 가질 수 있다. 물론, 지지체 플레이트(30)를 처크(34)에 고정시키기 위해 임의의 다른 유형이 패스너 또는 락이 사용될 수 있다. 처크(34)는, 락킹 핀, 스크류 등 (도시되지 않음)을 사용하여 모터(42)의 샤프트(40)를 구동시키도록 정착 유지된다. 모터(42)는, 구동 샤프트(40)의 회전 속도가 조정될 수 있는 임의 수의 유형의 모터를 포함할 수 있다. 일례로서, 모터(42)는 브러시리스 서보 모터 (예를 들어, 파커(Parker) 모터 SM232BE, 파커 한니핀 코포레이션(Parker Hannifin Corporation, 미국 노스 캐롤라이나주 샤를로테))를 포함하지만, 폭넓게 다양한 모터(42)가 사용될 수 있음을 이해하여야 한다. 또 다른 대안적 실시양태에서, 지지체 플레이트(30) 및 아암(32)은 처크(34) 자체 내로 혼입될 수 있다. 다시 말해서, 마이크로유체 칩(14)을 지지하는 아암(32)이, 처크(34) 상에 배치된 별도의 지지체 플레이트(30)와 달리, 처크(34)로부터 연장될 수 있다.
도 1에서 보이는 바와 같이, 모터(42)는, 마운팅된 구동 샤프트(40) 및 처크(34)가 실질적으로 수직 배향으로 존재하도록 설비(44)에 고정된다. 이러한 배향에서, 지지체 플레이트(30)는 처크(34)의 상단에 배치되고, 패스너(36)를 사용하여 그에 락킹될 수 있다. 이러한 배열은 지지체 플레이트(30)를 실질적으로 수평인 면에 배치한다. 모터(42)가 작동되고 구동 샤프트(40)를 회전시키면, 처크(34)를 사용하여 그 위에 마운팅된 지지체 플레이트(30)는 실질적으로 수평인 면에서 구동 샤프트(40)의 회전축을 중심으로 회전한다 (회전은 반시계방향 또는 시계방향 (또는 교호 패턴으로 둘 다)일 수 있음). 도 3을 참조하면, 마운팅된 지지체 플레이트(30) (및 그에 로딩된 마이크로유체 칩(14))는 임의로 인케이스먼트(46) 내부에 배치될 수 있다. 인케이스먼트(46)는 시스템(10) 사용 동안 일어날 수 있는 임의의 위험 또는 고장으로부터 작업자를 보호한다. 인케이스먼트(46)는 임의의 두꺼운 플라스틱 물질 (예: 폴리카르보네이트, 폴리(메틸 메타크릴레이트; 예를 들어, 플렉시글라스(Plexiglass)) 등) 또는 심지어 금속 (예: 강철, 알루미늄 등)으로부터 제조될 수 있다. 인케이스먼트(46)는 처크(34)로의 지지체 플레이트(30) 등의 마운팅을 위한 접근을 제공하도록 개방 및 폐쇄될 수 있다. 시스템(10)의 작동을 가시적으로 모니터링할 수 있도록 하나 이상의 부분이 광학적으로 투명하게 제조될 수 있다. 도 1에 나타낸 것과 같은 별도의 설비(44) 사용에 대한 대안으로, 모터(42)가 도 3에서 보이는 바와 같이 인케이스먼트(46) 상의 베이스 또는 다른 구조체적 지지체에 마운팅될 수 있다.
다시 도 1을 참조하면, 모터(42)는 하나 이상의 케이블(51)을 통해 컨트롤러(50)에 연결된다. 나타낸 바와 같이, 하나의 케이블(51)은 모터(42) 구동에 사용되면서 또 다른 케이블(51)은 피드백에 사용된다. 스텝퍼/서보 컨트롤러(50)일 수 있는 컨트롤러(50)가 모터(42) 구동에 사용된다. 컨트롤러(50)를 사용하여 회전 속도 또는 RPM이 조정되거나 프로그래밍될 수 있다. 바람직한 실시양태에서, 컨트롤러(50)는 미리 정해진 작동 순서로 지지체 플레이트(30)를 스피닝할 수 있는 스핀 프로그램으로 프로그래밍되거나 로딩될 수 있다. 예를 들어, 컨트롤러(50)는, 모터(42)의 스핀 속도를, 샘플(12)이 마이크로유체 칩(들)(14)의 하나 이상의 마이크로유체 채널(16)을 통과하도록 요망되는 RPM까지 상승시키고, 이어서, 하나의 실시양태에서는, 마이크로유체 칩(14)을 반회전 또는 180° 회전시키도록 RPM을 감속시킨다. 이어서, 이제 마이크로유체 칩(들)(14)이 플리핑 또는 역 배향됨에 따라, 컨트롤러(50)는, 샘플(12)을 다시 마이크로유체 칩(들)(14)의 하나 이상의 마이크로유체 채널(16)을 통해 역방향으로 밀어내거나 강제이동시키기 위해 RPM을 다시 요망되는 RPM 속도로 상승시킬 수 있다. 이 과정이 복수의 사이클 동안 반복될 수 있다 (예를 들어, 마이크로유체 칩(들)(14)의 10 내지 30회 180° 회전; 예컨대 10-15, 15-20, 20-25, 25-30회 등). 예를 들어, 출발 샘플의 점도에 따라, 보다 많은 또는 적은 수의 사이클이 사용될 수 있음을 인지할 것이다. 도 4는, 예를 들어, 마이크로유체 칩(들)(14)의 180°의 다수 사이클을 나타내는 시스템(10)의 예시적 회전 유동 프로파일을 나타낸다.
하나의 실시양태에서, 컨트롤러(50)는 랩뷰(LabVIEW), 자바(Java), C, C++, 피톤(Python) 등과 같은 소프트웨어를 사용하여 프로그래밍될 수 있다. 컨트롤러(50)는 또한 수동 제어될 수 있다. 사용되는 실제 회전 속도 또는 RPM은 마이크로유체 칩(14)의 구조체 및 구성에 따라 달라질 수 있다. 전형적으로, RPM 범위는 0 내지 약 10,000 RPM이다. 보다 높은 RPM은 마이크로유체 칩(14)을 통한 샘플(12)의 보다 높은 유량을 생성한다. 마이크로유체 칩(14)을 통한 유량은 다양할 수 있지만, 일반적으로 약 0 mL/min 내지 700 mL/min의 범위 내이다. 예를 들어, 유량은 약 0.2 mL/min 내지 약 1 mL/min, 약 1 mL/min 내지 약 2 mL/min, 약 2 mL/min 내지 약 10 mL/min, 약 10 mL/min 내지 약 50 mL/min, 약 50 mL/min 내지 약 100 mL/min, 약 100 mL/min 내지 약 250 mL/min, 약 250 mL/min 내지 약 500 mL/min, 약 500 mL/min 내지 약 700 mL/min의 범위 및 이들 사이의 임의의 유량 (종점 포함)일 수 있다. 유량의 상한은 모터(42)를 사용하여 달성되는 회전 속도에 따라 더욱 클 수 있다.
도 4는 하나의 실시양태에 따라 사용되는 하나의 예시적 유동 프로파일을 나타낸다. 이 실시양태에서, RPM 속도는, 약 1초 기간에 걸쳐 1,600 RPM의 최대 회전 속도로 상승되거나 가속화 (예를 들어, 2,000 RPM/sec)된다. 1,600의 RPM 속도가 수초 (예를 들어, 약 8초) 동안 유지되고, 이어서 급속히 감속 (예를 들어, 2,000 RPM/sec)되고, 이는 마이크로유체 칩(들)(4)을 180° 회전시킨다.
다시 도 1 및 도 5를 참조하면, 각각의 마이크로유체 칩(14)은 회전가능 캐리지(60) 내에 보유되거나 다른 방식으로 고정된다. 각각의 회전가능 캐리지(60)는 지지체 플레이트(30)의 아암(32) 상에 회전가능하게 마운팅된다. 회전가능 캐리지(60)는 마이크로유체 칩(14)을 그 안에 수용하도록 치수조절된 오목부(62) (도 5에 나타냄)를 포함한다. 마이크로유체 칩(14)은 마찰 핏, 탭, 클립, 디텐트(detent) 등에 의해 그 안에 보유될 수 있다. 회전가능 캐리지(60)는, 하나의 실시양태에서, 각각의 샘플 챔버(70, 72)를 보유하기 위해 사용되는 제1 단부(64) 및 제2 단부(66)를 추가로 포함한다. 샘플 챔버(70)는 캐리지(60)의 제1 단부(64)에 배치되며 샘플 챔버(72)는 제2 단부(66)에 배치된다. 각각의 샘플 챔버(70, 72)는, 예를 들어, 도 2에서 보이는 바와 같이 포트(20, 22)를 통해 마이크로유체 칩(14)에 유체 커플링된다. 샘플 챔버(70)는 제1 포트(20)를 통해 마이크로유체 칩(14)에 유체 커플링된다. 샘플 챔버(72)는 제2 포트(22)를 통해 마이크로유체 칩(14)에 유체 커플링된다. 임의로, 샘플 챔버(70, 72) 중 하나 또는 둘 다는 어댑터(80)를 사용하여 마이크로유체 칩(14)에 커플링될 수 있음을 인지한다. 어댑터(80)는 도 2, 5, 및 6에 나타나 있고, 이는 임의 수의 디자인 및 구성을 포함할 수 있다. 이들은, 예시적으로, 또한 비-제한적으로, 루어 슬립 (예를 들어, 슬립 팁 커넥터), 루어 락 (예를 들어, 회전형 칼라) 등을 포함한다. 어댑터(80)는 금속 (예를 들어, 알루미늄, 강철, 스테인레스 강 등) 또는 중합체 물질 (예를 들어, 플라스틱, 폴리카르보네이트, 아크릴레이트, 수지 물질 등)을 포함한 임의 수의 물질을 사용하여 형성될 수 있다.
샘플 챔버(70, 72) 중 하나는 마이크로유체 칩(14)을 통해 진행시키려는 샘플(12)로 로딩된다. 샘플 챔버(70, 72)는 마이크로유체 칩(14)을 통해 프로세싱하려는 샘플(12) 또는 다른 물질의 부피를 보유하도록 디자인된다. 샘플 챔버(70, 72)에 대한 보유 부피는 > 0 ml 내지 ~ 100 ml의 범위일 수 있고, 챔버 치수의 크기 변화에 의해 변경될 수 있다. 예를 들어, 일부 실시양태에서, 샘플 챔버 부피는 약 1 ml 내지 약 3 ml, 약 3 ml 내지 약 5 ml, 약 5 ml 내지 약 10 ml, 약 10 ml 내지 약 25 ml, 약 25 ml 내지 약 50 ml, 약 50 ml 내지 약 75 ml, 약 75 ml 내지 약 100 ml의 범위, 또는 종점을 포함한 이들 사이의 임의의 부피일 수 있다. 본 발명의 하나의 실시양태에서, 샘플 챔버(70, 72)는 마이크로유체 칩(14)을 통해 진행되는 샘플(12) 또는 다른 물질로 로딩된다. 도 7a 내지 7c를 참조하면, 샘플 챔버(70, 72)는 임의의 유형의 시린지 어댑터 헤드, 예컨대 루어 슬립 (예를 들어, 슬립 팁 커넥터), 루어 락 (예를 들어, 회전형 칼라) 등인 어댑터 헤드(74)를 갖도록 디자인된다. 샘플 챔버(70, 72)는 또한, 난류가 아닌 마이크로유체 칩(14)을 통한 층류를 가능하게 하도록, 직경이 0 mm 내지 약 10 mm (예를 들어, 약 1 mm 내지 약 2mm, 약 2 mm 내지 약 4 mm, 약 4 mm 내지 약 6 mm, 약 6 mm 내지 약 8 mm, 또는 약 8 mm 내지 약 10 mm)의 범위일 수 있는, 도 7c에서 보이는 바와 같은 벤트 채널(76)을 갖도록 디자인된다. 실시양태에 따라, 다수의 벤트가 사용될 수 있다. 벤트 채널(76)은 대기로 통풍되고; 하나의 실시양태에서는, 도 7c에서 보이는 바와 같이 벤트 홀(77) (도 7a 내지 7c)을 통해 샘플 챔버(70, 72)의 단부 근처에서 배출되고 어댑터 헤드(74) 근처에서 샘플 챔버(70, 72)의 내부에 연결된다. 임의로, 작은 필터가 벤트 홀(77) 내에 배치되거나 또는 다른 방식으로 벤트 홀(77)과 소통되어 오염 또는 누설을 방지한다. 샘플 챔버(70, 74)는 다수의 물질, 예컨대 수지 물질, 플라스틱, 또는 금속 중 하나 이상으로부터 제조될 수 있다. 이들은 임의 수의 사출 성형, 수지 인쇄 (예를 들어, 3D 인쇄), 블로우 성형, 기계가공 등과 같은 통상적 제조 방법에 의해 제조될 수 있다. 하나의 실시양태에서, 샘플 챔버(70, 72)를 충전시키기 위해, 시린지 (니들 없음)의 단부 또는 팁을 샘플 챔버(70, 72) 상에 배치된 어댑터 헤드(74) 내로 삽입하고, 시린지 플런저를 눌러 챔버 부피를 시린지의 배럴 내에 함유된 샘플(12) 또는 물질로 충전시킨다. 샘플 챔버(70, 72)는 바람직하게는, 도 5에서 보이는 바와 같이 캐리지(60)의 단부(64, 66)에 삽입되고/거나 그로부터 제거될 수 있는 모듈식 구성요소이다. 예를 들어, 챔버(70)는 장치 또는 시스템(10)의 외부에서 로딩되고, 이어서 캐리지(60)의 단부(64) 내로 삽입될 수 있다.
또 다른 실시양태에서는, 도 8a 내지 8d에 나타낸 바와 같이, 시린지 챔버(86)가 샘플 챔버(70, 72)로서 사용되고, 이는 캐리지(60)의 하나 또는 양쪽 단부(64, 66)에 배치될 수 있다. 단부(64, 66)는 시린지 챔버(86)의 길이를 수용하도록 디자인된다. 이 실시양태는, 의료진이 프로세싱 직후 시린지 챔버(86)을 사용할 수 있게 하기 때문에 특히 유리하다. 예를 들어, 지방질 또는 지방 조직이 본원에 기재된 시스템(10)을 사용하여 프로세싱되는 경우, 생성된 프로세싱된 조직은 시린지 챔버(86) 내로 로딩되고, 이는 시스템(10)으로부터 용이하게 제거되고, 프로세싱된 지방을 대상체에 대한 적용 부위 내로 직접 주입하기 위해 사용될 수 있다. 이와 관련하여, 시스템(10)은 샘플 챔버(70, 72) 대신에 하나 이상의 온보드 시린지 챔버(86)를 사용한다. 프로세싱이 완료되면, 시린지 챔버(86)가 제거되고, 단부에 니들이 첨가되고, 이제 프로세싱된 샘플이 임의로 대상체 내로 주입된다.
시린지 챔버(86)는 샘플을 보유하는 3차원 부피를 한정하는 시린지 배럴(88)을 포함한다. 고무 또는 중합체 시일을 포함하는 표준 플런저(90)가 배럴(88) 내에 배치되고, 이는 플런저(90)를 전진시키기 위해 사용되는 근위 디프레서(92)를 포함한다. 시린지 배럴(88)의 단부는, 마이크로유체 칩(14)과 접속되는 루어 슬립 (예를 들어, 슬립 팁 커넥터), 루어 락 (예를 들어, 회전형 칼라) 등을 포함할 수 있는 어댑터 단부(94)를 포함한다. 하나의 실시양태에서, 시린지 챔버(86)는, 배럴(88)의 길이를 따라 연장되고 홀(89)을 통해 배럴(88)의 내부와 소통되고 대기로 개방된 벤트 홀(98) (도 8b에서 가장 잘 보임)에서 종결되는 벤트 채널(96)에 커플링된다. 벤트 채널(96)은 통풍을 가능하게 하고, 시린지 배럴(88) 및 마이크로유체 칩(14)을 통한 정상 층류를 가능하게 한다. 하나의 실시양태에서, 보다 작은, 고무 또는 중합체 시일을 포함하는 부차적 시린지 플런저(100)가 벤트 채널(96) 내에 배치되고, 벤트 채널(96)을 선택적으로 개방/폐쇄하도록 그 안에서 이동가능하다. 구체적으로, 도 8b에서 보이는 바와 같이, 부차적 시린지 플런저(100)의 시일이 벤트 홀(98)에 대하여 근위에 위치하면, 벤트 채널(96)이 개방되고, 시린지 배럴(88)의 내부가 대기로 통풍될 수 있다. 그러나, 부차적 시린지 플런저(100)의 시일이 벤트 홀(98)에 대해 원위에 위치하면, 벤트 채널(96)이 폐쇄되고, 시린지 배럴(88)의 내부가 통풍되지 않으며; 여기서 시린지 챔버(86)는 표준 시린지로서 작용한다. 부차적 시린지 플런저(100)는, 디프레서(92)의 이동이 플런저(90, 100) 둘 다를 이동시키도록 동일한 근위 디프레서(92)에 커플링될 수 있다. 시린지 챔버(86) 및 다른 구성요소, 예컨대 디프레서(92)는 수지, 플라스틱 등과 같은 중합체 물질을 포함한 임의 수의 물질로부터 제조될 수 있다. 사출 성형, 수지 인쇄 등과 같은 종래의 제조 기술이 사용될 수 있다. 시린지 챔버(86)는 또한 금속 또는 금속성 물질로부터 형성될 수 있다.
