KR20220107173A - 다결정 SiC의 캐리어 기재 상에 단결정 SiC의 박층을 포함하는 복합 구조체를 제조하기 위한 방법 - Google Patents
다결정 SiC의 캐리어 기재 상에 단결정 SiC의 박층을 포함하는 복합 구조체를 제조하기 위한 방법 Download PDFInfo
- Publication number
- KR20220107173A KR20220107173A KR1020227016662A KR20227016662A KR20220107173A KR 20220107173 A KR20220107173 A KR 20220107173A KR 1020227016662 A KR1020227016662 A KR 1020227016662A KR 20227016662 A KR20227016662 A KR 20227016662A KR 20220107173 A KR20220107173 A KR 20220107173A
- Authority
- KR
- South Korea
- Prior art keywords
- substrate
- donor
- layer
- deposition
- composite structure
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02529—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/7806—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
- H01L21/7813—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate leaving a reusable substrate, e.g. epitaxial lift off
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/32—Carbides
- C23C16/325—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/20—Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B31/00—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
- C30B31/20—Doping by irradiation with electromagnetic waves or by particle radiation
- C30B31/22—Doping by irradiation with electromagnetic waves or by particle radiation by ion-implantation
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/08—Etching
- C30B33/10—Etching in solutions or melts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02079—Cleaning for reclaiming
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02378—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/02447—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02623—Liquid deposition
- H01L21/02628—Liquid deposition using solutions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76254—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Electromagnetism (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
- Recrystallisation Techniques (AREA)
Abstract
본 발명은, 탄화규소의 캐리어 기재(20) 상에 배열된 단결정 탄화규소의 박층(10)을 포함하는 복합 구조체(1)의 제조 방법에 관한 것이다. 상기 제조 방법은 하기 단계를 포함한다:
a) 단결정 탄화규소의 초기 기재(11)를 제공하는 단계,
b) 상기 초기 기재(11) 상에 단결정 탄화규소의 도너 층(110)을 에피택셜 성장시켜 도너 기재(111)를 형성하는 단계,
c) 상기 도너 층(110)으로 경량 종을 이온 주입하여 매립된 취성 평면(12)을 형성하여 상기 박층(10)을 한정하는 단계,
d) 상기 도너 층(110)의 자유 표면 상에 탄화규소의 캐리어 기재(20)를 형성하는 단계로서, 400℃ 내지 1100℃의 온도에서의 침착을 포함하는 단계,
e) 상기 매립된 취성 평면(12)을 따라 분리하여, 상기 복합 구조체(1) 및 상기 도너 기재의 나머지(111') 둘 모두를 형성하는 단계,
f) 상기 복합 구조체(1)의 화학적-기계적 처리(들) 단계.
a) 단결정 탄화규소의 초기 기재(11)를 제공하는 단계,
b) 상기 초기 기재(11) 상에 단결정 탄화규소의 도너 층(110)을 에피택셜 성장시켜 도너 기재(111)를 형성하는 단계,
c) 상기 도너 층(110)으로 경량 종을 이온 주입하여 매립된 취성 평면(12)을 형성하여 상기 박층(10)을 한정하는 단계,
d) 상기 도너 층(110)의 자유 표면 상에 탄화규소의 캐리어 기재(20)를 형성하는 단계로서, 400℃ 내지 1100℃의 온도에서의 침착을 포함하는 단계,
e) 상기 매립된 취성 평면(12)을 따라 분리하여, 상기 복합 구조체(1) 및 상기 도너 기재의 나머지(111') 둘 모두를 형성하는 단계,
f) 상기 복합 구조체(1)의 화학적-기계적 처리(들) 단계.
Description
본 발명은 마이크로전자 부품용 반도체 재료 분야에 관한 것이다. 본 발명은 보다 특히, 결정, 특히 다결정 탄화규소의 캐리어 기재(carrier substrate) 상에 단결정 탄화규소의 박층을 포함하는 복합 구조체를 제조하기 위한 방법에 관한 것이다.
탄화규소 (SiC)에 대한 관심은, 이 반도체 재료가 에너지를 취급하는 능력을 증가시킬 수 있기 때문에 최근 몇 년에 걸쳐 상당히 증가하였다. SiC는, 특히 전기 자동차와 같은 전자장치의 증가하는 분야의 요구사항을 충족시키기 위한 혁신적인 전력 장치의 제조에 점점 더 널리 사용되고 있다.
단결정 탄화규소를 기반으로 하는 전력 장치 및 통합 공급 시스템은 이들의 전통적인 규소 대응물에 비해 훨씬 더 높은 전력 밀도를 관리할 수 있으며, 더 작은 활성 영역 치수로 관리할 수 있다. SiC 전력 장치의 치수를 훨씬 더 제한하기 위해, 측방 부품보다는 수직 부품을 제조하는 것이 유리하다. 이를 위해, SiC 구조체의 전면 상에 배열된 전극 및 후면 상에 배열된 전극 사이에서 수직 전기 전도가 상기 구조체에 의해 허용되어야 한다.
그럼에도 불구하고, 마이크로전자 산업을 위해 의도되는 단결정 SiC 기재는 여전히 고가이고, 큰 사이즈로 공급하기에 어렵다. 따라서, 덜 고가인 캐리어 기재 상에 단결정 SiC의 박층을 전형적으로 포함하는 복합 구조체를 제조하기 위해 박층 전사(transfer) 해결책을 이용하는 것이 유리하다. 잘 알려져 있는 박층 전사 해결책은 경량 이온(light ion) 주입 및 직접 결합에 의한 조립을 기반으로 하는 Smart Cut™ 공정이다. 이러한 종류의 공정은, 예를 들어, 다결정 SiC (p-SiC)의 캐리어 기재와 직접 접촉하는 c-SiC 도너 기재(donor substrate)로부터 취한 단결정 SiC (c-SiC)의 박층을 포함하는 복합 구조체의 제조를 가능하게 하며, 이는 수직 전기 전도를 허용한다. 그럼에도 불구하고, 2종의 c-SiC 및 p-SiC 기재 사이의 분자 접착에 의해 고품질의 직접 결합을 달성하는 것은 여전히 어려운데, 이는 상기 기재의 거칠기 및 표면 상태의 관리가 복잡하기 때문이다.
이 공정으로부터 얻어지는 다양한 방법은 또한 선행 기술로부터 잘 알려져 있다. 예를 들어, 문헌 [F. Mu et al (ECS Transactions, 86 (5) 3-21, 2018)]은 연결되는 표면을 아르곤으로의 충격(bombardment)에 의해 활성화시킨 후 직접 결합 (SAB: "표면 활성화 결합")을 구현한다: 결합 전의 이러한 처리는 매우 높은 밀도의 단글링 본드(dangling bond)를 생성하며, 상기 단글링 본드는 조립체 계면에서 공유 결합의 형성을 촉진하고, 따라서 높은 결합 에너지를 촉진한다. 그러나, 이 방법은 단결정 SiC 도너 기재의 표면에 비정질 층을 생성하는 결점을 가지며, 이는 c-SiC의 박층 및 p-SiC의 캐리어 기재 사이의 수직 전기 전도에 부정적으로 영향을 미친다.