이제 도 5 및 6을 참조하면, 지지체 플레이트(30)의 하나의 특정 실시양태가 개시된다. 이 실시양태에서, 지지체 플레이트(30)는, 중심 플레이트(104)에 고정된 복수의 아암(32)을 갖는 중심 플레이트(104)를 사용하여 형성된다. 중심 플레이트(104)는 처크(34)를 수용하도록 치수조절된 홀 또는 구멍(106)을 포함한다 (도 1 참조). 이 실시양태에서 각각의 아암(32)은 하부 플레이트(108) 및 상부 플레이트(110)로 형성된다. 하부 플레이트(108) 및 상부 플레이트(110)는 임의 수의 패스너, 예컨대 스크류, 볼트 등을 사용하여 서로에게 고정될 수 있다. 플레이트(108, 110)는, 캐리지(60)로부터 연장되는 포스트(114)를 수용하도록 정렬되고 치수조절된 그 안에 형성된 홀 또는 구멍(112)을 포함한다. 도 6에서 가장 잘 보이는 바와 같이, 포스트(114)는 하부 플레이트(108) 및 상부 플레이트(110) 내의 홀(112)을 통해 연장되어 아암(32) 하부로 약간의 거리로 돌출된다. 포스트(114)는, 포스트(114)를 통과하고 캐리지(60)를 아암(32)에 고정시키기 위해 사용되는 핀 또는 클립(118)을 수용하는 홀(116)을 포함한다 (이는 또한 회전 또는 스피닝을 가능하게 함).
이 실시양태에서는, 도 5에 나타낸 바와 같이, 자석 또는 자기 부재(120)가 중심 플레이트(104)를 포함할 수 있는 지지체 플레이트(30) 내에 배치된다. 도 5 및 6에서 보이는 바와 같이, 2개의 보다 작은 자석 또는 자기 부재(122)가 캐리지(60)의 하부 표면 상에 배치되고 (또는 캐리지(60) 구조체 내로 혼입되고), 이는 캐리지(60)를, 캐리지(60)의 종방향 축이 아암(32)의 방사상 길이를 따라 정렬되는 2개의 180° 구성 중 하나로 일시적으로 유지하기 위해 사용된다. 예를 들어, 캐리지(60) 내에 위치한 자기 부재(122)는 실제 자석 (예를 들어, 희토류 자석 또는 다른 유형)을 포함할 수 있거나, 또는 이는 자기 감수성 스크류, 볼트, 또는 금속 단편을 포함할 수 있다. 본원에서 설명되는 바와 같이, 캐리지(60)는, 샘플(12)이 정방향 또는 역방향으로 마이크로유체 칩(14)을 통해 유동할 수 있도록 2개의 180° 배향 사이에서 앞뒤로 전환될 수 있다. 본원에서 설명되는 바와 같이, 캐리지(60)를 이들 2개의 배향 사이에서 전환시키기 위해 다수의 상이한 양식이 사용될 수 있다. 이는 캐리지(60)의 배향을 전환시키는 감속력 또는 가속력의 사용을 포함한다. 대안으로, 아암(32) 내에 배치된 전자석을 사용하여 캐리지(60) (및 마이크로유체 칩(14))를 이들 2개의 배향 사이에서 토글링할 수 있다. 또한 또 다른 대안적 실시양태에서는, 캐리지(60)를 180° 배향 사이에서 돌릴 수 있는 기어 톱니의 방사상 세트와 함께 기어 어셈블리를가 사용될 수 있다. 또한 또 다른 대안적 실시양태는, 캐리지(60)를 지지체 플레이트(30)의 RPM의 감소에 기초하여 상이한 배향으로 기계적으로 회전시키도록 구심 래칫을 사용한다. 또한 또 다른 대안적 실시양태는 래칫을 피스톤 또는 완충기 유사 장치로 대체할 수 있다.
도 9는, 마이크로유체 칩(14)을 그 안에 함유하는 회전가능 캐리지(60)를 각각 함유하는 3개의 상이한 아암(32)을 갖는 지지체 플레이트(30)를 개략적으로 나타낸다. 상단 또는 상부에서 볼 때, 회전가능 캐리지(60)는 각각, 제1 단부(①)는 아암(32) 상에서 방사상 내부를 향해 위치하고, 제2 단부(②)는 아암(32) 상에서 방사상 외부를 향해 위치하도록 배향된다. 이 구성에서, 지지체 플레이트(30)의 회전에 반응하여, 샘플(12) 또는 다른 물질은 방사상 외부를 향하는 방향으로 마이크로유체 칩(14)을 통해 진행된다. 다시 말해서, 샘플 챔버(70)에서 출발하는 샘플(12)의 경우, 샘플(12)은 샘플 챔버(70)로부터 마이크로유체 칩(14) 내로 이동하고 샘플 챔버(72) 내로 전진한다. 다음으로, 도 9의 하부에서 보이는 바와 같이, 각각의 마이크로유체 칩(14)을 갖는 캐리지(60)가 180° 회전하여 캐리지(60) 및 그의 마이크로유체 칩(14)의 배향을 역전시킨다. 이 구성에서는, 제1 단부(①)가 아암(32) 상에서 방사상 외부를 향해 위치하고, 제2 단부(②)가 아암(32) 상에서 방사상 내부를 향해 위치한다. 샘플 챔버(72) 내에 있었던 샘플(12)은 이제 방사상 내부를 향해 위치하고, 이제 지지체 플레이트(30)의 회전은 샘플(12)을 샘플 챔버(72)로부터 마이크로유체 칩(14) 내로 이동시키고 샘플 챔버(70) 내로 더욱 전진시킨다. 이 과정이 임의 수의 사이클 동안 반복될 수 있다.
도 5 및 6의 실시양태에서, 지지체 플레이트(30)의 감속은, 자석(120, 122) 사이의 힘을 파괴하는 힘을 캐리지(60) 상에 인가하고, 이는 캐리지(60)를 포스트(114)를 중심으로 회전시키고, 캐리지(60)를 180° 재배향시키고, 이로써 이어서 반대 자석(122)이 다른 자석(120)에 부착되어 캐리지(60)를 새로운 배향으로 고정시킨다. 이어서, 지지체 플레이트(30)가 다시 가속되어 샘플(12)을 마이크로유체 칩(14)을 통해 역류 방향으로 이동시키고; 이로써 캐리지(60) 및 그의 각각의 마이크로유체 칩(14)의 스프닝이 다시 수행될 수 있다.
도 10a를 참조하면, 하나의 대안적 실시양태에서는, 하부 플레이트(108) 상에 마운팅된 전자석(130)이 캐리지(60)를 180° 스피닝 또는 회전시키기 위해 사용된다. 전자석(130)은 샤프트(40)를 통해 전달된 온보드 배터리 또는 와이어를 사용하여 전력공급될 수 있다. 이 실시양태에서, 포스트(114)는 포스트(114)의 대향하는 측면 상에 반대 자극을 생성시키는 자석(115)을 함유한다. 전자석(130)은 또한 나타낸 바와 같이 2개의 자극을 포함하고, 이는 작동되면, 전자석(130)의 N극이 자석(115)의 S극에 인접하도록 포스트(114)를 강제 회전시킨다. 역으로, 전자석(130)의 S극은 자석(115)의 N극에 인접한다. 전자석(130)의 극성을 역전시킴으로써 캐리지(60)가 회전한다.
도 10b는, 구심 래칫이 캐리지(60)를 스피닝 또는 회전시키기 위해 사용되는 또한 또 다른 실시양태를 나타낸다. 이 실시양태에서, 하부 플레이트(108)는 포스트(114)에 고정된 래칫형 기어 또는 휠(134)을 함유한다. 래칫형 기어(134)는, 한쪽 단부에서 스프링(138)에 연결된 래칫형 톱니(136)의 세트와 접속된다. 스프링(138)은 하부 플레이트(108)의 반대쪽 단부에서 정착 고정된다. 래칫형 톱니(136)의 반대쪽 단부는 추(142)에 커플링된 필라멘트, 라인, 케이블, 또는 스트링(140)에 연결된다. 시스템(10)의 작동 동안, 지지체 플레이트(30)가 회전함에 따라, 구심력이 추(142)를 하부 플레이트(108) 상에서 방사상 외부를 향해 이동시키고, 이로써 스프링(138)이 이 힘을 수용하도록 연장된다. 특히, 래칫형 톱니(136)는 톱니의 배향으로 인해 이 작동 동안 래칫형 기어(134)를 이동시키지 않는다. 지지체 플레이트(30)가 감속되거나 정지되면, 스프링(138)의 인장력이 래칫형 톱니(136) (및 추(142))를 방사상 내부를 향해 (화살표 A 방향으로) 끌어당기고, 이로써 래칫형 톱니(136)는 이제 래칫형 기어(134)와 맞물리고 포스트(114)를 회전시킨다. 포스트(114)의 회전은 캐리지(60)를 180° 도 회전시킨다.
도 11은, 중심 홀 또는 구멍(31a)을 포함하는 지지체 플레이트(30a)의 또 다른 실시양태를 나타낸다. 이 실시양태에서는, 마이크로유체 칩(14)이 지지체 플레이트(30)의 평면에 대해 일반적으로 평행한 수평면에서 회전하기보다는, 마이크로유체 칩(14)이 지지체 플레이트(30)의 회전 평면에 대해 면외 (예를 들어, 아암이 놓인 방사상 평면에 대해 수직) 플리핑된다. 이 실시양태에서, 마이크로유체 칩(14)은, 면외 회전을 가능하게 하는 지지체 플레이트(30) 상에 위치한 슬롯(146)과 맞물리는 핀(144)을 포함할 수 있다. 이 실시양태에서는; 도 5 및 6에 나타낸 마이크로유체 칩(14)과 유사한 방식으로 회전할 수 있는 마이크로유체 칩(14)을 보유하는 캐리지(60)가 제공될 수 있음을 인지한다.
도 12a는 지지체 플레이트(30b)의 또 다른 실시양태를 나타낸다. 이 실시양태에서, 지지체 플레이트(30b)는 본원에 기재된 바와 같이 지지체 플레이트(30)를 처크(34)에 지지시키기 위해 사용되는 중심 구멍 또는 홀(33)을 갖는다. 지지체 플레이트(30b)는, 지지체 플레이트의 아암(32)으로서 효과적으로 기능하는 도 12a에서 보이는 바와 같은 여러 기어 박스 또는 기어 어셈블리(150)를 지지한다. 이 실시양태에서는, 각각의 기어 어셈블리(150)가 알루미늄 스크류 등 (도시되지 않음)을 사용하여 도 12a에서 보이는 바와 같이 지지체 플레이트(30b)의 중심 허브(152)에 고정되어 있는 3개의 이러한 기어 어셈블리(150)가 존재한다. 기어 어셈블리(150)는 2개의 기어(154, 156)를 보유하는 저부 하우징(153)을 포함한다. 외부 기어(154)는 저부 하우징(153) 내에 위치한 포스트(158)를 중심으로 회전하고, 기어(154)의 톱니가 기어 어셈블리(150)의 방사상 연부 외로 노출되도록 배치된다. 이와 관련하여, 기어(154)의 톱니는 이 외부 기어(154)를 회전시키기 위한 또 다른 기어 또는 기어링 표면 (도 12b 참조)과 맞물릴 수 있다. 제2 기어(156)는 외부 기어(154)에 기계적으로 맞물린다. 이 내부 기어(156)는, 본원에서 설명되는 바와 같이, 마이크로유체 칩(14')을 함유하는 캐리지(60')를 회전시키기 위해 사용된다.
도 12a에서 보이는 바와 같이, 기어 어셈블리(150)에 대한 탑 커버(160)가 존재한다. 탑 커버(160)는 그 안에 구멍(162)을 포함하고, 여기로 캐리지(60')에 연결된 샤프트 또는 포스트(164)가 통과하여 내부 기어(156)에 기계적으로 연결된다. 자석(168) (예를 들어, 희토류 자석 또는 다른 유형)을 수용하도록 치수조절된 또 다른 구멍(166)이 탑 커버(160) 내에 형성된다. 자석(168)은 이 구멍(166) 및 지지체 플레이트(30) 내에 형성된 부분적 오목부에 정착 고정된다. 자석(168)은 캐리지(60')의 회전 동안 (마이크로유체 칩(14')이 180° 회전할 때까지) 마이크로유체 칩(14')의 배향을 2개의 배향 중 하나로 유지하기 위해 사용된다. 캐리지(60')는 마이크로유체 칩(14')을 그 위에 보유하도록 치수조절된다. 마이크로유체 칩(14') 및 캐리지(60')는, 마이크로유체 칩(14')이 제거가능한 패스너 (예를 들어, 스크류 등)를 사용하여 캐리지(60')에 고정될 수 있도록 코너에 홀(170)을 갖지만; 마이크로유체 칩(14')은 임의의 다른 유형의 패스너를 사용하여 고정될 수 있다. 추가로, 캐리지(60')의 밑면에는, 자기 스크류(172) (예를 들어, 강철 스크류)를 수용하는 2개의 위치가 존재한다. 이들 스크류(172)는, 지지체 플레이트(30b)의 회전 동안 캐리지(60') (및 마이크로유체 칩(14'))를 2개의 배향 중 하나로 유지하기 위해 사용된다. 도 12b에서 보이는 바와 같이, 실시양태의 캐리지(60')를 회전시키기 위해, 지지체 플레이트(30')가 회전하는 동안 (지지체 플레이트(30')는 이 작동을 위해 감소된 속도로 회전할 수 있음) 기어 톱니(180)를 갖는 표면을 외부 기어(154)와 접촉시킨다 (화살표 A로 보이는 바와 같이). 지지체 플레이트(30')의 회전은 기어 톱니(180)와 함께 정지 표면을 가로질러 (예를 들어, 화살표 B 방향으로) 기어(154)를 이동시켜 기어(154)를 회전시키고 캐리지(60')의 회전을 유발한다. 도 12a 및 12b의 실시양태에서, 마이크로유체 칩(14')은 마이크로유체 칩(14') 바로 내부에 형성된 샘플 챔버(70', 72')를 포함한다. 이 실시양태에서, 하나 이상의 마이크로유체 채널(16')의 단부의 포트(20, 22')는 각각의 온-칩 샘플 챔버(70', 72')로 이어진다.
도 13은 본원에 기재된 시스템(10) 내로 혼입될 수 있는 임의적 필터 부재(190)를 나타낸다. 필터 부재(190)는 보다 큰 크기조절된 샘플 구성요소가 마이크로유체 채널(16) 내로 통과되고 마이크로유체 채널을 클로깅하는 것을 방지하기 위해 사용된다. 필터 부재(190)는 격자형 필터 패턴 또는 메쉬(193)를 사용한다. 하나의 실시양태에서, 필터는, 루어 슬립 (예를 들어, 슬립 팁 커넥터), 루어 락 (예를 들어, 회전형 칼라) 등과 같은 임의 종류의 시린지 부착을 가질 수 있는 단부 단편(192) (또는 탑)으로 구성된다. 메쉬(193)를 그 안에 혼입한 또 다른 단부 단편(194)이 반대쪽 단부 단편(192)에 대하여 시일링되어 완전한 필터 부재(190)를 형성한다. 단부 단편(194) 또한, 루어 슬립 (예를 들어, 슬립 팁 커넥터), 루어 락 (예를 들어, 회전형 칼라) 등과 같은 임의 종류의 시린지 부착을 가질 수 있다. 일부 실시양태에서, 필터 부재(190)는 마이크로유체 칩(14, 14') 상류 또는 이전에 위치하고, 마이크로유체 칩(14, 14')의 클로깅을 방지하기 위해 샘플을 여과하도록 구성된다. 일부 예에서, 상류 필터 부재(190)는, 샘플이 클로깅 없이 마이크로유체 칩(14, 14')을 통과하는 것을 가능하게 하기 위해 조직 또는 조직 단편을 절단하거나 마이크로화하도록 구성된 메쉬를 포함할 수 있다. 샘플의 절단 또는 마이크로화는 마이크로유체 칩(14, 14')에서의 마이크로유체 전단의 목적상 거시적 응집물을 생성하도록 구성된다. 일부 실시양태에서, 필터 부재(190)는, 단지 특정 크기조절된 샘플이 수집을 위해 장치 외부로 통과하는 것을 가능하게 하도록 마이크로유체 칩(14, 14')의 하류 또는 이후에 위치한다.
도 14a 내지 14j는 마이크로유체 채널(16)에 있어 상이한 구성을 갖는 마이크로유체 칩(14)의 여러 상이한 실시양태를 나타낸다. 도 14a는 모래시계 디자인을 갖는 마이크로유체 채널(16)을 갖는 마이크로유체 칩(14)을 나타낸다. 이 실시양태에서, 마이크로유체 채널(16)은, 마이크로유체 칩(14)의 길이를 따라 대략 중간 경로인 작은 수축 영역(204)에 도달하는 점진적 테이퍼링 측면 프로파일(200, 202)을 갖는다. 도 14a에서 보이는 바와 같이, 마이크로유체 칩(14)의 제1 스테이지 (좌측으로부터 우측으로)는 단면적 (x)에 의해 한정되는 유입구(206)를 갖고, 이는 x 초과인 단면적으로 외부를 향해 테이퍼링된다(208). 이어서, 마이크로유체 채널(16)은 x 미만인 단면적을 갖는 수축 영역(204)으로 점진적으로 테이퍼링된다(200, 202). 디자인은, 샘플(12)이 수축 영역(204)의 보다 작은 단면적을 통과함에 따라 그의 속도가 점진적으로 증가하도록 의도된다. 대안적 실시양태에서는, 수축 영역(204)에 대해 점진적으로 테이퍼링(200, 202)되기보다는, 도 14b에서 보이는 바와 같이 마이크로유체 채널(16)이 단계적 테이퍼(212)를 가질 수 있다. 마이크로유체 칩(14)의 각각의 측면 상의 초기 확장(208)은 또한 생략될 수 있고, 이 경우 마이크로유체 채널(16)은 수축 영역(204)까지 단면적이 점진적으로 감소함을 인지한다. 하나의 특정 실시양태에서, 수축 영역(204)은 약 1.5 mm의 폭 및 약 1.5 mm의 깊이를 가질 수 있다. 여러 실시양태에서, 길이, 또는 폭은, 약 0.1 mm 내지 약 0.3 mm, 약 0.3 mm 내지 약 0.6 mm, 약 0.6 mm 내지 약 0.9 mm, 약 0.9 mm 내지 약 1.2 mm, 약 1.2 mm 내지 약 1.5 mm, 약 1.5 내지 약 1.7 mm, 또는 약 1.7 mm 내지 약 2.0 mm의 범위, 또는 종점을 포함한 열거된 것들 사이의 임의의 값일 수 있다. 실시양태에 따라 보다 큰 지수가 사용될 수도 있다. 유입구(206) (또는 유출구)는, 예를 들어 약 6 mm의 깊이 및 약 5 mm의 폭과 같은 보다 큰 치수를 가질 수 있다. 마찬가지로, 유입구의 길이 (또는 폭)은, 실시양태에 따라, 예를 들어 약 2 mm 내지 약 3 mm, 약 3 mm 내지 약 4 mm, 약 4 mm 내지 약 5 mm, 약 5 mm 내지 약 6 mm, 약 6 mm 내지 약 7 mm, 약 7 mm 내지 약 8 mm의 범위 또는 종점을 포함한 열거된 것들 사이의 임의의 값으로 다양할 수 있다. 마이크로유체 채널의 수축 영역(204)의 길이는 y에 의해 정의되고, 이는 대략 약 1.5 mm일 수 있다. 다른 치수, 예를 들어 약 0.5 내지 0.7 mm, 약 0.7 내지 약 1.0 mm, 약 1.0 내지 약 1.2 mm, 약 1.2 mm 내지 약 1.5 mm, 약 1.5 mm 내지 약 1.7 mm, 약 1.7 내지 약 2.0 mm의 범위의 것들 또는 종점을 포함한 열거된 것들 사이의 임의의 값이 사용될 수 있다.