이러한 문제점을 해결하기 위한 해결책이 보다 특히 문헌 EP3168862에서 제안되었으며, 이는 이의 전기적 성질을 회복하기 위해 상기 비정질 층으로의 도펀트 종(species)의 주입을 이용한다. 이 접근법의 주요 결점은 이의 복잡성 및 따라서 이의 비용이다.
또한, 문헌 US8436363이 알려져 있으며, 이는 금속 캐리어 기재 상에 배열된 c-SiC의 박층을 포함하는 복합 구조체를 제조하기 위한 방법을 기술하며, 상기 금속 캐리어 기재의 열 팽창 계수는 상기 박층의 열 팽창 계수와 일치한다. 이 제조 방법은 하기 단계를 포함한다:
- c-SiC 도너 기재에 매립된 취성 평면(buried brittle plane)을 형성하고, 상기 매립된 취성 평면 및 상기 c-SiC 도너 기재의 전면 사이에 박층을 한정하는(delimiting) 단계;
- 상기 c-SiC 도너 기재의 전면 상에, 예를 들어 텅스텐 또는 몰리브덴의 금속 층을 침착하여, 보강재(stiffener)로서의 역할을 수행하기에 충분한 두께를 갖는 캐리어 기재를 형성하는 단계;
- 상기 매립된 취성 평면을 따라 분리하여, 한편으로는 상기 금속 캐리어 기재 및 c-SiC의 박층을 포함하는 복합 구조체 및 다른 한편으로는 상기 c-SiC 도너 기재의 나머지를 형성하는 단계.
그러나, 이러한 종류의 제조 방법은, 캐리어 기재를 형성하는 재료가 1200℃ (p-SiC의 제조를 위한 통상적인 온도) 초과의 온도에서 침착을 요구하는 p-SiC인 경우 양립가능하지 않다. 구체적으로, 이러한 높은 온도에서, 매립된 취성 평면에 존재하는 공동(cavity)의 성장 동역학은 p-SiC 층의 성장 동역학보다 더 빠르며, 블리스터링(blistering)이 발생하기 시작하기 전에 보강 효과에 요구되는 두께에 도달하지 않으며, 이는 공동에 따른 수직으로의 층의 변형과 관련된다.
이용된 층 전사 기술에 관계 없이, 매우 높은 품질의 c-SiC 박층을 포함하며, 보다 특히, 확장된 결함이 없는 (또는 이러한 결함의 매우 낮은 밀도를 갖는) 복합 구조체를 제공하는 데 추가적인 문제점이 발생하며, 이는 상기 박층 상에 제조하고자 하는 전력 장치의 성능 및 신뢰성에 불리하게 영향을 미치기 쉽다.
본 발명은 선행기술의 것에 대한 대안적인 해결책에 관한 것이며, 상기 언급된 결점을 완전히 또는 부분적으로 극복하는 것을 목표로 한다. 본 발명은 보다 특히, 결정 SiC 캐리어 기재 상에 배열된 고품질의 c-SiC 박층을 포함하는 복합 구조체를 제조하기 위한 방법에 관한 것이다.
본 발명은 탄화규소의 캐리어 기재 상에 배열된 단결정 탄화규소의 박층을 포함하는 복합 구조체를 제조하기 위한 방법에 관한 것이다. 상기 제조 방법은 하기 단계를 포함한다:
a) 단결정 탄화규소의 초기 기재를 제공하는 단계,
b) 상기 초기 기재 상에 단결정 탄화규소의 도너 층(donor layer)을 에피택셜 성장(epitaxial growth)시켜 도너 기재(donor substrate)를 형성하는 단계로서, 상기 도너 층은 상기 초기 기재보다 더 낮은 결정 결함 밀도를 갖는, 단계,
c) 상기 도너 층으로 경량 종(light species)을 이온 주입하여 매립된 취성 평면(buried brittle plane)을 형성하여, 상기 매립된 취성 평면 및 상기 도너 층의 자유 표면 사이에 상기 박층을 한정하는 단계,
d) 상기 도너 층의 자유 표면 상에 탄화규소의 캐리어 기재를 형성하는 단계로서, 400℃ 내지 1100℃의 온도에서의 침착, 및 상기 도너 층 및 상기 캐리어 기재 사이에 비절연 계면을 획정하는(defining) 것을 포함하는 단계,
e) 상기 매립된 취성 평면을 분리하여, 한편으로는 상기 복합 구조체 및 다른 한편으로는 상기 도너 기재의 나머지를 형성하는 단계,
f) 상기 복합 구조체의 기계적 및/또는 화학적 처리(들) 단계로서, 상기 박층의 자유 표면을 평활화하고, 상기 복합 구조체의 두께 균일성을 보정하기 위한 단계.
단독으로 또는 임의의 기술적으로 실현가능한 조합에 따라 취해진 본 발명의 다른 유리하고 비제한적인 특징에 따르면:
ㆍ단계 d)의 침착은 600℃ 내지 900℃, 훨씬 바람직하게는 700℃ 내지 800℃의 온도에서 수행되며, 화학 기상 증착 기술 또는 소결 기술 또는 세라믹 분말 용액을 사용하는 액상 침착 기술을 기반으로 하고;
ㆍ단계 d)의 침착은 직접 액체 주입에 의해 보조되는 화학 기상 증착이고;
ㆍ단계 d)의 침착은 플라즈마 강화 또는 저압 화학 기상 증착이고;
ㆍ단계 d)의 침착은 10 미크론/시간 초과, 훨씬 바람직하게는 50 미크론/시간 초과의 속도에서 수행되고;
ㆍ단계 d)의 침착의 종료 시, 캐리어 기재는 50 미크론 이상의 두께, 심지어 100 미크론 이상의 두께를 갖고;
ㆍ단계 a)는, 초기 기재의 기저면 전위(basal plane dislocation) 결함을 스레딩 에지 전위(threading edge dislocation) 결함으로 전환시키기 위해 초기 기재 상에서의 단결정 전환 층의 형성을 포함하고;
ㆍ에피택셜 성장 단계 b)는 1200℃ 초과, 바람직하게는 1500℃ 내지 1650℃의 온도에서 수행되고;
ㆍ단계 c) 동안 주입된 경량 종은 수소 및/또는 헬륨으로부터 선택되고;
ㆍ분리 단계 e)는 단계 d)의 침착 온도 이상의 온도에서 작용하고;
ㆍ분리 단계 e)는, 도너 기재와 접합된 캐리어 기재를 포함하는 스택(stack)에 기계적 응력을 적용함으로써 작용하고;
ㆍ단계 f)는 복합 구조체의 전면 및 후면의 동시적인 화학적-기계적 연마를 포함하고;
ㆍ상기 방법은 단계 f) 전 또는 후에 1000℃ 내지 1800℃의 온도에서의 열 처리 단계를 포함하고;
ㆍ상기 방법은 복합 구조체의 박층 상에서의 추가적인 단결정 탄화규소 층의 에피택셜 성장의 제2 단계 g)를 포함하고;
ㆍ상기 방법은 초기 기재로서 또는 도너 기재로서 재사용할 목적으로 도너 기재의 나머지를 재상태조절하는(reconditioning) 단계를 포함하고;
ㆍ도너 기재의 나머지는 새로운 도너 기재로서 적어도 2회 재사용된다.
본 발명의 다른 특징 및 이점은 첨부된 도면을 참조하여 본 발명의 하기의 상세한 설명으로부터 명백해질 것이며, 첨부된 도면에서,
도 1은 본 발명에 따른 제조 방법에 의해 제조된 복합 구조체를 도시하고;
도 2a 내지 2g는 본 발명에 따른 제조 방법의 단계를 도시하고;
도 3a 및 3b는 본 발명에 따른 제조 방법의 단계를 도시한다.
도 1은 본 발명에 따른 제조 방법에 의해 제조된 복합 구조체를 도시하고;
도 2a 내지 2g는 본 발명에 따른 제조 방법의 단계를 도시하고;
도 3a 및 3b는 본 발명에 따른 제조 방법의 단계를 도시한다.
설명에서, 도면에서 동일한 참조 부호는 동일한 유형의 요소에 대해 사용될 수 있다. 도면은 가독성을 위해 축척이 아닌 개략도이다. 특히, z축을 따른 층의 두께는 x축 및 y축을 따른 측방 치수에 대해 축척되지 않고; 서로에 대한 층의 상대적인 두께는 도면에서 반드시 고려되는 것은 아니다.
본 발명은 탄화규소의 캐리어 기재(20) 상에 배열된 단결정 탄화규소의 박층(10)을 포함하는 복합 구조체(1)의 제조 방법에 관한 것이다 (도 1). 캐리어 기재(20)는 결정질이며, 유리하게는 유리하게 다결정질이다 ("p-SiC"는 이하, 다결정 SiC를 지칭하기 위해 사용될 것임).
상기 방법은 먼저, 단결정 탄화규소의 초기 기재(11)를 제공하는 단계 a)를 포함한다 (도 2a). 설명 나머지 전체에 걸쳐, "c-SiC"는 단결정 탄화규소를 지칭하기 위해 사용될 것이다.
초기 기재(11)는 바람직하게는, 100 mm 또는 150 mm 또는 심지어 200 mm의 직경, 및 전형적으로 300 내지 800 미크론의 두께를 갖는 웨이퍼의 형태이다. 이는 전면(11a) 및 후면(11b)을 갖는다. 전면(11a)에 대해 선택된 표면 거칠기는 유리하게는, 20 미크론 x 20 미크론의 스캔 상에서 원자력 현미경 (AFM)에 의해 측정된 1 nm Ra (평균 거칠기) 미만이다.
후속으로, 상기 방법은, 초기 기재(11) 상에 단결정 탄화규소 도너 층(110)을 에피택셜 성장시켜 도너 기재(111)를 형성하는 단계 b)를 포함한다 (도 2b). 에피택셜 성장 단계는, 도너 층(110)이 초기 기재(11)보다 더 낮은 결정 결함 밀도를 갖도록 수행된다.
c-SiC의 초기 기재(11)는 전형적으로 4H 또는 6H 폴리타입(polytype)이며, <11-20> 결정학적 축 ± 0.5˚에 대해 4.0˚ 미만의 방향상실(disorientation) ("오프컷(offcut)") 및 5/cm2 이하 또는 심지어 1/cm2 미만의 스레딩 전위(threading dislocation) ("마이크로파이프(micropipe)") 밀도를 나타낸다. N (질소)-도핑되는 경우, 이는 바람직하게는 0.015 ohm.cm 내지 0.030 ohm.cm의 저항을 나타낸다. 선택된 초기 기재(11)는, 전형적으로 3000/cm2 이하의 낮은 기저면 전위 (BPD) 결함 밀도를 가질 수 있다. 약 1500/cm2의 BPD 밀도를 갖는 c-SiC 기재는 합리적으로 이용가능하므로, 이들을 공급하는 것을 더 용이하게 한다.
복합 구조체(1)의 c-SiC 박층(10)이 본 발명의 방법의 종료 시 형성될 도너 층(110)이, 상기 박층(10) 상에 제조될 수직 부품에 요구되는 사양을 준수하기 위해 초기 기재(11)보다 더 높은 결정 품질을 갖는 것이 바람직하다. 그 이유는, c-SiC의 층 또는 기재에 다양한 유형의 확장된 결함이 존재하기 때문이다. 이러한 확장된 결함은 부품의 성능 및 신뢰성에 불리하게 영향을 미칠 수 있다. 특히, BPD 결함은 양극성(bipolar) 부품에 치명적이다: 그 이유는, 전자-정공 쌍의 재결합 에너지가 이용가능한 경우 쇼클리 적층 결함 (Shockley stacking fault; SSF)이 전위로부터 확장되기 때문이다. 부품의 활성 영역 내에서 SSF 적층 결함의 확장은 온 상태(on state)에서 부품의 저항의 증가를 낳는다.
따라서, c-SiC 도너 층(110)은 1/cm2 이하의 BPD 결함 밀도를 갖도록 하는 방식으로 제조된다.
이러한 목적을 위해, 에피택셜 성장 단계 b)는 1200℃ 초과, 바람직하게는 1500℃ 내지 1650℃의 온도에서 수행된다. 사용된 전구체는 모노실란 (SiH4), 프로판 (C3H8) 또는 에틸렌 (C2H4)이고; 캐리어 가스는 아르곤이 있거나 또는 없는 수소일 수 있다.
도너 층(110)에서의 낮은 BPD 결함률(defect rate)은, 초기 기재(11)에 존재하는 BPD 결함의 스레딩 에지 전위 또는 TED로의 전환을 촉진함으로써 얻어진다.
하나의 특정한 구현예에 따르면, 단계 a)는 초기 기재(11)에서의 BPD 결함의 TED 결함으로의 전환을 최대화하기 위해 바람직하게는 c-SiC의 단결정 전환 층(13)의 형성을 포함한다 (도 3a). 이러한 목적을 위해, c-SiC의 초기 기재(11)에 대해 4°에 가까운 낮은 오프컷 각도를 선택하여, 에피택셜 성장 전에 실현되는 인시츄(in situ) 에칭을 향상시키고, 높은 성장 속도 (전형적으로 5 μm/h 초과)를 목표로 하고, 최종적으로 1에 가까운 전구체 유동에서의 C/Si 비(ratio)로 단결정 전환 층(13)의 성장 조건을 선택하는 것이 유리하다.
이어서, 단계 b)는 상기 전환 층(13) 상에서 도너 층(110)의 에피택셜 성장을 수행하는 것을 수반한다 (도 3b). 이러한 특정한 구현예에 따르면, 1/cm2 이하 또는 심지어 0.1/cm2 미만의 BPD 결함 밀도를 갖는 c-SiC의 도너 층(110)을 얻는 것이 또한 가능하다. 또한, 본 발명에 따른 방법의 종료 시 양극성 열화(bipolar degradation)의 확률 (정공이 BPD/TED 전환 포인트(point) 아래에 도달할 확률)은, 단결정 전환 층(13)이 복합 구조체(1)로 전사되도록 의도되지 않기 때문에, 무시할 수 있다 (< 0.1%). 양극성 열화를 감소시키는 것을 목표로 하는 최신 기술은 전환 층 및 활성 층 사이에 재결합 층 (1E18 at/cm3 초과에서 질소로 도핑됨)을 통합하는 것을 포함한다. 10 μm의 두께 및 5E18/cm3 초과의 농도를 희생하여, 이 재결합 층은 이 재결합 층을 함유하지 않는 베이스(base) 구조체에 대해, 정공이 존재할 확률을 0.1%로 감소시킬 수 있다. 본 발명에서, 단결정 전환 층(13)이 전사되지 않기 때문에, 양극성 열화의 핵형성(nucleation) 포인트 (BPD-TED 전환 포인트 또는 임의의 BPD 포인트)에 정공이 도달할 확률은 최소 0.1% 미만이거나 또는 심지어 0%에 가깝다.