도 14c는 일련의 확장 영역(220) 및 수축 영역(222)을 갖는 단일 마이크로유체 채널(16)을 갖는 마이크로유체 칩(14)을 나타낸다. 이 디자인에서, 마이크로유체 채널(16)은 유입구(224)에서 x의 초기 단면적을 가질 수 있다. 이어서, 채널은 확장 영역(220)에서 x 초과의 단면적까지 외부를 향해 확장될 수 있다. 확장 영역(220)은 약 1 mm 내지 약 5 mm 범위 내의 폭 (최대 폭에서 측정)을 가질 수 있다. 예를 들어, 확장 영역(220)의 하나의 예시적 폭은 1.3 mm이다. 다른 실시양태는 다른 폭, 예컨대 약 1 mm 내지 약 1.2 mm, 약 1.2 mm 내지 약 1.4 mm, 약 1.4 mm 내지 약 1.7 mm, 약 1.7 mm 내지 약 2.0 mm, 약 2.0 mm 내지 약 2.5 mm, 약 2.5 mm 내지 약 3.0 mm, 약 3.0 mm 내지 약 4.0 mm, 4.0 mm 내지 약 5.0 mm, 또는 종점을 포함한 열거된 것들 사이의 임의의 값을 사용할 수 있다. 마이크로유체 채널(16)의 확장 후, 이어서 마이크로유체 채널(16)은 수축 영역(222)에서 x 이하의 단면적으로 작아진다. 수축 영역(220)은 약 100 μm 내지 약 3 mm 범위 내의 폭을 가질 수 있다. 수축 영역(220)의 특정 예시적 폭은 400 μm이다. 다른 실시양태는, 예를 들어, 약 100 μm 내지 약 150 μm, 약 150 μm 내지 약 200 μm, 약 200 μm 내지 약 250 μm, 약 250 μm 내지 약 500 μm, 약 500 μm 내지 약 750 μm, 약 750 μm 내지 약 1000 μm, 약 1000 μm 내지 약 1.5 mm, 약 1.5 mm 내지 약 2 mm, 약 2 mm 내지 약 2.5 mm, 약 2.5 mm 내지 약 3.0 mm, 및 종점을 포함한 이들 사이의 임의의 값의 폭을 사용한다.
도 14d는, 마이크로유체 채널(16)을 2개의 보다 작은 마이크로유체 채널로 분지화하는 일련의 분기부(230)를 포함하는 마이크로유체 채널(16)을 갖는 마이크로유체 칩(14)을 나타낸다. 도 14d에서 보이는 바와 같이 분기부의 다중 스테이지가 존재할 수 있다. 이어서, 보다 작은 마이크로유체 채널(16)은 2개의 마이크로유체 채널과 재조합되어 하나로 합쳐진다. 이 과정은, 마이크로유체 채널(16)이 마이크로유체 칩(14)의 반대쪽 측면 상에서 단일 채널로 합쳐질 때 완료된다. 이 실시양태에서, 마이크로유체 칩(14)은 유입구(232) (또는 유출구)에서 x의 초기 단면적을 갖도록 디자인될 수 있다. 이어서, 마이크로유체 채널(16)이 제1 영역(234)에서 확장되거나 수축되거나 x의 유입구 단면적과 동일하게 남아있을 수 있다. 이어서, 단일 마이크로유체 채널(16)은 2개의 마이크로유체 채널(236)로 분기된다. 이들 분기된 마이크로유체 채널(236)은 이제 제1 영역(234)의 초기 단면적 x보다 작다. 이어서, 분기된 마이크로유체 채널(236)은 다시 분기되어 4개의 마이크로유체 채널(238)을 생성한다. 이들 마이크로유체 채널(238)의 단면적은 초기 단면적 x보다 훨씬 더 작다. 일반적으로, 분기 채널의 단면적은 x/y 이하로 결정될 수 있고, 여기서 x는 초기 단면적이고, y는 이 구역에서의 평행 채널의 양이다. 마이크로유체 채널(236, 238)의 각각의 후속 스테이지는 상류 마이크로유체 채널보다 작다. 이 실시양태에서, 각각의 분기점에서, 수렴되는 마이크로유체 채널의 점진적으로 테이퍼링된 벽의 정점에 형성되는 예리한 팁 또는 포인트인 연부(240)가 형성된다. 이는 지방 또는 다른 조직이 지나감에 따라 이를 절단하는 나이프 연부를 생성한다.
도 14e는, 마이크로유체 채널(16)이 다이아몬드 패턴을 갖고, 여기서 유입구(250)는 x의 단면적을 갖는, 마이크로유체 칩(14)의 또 다른 실시양태를 나타낸다. 채널은, 단면적이 초기 단면적 x 이하가 되도록 수축 영역(252)까지 급격히 좁아지는 구역을 갖는다. 수축 영역(252) 후에는, 마이크로유체 채널이 외부를 향해 급격히 확장되어 x 이상의 단면적을 갖는 확장 영역(254)에 도달한다. 이 실시양태는 복수의 수축 영역(252) 및 확장 영역(254)을 가질 수 있다. 확장 영역(254)은 약 1 mm 내지 약 3 mm, 예를 들어 약 1 mm 내지 약 1.25 mm, 약 1.25 mm 내지 약 1.5 mm, 약 1.5 mm 내지 약 1.75 mm, 약 1.75 mm 내지 약 2.0 mm, 약 2.0 mm 내지 약 2.2.5 mm, 약 2.25 mm 내지 약 2.5 mm, 약 2.5 mm 내지 약 2.75 mm, 약 2.75 mm 내지 약 3.0 mm의 범위 내, 및 종점을 포함한 이들 사이의 임의의 값의 폭 (최대 폭에서 측정)을 가질 수 있다. 수축 영역(252)은 예를 들어 약 100 μm 내지 약 200 μm, 약 200 μm 내지 약 300 μm, 약 300 μm 내지 약 400 μm, 약 400 μm 내지 약 500 μm, 약 500 μm 내지 약 600 μm, 약 600 μm 내지 약 700 μm, 약 700 μm 내지 약 800 μm, 약 800 μm 내지 약 900 μm, 약 900 μm 내지 약 1000 μm, 종점을 포함한 이들 사이의 임의의 값의 폭을 포함한, 약 100 μm 내지 약 1 mm 범위 내의 폭을 가질 수 있다.
도 14f는, 마이크로유체 채널(16)의 길이를 따라 배치된 복수의 지느러미 형상의 포켓(260)을 갖는 단일 마이크로유체 채널(16)을 사용하는 마이크로유체 칩(14)의 또 다른 실시양태를 나타낸다. 지느러미 형상의 포켓(260)은 마이크로유체 칩(14)을 통한 유체의 유동에서 난류를 일으키고, 이는 샘플(12) 상에 높은 전단을 부여한다. 예를 들어, 세포 또는 조직을 함유하는 샘플(12)이 지느러미 형상의 포켓(260)을 갖는 마이크로유체 채널(16)을 통과할 수 있고, 세포가 높은 전단 응력 환경에 반응하여 분석될 수 있다. 지느러미 형상의 포켓(260)은 유입구(262)의 단면적 이하인 이들의 개구에서의 최대 단면적을 가질 수 있다. 지느러미 형상의 포켓(260)은 한 점으로 테이퍼링된다.
도 14g는 마이크로유체 칩(14)의 또 다른 실시양태를 나타낸다. 이 실시양태에서, 마이크로유체 칩(14)은 나이프 연부 분기부(240) 뿐만 아니라 복수의 확장 영역(220) 및 수축 영역(222)을 혼입한다. 도 14h는 복수의 확장 영역(220) 및 수축 영역(222)과 함께 임의의 나이프 연부는 갖지 않는 분기부(270)를 포함하는 마이크로유체 칩(14)의 또 다른 실시양태를 나타낸다. 도 14h에서 보이는 바와 같이, 분기부(270) 각각에 둥근 또는 예리하지 않은 코너가 형성된다. 특정 일례로서, 수축 영역(222)은 약 400 μm의 폭 및 약 300 μm의 깊이를 가질 수 있다. 여러 실시양태에서, 수축 영역은, 약 200 μm 내지 약 250 μm, 약 250 μm 내지 약 300 μm, 약 300 μm 내지 약 350 μm, 약 350 μm 내지 약 400 μm, 약 400 μm 내지 약 450 μm, 약 450 μm 내지 약 500 μm, 및 종점을 포함한 이들 사이의 임의의 폭을 포함한, 약 200 μm 내지 약 500 μm의 폭 범위를 갖는다. 마찬가지로, 수축 영역은, 약 200 μm 내지 약 250 μm, 약 250 μm 내지 약 300 μm, 약 300 μm 내지 약 350 μm, 약 350 μm 내지 약 400 μm, 약 400 μm 내지 약 450 μm, 약 450 μm 내지 약 500 μm, 및 종점을 포함한 이들 사이의 임의의 폭을 포함한, 약 200 μm 내지 약 500 μm 범위의 깊이를 가질 수 있다. 일부 실시양태에서, 확장 영역(220)은 약 300 μm의 깊이 및 약 1.3 mm의 폭을 가질 수 있다. 또한 추가의 실시양태에서, 확장 영역의 깊이는, 약 200 μm 내지 약 250 μm, 약 250 μm 내지 약 300 μm, 약 300 μm 내지 약 350 μm, 약 350 μm 내지 약 400 μm, 약 400 μm 내지 약 450 μm, 약 450 μm 내지 약 500 μm, 및 종점을 포함한 이들 사이의 임의의 깊이를 포함한, 약 200 μm 내지 약 500 μm의 범위일 수 있다. 폭은, 실시양태에 따라, 약 0.5 mm 내지 약 0.75 mm, 약 0.75 mm 내지 약 1.0 mm, 약 1.0 mm 내지 약 1.1 mm, 약 1.1 내지 약 1.2 mm, 약 1.2 mm 내지 약 1.3 mm, 약 1.3 mm 내지 약 1.4 mm, 약 1.4 mm 내지 약 1.5 mm, 약 1.5 mm 내지 약 2.0 mm, 약 2.0 mm 내지 약 2.5 mm, 약 2.5 mm 내지 약 3.0 mm, 및 종점을 포함한 이들 사이의 임의의 폭을 포함한, 약 0.5 mm 내지 약 3 mm의 범위일 수 있다. 하나의 실시양태에서, 유입구 또는 유출구에서의 마이크로유체 채널(16)의 최대 깊이는 약 6 mm이다. 다른 실시양태는 약 3 mm 내지 약 4 mm, 약 4 mm 내지 약 5 mm, 약 5 mm 내지 약 6 mm, 약 6 mm 내지 약 7 mm의 범위, 및 종점을 포함한 이들 사이의 임의의 깊이를 포함한, 약 3 내지 약 7 mm 범위의 깊이를 사용한다.
도 14i는, 최소 분기부 채널 내에 도 14a 및 14b의 것들과 유사한 나이프 연부 분기부(240) 및 모래시계 구역(280)을 포함하는 마이크로유체 칩(14)의 또 다른 실시양태를 나타낸다. 도 14j는, 나이프 연부 분기부(240) 및 나이프 연부 분기부(240)의 바로 상류 또는 이전에 위치한 모래시계 구역(280)을 포함하는 마이크로유체 칩(14)의 또한 또 다른 실시양태를 나타낸다.
하나의 특정 실시양태에서는, 본원에 기재된 시스템을 사용하여 지방 조직이 프로세싱된다. 먼저, 의료진 또는 다른 건강 관리 전문가는, 환자로부터, 응용에 따라, 2 cc 내지 100 cc, 예컨대 약 2 내지 약 10 cc, 약 10 cc 내지 약 25 cc, 약 25 cc 내지 약 50 cc, 약 50 cc 내지 약 75 cc, 약 75 cc 내지 약 100 cc의 범위, 또는 종점을 포함한 이들 사이의 임의의 부피의 지방흡입 샘플(12)을 취할 것이다. 이어서, 인산염 완충 식염수 (PBS) 완충액 (또는 다른 허용가능한 완충제)로 혈액을 다수회 세척함으로써 지방을 초기 프로세싱한다. 이 과정이 마무리되면, 지방 샘플(12)을 시린지 등을 사용하여 샘플 챔버(70, 72) 내로 로딩하고, 샘플 챔버를 마이크로유체 칩(14, 14')과 함께 캐리지(60, 60') 내로 로딩한다. 대안으로, 별도의 샘플 챔버(70, 72) 내로의 지방 샘플(12)의 로딩 대신에, 시린지 (예를 들어, 도 8a 및 8b의 시린지 챔버(86))의 내용물을 마이크로유체 칩(14, 14')과 함께 캐리지(60, 60') 내로 직접 로딩할 수 있다. 이 과정은 단일 마이크로유체 칩(14, 14')에 또는 다중 마이크로유체 칩(14, 14') (예를 들어, 보다 큰 샘플 프로세싱 또는 상이한 대상체로부터의 샘플을 위한 것)에 사용될 수 있다.
샘플 챔버(70, 72) (또는 시린지 챔버(86)) 및 마이크로유체 칩(14, 14')이 이들의 각각의 캐리지(60, 60') 내로 로딩됨에 따라, 모터(40)의 작동을 위해 컨트롤러(50)를 사용하여 진행이 시작된다. 회전 속도를 초기에 요망되는 RPM 속도까지 상승시키고, 그의 하나의 비-제한적 실시양태를 도 4에 나타내었다. 이는 지방 샘플(12)을 샘플 챔버(70) (이것이 가장 방사상 내부를 향해 있는 샘플 챔버라고 가정됨)로부터 마이크로유체 칩(14) 내로 이동시키고, 여기서 샘플은 하나 이상의 마이크로유체 채널(16) 내에서 전단력에 놓인다. 샘플은 계속해서 다른 샘플 챔버(72) 내로 도입되고, 이에 따라 캐리지(60, 60') 및 마이크로유체 칩(14, 14')이 본원에 기재된 양식 (예를 들어, 감속, 전자석, 기계적 기어링, 구심 래칫, 수동 회전 등) 중 임의의 하나를 사용하여 180° 회전한다. 마이크로유체 칩(14, 14')의 회전, 스피닝, 또는 플리핑 후, 지지체 플레이트(30)를 회전시켜 샘플을 샘플 챔버(72)로부터 마이크로유체 칩(14, 14') 내로 구동시키고, 여기서 샘플은 하나 이상의 마이크로유체 채널(16) 내에서 추가의 전단력에 노출된다. 샘플은 계속해서 방사상 외부를 향해, 또한 샘플 챔버(70) 내로 이동한다. 캐리지(60, 60') 및 마이크로유체 칩(14, 14')은 다시 180° 회전하고, 과정은 요망되는 사이클 수 동안 반복된다.
지방 샘플(12)이 마이크로유체 칩(14, 14')을 통해 요망되는 사이클 수 또는 횟수로 진행된 후, 이제 프로세싱된 지방 샘플(12)은 샘플 챔버(70, 72) (또는 시린지 챔버(86))로부터 제거된다. 하나의 실시양태에서는, 이어서, 프로세싱된 지방 샘플(12)이 샘플 챔버(70, 72)로부터 헤드(74)에서 부착된 별도의 시린지로 전달되고, 이로써 프로세싱된 샘플(21)이 회수될 수 있다. 프로세싱된 샘플(12)은 이제 시린지 내에 있고, 이어서 이는 임의로 대상체에게 주입된다. 대안으로, 시린지 챔버(86)를 샘플 챔버로서 사용하는 경우, 시린지 챔버(86)를 사용하여 그 안에 함유된 지방 샘플(12)을 대상체에게 직접 주입한다.