전면(11a) 상에 잠재적으로 존재하는 미립자, 금속 또는 유기 오염물, 또는 천연 산화물 층의 일부 또는 전부를 제거하는 것을 목표로 하는 초기 기재(11)의 세정 또는 에칭의 종래 순서가 에피택셜 성장 단계 b)전에 실현될 수 있다.
본 발명에 따른 제조 방법은, 박층(10)의 목적하는 두께를 나타내는 사전결정된 깊이까지, 어떠한 경우에도 초기 기재(11) (및/또는 전환 층(13) (이것이 존재하는 경우))에 도달하지 않으면서 도너 층(110)으로 경량 종을 이온 주입하는 단계 c)를 추가로 포함한다. 이러한 주입은 도너 층(110)에 매립된 취성 평면(12)을 생성하며, 이는 상기 매립된 취성 평면(12) 및 상기 도너 층(110)의 자유 표면(11a) 사이에 박층(10)을 한정한다 (도 2c).
주입된 경량 종은 바람직하게는 수소, 헬륨 또는 공동 주입되는 이 두 종이다. Smart CutTM 공정과 관련하여 잘 알려져 있는 바와 같이, 이들 경량 종은 주어진 깊이 둘레에, 도너 층(110)의 자유 표면(11a)에 평행한, 즉 도면에서 평면 (x,y)에 평행한 박층에 분포된 미세공동을 형성할 것이다. 이 박층은 단순화를 위해, 매립된 취성 평면(12)으로서 명명된다.
경량 종의 주입 에너지는 도너 층(110)에서 결정된 깊이에 도달하도록 선택된다.
전형적으로, 수소 이온은 약 100 내지 1500 nm의 두께를 갖는 박층(10)을 한정하기 위해 10 keV 내지 250 keV의 에너지에서 그리고 5E16/cm2 내지 1E17/cm2의 용량에서 주입될 것이다.
이온 주입 단계 전에 도너 층(110)의 자유 표면 상에 보호 층이 침착될 수 있다. 이 보호 층은, 예를 들어 산화규소 또는 질화규소와 같은 재료로 구성될 수 있다.
본 발명에 따른 방법은 후속으로, 도너 층(110)의 자유 표면 상에 결정 탄화규소의 캐리어 기재(20)를 형성하는 단계 d)를 포함한다 (도 2d). 이 단계 d)는 400℃ 내지 1100℃의 온도에서의 침착을 포함한다. 단계 d)의 침착은 유리하게는 600℃ 내지 900℃, 훨씬 바람직하게는 700℃ 내지 800℃의 온도에서 수행된다.
또한, 단계 d)는 도너 층(110) 및 캐리어 기재(20) 사이에 비절연 계면을 획정한다. 즉, 단계 d)는, 도너 층(110) 및 캐리어 기재(20) 사이의 계면이 전기 전도성이도록 수행된다: 목표는 전형적으로 1 mohm.cm2 미만 또는 심지어 0.1 mohm.cm2 미만의 계면의 비저항(specific resistance)일 것이다. 유리하게는, 상기 계면의 전기 전도도를 보장하기 위해, 도너 층(110)의 자유 표면 상에 존재하는 천연 산화물은 습식 또는 건식 방법에 의해 HF (불화수소산) 탈산에 의해 제거된다. 대안적으로, 캐리어 기재(20) 상에 침착된 처음 몇 나노미터의 과도핑(overdoping)은 도너 층(110) 및 캐리어 기재(20) 사이의 계면의 전기 전도도를 촉진할 수 있다.
동등하게 유리하게는, 탈산 및/또는 캐리어 기재(20)의 형성 전에, 상기 기재의 자유 표면 상에 잠재적으로 존재하는 미립자, 금속 또는 유기 오염물의 일부 또는 전부를 제거하기 위해 세정 순서가 도너 기재(111)에 적용된다.
단계 d)의 침착은 다양한 기술에 의해 수행될 수 있다.
제1 선택사항(option)에 따르면, 캐리어 기재(20)는 소결 기술에 의해 형상화될 수 있다. 이 기술에 따르면, SiC 분말이 고압 하에 고온에서 압축된다. 이러한 방식으로 고형 세라믹 층을 얻는 것이 가능하다. 본 발명의 문맥에서, 소결은 주입된 도너 기재(111) 상에서 직접 일어나서, 소결 직후에, 두껍고 도너 층(110)에 부착된 캐리어 기재(20)가 얻어진다. 소결된 재료 (캐리어 기재(20))는 후술하는 후속 분리 단계 e)를 가능하게 하기에 충분한 응집력을 얻는 것이 필수적이다. 따라서, 이 분리 온도 미만으로 SiC 분말의 소결 온도를 낮추는 것이 필요하다. 상기 목적을 위해, 보론, 탄소 또는 AlN과 같은 종래 첨가제가 사용되거나 또는 SiC 나노분말이 사용된다.
제2 선택사항에 따르면, 캐리어 기재(20)는 세라믹 분말의 용액을 사용하는 액상 침착 기술에 의해 형상화될 수 있다. 이 경우, 프리-세라믹(pre-ceramic) 중합체 재료 ("중합체 유래 세라믹"의 경우 PDC)가 세라믹 분말 (예를 들어, SiC)과 혼합된다. 확산, 스핀-코팅 또는 몰딩(moulding)에 의해 층 형태로 침착될 수 있는 점성 용액이 얻어진다. 저온 (~200℃) 베이크(bake)는 재료의 중합 및 가교를 낳고, 침착된 층의 응고를 유발한다. 따라서, 캐리어 기재(20)의 형상화는 저온에서 실행된다. 후속으로, 더 높은 온도 (> 600℃)에서의 베이킹 작업은 중합체의 열분해를 가능하게 한다. 이어서, 생성되는 재료는 순수한 세라믹이다. 본 발명의 문맥에서, 목표는 SiC 또는 SiCN 재료를 얻는 것일 것이다. 세라믹 공급원료는 분말 형태의 SiC이고, PDC는 폴리카보실란 또는 폴리유기실리콘 (SiC를 얻기 위함) 및 폴리유기실라잔 (SiCN을 얻기 위함) 부류로부터의 분자이다.
제3 선택사항에 따르면, 단계 d)의 침착은 화학 기상 증착 기술 (CVD)에 의해 수행될 수 있다.
예를 들어, 증착은 열 CVD 기술, 예컨대 대기압 증착 (APCVD) 또는 저압 증착 (LPCVD)에 의해 수행될 수 있다. 전구체는 메틸실란, 디메틸디클로로실란 또는 다르게는 디클로로실란 + 이소부탄으로부터 선택될 수 있다.
증착은, 예를 들어 전구체로서 사염화규소 및 메탄을 사용하는 플라즈마 강화 CVD 기술 (PECVD)일 수 있다. 플라즈마-생성 전기 방전을 발생시키는 데 사용되는 공급원의 주파수는 바람직하게는 약 3.3 MHz이고, 보다 일반적으로 10 kHz 내지 100 GHz이다.
또한, 단계 d)의 침착은 직접 액체 주입-보조 화학 기상 증착 기술 (DLI-CVD)을 기반으로 할 수 있다. 이러한 종류의 기술은, 염소-함유 전구체를 사용할 임의의 필요성 없이, 공급된 물질 (전구체) 및 획득되는 침착 두께 사이에 높은 수율을 제공하며, 따라서 비용 및 환경적 제약을 제한한다. DLI-CVD 증착은 디실란부탄 전구체 또는 폴리실릴에틸렌 전구체를 이용하며, 상기 전구체는 순수하거나 또는 희석된다. 이러한 종류의 기술은 학위논문 [Guilhaume Boisselier (2013, "Chemical vapour deposition of chromium, silicon and hafnium carbides, assisted by pulsed liquid injection")]에, 부품, 예를 들어 강철 또는 합금으로 제조된 금속 부품을 매우 높은 온도에서의 처리 동안 보호하기 위해 이들 부품 상에 세라믹 코팅을 증착하는 것의 적용에 대해 기술되어 있다.
본 출원인은, 완전히 상이한 적용, 즉 마이크로전자 분야를 위해 의도되는 복합 구조체를 제조하기 위해 c-SiC의 도너 층(110) 상에 SiC의 캐리어 기재(20)를 형성하기 위한, DLI-CVD 기술을 기반으로 하는 증착 단계 d)를 개발하였다. 증착 파라미터 (예를 들어, 6.7 kPa의 압력, 700℃ 내지 850℃의 온도)는, 캐리어 기재(20)가 0.015 내지 0.03 ohm.cm의 우수한 전기 전도도, 200 W.m-1.K-1 이상의 높은 열 전도도, 및 전형적으로 주위 온도에서 3.8E-6/K 및 4.2E-6/K의, 박층(10)의 열 팽창 계수와 유사한 열 팽창 계수를 나타내도록 결정된다.
이러한 성질을 얻기 위해, 캐리어 기재(20)는, 예를 들어 하기 구조적 특성을 나타낼 수 있다: 다결정 구조, 3C SiC 입자, 111 배향, 1 내지 10 μm의 평균 크기, 0.03 ohm.cm 이하의 최종 저항을 위한 N형 도핑.
이용된 기술과 관계 없이, CVD 증착은 유리하게는, 10 미크론/시간 초과, 심지어 50 미크론/시간 초과, 심지어 또한 100 미크론/시간 초과의 속도에서 수행된다. 자명한 경제적 의미뿐만 아니라, 공동이 열 활성화된 성장을 따르는 매립된 취성 평면(12)에 대한 보강 효과를 보장하기 위해, 캐리어 기재(20)의 상당한 두께에 신속하게 도달하는 것이 중요하다.
단계 d)의 종료 시, 캐리어 층(20)은 50 미크론 이상의 두께, 또는 심지어 100 미크론 이상의 두께를 갖는다. 단계 d)로부터 생성된 스택(211)은 도너 층(110) 상에 배열된 캐리어 기재(20)를 포함하며, 이는 차례로 초기 기재(11) 상에 배열된다.
본 발명에 따른 방법은 후속으로, 매립된 취성 평면(12)을 따라 분리하여, 한편으로는 복합 구조체(1) 및 다른 한편으로는 도너 기재의 나머지(111')를 형성하는 단계 e)를 포함한다 (도 2e).
하나의 유리한 구현예에 따르면, 분리 단계 e)는, 단계 d)의 침착 온도 이상의 분리 온도에서 스택(211)에 열 처리를 적용함으로써 작용한다. 구체적으로, 매립된 취성 평면(12)에 존재하는 미세공동은 균열파(fracture wave)의 개시 때까지 성장 동역학을 따르며, 이는 매립된 취성 평면(12)의 전체 범위에 걸쳐 전파되어, 복합 구조체(1) 및 초기 기재의 나머지(111') 사이의 분리를 낳을 것이다. 실제로, 온도는 단계 c)의 주입 조건에 따라 950℃ 내지 1200℃일 수 있다.
대안적인 구현예에 따르면, 분리 단계 e)는 스택(211)에 기계적 응력을 적용함으로써 작용한다. 응력은, 예를 들어 매립된 취성 평면(12)에 가깝게 도구 (예를 들어, 면도날)를 삽입함으로써 가해질 수 있다. 예로서, 분리 응력은 약 수 GPa, 바람직하게는 2 GPa 초과일 수 있다.
또 다른 구현예에 따르면, 매립된 취성 평면(12)을 따른 분리 단계 e)는 단계 d)에서 캐리어 기재(20)의 형성 동안 또는 이의 종료 시 직접, 보다 특히 상기 단계에서 침착 온도가 800℃ 내지 1100℃ 범위일 때 수행된다.
그 자체로 알려져 있는 바와 같이, 분리 단계 e)의 종료 시, 복합 구조체(1)의 박층(10)의 자유 표면(10a)은 5 내지 100 nm RMS (20 미크론 × 20 미크론의 스캔 상에서 원자력 현미경 (AFM)으로의 측정에 의함)의 표면 거칠기를 갖는다.
따라서, 본 발명에 따른 방법은, 박층(10)의 자유 표면(10a)을 평활화하고 복합 구조체(1)의 두께 균일성을 교정하기 위한, 복합 구조체(1)의 기계적 및/또는 화학적 처리(들) 단계 g)를 포함한다 (도 2f).
따라서, 단계 f)는, 0.5 nm RMS 미만 (20 x 20 μm의 AFM 필드(field) 상에서) 또는 심지어 0.3 nm 미만의 최종 거칠기를 얻도록 전형적으로 약 50 nm 내지 1000 nm의 재료가 제거되는, 박층(10)의 자유 표면(10a)의 화학적-기계적 연마 (MCP)를 포함할 수 있다. 단계 f)는 또한, 박층(10)의 자유 표면(10a)의 품질을 더욱 향상시키기 위해, 화학적 또는 플라즈마 처리 (세정 또는 에칭), 예를 들어 SC1/SC2 (표준 세정 1, 표준 세정 2) 세정 및/또는 HF (불화수소산) 세정, 또는 N2, Ar, CF4 플라즈마 등을 포함할 수 있다.
또한, 단계 f)는 캐리어 기재(20)의 두께 균일성 및 또한 이의 후면(20b) 거칠기를 개선하는 목적을 위해, 상기 캐리어 기재(20)의 후면(20b)의 화학적-기계적 연마 (CMP) 및/또는 화학적 처리 (에칭 또는 세정) 및/또는 기계적 처리 (연삭)를 포함할 수 있다. 적어도 하나의 금속 전극이 복합 구조체(1)의 후면(20b) 상에 존재할 수직 부품을 제조하기 위해, 0.5 nm RMS 미만의 거칠기 (20 미크론 x 20 미크론의 필드 상에서 원자력 현미경 (AFM)으로의 측정에 의함)가 목적된다.