디자인은 또한, 비교적 짧은 기간, 예를 들어 일부 실시양태에 따르면 10분 미만 내에 빠른 다수 반복이 수행되는 것을 가능하게 한다. 예를 들어, 일부 실시양태에서, 20회 반복이 4분 내에 수행될 수 있으며, 100회 반복이 20분 내에 수행될 수 있다. 이 플랫폼에서, 0 mL/min 내지 700 mL/min (또는 그 초과)의 임의의 유량, 예를 들어, 0 mL/min 내지 약 10 mL/min, 약 10 mL/min 내지 약 25 mL/min, 약 25 mL/min 내지 약 50 mL/min, 약 50 mL/min 내지 약 75 mL/min, 약 75 mL/min 내지 약 100 mL/min, 약 100 mL/min 내지 약 200 mL/min, 약 200 mL/min 내지 약 300 mL/min, 약 300 mL/min 내지 약 400 mL/min, 약 400 mL/min 내지 약 500 mL/min, 약 500 mL/min 내지 약 600 mL/min, 약 600 mL/min 내지 약 700 mL/min, 및 종점을 포함한 이들 사이의 임의의 유량이 달성될 수 있다. 이전 시린지 펌프에 기초한 과정에서, 유체 펌프가 처리할 수 있는 최대 유량은 약 12.5 mL/min이었다. 도 15는, 예를 들어, 도 11에 나타낸 유형의 시스템(10) 사용시 RPM의 함수로서의 마이크로유체 칩(14)을 통한 평균 유량의 그래프를 나타낸다. 추가로, 본원에 기재된 시스템(10)은, 도 16에서 보이는 바와 같이 시린지 펌프에 기초한 과정을 사용하여 생성된 전단력에 비해 훨씬 더 높은 고전단력을 생성할 수 있다. 이 디자인은 또한, 다른 펌프에 기초한 과정에 비해 훨씬 더 빠른 약 10초 내에 단일 반복의 프로세싱을 수행한다는 이점을 갖는다.
도 17은, 도 5에 나타낸 시스템(10)을 사용하여 프로세싱된, RPM의 함수로서의 2개의 상이한 마이크로유체 칩(14)을 통한 유량 (mL/min)을 나타내는 실험적으로 얻어진 데이터의 그래프를 나타낸다. 제1 마이크로유체 칩(14)은 도 14g에 나타낸 유형 (예를 들어, 확장 및 수축 영역을 갖는 분기 마이크로유체 채널)의 것이었고, 이는 200 μm의 깊이 및 300 μm의 폭을 포함하였다. 제2 마이크로유체 칩(14)은 도 14g에 나타낸 유형 (예를 들어, 확장 및 수축 영역을 갖는 분기 마이크로유체 채널)의 것이었고, 이는 1 mm의 깊이 및 300 μm의 폭을 포함하였다. 도 17에서 보이는 바와 같이, 1,500 미만의 RPM에서도 높은 유량이 달성가능하다. 도 18은, 보다 작은 치수 (예를 들어, 200 μm의 깊이 및 300 μm의 폭)를 갖는 마이크로유체 칩(14)에 대한 RPM의 함수로서의 전단 응력 계산치를 나타내는 그래프를 나타낸다. 전단 응력은 하기 등식을 사용하여 계산하였다:
Figure pat00001
여기서 τ는 전단 응력이고, "6"은 상수이고, μ는 유체 점도이고, Q는 유량이고, w는 채널의 폭이고, h는 채널의 깊이이다. 도 18에서 보이는 바와 같이, 마이크로유체 칩(14)을 사용하여 60,000 다인/cm2까지의 전단력 (마이크로유체 칩(14) 통과 당)이 달성되었다. 물론, 보다 높은 RPM 모터(42)로는 60,000 다인/cm2 초과의 전단력이 달성될 수 있다. 여러 실시양태에서, 약 10,000 다인/cm2 내지 약 20,000 다인/cm2, 20,000 다인/cm2 내지 약 30,000 다인/cm2, 약 30,000 다인/cm2 내지 약 40,000 다인/cm2, 약 40,000 다인/cm2 내지 약 50,000 다인/cm2, 약 50,000 다인/cm2 내지 약 60,000 다인/cm2, 약 60,000 다인/cm2 내지 약 70,000 다인/cm2, 약 70,000 다인/cm2 내지 약 80,000 다인/cm2, 약 80,000 다인/cm2 내지 약 90,000 다인/cm2, 약 90,000 다인/cm2 내지 약 100,000 다인/cm2의 전단력, 또는 종점을 포함한 이들 사이의 임의의 전단력을 포함한, 약 10,000 다인/cm2 내지 약 100,000 다인/cm2 범위의 전단력이 달성될 수 있다.
시스템(10)의 하나의 주요 응용은 지방 조직 내에서 나타나는 줄기 세포를 해리, 풍부화, 및 활성화시키는 것이다. 본원에서 설명되는 바와 같이, 마이크로유체 칩(14, 14')의 마이크로유체 채널(들)(16) 내에 생성된 전단력이 지방 조직, 중간엽 줄기 세포 및 지방 조직 내에서 나타나는 다른 세포의 분해에 사용된다. 본원에서 나타낸 다양한 마이크로유체 칩(14) 디자인 (예를 들어, 도 14a 내지 14j)은 증가된 전단 응력을 샘플에 인가한다. 예를 들어, 마이크로유체 채널(16)의 수축, 테이퍼, 및 형상화된 표면이 지방 조직을 분해하고, 그 안에서 나타나는 세포를 활성화시킨다.
시스템(10)은 다른 응용에 사용될 수 있다. 예를 들어, 시스템은 종양 세포 단리에 사용될 수 있다. 이러한 의미에서, 이는 또한, 샘플을 단일 세포 또는 몇몇 세포의 응집물로 분해하는 일반적 세포 해리기 또는 세포 분리기로서 사용될 수 있다. 도 19는 본원에 기재된 시스템(10)을 사용하여 마이크로유체 칩(14)을 통해 진행시킨 종양 세포에서 얻어진 현미경 이미지를 나타낸다. 도 19에서 보이는 바와 같이, 다수의 단일 세포가 시야에 존재한다. 이는 훨씬 더 적은 단일 세포를 갖는 도 20에서 볼 수 있는 프로세싱되지 않은 종양 조직의 대조군과 대조적이다. 시스템(10)과 함께 사용될 수 있는 추가의 조직 유형은, 예를 들어, 뇌 조직 및 골수를 포함한다. 또한, 세포 상에 전단 응력을 부여하여 이들이 표현형 또는 다른 변화 (예를 들어, 중간엽 줄기 세포)에 놓일 수 있도록 하기 위해 세포를 마이크로유체 칩(14, 14')을 통해 진행시킬 수 있다. 별도로, 마이크로유체 칩(14, 14')은, 세포의 응집물에 전단 응력을 인가하여 단리를 위해 단일 세포로 전단시킴으로써 세포의 응집물을 분해한다. 이어서, 이들 단일 세포를 분류하거나 (예를 들어, 종양 유형) 세포 신호 또는 분비에 대해 분석할 수 있다.
도 21은, 실험실 또는 진단에서의 사용을 위해 단일 세포를 선별하거나 세포를 크기에 의해 분류하기 위해 사용될 수 있는 마이크로유체 칩(14)의 하나의 실시양태를 나타낸다. 예를 들어 종양 세포 또는 섬 세포의 분해 후, 마이크로유체 칩(14)을 사용하여 연구를 위해 단일 종양 세포를 선별하고 트랩핑할 수 있다. 마이크로유체 칩(14)은 단일 세포 또는 특정 크기의 임의의 응집물을 분류하도록 디자인된다. 마이크로유체 칩(14)은 단면적 (x)을 갖는 2개의 유입구 또는 유출구(292)를 갖고, 여기서 샘플이 도입/배출된다. 이어서, 샘플은 유입구/유출구 단면적 (x) 초과의, 미만의 또는 그와 동일한 단면적을 갖는 주요 채널(294)을 통해 유동한다. 샘플이 주요 채널(294)을 통해 유동함에 따라, 이는 마이크로유체 칩(14)의 저부 및/또는 측면에 형성된 작은 저장소(296) 위로 통과한다. 저장소(296)는, 예를 들어, 약 100 마이크로미터 미만의 직경을 갖는 크기를 갖는 웰을 포함할 수 있다. 이들 저장소(296)는 주요 채널(294)의 단면적 이하이다. 작은 저장소(296)는 응용에 따라 단일 세포 또는 응집물의 특정 크기로 제조될 수 있다. 저장소는 또한, 효과를 추가하거나 보다 나은 세포의 트랩핑을 위해 주요 채널(294)에 대해 수직으로부터 0 내지 90°의 각 (예를 들어, 0° 내지 10°, 10° 내지 30°, 30° 내지 45°, 45° 내지 60°, 60° 내지 90° 등)을 이룰 수 있다. 하나의 실시양태에서, 트랩핑된 세포는 하류 분석을 위해 마이크로유체 칩(14)으로부터 플러싱될 수 있다. 대안적 실시양태에서, 세포는 저장소(296) 내에 남아있고 이미지화되거나 다른 방식으로 직접 온-칩 분석될 수 있다.
추가로, 이 시스템(10)은 임의 종류의 마이크로유체 칩(14, 14')을 마운팅할 수 있고, 따라서 이것이 거의 임의의 마이크로유체 장치에 대해 보편적이 되는 것을 가능하게 할 수 있다. 이 플랫폼은 프로세싱을 위한 임의의 칩을 통합할 수 있기 때문에, 미래의 응용은 줄기 세포 요법, 알츠하이머 치료, 관절염 치료, 상처 관리 치료, 화장품, 척수 손상, 골절 손상, 뇌 손상, 궤양 치료, 기관 치료, 혈액 요법, 재구성 요법, 면역 요법, 영양상의 응용, 육모 요법, 시력 치료, 신경 요법, 근육 요법, 및 연골 대체를 포함할 수 있다.
도 22는, 도 23에 나타낸 인케이스먼트(46') 실시양태와 함께 사용될 수 있는 샘플 챔버(300)의 또 다른 실시양태를 나타낸다. 이 실시양태에서, 샘플 챔버(300)는 유입구(304) 및 유출구(306)와 유체 소통되는 내부 챔버(302)를 포함한다. 유입구(304)는 내부 챔버(302)를 샘플로 충전시키기 위해 사용되고, 그 안에 배치된 1-방향 밸브(308)를 포함한다. 1-방향 밸브(308)는 임의 종류의 기계적 밸브를 포함할 수 있고, 또한 해제가능 격막을 포함할 수 있다. 하기에 설명되는 바와 같이, 유입구(304) 및 1-방향 밸브(308)는, 샘플을 함유하는 시린지(320) (도 23)가 유입구(304) 내로 삽입되고, 1-방향 밸브(308)를 개방하여, 시린지(320)의 내용물이 내부 챔버(302) 내로 로딩되거나 내부 챔버(302)로부터 제거될 수 있도록 치수조절된다.
챔버(300)의 유출구(306)는, 예를 들어, 포트(20, 22)를 사용하여, 마이크로유체 칩(14)과 유체 소통된다. 내부 챔버(302)는 경사진 하부 표면(310)을 포함한다. 경사진 하부 표면(310)은, 프로세싱된 샘플이 추출될 때, 전체 샘플이 회수되도록, 챔버(300)의 내용물을 유입구(304)를 향해 강제 이동시키기 위해 경사져 있다. 샘플 챔버(300)는 내부 챔버(302)와 샘플 챔버(300)의 외부 사이에서 소통되는 (즉, 대기로 통풍됨) 벤트 채널(312)을 포함한다. 도 22에서 보이는 바와 같이, 벤트 채널(312)은 챔버(300)의 전면 (마이크로유체 칩(14)에 연결되는 측면) 내부로부터, 챔버(300)의 후면 (시린지가 내부 챔버(302)를 충전시키기 위해 부착되는 후면)에서 대기로 진행된다. 이는 프로세싱 동안 기류를 가능하게 하여 유체가 고르게 이동 통과한다.
도 23은 도 22에 나타낸 챔버(300)와 함께 사용되는 인케이스먼트(46')의 실시양태를 나타낸다. 도 23에서 보이는 바와 같이, 마이크로유체 칩(14)은 챔버(300)와 함께 캐리지(60) 상에 마운팅된다. 이 실시양태에서 인케이스먼트(46')는 과정 동안 부주의로 쏟아지거나 방출되는 임의의 샘플을 받기 위해 사용될 수 있는 보울(48)을 포함한다. 인케이스먼트(46')는, 샘플이 챔버(300) 내로 로딩되거나 프로세싱 후 챔버(300)로부터 제거될 수 있도록 시린지(320)를 수용하기 위해 치수조절된 인케이스먼트(46')의 측면 상에 위치한 접근 포트(52)를 추가로 포함한다. 도 23은 접근 포트(52)를 통해 연장되고 챔버(300)의 유입구(304) 내에 삽입된 시린지(320)를 나타내며, 이로써 프로세싱되지 않은 샘플이 내부 챔버(302) 내로 로딩되거나 프로세싱 완료 후 이로부터 제거될 수 있다.
챔버(300)의 로딩 또는 언로딩을 위해, 마이크로유체 칩(14)이 접근 포트(52)와 정렬되고, 이어서 시린지(320)가 접근 포트(52) 내로 및 유입구(304) 내로 삽입되어 1-방향 밸브(308)를 개방한다. 완료되면, 시린지(320)가 제거되고, 이어서 이는 1-방향 밸브(308)를 폐쇄하고 임의의 샘플이 누설되는 것을 방지한다. 이어서, 마이크로유체 칩(14)이 다수 사이클의 캐리지(60) 및 그의 마이크로유체 칩(14)의 스피닝 또는 회전과 함께 본원에 기재된 바와 같이 프로세싱되고, 이에 따라 샘플이 마이크로유체 칩(14)을 통해 앞뒤로 통과한다. 프로세싱 후, 지지체 플레이트(30)가 회전하여 마이크로유체 칩(14)을 접근 포트(52)와 정렬시킬 수 있다. 사용자는 시린지(320)를 챔버(300)의 유입구(304)에 부착하여, 1-방향 밸브(308)를 개방할 것이다. 이어서, 프로세싱된 샘플이 시린지(320) 내로 추출될 수 있다. 경사진 하부 표면(310)은 챔버(300)의 전체 내용물을 배출하는 것을 보조한다. 이 언로딩 과정이 각각의 마이크로유체 칩(14)에 대해 수행될 수 있다.
도 24 내지 26은 시스템(10)의 또 다른 실시양태를 나타낸다. 이 실시양태에서, 시스템(10)은 마이크로유체 칩(14)에 대해 수직으로 마운팅된 하나 이상의 시린지(352)와 접속되는 탑 플레이트 또는 고리(350)를 포함한다. 시린지(352)의 유출구는, 시린지(352)의 단부를 마이크로유체 칩(14)과 유체 커플링시키는 어댑터(80) 등 (예를 들어 도 2)을 사용하여 마이크로유체 칩(14)의 포트(20)에 커플링된다. 마이크로유체 칩(14)의 반대쪽 단부는 본원에 개시된 바와 같은 샘플 챔버(70, 72)에 커플링될 수 있다. 시린지(352)의 시린지 플런저(354)는, 도 25에서 보이는 바와 같이 시린지 플런저(354)를 보유하도록 치수조절된 후크 또는 클립(356)을 사용하여 탑 플레이트 또는 고리(350)를 통해 유지된다. 바람직한 실시양태에서는, 도 25에서 보이는 바와 같이 방사상 내부를 향해 있는 (예를 들어, 내부의) 후크 또는 클립(356)의 제1 세트 및 방사상 외부를 향해 있는 (예를 들어, 외부의) 후크 또는 클립(356)의 제2 세트가 존재한다. 일부 예에서, 후크 또는 클립(356)의 제1 세트 및 후크 또는 클립(356)의 제2 세트는, 시린지 플런저(354)의 원위 단부가 용이하게 각각의 후크 또는 클립(356) 내로 고정되고 그로부터 제거되는 것을 가능하게 하도록 구성된다. 이들 상이한 후크 또는 클립(356)은 마이크로유체 칩(14) 및 부착된 시린지(352)의 "스피닝" 상태에 따라 시린지 플런저(354)와 맞물린다. 하기에서 보다 상세히 논의되는 바와 같이, 캐리지(60)가 회전함에 따라, 마이크로유체 칩(14)에 부착된 시린지(352)가 방사상 내부를 향한 위치로부터 방사상 외부를 향한 위치로 회전할 수 있다. 캐리지(60)가 회전함에 따라, 시린지(352)의 원위 단부는 방사상 내부를 향해 있는 후크 또는 클립(356)의 제1 세트로부터 맞물림해제되고, 이어서 방사상 외부를 향해 있는 후크 또는 클립(356)의 제2 세트에 맞물릴/고정될 수 있다.
따라서, 이 실시양태에서, 하나 이상의 시린지(352)는 마이크로유체 칩(14)의 회전 평면에 대해 일반적으로 수직으로 유지된다. 탑 플레이트 또는 고리(350)는, 내부 스레드형이고, 회전 모터(362)에 커플링된 스레드형 로드(360)와 맞물리는 베어링(358) 상에 회전식으로 마운팅된다. 베어링(358)은 탑 플레이트 또는 고리(350)가 마이크로유체 칩(14) 및 부착된 시린지(들)(352)와 함께 회전하는 것을 가능하게 한다. 회전 모터(362)의 활성화는 스레드형 로드(360)의 회전 및 탑 플레이트 또는 고리(350)의 수직 이동을 일으킨다. 한 방향으로의 회전은 탑 플레이트 또는 고리(350)를 화살표 A 방향으로 하향 이동시키고, 이로써 시린지 플런저(354)를 시린지(352)의 배럴 내로 밀어낸다. 이 방향으로의 모터(362)의 이동은 시린지(352)의 내용물을 마이크로유체 칩(14) 내로 배출시키기 위해 사용된다. 역으로, 반대 방향으로의 회전 모터(362)의 이동은 스레드형 로드(360)를 반대 방향으로 회전시키고, 탑 플레이트 또는 고리(350)의 상향 방향 (화살표 B로 나타냄)으로의 이동을 유발하고, 이로써 시린지 플런저(354)를 시린지(352)의 배럴로부터 끌어당긴다. 이 방향으로의 모터(362)의 이동은 샘플을 마이크로유체 칩(14)으로부터 시린지(352) 내로 밀어내거나 배출시키기 위해 사용된다. 회전 모터(362)는 도 24에 나타낸 바와 같이 인케이스먼트(46)의 상단에 고정될 수 있다.