이 단계 f) 동안, 복합 구조체(1)의 에지의 연마 또는 연삭을 수행하여 이의 원형 윤곽의 형상 및 에지 라운딩(rounding)을 마이크로전자 제조 공정의 요구사항과 양립가능하도록 하는 것이 또한 가능하다.
하나의 유리한 구현예에 따르면, 화학적-기계적 처리 단계 f)는 복합 구조체(1)의 전면(10a) 및 후면(20b)의 동시적인 연마 (CMP)를 포함하여, 상기 복합 구조체(1)를 평활화하고 이의 두께 균일성을 개선한다. 연마 파라미터는 전면 및 후면 사이에 상이할 수 있으며, c-SiC 표면 및 p-SiC 표면의 평활화는 통상적으로 상이한 소모품(consumables)을 요구한다. 보다 특히, 연마의 화학적 성분에 의한 결정립계의 우선적인 공격을 제한하기 위해, 캐리어 기재(20)가 p-SiC로 제조된 경우 후면(20b)에 대한 연마의 기계적 성분이 강조된다. 기계적 성분을 강조하기 위해, 예로서, 연마 파라미터, 예컨대 회전 속도 (연마 헤드(head) 및 플레이트), 압력, 연마재의 농도 및 물리적 성질 (즉, 약 10 nm 내지 1 μm의 다이아몬드 나노입자의 직경)이 수정될 수 있다.
또한, 하나의 유리한 구현예에 따르면, 단계 f)는 약 1시간 내지 최대 수 시간 동안 1000℃ 내지 1800℃의 온도에서의 열 처리 단계 f') 이후 또는 이전에 수행된다. 이 단계의 목적은, 적절한 경우, 캐리어 기재(20)의 결정 구성(crystalline configuration)을 발생시킴(developing)으로써 복합 구조체(1)를 안정화하여, 복합 구조체(1)가 박층(10) 상에서의 부품의 제조에 요구되는 고온에서의 후속 열처리와 양립가능하도록 하는 것이다.
본 발명에 따른 방법은, 복합 구조체(1)의 박층(10) 상의 단결정 탄화규소의 추가 층(10')의 에피택셜 성장의 제2 단계 g)를 포함할 수 있다 (도 2g). 이러한 종류의 단계는, 전형적으로 약 5 내지 50 미크론의 비교적 상당한 유용한 층 두께(100)가 부품의 제조에 필요한 경우에 적용된다. 에피택시(epitaxy) 조건은 선택적으로(optionally), 복합 구조체(1)로 인하여, 유용한 층(100) (박층(10) 및 추가 층(10')의 조립체에 해당함)에 유도된 응력을 제한하기 위해, 바람직하게는 더 낮은 온도에서 단계 b)의 에피택시 조건과 유사하게 선택될 수 있다.
최종적으로, 제조 방법은, 초기 기재(1)로서 또는 도너 기재(111)로서 재사용하기 위해 도너 기재의 나머지(111')의 재상태조절(reconditioning) 단계를 포함할 수 있다. 이러한 종류의 재상태조절 단계는, 에지 또는 표면 화학적-기계적 연마에 의한, 및/또는 기계적 연삭에 의한, 및/또는 습식 또는 건식 화학적 에칭에 의한 면(110'a) (도 2e)의 하나 이상의 처리를 기반으로 한다. 단계 b)에서 형성되는 도너 층(110)의 두께는 바람직하게는, 도너 기재(111)의 나머지(111')가 도너 기재(111)로서 적어도 2회 재사용될 수 있도록 규정된다. 바람직하게는, 전환 층(13)이 존재하는 경우, 상기 층을 무손상(intact) 상태로 보존하기 위해, 즉 도너 기재의 나머지(111') 상에 도너 층(10)의 일부를 항상 보존하기 위해 주의가 기울여질 것이다. 따라서, 도너 기재(10)의 일부가 복합 구조체(1)를 제조하기에 불충분한 경우, 도너 층(10)의 에피택셜 성장 단계만이 필요하고, 전환 층(13)의 성장의 이전 단계는 필요하지 않다.
실시예 1:
하나의 비제한적인 예시적인 구현에 따르면, 제조 방법의 단계 a)에서 제공되는 초기 기재(11)는 <11-20> 축 ± 0.5˚에 대해 4.0˚의 배향을 갖는, 4H 폴리타입의 c-SiC로 제조된 웨이퍼로서, 150 mm의 직경 및 350 μm의 두께를 갖는다.
종래 RCA 세정 순서 (표준 세정 1 + 표준 세정 2)에 이어서 카로산(Caro's acid) (황산 및 과산화수소의 혼합물) 및 이어서 HF (불화수소산)의 세정이 c-SiC 도너 층(110)의 에피택셜 성장 단계 b) 전에 초기 기재(11) 상에서 수행된다.
에피택셜 성장은 1650℃의 온도에서 에피택시 챔버(epitaxy chamber)에서 전구체, 예컨대 모노실란 (SiH4) 및 프로판 (C3H8) 또는 에틸렌 (C2H4)을 사용하여 수행되어, 30 미크론의 두께를 갖는 c-SiC 도너 층(110)을 생성한다 (성장 속도: 10 미크론/시간). 도너 층은 약 1/cm2의 BPD 결함 밀도를 갖는다.
수소 이온은 도너 층(110)의 자유 표면을 통해 150 keV의 에너지 및 6E16 H+/cm2의 용량에서 주입된다. 따라서, 매립된 취성 평면(12)은 초기 기재(11)에서 약 800 nm의 깊이에서 생성된다.
도너 층(110)의 자유 표면으로부터 잠재적인 오염물을 제거하기 위해 도너 기재(111) 상에서 RCA + 카로산의 세정 순서가 수행된다.
DLI-CVD 증착이 850℃의 온도에서 도너 층(110) 상에서 전구체 디실란부탄 (DSB)을 사용하여 6.7 kPa의 압력 하에 7분 동안 수행되어, 캐리어 기재(20)에 대해 적어도 10 미크론의 두께에 도달하도록 한다. 이러한 조건 하에, 캐리어 기재(20)는 다결정이다.
이어서, 1000℃의 베이크가 50분 동안 스택(211)에 적용되고, 상기 베이크 동안, 매립된 취성 평면(12)에서 분리가 일어난다.
이 분리 단계 e)의 종료 시, 박층(10) 및 캐리어 기재(20)로 형성된 복합 구조체(1)가 도너 기재의 나머지(111')로부터 분리된다.
박층(10) 및 캐리어 기재(20)의 후면의 표면 거칠기를 회복하기 위해 양면(double-sided) 연마가 수행된다.
실시예 2:
하나의 비제한적인 예시적인 구현에 따르면, 제조 방법의 단계 a)에서 제공되는 초기 기재(11)는 <11-20> 축 ± 0.5˚에 대해 4.0˚의 배향을 갖는, 4H 폴리타입의 c-SiC로 제조된 웨이퍼로서, 150 mm의 직경 및 350 μm의 두께를 갖는다.
종래 RCA 세정 순서 (표준 세정 1 + 표준 세정 2)에 이어서 카로산 (황산 및 과산화수소의 혼합물) 및 이어서 HF (불화수소산)의 세정이 c-SiC 도너 층(110)의 에피택셜 성장 단계 b) 전에 초기 기재(11) 상에서 수행된다.
전환 층(13)이 에피택시 챔버 내에서 형성된다. 초기 기재(11) 상에서 이 층(13)의 에피택셜 성장을 시작하기 전에, 10분 내지 20분의 시간 동안 상기 챔버 내 1700℃의 온도에서 수소 베이크가 수행된다. 후속으로, c-SiC의 전환 층(13)의 에피택셜 성장이 1650℃의 온도에서 전구체, 예컨대 모노실란 (SiH4) 및 프로판 (C3H8) 또는 에틸렌 (C2H4) 및 약 6 미크론/시간의 성장 속도를 사용하여 수행되어, 1 미크론의 두께에 도달한다. 기체 전구체로부터 얻어진 C/Si 비는, 전형적으로 0.95 내지 1.05의, 1에 가까운 값 부근에서 유지된다.
동일한 에피택시 챔버에서, c-SiC 도너 층(110)이 동일한 전구체를 사용하여, 그러나 1.2의 값 부근 또는 실질적으로 더 큰 값으로 조정된 C/Si 비로 1650℃의 온도에서 성장한다. 전구체의 전체 유량은 전환 층(13)의 성장에 이용된 유량에 비해 증가하며, 예를 들어 유량은 2배이다. 30 미크론의 두께를 갖는 도너 층(10)이 약 180분 후에 얻어진다 (성장 속도: 10 미크론/시간). 도너 층(10)은 약 1/cm2 또는 심지어 1/cm2 미만의 BPD 결함 밀도를 갖는다.
도너 층(110)의 자유 표면을 통해 150 keV의 에너지 및 6E16 H+/cm2의 용량에서 수소 이온이 주입된다. 따라서, 매립된 취성 평면(12)은 초기 기재(11)에서 약 800 nm의 깊이에서 생성된다.
도너 층(110)의 자유 표면으로부터 잠재적인 오염물을 제거하기 위해 RCA + 카로산의 세정 순서가 도너 기재(111)에 적용된다.
PECVD 증착은 3.3 MHz의 플라즈마 생성 주파수로 SiCl4 / CH4 / Ar 분위기에서 800℃의 온도에서 도너 층(110) 상에서 수행되고; 증착 구획 내의 압력은 캐리어 기재(20)에 대해 약 300 미크론/시간의 증착 속도에 도달하도록 조정된다. 캐리어 기재(20)의 자유 표면의 증착 후 거칠기를 제한하기 위해 증착 속도는 너무 높아서는 안 된다. 이러한 조건 하에, 캐리어 기재(20)는 다결정이다.
이어서, 1100℃ 베이크가 50분 동안 스택(211)에 적용되고, 상기 베이크 과정에서, 매립된 취성 평면(12)에서 분리가 일어난다.
이 분리 단계 e)의 종료 시, 박층(10) 및 캐리어 기재(20)로 형성된 복합 구조체(1)가 도너 기재의 나머지(111')로부터 분리된다.
박층(10) 및 캐리어 기재(20)의 후면(20b)의 표면 거칠기를 회복하기 위해 양면 연마가 수행된다.
본 발명은 물론, 상술한 구현예 및 실시예에 제한되지 않으며, 변형 구현예는 청구범위에 의해 정의된 바와 같은 본 발명의 범위를 벗어나지 않으면서 도입될 수 있다.
Claims (11)
- 하기 단계를 포함하는, 탄화규소의 캐리어 기재(carrier substrate; 20) 상에 배열된 단결정 탄화규소의 박층(10)을 포함하는 복합 구조체(1)의 제조 방법:
a) 단결정 탄화규소의 초기 기재(11)를 제공하는 단계,
b) 상기 초기 기재(11) 상에 단결정 탄화규소의 도너 층(donor layer; 110)을 에피택셜 성장(epitaxial growth)시키는 단계로서, 1200℃ 초과, 바람직하게는 1500℃ 내지 1650℃의 온도에서 수행되어 도너 기재(donor substrate; 111)를 형성하며, 상기 도너 층(110)은 상기 초기 기재(11)보다 더 낮은 결정 결함 밀도를 갖는, 단계,
c) 상기 도너 층(110)으로 경량 종(light species)을 이온 주입하여 매립된 취성 평면(buried brittle plane; 12)을 형성하여, 상기 매립된 취성 평면(12) 및 상기 도너 층(110)의 자유 표면 사이에 상기 박층(10)을 한정하는(delimiting) 단계,
d) 상기 도너 층(110)의 자유 표면 상에 탄화규소의 캐리어 기재(20)를 형성하는 단계로서, 400℃ 내지 1100℃의 온도에서의 침착, 및 상기 도너 층(110) 및 상기 캐리어 기재(20) 사이에 비절연 계면을 획정하는(defining) 것을 포함하는 단계,
e) 상기 매립된 취성 평면(12)을 따라 분리하여, 한편으로는 상기 복합 구조체(1) 및 다른 한편으로는 상기 도너 기재의 나머지(111')를 형성하는 단계,
f) 상기 복합 구조체(1)의 기계적 및/또는 화학적 처리(들) 단계로서, 상기 박층(10)의 자유 표면을 평활화하고 상기 복합 구조체(1)의 두께 균일성을 보정하기 위한 단계. - 제1항에 있어서, 상기 단계 d)의 침착이 600℃ 내지 900℃, 훨씬 바람직하게는 700℃ 내지 800℃의 온도에서 수행되고, 화학 기상 증착 기술 또는 소결 기술 또는 세라믹 분말의 용액을 사용하는 액상 침착 기술을 기반으로 하는, 제조 방법.
- 제2항에 있어서, 상기 단계 d)의 침착이 직접 액체 주입에 의해 보조되는 화학 기상 증착인, 제조 방법.
- 제2항에 있어서, 상기 단계 d)의 침착이 플라즈마 강화 또는 저압 화학 기상 증착인, 제조 방법.
- 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 단계 d)의 침착이 10 미크론/시간 초과, 훨씬 바람직하게는 50 미크론/시간 초과의 속도에서 수행되는, 제조 방법.
- 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 단계 d)의 침착의 종료 시, 상기 캐리어 기재(20)가 50 미크론 이상의 두께 및 심지어 100 미크론 이상의 두께를 갖는, 제조 방법.
- 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 단계 a)가, 상기 초기 기재(11)의 기저면 전위(basal plane dislocation) 결함을 스레딩 에지 전위(threading edge dislocation) 결함으로 전환시키기 위해 상기 초기 기재(11) 상에서의 단결정 전환 층(13)의 형성을 포함하는, 제조 방법.
- 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 분리 단계 e)가 상기 단계 d)의 침착 온도 이상의 온도에서 작용하는, 제조 방법.
- 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 단계 f)가 상기 복합 구조체(1)의 전면 및 후면의 동시적인 화학적-기계적 연마를 포함하는, 제조 방법.