이 실시양태에서, 마이크로유체 칩(14)은 지지체 플레이트(30) 상의 캐리지(60) 내에 마운팅되어 있으며, 시린지(352)는 한쪽 단부 (도 24에서 보이는 바와 같이 방사상 내부를 향한 위치)에서 어댑터(80) 등을 통해 마이크로유체 칩(14)에 부착되고, 다른쪽 단부에서는 후크 또는 클립(356)을 통해 부착된다. 시스템(10)은, 인케이스먼트(46) 상에 마운팅될 수 있고 진행 파라미터 (예를 들어, RPM 속도, 진행 시간, 감속 속도, 사이클 수, 사이클 시간 등)를 프로그래밍하기 위해 사용될 수 있는 제어 패널(370)을 포함한다. 제어 패널(370)은 또한 디스플레이(372) 등을 사용하여 특정 진행의 상태를 모니터링하기 위해 사용될 수 있다. 사용자가 제어 패널(370)과 접속할 수 있도록 버튼(374)이 제공된다. 시스템(10)은 모터(42)를 사용한 본원에서 이전에 설명된 바와 같이 지지체 플레이트(30)의 회전으로 시작된다. 스피닝 과정 동안, 시린지(352)는 마이크로유체 칩(14)과 함께 회전한다. 회전 모터(362)가 활성화되어 탑 플레이트 또는 고리(350)를 하향 전진시켜 샘플을 시린지(352)로부터 마이크로유체 장치(14) 내로 이동시킨다. 선회는 지지체 플레이트(30)를 구동시키는 주요 모터(42) 및 회전 모터(362) 둘 다에 대해 정지될 것이고, 마이크로유체 칩(14)을 갖는 시린지(352)는 180° 스피닝할 것이다 (예를 들어, 감속이 스피닝을 일으키지만 임의의 다른 스피닝 양식이 또한 사용될 수 있음). 도 26은 방사상 외부를 향한 위치로 180° 스피닝된 마이크로유체 칩(14) 및 시린지(352)를 나타낸다. 상기에서 논의된 바와 같이 캐리지(60) 및 부착된 마이크로유체 칩(14) 및 시린지(352)의 회전은 다양한 방식으로 수행될 수 있다. 시린지(352)의 회전은 플런저(354)를 플런저(354)의 원위 단부가 부착되어 있는 후크 또는 클립(356)에서 해제되게 한다. 이어서, 시린지(352)는 후크 또는 클립(356)의 상이한 세트 (즉, 방사상 외부를 향해 있는 후크 또는 클립(356))와 맞물릴 수 있다. 이어서, 지지체 플레이트(30)를 구동시키는 주요 모터(42) 및 회전 모터(362)가 활성화되고 (역방향으로), 이로써 탑 플레이트 또는 고리(350)가 마이크로유체 칩(14)으로부터 이동하여 샘플을 마이크로유체 칩(14)을 통해 역방향으로 밀어내기 위해 사용된다. 이 과정은 임의 수의 횟수 또는 사이클로 반복될 수 있다. 프로세싱 후, 이제 프로세싱된 샘플을 함유하는 시린지(352)는 시스템(10)으로부터 제거되고, 프로세싱된 샘플 (예를 들어, 지방 조직)을 환자 또는 대상체에게 직접 주입하기 위해 사용된다.
본원에서 설명되는 바와 같이, 시스템(10)의 하나의 주요 용도는 치료 및/또는 미용 응용의 생성을 위한 지방질 조직의 프로세싱이다. 하나의 유리한 측면은, 프로세싱이 추가의 효소 또는 다른 소화제 (예를 들어, 콜라게나제)를 첨가할 필요 없이 수행된다는 점이다. 예를 들어, 상처 치유 응용을 위한 프로세싱된 조직의 비-화학적 치료가 필요하고, 이로써 천연 세포외 매트릭스 성분이 보유된다. 물론, 다른 실시양태에서는, 예를 들어 샘플이 실험실 셋팅에서 평가되는 셋팅에서는, 임의적 소화제, 예컨대 콜라게나제 또는 다른 화학물질 또는 화학 작용제가 첨가될 수 있다. 이들 첨가된 작용제는 세포 및 하위세포 성분 수확 효율을 증가시키기 위해 사용될 수 있다.
지방질 (또는 다른) 조직이 마이크로유체 칩(14)을 사용하여 프로세싱되는 것으로 기재되지만, 조직 프로세싱에는 세척 단계 또는 여과 단계와 같은 다양한 추가의 프로세싱 작업이 수반될 수 있음을 이해하여야 한다. 이들 추가의 프로세싱 단계는 온-칩 (예를 들어, 마이크로유체 칩(14) 상에서) 혼입될 수 있거나, 또는 이들은 오프-칩 (예를 들어, 마이크로유체 칩(14) 상에서의 샘플의 프로세싱 후에) 수행될 수 있다. 예를 들어, 세척액이 챔버(70, 72) 또는 마이크로유체 칩(14) 내의 샘플을 세척하기 위해 사용될 수 있는 다른 별도의 세척 챔버 (도시되지 않음) 내로 로딩될 수 있다. 마찬가지로, 마이크로유체 칩 배출시 샘플을 여과하기 위해 도 13에 개시된 것과 같은 필터 부재(190)가 사용될 수 있다. 다수의 필터를 사용하여 순차적 여과를 수행할 수 있다.
또한 또 다른 실시양태에서, 시스템(10)을 통해 진행되는 샘플(12)은 세포를 포함한다. 시스템(12)은, 세포를 마이크로유체 칩(14)으로 통과시키고, 이를 높은 전단력에 노출시킴으로써 세포의 파괴 (즉, 용해)에 사용될 수 있다. 세포 용해는 하나 이상의 하위세포 소기관, 세포 성분, 멤브레인 결합 소기관, 세포외 소포, 단백질, 핵산, 측분비 인자 등을 함유할 수 있는 세포의 내용물을 방출시킬 것이다. 여러 실시양태에서, 이들 성분은 세포내 방출될 수 있고, 치료 및/또는 미용 효능을 가질 수 있다. 이들 방출된 세포내 성분은 치료 또는 미용 효능을 가질 수 있다. 예를 들어, 환자 자신의 세포가 시스템(10)을 통해 진행되고 세포내 내용물을 방출시키는 파괴 또는 용해에 적용될 수 있다. 이어서, 세포내 내용물이 회수되어 환자에게 사용될 수 있다. 일부 실시양태에서 이들은 프로세싱 직후에 사용될 수 있거나, 또는 이들은 차후 사용을 위해 수집 및 저장될 수 있다. 일부 실시양태에서, 추출된 세포내 성분은 동일한 환자에게 (즉, 자가) 또는 상이한 환자에게 (즉, 동종이계) 사용될 수 있다. 추가의 실시양태에서, 프로세싱된 세포는 임의로, 예를 들어, 시험관내 배지에서 세포 성장을 촉진시키는 적절한 영양분과 함께 배양된다. 여러 실시양태에서, 조건은, 세포에 의한 세크레톰 생성을 향상시키기 위해 선택된다. 이는, 세크레톰 생성을 최적화하기 위한 특정 성장 인자, 배지 농도/pH, 또는 일부 실시양태에서는 저산소 배양 조건 (예를 들어, 약 0.1%, 약 0.5%, 약 1% O2)을 포함할 수 있다. 여러 실시양태에서, 배양된 세포 (프로세싱 후)는 배지로부터 단리될 수 있는 하나 이상의 성분을 분비한다. 여러 실시양태에서, 배양된 세포 (프로세싱 후)는, 세포를 용해시키거나 다른 방식으로 처리함으로써 단리될 수 있는 내재 멤브레인 또는 결박 멤브레인인 하나 이상의 인자를 생성한다. 여러 실시양태에서, 이들 단리된 인자는 저장되어 동종이계 또는 자가 치료를 위한 규격품 치료제로서 사용될 수 있다.
배양된 (프로세싱 후) 세포로부터 단리될 수 있는 성분의 비-제한적 예는, 상기에 기재된 바와 같은, 다양한 단백질, 시토카인, 엑소좀 등을 포함한다. 여러 실시양태에서, 이들 인자는, VEGF, HGF, IGF-1, SDF-1, PDGF-BB, NGF-β, SCF, bFGF, TNF-α, HGFA, MFG-E8 및 이들의 조합을 포함하나, 이에 제한되지는 않는다. 여러 실시양태에서, 예를 들어, miR-223, miR-146b, miR-126 및 miR-199a를 단독으로, 서로 또는 다른 microRNA와 조합하여 포함하는 것들을 포함한, miRNA를 포함하는 엑소좀이 단리된다.
도 27a 및 27b는, 각각, 신선한, 프로세싱되지 않은 지방질 조직 (표준 지방흡인물)과 함께, 도 14b에 나타낸 유형의 마이크로유체 칩(14)을 사용하여 도 5에 나타낸 조직 프로세싱 시스템을 통해 진행된 지방질 조직에 대한 세포 카운트 및 세포 생존율 결과의 그래프를 나타낸다. 신선한 지방질 조직은 프로세싱되지 않고 남아있거나 (표준 지방흡인물) 20 사이클 (각각의 사이클은 마이크로유체 칩(14)의 360° 회전을 포함함) 동안 1600 RPM으로 조직 프로세싱 시스템을 사용하여 프로세싱되었다 (프로세싱된 지방흡인물). 이어서, 각각의 프로세싱된 샘플을 0.1% 콜라게나제와 조합하여 기질 혈관 분획을 수확하였다.
간단히, 타입 I 콜라게나제 (시그마-알드리치 컴파니(Sigma-Aldrich Co., 미국 미주리주 세인트 루이스))를 인산염 완충 식염수와 조합함으로써 0.1% 효소 소화액을 제조하고, 이어서 이를 0.22-μm 진공 필터 (밀리포어 코포레이션(Millipore Corp., 미국 매사추세츠주 빌레리카))를 사용하여 멸균시켰다. 콜라게나제 용액 대 지방흡인물 1:1 부피를 간헐적 소용돌이 하에 37℃에서 30분 동안 수조에서 인큐베이션시켰다. 이어서, 동일 부피의 대조군 배지 (둘베코 변형 이글 배지(Dulbecco's Modified Eagle Medium), 10% 소 태아 혈청, 500 IU 페니실린, 및 500 μg 스트렙토마이신)를 첨가하여 효소 활성을 중화시키고, 혼합물을 적어도 10분 동안 분리시켰다. 기질 혈관 분획을 함유하는 하부 액체층을 단리하고, 100-μm 세포 스트레이너 (코닝 인크.(Corning, Inc., 미국 노스 캐롤라이나주, 더햄))로 여과하고, 1800 rpm에서 8분 동안 원심분리하였다. 이어서, 각각의 펠릿을 적혈구 용해 완충제 (15.5 mM 염화암모늄, 1 mM 중탄산칼륨, 및 0.01 mM 에틸렌디아민테트라아세트산) 중에 5분 동안 재현탁시켜 적혈구 오염을 최소화시켰다. 5 ml의 대조군 배치 첨가 후, 현탁액을 최종 1회 원심분리하였다. 각각의 원심분리 단계 후 수성 부분을 흡인에 의해 제거하였다. 이어서, 생성된 펠릿을 대조군 배지 중에 재현탁시키고, 염색 및 분석에 적용하였다.
각각의 샘플로부터 얻은 신선하게 단리된 기질 혈관 분획 (SVF)의 일부를 아크리딘 오렌지/프로피듐 아이오다이드 염색 (로고스 바이오시스템즈, 인크.(Logos Biosystems, Inc., 미국 버지니아주 아난데일))에 적용하고, 생존 대 사멸 세포 및 유핵 대 무핵 세포를 기술하는 이중 형광 자동화 세포 카운터 (로고스 바이오시스템즈)를 사용하여 정량화하였다. 이어서, 최종적으로, 단일 세포 현탁액을 폴리스티렌 튜브 중에서 부분표본화하고, 프로피듐 아이오다이드로 염색하였다. 각각의 튜브를 유동 세포측정기 (밀테니 바이오텍, 인크.(Miltenyi Biotec, Inc., 독일 베르기슈 글라트바흐))의 절대 세포 카운트 함수에 적용하여 생존율을 평가하였다. 도 27a는 표준 지방흡인물 뿐만 아니라 프로세싱된 지방흡인물 (도 5의 장치 사용)에 대한 세포 카운트의 그래프를 나타낸다. 1600 RPM으로 장치를 사용하는 샘플의 프로세싱은 회수된 SVF 세포의 수를 ~4배 감소시킨다. 1600 RPM으로 장치를 사용하는 프로세싱은 도 27b에 의해 보이는 바와 같이 회수된 세포의 생존율에 있어 임의의 구별가능한 차이를 초래하지 않는다. 일반적으로, 상이한 적용 전단 속도에서, 세포 상에서 누적 전단력이 증가함에 따라, 이는 세포의 파괴를 증가시키는 것으로 나타났다.
줄기 세포 서브타입 및 줄기 세포 마커를, 유동 세포측정법을 사용하여 표준 지방흡인물 및 프로세싱된 지방흡인물 둘 다에서 분석하였다. 먼저, 생존 세포 게이팅에 의해 중간엽 줄기 세포 (MSC) 개체군을 확인하였다 (전방-산란 대 측방-산란 윈도우의 X축 상의 200 해쉬마크의 우측에 대한 것들). 다음으로, CD45 네가티브인 생존 세포 개체군을 단독으로 게이팅하였다. 최종적으로, CD31 네가티브 및 CD45 포지티브인 세포를 확인하였다. 프로세싱된 지방흡인물은 표준 지방흡인물 대응물의 경우에 비해 보다 큰 비율의 MSC (CD45-/CD31-/CD34+)를 함유하는 것으로 나타났다.
도 28은 표준 지방흡인물 대 프로세싱된 지방흡인물 (도 5의 장치 사용)로부터 얻어진 세포의 SVF로부터 확인된 줄기 세포 마커 및 서브타입의 그래프 표시를 나타낸다. CD34는 장치 프로세싱 후 거의 3배 상향조절되는 보편적인 줄기 세포 마커이다. 유사하게, MSC 부분개체군 (CD45-/CD31-/CD34+) 및 당뇨병 상처의 치유에 있어 중요한 MSC 부분개체군 (CD45-/CD31-/CD34+/DPP4+/CD55+) 둘 다 프로세싱 후 풍부화되는 것으로 나타난다. '*'로 표시된 그래프 바는 p < 0.05를 나타낸다.
도 5의 장치를 사용하여 프로세싱된 당뇨병 지방흡인물 및 표준 당뇨병 지방흡인물 (프로세싱되지 않은 것)을 줄기 세포 마커 및 서브타입에 대해 분석하였다. 도 29는 프로세싱된 지방흡인물 및 표준 지방흡인물 둘 다에 대한 줄기 세포 마커 (CD45, CD31, CD34, CD73, CD146, MSC, DPP4/CD55)의 그래프를 나타낸다. CD34는 보편적인 줄기 세포 마커이다. 이 특정 시험 환자에서, CD34는 장치 프로세싱 후 거의 2배 상향조절된다. 유사하게, 다른 MSC 마커 (CD73, CD146) 뿐만 아니라 내피 마커 (CD31)는 장치 프로세싱 후 상향조절된다. 최종적으로, MSC 부분개체군 (CD45-/CD31-/CD34+) 및 당뇨병 상처의 치유에 있어 중요한 MSC 부분개체군 (CD45-/CD31-/CD34+/DPP4+/CD55+) 둘 다 당뇨병 조직의 프로세싱 후 풍부화되는 것으로 나타난다.
상기에 개시된 실시양태의 특정 특징 및 측면의 다양한 조합 또는 하위조합이 이루어질 수 있으며 이것 또한 본 발명의 하나 이상에 포함됨을 고려한다. 또한, 실시양태와 관련된 임의의 특정 특징, 측면, 방법, 특성, 특색, 품질, 속성, 요소 등의 본원 개시내용이 본원에 기재된 모든 다른 실시양태에서 사용될 수 있다. 따라서, 다양한 방식의 개시된 발명을 형성하기 위해 개시된 실시양태의 다양한 특징 및 측면이 서로 조합되고 대체될 수 있음을 이해하여야 한다. 따라서, 본원에 개시된 본 발명의 범위는 상기에 기재된 특정 개시된 실시양태에 의해 제한되지 않아야 함이 의도된다. 또한, 본 발명은 다양한 변형, 및 대안적 형태에 적용가능하며, 그의 구체적 예를 도면에 나타내었고, 본원에서 상세히 기재되었다. 그러나, 본 발명은 개시된 특정 형태 또는 방법으로 제한되지 않고, 반면에 본 발명은 기재된 다양한 실시양태 및 첨부된 청구범위의 취지 및 범위 내에 포함되는 모든 변형, 등가물, 및 대안을 포괄하여야 함을 이해하여야 한다. 본원에 개시된 임의의 방법이 언급된 순서로 수행될 필요는 없다. 본원에 개시된 방법은 실무자에 의해 수행되는 특정 행위를 포함하지만; 이들은 또한, 명시적으로든 함축적으로든 이들 행위의 임의의 제3자 지시를 포함할 수 있다. 예를 들어, "확장된 NK 세포의 개체군 투여"와 같은 행위는 "확장된 NK 세포의 개체군 투여 지시"를 포함한다. 추가로, 본 개시내용의 특징 및 측면이 마쿠쉬(Markush) 그룹으로 기재되는 경우, 관련 기술분야의 통상의 기술자는, 이로써 개시내용이 또한 마쿠쉬 그룹의 임의의 개별적 구성원 또는 구성원의 서브그룹으로 기재됨을 인식할 것이다.
본원에 개시된 범위는 또한 임의의 모든 오버랩, 하위범위, 및 이들의 조합을 포함한다. "까지", "적어도", "초과", "미만", "내지" 등과 같은 언어는 언급된 수치를 포함한다. "약" 또는 "대략"과 같은 용어가 선행되는 수치는 언급된 수치를 포함한다. 예를 들어, "약 10 나노미터"는 "10 나노미터"를 포함한다.
본 발명의 실시양태를 나타내고 기재하였지만, 본 발명의 범위로부터 벗어나지 않으면서 다양한 변형이 이루어질 수 있다. 따라서, 본 발명은, 하기 청구범위, 및 그의 등가물에 대한 것을 제외하고는, 제한되지 않아야 한다.

Claims (12)

  1. 하기를 포함하는, 샘플을 프로세싱하기 위한 시스템:
    복수의 아암을 포함하는 지지체 플레이트, 여기서 복수의 아암은 지지체 플레이트로부터 방사상 연장됨;
    지지체 플레이트에 커플링되고 지지체 플레이트를 회전시키도록 구성된 모터;
    복수의 캐리지, 여기서 각각의 캐리지는 지지체 플레이트 상의 복수의 아암 중 하나 상에 배열되고, 각각의 캐리지는 복수의 축 중 하나를 중심으로 동축 배치되고, 각각의 축은 캐리지가 배열되어 있는 아암으로부터 수직으로 연장되고, 각각의 캐리지는 프로세싱을 위한 샘플을 수용하기 위한 유입구를 갖는 적어도 하나의 샘플 챔버 및 적어도 하나의 마이크로유체 채널을 갖는 마이크로유체 칩을 수용하도록 구성되고, 각각의 캐리지는 복수의 축 중 하나를 중심으로 회전가능함; 및
    지지체 플레이트를 수용하도록 구성되고, 샘플을 프로세싱하기 위한 시스템으로부터 사용자를 보호하도록 구성된 인케이스먼트, 여기서 인케이스먼트는 적어도 하나의 샘플 챔버에 대한 접근을 제공하도록 구성된 개구를 포함함.
  2. 제1항에 있어서, 상기 적어도 하나의 샘플 챔버가, 프로세싱 동안 샘플이 적어도 하나의 챔버 내부에 체류되는 것을 보장하도록 구성된 1-방향 밸브를 포함하는 것인 시스템.
  3. 제1항 또는 제2항에 있어서, 상기 적어도 하나의 샘플 챔버의 내부가 유입구에 인접한 경사진 표면을 갖고, 경사진 표면은 프로세싱 후 샘플의 용이한 제거를 위해 샘플을 유입구에 인접하여 응집시키도록 구성된 것인 시스템.
  4. 제1항 또는 제2항에 있어서, 유입구가 시린지와 맞물리도록 구성되고, 시린지는 샘플을 제거하고 샘플이 표적 부위 내로 직접 주입되는 것을 가능하게 하도록 구성된 것인 시스템.
  5. 제1항 또는 제2항에 있어서, 각각의 캐리지가 각각의 아암의 개구 내에 보유되고, 여기서 각각의 캐리지가 각각의 아암의 개구를 통해 연장되는 것인 시스템.
  6. 제1항 또는 제2항에 있어서, 큰 크기의 샘플 성분이 마이크로유체 칩 내로 통과되고 마이크로유체 칩을 클로깅하는 것을 방지하도록 구성된 필터를 추가로 포하는 시스템.
  7. 제6항에 있어서, 필터가, 샘플이 클로깅 없이 적어도 하나의 마이크로유체 칩을 통과하는 것을 가능하게 하기 위해 샘플의 거시적 응집물을 생성하도록 구성된 메쉬를 포함하는 것인 시스템.
  8. 제1항 또는 제2항에 있어서, 적어도 하나의 마이크로유체 채널의 길이가 마이크로유체 칩의 길이 미만인 시스템.
  9. 제1항 또는 제2항에 있어서, 마이크로유체 칩이 제거가능한 것인 시스템.
  10. 제1항 또는 제2항에 있어서, 적어도 하나의 마이크로유체 채널이 마이크로 유체 채널 내의 각진 벽에 의해 한정되는 확장 영역을 갖는 것인 시스템.
  11. 제1항 또는 제2항에 있어서, 적어도 하나의 마이크로유체 채널이, 적어도 하나의 마이크로유체 채널의 길이를 따라 폭이 점진적으로 감소하는 단계적 테이퍼를 포함하는 제1 영역, 수축 영역, 및 적어도 하나의 마이크로유체 채널의 길이를 따라 폭이 점진적으로 증가하는 단계적 테이퍼를 포함하는 제2 영역을 포함하는 것인 시스템.
  12. 제1항 또는 제2항에 있어서, 적어도 하나의 마이크로유체 채널이 다이아몬드 패턴을 갖는 것인 시스템.
KR1020237031151A 2016-06-08 2017-06-07 조직 및 세포를 프로세싱하기 위한 방법 및 장치 KR20230136674A (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662347290P 2016-06-08 2016-06-08
US62/347,290 2016-06-08
KR1020227006655A KR102579835B1 (ko) 2016-06-08 2017-06-07 조직 및 세포를 프로세싱하기 위한 방법 및 장치
PCT/US2017/036429 WO2017214323A1 (en) 2016-06-08 2017-06-07 Method and device for processing tissues and cells