- 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 단계 f) 전 또는 후에 1000℃ 내지 1800℃의 온도에서의 열 처리 단계를 포함하는 제조 방법.
- 제1항 내지 제10항 중 어느 한 항에 있어서, 초기 기재로서 또는 도너 기재로서 재사용하기 위해 상기 도너 기재의 나머지(111')를 재상태조절하는(reconditioning) 단계를 포함하는 제조 방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR1913553 | 2019-11-29 | ||
FR1913553A FR3103962B1 (fr) | 2019-11-29 | 2019-11-29 | Procede de fabrication d’une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic cristallin |
PCT/FR2020/051928 WO2021105575A1 (fr) | 2019-11-29 | 2020-10-26 | Procede de fabrication d'une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic cristallin |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20220107173A true KR20220107173A (ko) | 2022-08-02 |
Family
ID=69630512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227016662A KR20220107173A (ko) | 2019-11-29 | 2020-10-26 | 다결정 SiC의 캐리어 기재 상에 단결정 SiC의 박층을 포함하는 복합 구조체를 제조하기 위한 방법 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20230260841A1 (ko) |
EP (1) | EP4066274A1 (ko) |
JP (1) | JP2023502572A (ko) |
KR (1) | KR20220107173A (ko) |
CN (1) | CN114746980A (ko) |
FR (2) | FR3103962B1 (ko) |
TW (1) | TW202137284A (ko) |
WO (1) | WO2021105575A1 (ko) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3127627B1 (fr) * | 2021-09-29 | 2024-08-09 | Soitec Silicon On Insulator | Procédé de fabrication d’une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic polycristallin |
CN114075699B (zh) * | 2021-11-21 | 2024-04-12 | 苏州晶瓴半导体有限公司 | 一种双层复合碳化硅衬底及其制备方法 |
CN115058765B (zh) * | 2022-05-18 | 2024-06-28 | 北京青禾晶元半导体科技有限责任公司 | 一种碳化硅复合基板的制造方法 |
CN115595671B (zh) | 2022-12-12 | 2023-08-15 | 青禾晶元(天津)半导体材料有限公司 | 一种复合衬底的制备方法 |
CN115910755A (zh) * | 2023-01-09 | 2023-04-04 | 宁波合盛新材料有限公司 | 一种碳化硅外延片及其制备方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007273524A (ja) * | 2006-03-30 | 2007-10-18 | Mitsui Eng & Shipbuild Co Ltd | 複層構造炭化シリコン基板の製造方法 |
US8436363B2 (en) | 2011-02-03 | 2013-05-07 | Soitec | Metallic carrier for layer transfer and methods for forming the same |
WO2013036376A2 (en) * | 2011-09-10 | 2013-03-14 | Semisouth Laboratories, Inc. | Methods for the epitaxial growth of silicon carbide |
US11721547B2 (en) * | 2013-03-14 | 2023-08-08 | Infineon Technologies Ag | Method for manufacturing a silicon carbide substrate for an electrical silicon carbide device, a silicon carbide substrate and an electrical silicon carbide device |
JP6271309B2 (ja) * | 2014-03-19 | 2018-01-31 | 株式会社東芝 | 半導体基板の製造方法、半導体基板および半導体装置 |
CN106489187B (zh) | 2014-07-10 | 2019-10-25 | 株式会社希克斯 | 半导体基板和半导体基板的制造方法 |
JP6582779B2 (ja) * | 2015-09-15 | 2019-10-02 | 信越化学工業株式会社 | SiC複合基板の製造方法 |
WO2017138247A1 (ja) * | 2016-02-10 | 2017-08-17 | 住友電気工業株式会社 | 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 |
-
2019
- 2019-11-29 FR FR1913553A patent/FR3103962B1/fr active Active
-
2020
- 2020-03-27 FR FR2003025A patent/FR3103961B1/fr active Active
- 2020-10-12 TW TW109135221A patent/TW202137284A/zh unknown
- 2020-10-26 KR KR1020227016662A patent/KR20220107173A/ko unknown
- 2020-10-26 CN CN202080081990.XA patent/CN114746980A/zh active Pending
- 2020-10-26 WO PCT/FR2020/051928 patent/WO2021105575A1/fr unknown
- 2020-10-26 JP JP2022523652A patent/JP2023502572A/ja active Pending
- 2020-10-26 US US17/756,615 patent/US20230260841A1/en active Pending
- 2020-10-26 EP EP20807825.3A patent/EP4066274A1/fr active Pending
Also Published As
Publication number | Publication date |
---|---|
US20230260841A1 (en) | 2023-08-17 |
CN114746980A (zh) | 2022-07-12 |
TW202137284A (zh) | 2021-10-01 |
JP2023502572A (ja) | 2023-01-25 |
EP4066274A1 (fr) | 2022-10-05 |
FR3103962A1 (fr) | 2021-06-04 |
WO2021105575A1 (fr) | 2021-06-03 |
FR3103962B1 (fr) | 2021-11-05 |
FR3103961B1 (fr) | 2021-10-29 |
FR3103961A1 (fr) | 2021-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230260841A1 (en) | Method for producing a composite structure comprising a thin layer of monocrystalline sic on a carrier substrate of polycrystalline sic | |
CN108028183B (zh) | SiC复合基板及其制造方法 | |
TWI693640B (zh) | 使半導體表面平整之製造方法 | |
TWI845800B (zh) | 包含單晶SiC所製成之薄層在SiC所製成之載體基板上之複合結構的製造方法 | |
US20230197435A1 (en) | Method for manufacturing a composite structure comprising a thin layer made of monocrystalline sic on a carrier substrate made of sic | |
TWI844701B (zh) | 用於製作複合結構之方法,該複合結構包含一單晶SiC薄層在多晶SiC製載體底材上 | |
US20220415653A1 (en) | Method for manufacturing a composite structure comprising a thin layer of monocrystalline sic on an sic carrier substrate | |
US20230230868A1 (en) | Detachable temporary substrate compatible with very high temperatures and process for transferring a working layer from said substrate | |
KR20240056832A (ko) | 다결정 탄화규소 지지 기판의 제조 방법 | |
CN110164811A (zh) | 一种碳化硅衬底循环使用的方法和GaN HEMT器件的制作方法 | |
TW202205357A (zh) | 用於製作複合結構之方法,該複合結構包含一單晶sic薄層在一sic載體底材上 | |
TWI850519B (zh) | 用於製作複合結構之方法,該複合結構包含一單晶SiC薄層在一SiC支撐底材上 | |
TW202320128A (zh) | 在多晶碳化矽製載體底材上包含單晶碳化矽製工作層之複合結構及其製作方法 | |
JP2024510756A (ja) | キャリア基板上に単結晶半導体で作られた薄層を含む複合構造体を製造するための方法 | |
TW202332044A (zh) | 用於製作包含多晶碳化矽底材及單晶碳化矽主動層之半導體結構之方法 | |
JP2024509678A (ja) | 炭化ケイ素ベースの半導体構造体及び中間複合構造体を製造する方法 | |
CN118077032A (zh) | 用于在多晶SiC的载体衬底上制造包含单晶SiC的薄膜的复合结构体的方法 |