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020227006655A Division KR102579835B1 (ko) 2016-06-08 2017-06-07 조직 및 세포를 프로세싱하기 위한 방법 및 장치

Publications (1)

Publication Number Publication Date
KR20230136674A true KR20230136674A (ko) 2023-09-26

Family

ID=60578121

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020237031151A KR20230136674A (ko) 2016-06-08 2017-06-07 조직 및 세포를 프로세싱하기 위한 방법 및 장치
KR1020197034206A KR102370343B1 (ko) 2016-06-08 2017-06-07 조직 및 세포를 프로세싱하기 위한 방법 및 장치
KR1020197000183A KR102049705B1 (ko) 2016-06-08 2017-06-07 조직 및 세포를 프로세싱하기 위한 방법 및 장치
KR1020227006655A KR102579835B1 (ko) 2016-06-08 2017-06-07 조직 및 세포를 프로세싱하기 위한 방법 및 장치

Family Applications After (3)

Application Number Title Priority Date Filing Date
KR1020197034206A KR102370343B1 (ko) 2016-06-08 2017-06-07 조직 및 세포를 프로세싱하기 위한 방법 및 장치
KR1020197000183A KR102049705B1 (ko) 2016-06-08 2017-06-07 조직 및 세포를 프로세싱하기 위한 방법 및 장치
KR1020227006655A KR102579835B1 (ko) 2016-06-08 2017-06-07 조직 및 세포를 프로세싱하기 위한 방법 및 장치

Country Status (9)

Country Link
US (3) US10589268B2 (ko)
EP (1) EP3469374A4 (ko)
JP (2) JP7072228B2 (ko)
KR (4) KR20230136674A (ko)
CN (2) CN115993462A (ko)
BR (1) BR112018075194B1 (ko)
CA (1) CA3051051A1 (ko)
IL (3) IL263422B (ko)
WO (1) WO2017214323A1 (ko)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2996582A1 (en) * 2015-08-31 2017-03-09 I Peace, Inc. Pluripotent stem cell manufacturing system and method for producing induced pluripotent stem cells
US11613759B2 (en) 2015-09-04 2023-03-28 Sqz Biotechnologies Company Intracellular delivery of biomolecules to cells comprising a cell wall
US11291997B2 (en) * 2018-08-02 2022-04-05 Colorado State University Research Foundation Rotary manifold for paper-based immunoassays
CN109174382A (zh) * 2018-09-19 2019-01-11 北京新星靓京广医疗美容医院有限公司 一种点对点定向脂肪移植的装置
CA3119623A1 (en) * 2018-11-13 2020-05-22 National Research Council Of Canada World-to-chip automated interface for centrifugal microfluidic platforms
US20210220817A1 (en) * 2018-12-08 2021-07-22 Min Wei Apparatus For Manufacturing Cell Therapy Product
EP3953039A1 (en) * 2019-04-08 2022-02-16 SQZ Biotechnologies Company Cartridge for use in a system for delivery of a payload into a cell
CN110302851A (zh) * 2019-04-24 2019-10-08 山东科技大学 基于微流体控制与贾敏效应观测的实验系统及其实验方法
US20220249761A1 (en) 2019-06-24 2022-08-11 The Regents Of The University Of California Integrated system for mechanical processing of lipoaspirate
CN110243750B (zh) * 2019-06-28 2024-05-03 佛山科学技术学院 一种采样器及应用该采样器的流式细胞仪
US20210001344A1 (en) * 2019-07-03 2021-01-07 Shimadzu Corporation Sample holding disc for centrifugation
KR102081615B1 (ko) * 2019-10-07 2020-02-26 주식회사 미리메딕스 체외진단에 사용되는 비전기식 휴대용 시료 및 시약 혼합 장치
KR102350660B1 (ko) * 2020-01-21 2022-01-12 (주)옵토레인 가변익 원심 주입 장치
KR102404001B1 (ko) * 2020-02-26 2022-05-31 주식회사 클리노믹스 원심력을 이용한 유체 제어 장치
CN111298854B (zh) * 2020-02-27 2021-08-06 西人马联合测控(泉州)科技有限公司 芯片的成型方法以及晶圆
CN113462515B (zh) * 2020-03-30 2024-05-24 礼德(上海)生物科技有限责任公司 一种组织分散芯片及方法
KR102424845B1 (ko) * 2020-07-30 2022-07-25 재단법인대구경북과학기술원 미세 유동 장치
WO2022081488A1 (en) * 2020-10-12 2022-04-21 The Regents Of The University Of California Integrated microfluidic system for the processing of tissues into cellular suspensions
KR102561447B1 (ko) * 2020-12-23 2023-08-01 성균관대학교산학협력단 유체다이오드 및 유체이송장치
CN112791645B (zh) * 2021-01-26 2022-05-13 驻马店职业技术学院 流体驱动控制阀
CN112683631B (zh) * 2021-01-27 2024-01-09 鄂尔多斯市路泰公路工程有限责任公司 一种沥青路面芯样分离器
CN113484097B (zh) * 2021-08-20 2023-03-21 太原学院 一种关于水环境工程检测用的污染物取样装置
WO2023039131A2 (en) * 2021-09-10 2023-03-16 Elephas Biosciences Corporation Tissue cutting system and method
US20230191414A1 (en) * 2021-12-22 2023-06-22 Somalogic Operating Co., Inc. Method for conducting uniform reactions
US20230234049A1 (en) * 2022-01-25 2023-07-27 Brinter Oy Fluidic device, apparatus comprising fluidic device and method of using same for fluidic manipulation
DE102022201938A1 (de) 2022-02-24 2023-08-24 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Flüssigkeitstransfer zwischen rotierenden Modulen
CN114949985B (zh) * 2022-06-30 2023-06-20 山东和光智慧能源科技有限公司 一种可快速拆装π型除污器
CN115322875B (zh) * 2022-08-12 2023-06-30 中科院南昌高新技术产业协同创新研究院 干细胞预处理装置和方法
WO2024085844A2 (en) * 2022-10-20 2024-04-25 Izmir Yuksek Teknoloji Enstitusu Rektorlugu Closed-channel microfluidic platform working with centrifugal principle

Family Cites Families (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4883763A (en) * 1984-05-03 1989-11-28 Abbott Laboratories Sample processor card for centrifuge
CN2062131U (zh) * 1990-02-07 1990-09-12 肖志和 间歇式电磁推动旋转装置
US5304487A (en) * 1992-05-01 1994-04-19 Trustees Of The University Of Pennsylvania Fluid handling in mesoscale analytical devices
EP1069874B1 (en) 1998-04-07 2005-01-12 Macropore, Inc. Membrane with tissue-guiding surface corrugations
US7104994B1 (en) 1999-10-05 2006-09-12 Cytori Therapeutics, Inc. Heating pen, tack seating device, and tap and surgical implantation methods using same
US7090668B1 (en) 1999-10-29 2006-08-15 Cytori Therapeutics, Inc. Time-released substance delivery device
WO2001087487A2 (en) 2000-05-15 2001-11-22 Tecan Trading Ag Bidirectional flow centrifugal microfluidic devices
US6743632B2 (en) * 2001-03-14 2004-06-01 Universities Space Research Association Directional acceleration vector-driven displacement of fluids (DAVD-DOF)
US6719795B1 (en) 2001-04-25 2004-04-13 Macropore Biosurgery, Inc. Resorbable posterior spinal fusion system
US20030054331A1 (en) 2001-09-14 2003-03-20 Stemsource, Inc. Preservation of non embryonic cells from non hematopoietic tissues
US7651684B2 (en) 2001-12-07 2010-01-26 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in augmenting autologous fat transfer
US7514075B2 (en) 2001-12-07 2009-04-07 Cytori Therapeutics, Inc. Systems and methods for separating and concentrating adipose derived stem cells from tissue
US20030161816A1 (en) 2001-12-07 2003-08-28 Fraser John K. Systems and methods for treating patients with processed lipoaspirate cells
US8404229B2 (en) 2001-12-07 2013-03-26 Cytori Therapeutics, Inc. Methods of using adipose derived stem cells to treat acute tubular necrosis
US7771716B2 (en) 2001-12-07 2010-08-10 Cytori Therapeutics, Inc. Methods of using regenerative cells in the treatment of musculoskeletal disorders
US8105580B2 (en) 2001-12-07 2012-01-31 Cytori Therapeutics, Inc. Methods of using adipose derived stem cells to promote wound healing
US20060204556A1 (en) 2001-12-07 2006-09-14 Cytori Therapeutics, Inc. Cell-loaded prostheses for regenerative intraluminal applications
US20050095228A1 (en) 2001-12-07 2005-05-05 Fraser John K. Methods of using regenerative cells in the treatment of peripheral vascular disease and related disorders
US9597395B2 (en) 2001-12-07 2017-03-21 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of cardiovascular conditions
US7595043B2 (en) 2001-12-07 2009-09-29 Cytori Therapeutics, Inc. Method for processing and using adipose-derived stem cells
US7585670B2 (en) 2001-12-07 2009-09-08 Cytori Therapeutics, Inc. Automated methods for isolating and using clinically safe adipose derived regenerative cells
US20030162707A1 (en) 2001-12-20 2003-08-28 Fraser John K. Systems and methods for treating patients with collagen-rich material extracted from adipose tissue
US20050026301A1 (en) * 2002-03-25 2005-02-03 Henry Petithory Method and apparatus for controlling fluid movement in a microfluidic system
US20040137607A1 (en) * 2003-01-09 2004-07-15 Yokogawa Electric Corporation Biochip cartridge
MXPA05009044A (es) 2003-02-20 2006-03-17 Macropore Biosurgery Inc Metodos para utilizar celulas derivadas de tejido adiposo en el tratamiento de condiciones cardiovasculares.
CA2529954A1 (en) 2003-06-18 2005-02-10 Macropore Biosurgery, Inc. Methods of using adipose tissue-derived cells in augmenting autologous fat transfer
EP2380970B1 (en) 2003-06-25 2017-12-20 Cytori Therapeutics, Inc. Systems and methods for separating and concentrating regenerative cells from tissue
KR20070017974A (ko) 2003-09-17 2007-02-13 사이토리 테라퓨틱스, 인크. 말초 혈관 질환 및 관련 장애의 치료에서의 재생 세포의이용 방법
EP1670315B1 (en) 2003-09-17 2017-04-19 Cytori Therapeutics, Inc. Methods of using adipose derived regenerative cells in the treatment of peripheral vascular disease
WO2005028635A2 (en) 2003-09-19 2005-03-31 Microfluidic Systems Inc. Microfluidic differential extraction cartridge
US9631176B2 (en) 2003-11-04 2017-04-25 Biomaster, Inc. Method for preparing stem cells from fat tissue
US7396677B2 (en) * 2003-11-07 2008-07-08 Nanosphere, Inc. Method of preparing nucleic acids for detection
CA2560052A1 (en) 2004-03-19 2005-10-13 Macropore Biosurgery Inc. Cell carrier and cell carrier containment devices containing regenerative cells
AT500319A1 (de) 2004-05-13 2005-11-15 Helmut Dipl Ing Habel Scherfeste bodeneinbauleuchte für gepflasterte oberflächen
WO2006014162A2 (en) 2004-07-01 2006-02-09 Macropore Biosurgery Inc. Methods of using regenerative cells in the treatment of renal diseases and disorders
CN102204928B (zh) 2004-07-01 2014-09-17 马克罗珀尔生物外科公司 再生细胞用于促进伤口愈合的应用
WO2006014159A2 (en) 2004-07-01 2006-02-09 Macropore Biosurgery Inc. Methods of using regenerative cells in the treatment of musculoskeletal disorders
PL1778833T3 (pl) 2004-07-01 2011-10-31 Cytori Therapeutics Inc Sposoby stosowania komórek regeneracyjnych w celu przyspieszania gojenia się ran
WO2006022612A2 (en) 2004-07-01 2006-03-02 Macropore Biosurgery Inc. Methods of using regenerative cells in the treatment of stroke and related diseases and disorders
WO2006014156A1 (en) 2004-07-02 2006-02-09 Macropore Biosurgery, Inc. Systems and methods for isolating and using clinically safe adipose derived regenerative cells
US20070187857A1 (en) 2004-09-30 2007-08-16 Riley Susan L Methods for making and using composites, polymer scaffolds, and composite scaffolds
JP2006110523A (ja) 2004-10-18 2006-04-27 Hitachi Software Eng Co Ltd 化学反応装置
DE202004019658U1 (de) 2004-12-20 2005-02-17 Basika Entwässerungen GmbH Bodenablauf
WO2006069349A2 (en) 2004-12-22 2006-06-29 Cytori Therapeutics, Inc. Cell-loaded prostheses for regenerative intraluminal applications
JP5138384B2 (ja) 2005-01-10 2013-02-06 サイトリ セラピューティクス インコーポレイテッド 医療装置を監視し、管理し、サービスするための装置及び方法
US7378043B2 (en) 2005-01-12 2008-05-27 Ansell Healthcare Products Llc Latex gloves and articles with geometrically defined surface texture providing enhanced grip and method for in-line processing thereof
EP1848489A2 (en) 2005-02-16 2007-10-31 Cytori Therapeutics, Inc. Resorbable hollow devices for implantation and delivery of therapeutic agents
EP1853697A2 (en) * 2005-03-02 2007-11-14 The Regents Of The University Of California Flow switching on a multi-structured microfluidic cd (compact disc) using coriolis force
WO2006127007A2 (en) 2005-05-25 2006-11-30 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of cardiovascular conditions
CN102861105A (zh) 2005-05-25 2013-01-09 再生医疗技术公司 使用脂肪组织来源的细胞治疗心血管病症的方法
AU2013216683B2 (en) 2005-05-25 2016-06-23 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of cardiovascular conditions
JP2007033350A (ja) * 2005-07-29 2007-02-08 Hitachi High-Technologies Corp 化学分析装置
US8263022B2 (en) 2005-10-04 2012-09-11 Headway Technologies, Inc. Microfluidic detection of analytes
EP1951358A1 (en) 2005-10-14 2008-08-06 Cytori Therapeutics, Inc. Cell delivery catheters with distal tip high fidelity sensors
US20070224591A1 (en) 2006-03-27 2007-09-27 General Electric Company Rotation-based microsampler, system and method of using the same
WO2007139551A1 (en) 2006-05-30 2007-12-06 Cytori Therapeutics, Inc. Systems and methods for manipulation of regenerative cells from adipose tissue
JP4901333B2 (ja) 2006-06-30 2012-03-21 ローム株式会社 マイクロチップ検査装置
WO2008013863A2 (en) 2006-07-26 2008-01-31 Cytori Therapeutics, Inc. Generation of adipose tissue and adipocytes
EP1939629A3 (en) 2006-08-11 2011-03-09 Samsung Electronics Co., Ltd. Centrifugal Force Based Magnet Position Control Device and Disk-Shaped Micro Fluidic System
WO2008060466A2 (en) 2006-11-10 2008-05-22 Cytori Therapeutics, Inc. Individualized dosage determination for local administration of therapeutic particles
KR101228112B1 (ko) 2006-12-06 2013-01-31 삼성전자주식회사 원심력과 펌프를 이용해 유체의 이동을 제어하는 미세유동장치 및 이를 포함하는 미세유동 시스템
US8191715B2 (en) 2007-04-02 2012-06-05 Samsung Electronics Co., Ltd. Centrifugal force-based microfluidic device and microfluidic system including the same
KR100858091B1 (ko) 2007-04-24 2008-09-10 삼성전자주식회사 시료 분배 구조를 갖는 원심력 기반의 미세유동장치 및이를 포함하는 미세유동시스템
JP2008278822A (ja) 2007-05-11 2008-11-20 Olympus Corp 生体組織分解方法
JP5190861B2 (ja) 2007-05-11 2013-04-24 オリンパス株式会社 生体組織分解方法
JP2009075067A (ja) * 2007-08-31 2009-04-09 Nsk Ltd 遠心力付与装置及び検体液分析装置
WO2009079051A2 (en) 2007-09-19 2009-06-25 Nanogen, Inc. Counter-centrifugal force device
WO2009055610A1 (en) 2007-10-26 2009-04-30 Cytori Therapeutics, Inc. Syringe system for controlled delivery or removal of material
WO2009076548A1 (en) 2007-12-13 2009-06-18 Cytori Therapeutics, Inc. Methods of inhibiting tumor development using adipose-derived regenerative cells
GB2457094A (en) * 2008-02-04 2009-08-05 Univ Dublin City A cuvette assembly for holding milking samples
JP2009189281A (ja) 2008-02-13 2009-08-27 Olympus Corp 細胞処理装置
JP2009189280A (ja) 2008-02-13 2009-08-27 Olympus Corp 遠心分離容器および遠心分離装置
JP5078020B2 (ja) 2008-02-13 2012-11-21 オリンパス株式会社 遠心分離容器
JP2010032444A (ja) 2008-07-30 2010-02-12 Olympus Corp 生体組織処理装置
JP2010043876A (ja) 2008-08-08 2010-02-25 Olympus Corp 遠心分離容器
WO2010021993A1 (en) 2008-08-19 2010-02-25 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of the lymphatic system and malignant disease
US20110281057A1 (en) 2008-08-22 2011-11-17 Invista North America S.Ar.L. Bulked continuous filaments with hexalobal cross-section and three voids and spinneret plates for producing the filament
KR101563687B1 (ko) 2008-09-02 2015-11-09 삼성전자주식회사 표적 분자 분리를 위한 미세유동 카트리지, 분리장치, 및 이를 이용한 표적 분자 분리 방법
JP2010075066A (ja) 2008-09-24 2010-04-08 Olympus Corp 遠心分離容器
JP2010075114A (ja) 2008-09-26 2010-04-08 Olympus Corp 生体組織処理装置および生体組織処理方法
EP2169391B1 (de) * 2008-09-30 2013-04-03 ibidi GmbH Probenkammerhalter zum Haltern einer Probenkammer und System bestehend aus der Probenkammer und dem Probenkammerhalter
JP2010127620A (ja) 2008-11-25 2010-06-10 Olympus Corp 生体組織処理装置
JP2010127708A (ja) 2008-11-26 2010-06-10 Olympus Corp 遠心分離容器および遠心分離方法
JP2010148450A (ja) 2008-12-25 2010-07-08 Olympus Corp 細胞洗浄方法
JP2010148451A (ja) 2008-12-25 2010-07-08 Olympus Corp 細胞処理装置
CN201389496Y (zh) * 2009-04-01 2010-01-27 广州市第一人民医院 一种用在微流控复合芯片上的离心机
WO2010124235A1 (en) 2009-04-23 2010-10-28 Cytori Therapeutics, Inc. Use adipose tissue-derived regenerative cells in the modulation of inflammation in the pancreas and in the kidney
EP2425246A4 (en) 2009-04-27 2012-10-17 Axxin Pty Ltd CAPILLARY FLOW TEST ASSEMBLY
KR101644534B1 (ko) 2009-05-01 2016-08-01 비미니 테크놀로지스 엘엘씨 조직 및 세포 부유화 이식편의 최적화 시스템, 방법 및 조성물
EP2253958B1 (en) 2009-05-18 2013-04-17 F. Hoffmann-La Roche AG Centrifugal force based microfluidic system and method for the automated analysis of samples
JP2011010615A (ja) 2009-07-03 2011-01-20 Olympus Corp 脂肪組織処理装置
JP2011010616A (ja) 2009-07-03 2011-01-20 Olympus Corp 脂肪組織処理容器
US20110085950A1 (en) * 2009-10-08 2011-04-14 Samsung Electronics Co., Ltd. Centrifugal force based microfluidic system and bio cartridge for the microfluidic system
NO332016B1 (no) 2009-12-29 2012-05-21 Stiftelsen Sintef Prøvebehandlingskassett og fremgangsmåte for å behandle og/eller analysere en prøve under sentrifugalkraft
IT1400069B1 (it) 2010-05-20 2013-05-17 Tremolada Dispositivo e metodo per la preparazione di tessuto, in particolare tessuto adiposo per trapianto ottenuto da materiale adiposo lobulare estratto tramite liposuzione
WO2012037030A2 (en) * 2010-09-14 2012-03-22 The Regents Of The University Of California Method and device for isolating cells from heterogeneous solution using microfluidic trapping vortices
CN102002478B (zh) 2010-12-01 2013-01-02 四川大学 一种脂肪干细胞的分离培养方法
US9364082B2 (en) * 2011-06-14 2016-06-14 Rorze Corporation Constant-temperature device provided with rotating specimen table
WO2013029153A1 (en) 2011-08-30 2013-03-07 National Research Council Of Canada Centrifugally-enhanced capture method and device
KR20130029277A (ko) 2011-09-14 2013-03-22 삼성전자주식회사 미세유동장치 및 그 제어방법
JP5628131B2 (ja) 2011-10-19 2014-11-19 サイトリ セラピューティクス インコーポレイテッド 心血管状態の治療において脂肪組織由来細胞を使用する方法
WO2013075145A1 (en) 2011-11-20 2013-05-23 Chander Ashok C Ashok Systems, devices and methods for microfluidic culturing, manipulation and analysis of tissues and cells
KR101915675B1 (ko) * 2012-02-07 2018-11-06 주식회사 미코바이오메드 초고속 핵산 추출 장치, 및 이를 이용하는 핵산 추출 방법
ITGE20120034A1 (it) 2012-03-28 2013-09-29 Carlo Tremolada Preparato e metodo per la produzione di un preparato comprendente cellule staminali mesenchimali
US20140017806A1 (en) 2012-07-11 2014-01-16 Samsung Electronics Co., Ltd. Microfluidic structure, microfluidic device having the same and method of controlling the microfluidic device
ITGE20120073A1 (it) 2012-07-23 2014-01-24 Carlo Tremolada Metodo e dispositivo per la preparazione di cellule staminali non embrionali
ITGE20120102A1 (it) 2012-10-25 2014-04-26 Lipogems Internat S R L Procedimento di precondizionamento chimico di materiale cellulare per ottenere la riprogrammazione epigenetica chimica e l'espressione di pluripotenzialità
US9211512B2 (en) * 2012-11-28 2015-12-15 Samsung Electronics Co., Ltd. Microfluidic apparatus and method of enriching target cells by using the same
WO2014130391A1 (en) 2013-02-25 2014-08-28 Arkema Inc. Unsaturated fatty acid ester-based plastic additives
KR20140142624A (ko) * 2013-06-04 2014-12-12 삼성전자주식회사 미세유동장치
US9580678B2 (en) * 2013-06-21 2017-02-28 The Regents Of The University Of California Microfluidic tumor tissue dissociation device
US9440233B2 (en) 2013-08-09 2016-09-13 Shark Kabushiki Kaisha Microfluidic device for serial fluidic operations
KR20150027939A (ko) 2013-09-04 2015-03-13 삼성전자주식회사 미세유동장치
MX2016003127A (es) 2013-09-19 2016-10-28 Cytori Therapeutics Inc Metodos de uso de células derivadas de tejido adiposo en la modulación de dolor y/o fibrosis.
KR102176587B1 (ko) 2013-10-15 2020-11-10 삼성전자주식회사 시료분석장치, 시료분석방법, 및 밸브의 동적 작동 방법
CN104657400B (zh) * 2013-11-19 2018-02-02 光宝科技股份有限公司 离心分析系统以及其分析方法
US20170065638A1 (en) 2014-02-10 2017-03-09 Cytori Therapeutics, Inc. Regenerative cell therapy for central nervous system (cns) disorders and ptsd
WO2015127126A1 (en) 2014-02-19 2015-08-27 Synova Life Sciences, LLC Regenerative cell and adipose-derived stem cell processing system and method
KR102376573B1 (ko) 2014-03-07 2022-03-18 내셔날 리서치 카운실 오브 캐나다 원심력 기반 미세유체 칩의 제어
EP3119869A1 (en) 2014-03-19 2017-01-25 Lipogems International S.p.A. Device and method for preparing adipose tissue for transplantation
WO2015172255A1 (en) 2014-05-16 2015-11-19 Qvella Corporation Apparatus, system and method for performing automated centrifugal separation
WO2015181725A1 (en) * 2014-05-26 2015-12-03 National Research Council Of Canada Swivel mount for centrifugal microfluidic chip
WO2015185763A1 (en) 2014-06-06 2015-12-10 Roche Diagnostics Gmbh Rotatable cartridge with a metering chamber for analyzing a biological sample
US20160177250A1 (en) 2014-06-25 2016-06-23 Cytori Therapeutics, Inc. Tissue transfer system
WO2016000734A1 (en) 2014-06-30 2016-01-07 Husqvarna Ab Improved robotic working tool
WO2016007434A1 (en) 2014-07-08 2016-01-14 Cytori Therapeutics, Inc. Centrifuge chamber
TWI550274B (zh) 2014-08-20 2016-09-21 紹興普施康生物科技有限公司 微流體檢驗裝置及其運作方法
WO2016054592A1 (en) 2014-10-03 2016-04-07 Cytori Therapeutics, Inc. Use of regenerative cells in mitigating burn progression and improving skin graft incorporation and healing
AU362084S (en) 2014-11-03 2015-06-03 Lipogems Int Spa Medical apparatus
CN104630139A (zh) 2015-01-31 2015-05-20 苏州大学 振动刺激在调控骨髓间充质干细胞体外成骨、成脂分化中的应用
US10797567B2 (en) * 2015-07-23 2020-10-06 Life Technologies Corporation Rotor assembly including a housing for a sensor array component and methods for using same
EP3386521A1 (en) 2015-12-07 2018-10-17 Colorado State University Research Foundation Activated stem cells and systemic treatment methods for infected wounds
ITUB20159750A1 (it) 2015-12-30 2017-06-30 Alfredo Gorio Metodo per la promozione ed il miglioramento delle proprieta? del tessuto adiposo, tessuto e cellule ottenute tramite detto metodo
WO2017125159A1 (en) 2016-01-21 2017-07-27 Universitat Politècnica De Catalunya Method for conditioning stem cells
KR101849841B1 (ko) 2016-04-07 2018-04-18 가톨릭대학교 산학협력단 인간 지방조직-유래 줄기세포로부터의 저산소-조정 배지의 제조 방법 및 이를 포함하는 약학 조성물
KR101835211B1 (ko) 2016-04-07 2018-03-06 가톨릭대학교 산학협력단 Lps 처리한 지방조직-유래 줄기세포 조정 배지의 제조 방법 및 이를 포함하는 약학 조성물
ITUA20163417A1 (it) 2016-05-13 2017-11-13 Lipogems Int Spa Fat and medical uses thereof
JP2018030815A (ja) 2016-08-25 2018-03-01 ロート製薬株式会社 脂肪由来幹細胞賦活剤
CA3038063A1 (en) 2016-09-23 2018-03-29 ArcherDX, Inc. System for nucleic acid preparation
ES2857735T3 (es) 2016-11-16 2021-09-29 Hoffmann La Roche Cartucho giratorio con múltiples cámaras medidoras
CN106434542A (zh) 2016-11-17 2017-02-22 山东海斯福生物科技有限公司 一种增强脂肪干细胞增殖与移植后存活能力的方法
US11224874B2 (en) 2017-12-11 2022-01-18 Autonomous Medical Devices Inc. Apparatus for automatic sampling of biological species employing disk microfluidics system
US20190024033A1 (en) 2017-07-19 2019-01-24 Cellanyx Diagnostics, Llc Systems, devices and methods for microfluidic culturing, manipulation and analysis of tissues and cells

Also Published As

Publication number Publication date
US20200164374A1 (en) 2020-05-28
US20220097050A1 (en) 2022-03-31
KR20190133059A (ko) 2019-11-29
CN109564231B (zh) 2023-01-06
EP3469374A1 (en) 2019-04-17
JP2022109993A (ja) 2022-07-28
IL263422A (en) 2018-12-31
JP7072228B2 (ja) 2022-05-20
JP2019526036A (ja) 2019-09-12
WO2017214323A1 (en) 2017-12-14
KR102049705B1 (ko) 2019-11-28
KR102579835B1 (ko) 2023-09-15
US10589268B2 (en) 2020-03-17
IL295611B2 (en) 2023-11-01
IL263422B (en) 2022-09-01
IL295611A (en) 2022-10-01
CN109564231A (zh) 2019-04-02
JP7368014B2 (ja) 2023-10-24
IL303399A (en) 2023-08-01
CN115993462A (zh) 2023-04-21
BR112018075194A2 (pt) 2019-03-19
KR102370343B1 (ko) 2022-03-03
KR20190004838A (ko) 2019-01-14
EP3469374A4 (en) 2019-12-04
KR20220031753A (ko) 2022-03-11
IL295611B1 (en) 2023-07-01
US11130127B2 (en) 2021-09-28
BR112018075194B1 (pt) 2023-01-10
CA3051051A1 (en) 2017-12-14
US20180361382A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
KR102579835B1 (ko) 조직 및 세포를 프로세싱하기 위한 방법 및 장치
EP3099416B1 (en) Adipose tissue centrifuge and method of use
US20140315303A1 (en) Method and device for sample processing
CA3138539C (en) Atraumatically formed tissue compositions, devices and methods of preparation and treatment
JP2014525260A (ja) 脂肪組織から間質血管画分(svf)細胞を単離するためのシステムおよびその方法
CN111542350B (zh) 用于制备脂肪来源干细胞的系统和方法
AU2022201872B2 (en) Separation, dissociation and/or disaggregation of cells using shockwaves or mechanical impacts
WO2013086199A1 (en) Method and device for isolation of non-fat cells from an adipose tissue
JP2018529379A (ja) 血小板を産生するためのシステムおよび方法
Nathan Ultrasonic blood fractionation

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal