KR20220103195A - 압력 감쇠 레이트에 기반한 질량 유동 검증을 위한 방법들, 시스템들, 및 장치 - Google Patents
압력 감쇠 레이트에 기반한 질량 유동 검증을 위한 방법들, 시스템들, 및 장치 Download PDFInfo
- Publication number
- KR20220103195A KR20220103195A KR1020227023468A KR20227023468A KR20220103195A KR 20220103195 A KR20220103195 A KR 20220103195A KR 1020227023468 A KR1020227023468 A KR 1020227023468A KR 20227023468 A KR20227023468 A KR 20227023468A KR 20220103195 A KR20220103195 A KR 20220103195A
- Authority
- KR
- South Korea
- Prior art keywords
- flow
- control volume
- gas
- volume
- mass flow
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D7/00—Control of flow
- G05D7/06—Control of flow characterised by the use of electric means
- G05D7/0617—Control of flow characterised by the use of electric means specially adapted for fluid materials
- G05D7/0629—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
- G05D7/0635—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F25/00—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
- G01F25/10—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
- G01F25/17—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters using calibrated reservoirs
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/34—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
- G01F1/36—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/34—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
- G01F1/36—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
- G01F1/363—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/34—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
- G01F1/36—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
- G01F1/38—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/34—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
- G01F1/50—Correcting or compensating means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F25/00—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F25/00—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
- G01F25/10—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F25/00—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
- G01F25/10—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
- G01F25/15—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters specially adapted for gas meters
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D7/00—Control of flow
- G05D7/06—Control of flow characterised by the use of electric means
- G05D7/0617—Control of flow characterised by the use of electric means specially adapted for fluid materials
- G05D7/0629—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
- G05D7/0635—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
- G05D7/0641—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
- G05D7/0647—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged in series
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D7/00—Control of flow
- G05D7/06—Control of flow characterised by the use of electric means
- G05D7/0617—Control of flow characterised by the use of electric means specially adapted for fluid materials
- G05D7/0629—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
- G05D7/0676—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on flow sources
- G05D7/0682—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on flow sources using a plurality of flow sources
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D7/00—Control of flow
- G05D7/06—Control of flow characterised by the use of electric means
- G05D7/0617—Control of flow characterised by the use of electric means specially adapted for fluid materials
- G05D7/0629—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
- G05D7/0694—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means or flow sources of very small size, e.g. microfluidics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/34—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
- G01F1/36—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
- G01F1/40—Details of construction of the flow constriction devices
- G01F1/42—Orifices or nozzles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Dispersion Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Flow Control (AREA)
- Measuring Volume Flow (AREA)
- Sampling And Sample Adjustment (AREA)
- Measuring Fluid Pressure (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
질량 유동 검증 시스템들 및 장치는 압력 감쇠 원리들에 기반하여 MFC(mass flow controller)들의 질량 유량들을 검증한다. 실시예들은, 가스 공급부로부터 가스 유동을 수용하기 위해, 교정 가스 유동 스탠다드 또는 테스트될 MFC를 라인에 커플링시키기 위한 위치; 가스 유동을 수용하기 위해, 라인에서의 위치에 직렬로 커플링된 제어 볼륨; 제어 볼륨에 직렬로 커플링된 유동 제한기; 유동 제한기에 직렬로 커플링된 펌프; 및 가스 공급부로 하여금 제어 볼륨에서 안정적인 압력을 달성하도록 질량 유동 제어 검증 시스템을 통해 가스를 유동시킬 수 있게 하고, 가스 공급부로부터의 가스 유동을 중단시키고, 시간 경과에 따른 제어 볼륨 내의 압력 감쇠 레이트를 측정하도록 구성된 제어기를 포함한다. 다수의 부가적인 양상들이 개시된다.
Description
[001]
본 출원은 발명의 명칭이 "METHODS, SYSTEMS, AND APPARATUS FOR MASS FLOW VERIFICATION BASED ON RATE OF PRESSURE DECAY"인 2018년 3월 26일자로 출원된 미국 특허 출원 일련 번호 제15/936,428호(대리인 도켓 번호 제44014915US01호)로부터 우선권을 주장하며, 이로써, 그 미국 특허 출원은 모든 목적들을 위해 그 전체가 인용에 의해 본원에 포함된다.
[002]
본 개시내용은 전자 디바이스 제조에 관한 것으로, 더 구체적으로, 압력 감쇠 레이트(rate of pressure decay)에 기반하여 질량 유동 제어기(mass flow controller)들의 질량 유량들을 검증하는 것에 관한 것이다.
[003]
전자 디바이스 제조 시스템들은 하나 이상의 MFC(mass flow controller)들을 포함할 수 있다. MFC들은 전자 디바이스들의 제조에서 사용되는 프로세스 케미스트리(chemistry)들의 질량 유량들을 제어한다. 프로세스 케미스트리들은, 반도체 웨이퍼들, 유리 플레이트들 등 상에 전자 디바이스들이 제작될 수 있는 하나 이상의 프로세스 챔버들에 전달되는 다양한 프로세스 가스들(예컨대, 세정, 증착, 및 에천트 가스들)을 포함할 수 있다. 프로세스 가스들의 정밀한 질량 유동 제어는 전자 디바이스의 제작 프로세스의 하나 이상의 단계들에서 사용될 수 있다. MFC들에 의해 제공되는 정밀한 질량 유동 제어는 미시적으로 작은 치수들을 갖는 전자 디바이스들의 고 수율 생산에 기여할 수 있다.
[004]
프로세스 케미스트리들이 정확하게 전달되는 것을 보장하기 위해, MFC들의 검증 및 교정이 주기적으로 수행될 수 있다. 그러나, MFC들을 검증 및 교정하는 종래의 방법들은, 시간-소모적이고 사용하는 데 비효율적일 수 있는, 상당한 부가적인 거대하고 고가인 장비를 수반할 수 있고, 낮은 질량 유량 범위들(예컨대, 단지 최대 3000 sccm(standard cubic centimeter per minute)까지의 질소 등가물)로 제한될 수 있고, 현저한 프로세스 다운타임을 초래할 수 있고, 그리고/또는 프로세스 케미스트리들의 정밀한 질량 유동 제어를 보장하기에 충분히 정확하지 않을 수 있다.
[005]
일부 실시예들에서, 질량 유동 제어 검증 시스템이 제공된다. 질량 유동 검증 시스템은, 가스 공급부로부터 가스 유동을 수용하기 위해, 교정 가스 유동 스탠다드(calibrated gas flow standard) 또는 테스트될 MFC를 라인에 커플링시키기 위한 위치; 가스 유동을 수용하기 위해, 라인에서의 위치에 직렬로 커플링된 제어 볼륨(control volume); 제어 볼륨에 직렬로 커플링된 유동 제한기; 유동 제한기에 직렬로 커플링된 펌프; 및 가스 공급부로 하여금 제어 볼륨에서 안정적인 압력을 달성하도록 질량 유동 제어 검증 시스템을 통해 가스를 유동시킬 수 있게 하고, 가스 공급부로부터의 가스 유동을 중단시키고, 시간 경과에 따른 제어 볼륨 내의 압력 감쇠 레이트를 측정하도록 구성된 제어기를 포함한다.
[006]
일부 다른 실시예들에서, 전자 디바이스 제조 시스템이 제공된다. 전자 디바이스 제조 시스템은, 가스 공급부; 가스 공급부에 커플링된 MFC(mass flow controller); 유입구 및 유출구를 갖는 질량 유동 제어 검증 시스템 ― 유입구는 MFC에 커플링되고, 질량 유동 제어 검증 시스템은, 가스 유동을 수용하기 위해 유입구에 직렬로 커플링된 제어 볼륨, 제어 볼륨 및 유출구에 직렬로 커플링된 유동 제한기, 및 가스 공급부로 하여금 제어 볼륨에서 안정적인 압력을 달성하도록 질량 유동 제어 검증 시스템을 통해 가스를 유동시킬 수 있게 하고, 가스 공급부로부터의 가스 유동을 중단시키고, 시간 경과에 따른 제어 볼륨 내의 압력 감쇠 레이트를 측정하도록 구성된 제어기를 포함함 ―; 및 질량 유동 제어기에 커플링된 유동 경로에 커플링되고, 질량 유동 제어기를 통해 하나 이상의 프로세스 케미스트리들을 수용하도록 구성된 프로세스 챔버를 포함한다.
[007]
또 다른 실시예들에서, 질량 유동 제어기를 검증하는 방법이 제공된다. 방법은, 제어 볼륨에서 측정되는 정상 압력(steady pressure)으로, 가스 공급부로부터 교정 유동 스탠다드, 제어 볼륨, 및 유동 제한기를 통해 가스가 유동하게 하는 단계; 가스 공급부로부터의 가스 유동을 중단시키는 단계; 제어 볼륨에서 제1 가스 압력 감쇠 레이트를 측정하는 단계; 교정 유동 스탠다드를 질량 유동 제어기로 교체하는 단계; 제어 볼륨에서 측정되는 정상 압력으로, 가스 공급부로부터 질량 유동 제어기, 제어 볼륨, 및 유동 제한기를 통해 가스가 유동하게 하는 단계; 가스 공급부로부터의 가스 유동을 중단시키는 단계; 및 제어 볼륨에서 제2 가스 압력 감쇠 레이트를 측정하는 단계를 포함한다.
[008]
본 개시내용의 이들 및 다른 실시예들에 따른 또 다른 양상들, 특징들, 및 이점들은, 다음의 상세한 설명, 첨부 청구항들, 및 첨부 도면들로부터 쉽게 자명하게 될 수 있다. 따라서, 본원의 도면들 및 설명들은 사실상 예시적인 것으로 간주되어야 하며, 제한적인 것으로 간주되지 않아야 한다.
[009]
아래에서 설명되는 도면들은 단지 예시적인 목적들을 위한 것일 뿐이고, 반드시 실척대로 도시된 것은 아니다. 도면들은 어떠한 방식으로도 본 개시내용의 범위를 제한하는 것으로 의도되지 않는다.
[0010] 도 1은 본 개시내용의 실시예들에 따른 제1 질량 유동 제어 검증 시스템을 예시한다.
[0011] 도 2는 본 개시내용의 실시예들에 따른 제2 질량 유동 제어 검증 시스템을 예시한다.
[0012] 도 3은 본 개시내용의 실시예들에 따른 제3 질량 유동 제어 검증 시스템을 예시한다.
[0013] 도 4는 본 개시내용의 실시예들에 따른, 질량 유동 검증 동안 측정된 여러 개의 압력들의 그래프를 예시한다.
[0014] 도 5는 본 개시내용의 실시예들에 따른 전자 디바이스 제조 시스템을 예시한다.
[0015] 도 6은 본 개시내용의 실시예들에 따른 질량 유동 제어 검증 방법의 흐름도를 예시한다.
[0010] 도 1은 본 개시내용의 실시예들에 따른 제1 질량 유동 제어 검증 시스템을 예시한다.
[0011] 도 2는 본 개시내용의 실시예들에 따른 제2 질량 유동 제어 검증 시스템을 예시한다.
[0012] 도 3은 본 개시내용의 실시예들에 따른 제3 질량 유동 제어 검증 시스템을 예시한다.
[0013] 도 4는 본 개시내용의 실시예들에 따른, 질량 유동 검증 동안 측정된 여러 개의 압력들의 그래프를 예시한다.
[0014] 도 5는 본 개시내용의 실시예들에 따른 전자 디바이스 제조 시스템을 예시한다.
[0015] 도 6은 본 개시내용의 실시예들에 따른 질량 유동 제어 검증 방법의 흐름도를 예시한다.
[0016]
이제, 본 개시내용의 예시적인 실시예들이 상세히 참조될 것이며, 그 실시예들은 첨부 도면들에 예시된다. 가능한 모든 경우에, 동일한 참조 번호들은 동일한 또는 유사한 파트들을 지칭하기 위해 도면들 전체에 걸쳐 사용될 것이다.
[0017]
미시적으로 작은 치수들을 갖는 전자 디바이스들은 +/- 1%만큼 높은 질량 유량 정확도들을 갖는 프로세스 가스 케미스트리들로 생산될 수 있다. 다수의 MFC(mass flow controller)들이 신품인 경우 그와 같이 특정될 수 있고 그 사양들을 만족시킬 수 있는 한편, 신품의 경우 또는 그렇지 않은 경우, 작은 퍼센트의 MFC들은 그와 같이 특정되지 않을 수 있고, 실제로 그 사양들을 만족시키지 않을 수 있다. 게다가, 심지어, 초기에 정확한 MFC들도 시간 경과에 따라 이들의 질량 유량들에서 정확도 드리프트(accuracy drift)를 겪게 될 수 있으며, 이는 그 MFC들이 이들의 특정된 정확도들로부터 벗어나게 할 수 있다. 따라서, 프로세스 가스 케미스트리들이 정확하게 전달되는 것을 보장하기 위해, 반도체 제작 장비에서 사용되는 MFC들과 같은 MFC들의 검증 및 교정이 주기적으로 수행될 수 있다.
[0018]
질량 유동 검증을 위한 기존의 방법들 및 연관된 하드웨어는 전형적으로, 알려져 있는 볼륨에서 압력 ROR(rate of rise)을 측정하는 것에 기반하여 동작한다. ROR 원리들은 알려져 있는 밀폐된 볼륨에서의 측정된 압력 상승 레이트와 질량 유량을 상관시키기 위해 사용되는 이상적인 가스 법칙에 기반한다. 질량 유량이 더 높을수록, 정확도를 보장하기 위해, 밀폐된 볼륨이 더 커야 한다. ROR 원리들은, 밀폐된 볼륨을 가스로 충전하고, 밀폐된 볼륨 내에서 ROR을 측정하는 장시간 프로세스(예컨대, 일부 경우들에서는 10시간 이상)를 수반할 수 있다. 밀폐된 볼륨은 제조 시스템의 프로세스 챔버 또는 외부 볼륨일 수 있다. 프로세스 챔버 또는 외부 볼륨의 정확한 볼륨의 불확실성들은 결과들의 정확도에 악영향을 미칠 수 있다. ROR 원리들을 사용하는 프로세스는 압력, 온도, 볼륨, 및 시간의 측정들을 수반할 수 있다. 종래의 ROR-기반 방법들에 대한 하나의 중요한 문제는, 알려져 있는 볼륨이 전형적으로, 저장조, 및 MFC UUT(unit under test)로부터 저장조로 이어지는 유동 경로를 포함한다는 것이다. 압력 변화 레이트는 거의 정체 상태(stagnation)에 있는 저장조 내부에서 측정되고, 저장조로 이어지는 유동 경로 내부의 동적 압력은 측정되지 않는다. 알려져 있는 볼륨의 2개의 부분들 중 하나 내의 압력 변화 레이트가 측정되지 않으면, 잘못된 계산들이 초래되어, UUT 밖으로의 유동이 잘못 특성화되게 할 수 있다. 그러한 종래의 방법들과 대조적으로, 본원에서 개시되는 실시예들은 유동 경로의 볼륨에 의해 도입되는 에러를 제거한다. 본 방법들 및 장치는 알려져 있는 볼륨에서 압력 감쇠 레이트를 측정하는 것에 기반하여 동작하고, 그에 따라, 측정되지 않는 유동 경로를 포함하지 않는다.
[0019]
더 구체적으로, 본 개시내용의 하나 이상의 실시예들에 따른 질량 유동 검증 방법들, 시스템들, 및 장치는, "sccm(standard cubic centimeters per minute)" 또는 "slm(standard liters per minute)"의 단위들로 이루어질 수 있는 가스 질량 유량을 결정하기 위한 압력 감쇠 원리들에 기반한다. 본 개시내용의 하나 이상의 실시예들에 따른, 압력 감쇠 원리들에 기반한 질량 유동 검증 방법들, 시스템들, 및 장치는, 종래의 ROR-기반 원리들에 기반한 질량 유동 검증 방법들, 시스템들, 및 장치보다, 질량 유량을 계산하는 데 필요한 변수들의 수를 감소시킬 수 있고, 검증 장비 풋프린트를 더 작게 할 수 있으며, 더 시간 효율적이고 더 정확할 수 있다. ROR-기반 방법들과 대조적으로, 비-ROR 압력 감쇠 측정은 거의 순간적일 수 있으며, ROPD(rate of pressure decay) 원리들에 기반하여 질량 유량을 계산하는 것은 단지 2개의 측정들(압력 및 온도)만을 수반할 수 있다.
[0020]
일반 가스 방정식으로 또한 지칭되는 이상 가스 법칙은 가상의 이상적인 가스의 상태의 방정식이다. 이는 다수의 조건들 하의 다수의 가스들의 거동의 근사(approximation)이다. 이상 가스 법칙은 흔히 다음과 같이 표현된다:
여기서, P는 가스의 압력이고, V는 가스의 볼륨이고, n은 (몰 단위의) 가스의 물질량이고, R은 볼츠만 상수(Boltzmann constant)와 아보가드로 상수(Avogadro constant)의 곱과 동일한 이상 또는 보편 가스 상수이고, T는 가스의 절대 온도이다.
[0021]
도 1은 MFC를 검증하기 위한 예시적인 어레인지먼트(arrangement)를 도시한다. 도 1의 질량 유동 검증 시스템(100)은 적합한 가스(예컨대, 질소, 산소, CDA(clean dry air) 등)의 가압된 유동을 위치(104)에 제공하는 가스 공급부(102)를 포함한다. 가스의 유량은, 적절한 모니터링 볼륨(110) 및 유동 제한기(116) 사이즈들을 특정함으로써, 무제한으로 스케일링 가능(scalable)하다. 위치(104)에서, 레퍼런스(reference)(예컨대, 교정 유동 스탠다드) 또는 UUT가 가스를 수용하기 위해 포지셔닝될 수 있다. 위치(104)에서의 레퍼런스 또는 UUT의 출력은 모니터링 볼륨(110)에 커플링된 밸브(108)(예컨대, 격리 밸브)로 이어지는 라인(106)에 커플링될 수 있다. 모니터링 볼륨(110)은 연결된 열전대(112) 및 연결된 압력계(114) 또는 다른 적합한 압력 측정 디바이스를 사용하여 모니터링된다. 모니터링 볼륨(110)의 출력은 진공 펌프(118)에 커플링된 유동 제한기(116)에 커플링된다. 일부 실시예들에서, 유동 제한기(116)는, 유동 제한기(116)의 하류에서 압력 및 온도가 측정될 때, 다공성 매체 유동 제한기(porous media flow restrictor)일 수 있거나, 또는 드릴링된 오리피스 제한기(drilled orifice restrictor)일 수 있다. 질량 유동 검증 시스템(100)은 각각의 동작가능 컴포넌트 및 각각의 센서 컴포넌트에 커플링될 수 있는 제어기(120)의 제어 하에서 동작된다(주의, 연결들은 예시의 명확성을 위해 도시되지 않음).
[0022]
도 1에 도시된 어레인지먼트를 사용하여, 제어 볼륨 V(즉, 모니터링 볼륨(110)을 포함하는, 밸브(108)와 유동 제한기(116) 사이의 표시된 볼륨)이 위치(104)에서의 교정 유동 스탠다드를 사용하여 먼저 결정된다. 위치(104)에서의 교정 유동 스탠다드에 세트 포인트가 주어지고, 모니터링 볼륨(110) 내의 압력 및 온도가 정상 상태로 안정화되기 위한 적절한 시간이 허용된다. 압력이 측정되고 Po로 표시되는 시간 to에서, 밸브(108)는 제어기(120)에 의해 패쇄되도록 지시된다. 시간 to 후에, 가스가 유동 제한기(116)를 통해 계속 유동함에 따라, 제어 볼륨 내부의 압력은 감쇠되기 시작한다. 제어 볼륨은 다음의 방정식에 기반하여 계산된다:
위의 방정식에서, 압력이 Po인 to에서의 dP/dt의 값을 구하고, to에서의 dn/dt으로서 위치(104)에서의 교정 유동 스탠다드의 세트 포인트를 사용하는 것은, 제어 볼륨에 대한 값을 제공한다. 제어 볼륨의 볼륨이 결정되면, 위치(104)에서의 교정 유동 스탠다드는 UUT MFC로 교체된다. UUT MFC에는 검증될 세트 포인트가 주어진다. dn/dt에 대해 위의 방정식을 풀면, UUT MFC의 정확도는 다음의 방정식을 사용하여 계산된 질량 유량과 주어진 세트 포인트를 비교함으로써 결정될 수 있다:
[0023]
위에서 설명된 방법은 밸브(108)가 순간적으로 폐쇄되는 것으로 가정한다. 실제로, 제어기(120)로부터의 통신에서의 레이턴시들 및 하드웨어 액추에이터 응답으로 인해 밸브(108)가 완전히 폐쇄되는 데 걸리는 실제 시간은 to 이후의 어느 정도의 작지만 상당한 양 Δt이다. Δt 동안, 교정 가스 유동이 여전히 제어 볼륨 내로 유동하면서, 제어 볼륨 내부의 압력은, 레이턴시들의 결과로서, 위의 계산들에 의해 표시되는 레이트보다 더 느린 레이트로 감쇠된다. 밸브(108)가 완전히 폐쇄되면, 교정 가스 유동은 더 이상 제어 볼륨 내로 유동하지 않게 되고, 제어 볼륨 내부의 압력은 계속 감쇠되지만 더 빠른 레이트로 감쇠된다. 본 개시내용의 실시예들은 밸브(108)가 완전히 폐쇄되는 데 걸리는 시간 Δt를 보상하기 위한 방법들 및 장치를 제공한다. 구체적으로, 본 개시내용의 실시예들은, 질량 유량이 Δt가 경과된 후에만 일정하게(steady) 되더라도, to에서의 dP/dt의 값을 구하기 위한 방법들을 제공한다.
[0024]
교정 유동 스탠다드가 알려져 있는 세트 포인트로 위치(104)에 설치되어 있는, 도 1에 도시된 질량 유동 검증 시스템(100)을 사용하여, to에서의 dP/dt의 값을 구하는 제1 예시적인 방법에서, 제어 볼륨을 통하는 유동을 설정하기 위해 밸브(108)가 개방되고, 압력계(114)를 통해 모니터링 볼륨(110)에서 압력이 측정된다. 일반적으로 밸브(108)는 작동될 때까지 폐쇄되어 있다는 것을 유의한다. Po의 베이스라인 측정이 이루어질 수 있을 때까지, 정상 상태의 안정화 유동을 설정하기에 충분한 시간이 경과되게 허용된다. 도 4의 그래프(400), 그리고 구체적으로는, 시간 경과에 따른 압력 변화 dP/dt 플롯(402)을 참조하면, to 전의 시간 동안 Po가 안정화된다. to에서, 밸브(108)가 폐쇄된다. 다음으로, dP/dt 플롯(402) 상에 감쇠 압력 변곡 포인트(404)를 위치시킴으로써, 시간 to + Δt가 결정된다. 다음으로, 감쇠 압력에 대한 방정식을 결정하기 위해, 시간 to + Δt 이후의 측정된 데이터 포인트들이 사용된다. 곡선의 방정식을 결정하기 위해, 임의의 수의 곡선 피팅 알고리즘들 또는 방법들이 사용될 수 있다. 다음으로, 결정된 방정식에 기반하여, 측정된 데이터 포인트들로부터 Po(즉, 포인트(406))에서의 dP/dt의 보정된 값이 역으로 외삽(extrapolate)된다. 이어서, 위에서 설명된 바와 같이, 다음의 방정식에 기반하여 V를 계산하기 위해, 교정 유동 스탠다드에 대한 Po에서의 dP/dt의 보정된 값이 사용된다:
다음으로, MFC UUT가 테스트 세트 포인트로 세팅되어 위치(104)에 설치된다. 이어서, 제어 볼륨을 통하는 유동을 한 번 더 설정하기 위해 밸브(108)가 개방되고, 압력계(114)를 통해 모니터링 볼륨(110)에서 압력이 측정된다. UUT에 대한 Po의 베이스라인 측정이 이루어질 수 있을 때까지, 정상 상태의 안정화 유동을 설정하기에 충분한 시간이 경과되게 허용된다. to 전의 시간 동안 Po가 안정화되면, 밸브(108)가 폐쇄되어 UUT에 대한 시간 to를 설정한다. 다음으로, dP/dt 플롯(402)의 동등한 위치(equivalent) 상에 감쇠 압력 변곡 포인트(404)를 위치시킴으로써, 시간 to + Δt가 결정된다. 다음으로, 감쇠 압력에 대한 방정식을 결정하기 위해, 시간 to + Δt 이후의 측정된 데이터 포인트들이 사용된다. 곡선의 방정식을 결정하기 위해, 임의의 수의 곡선 피팅 알고리즘들 또는 방법들이 사용될 수 있다. 다음으로, 결정된 방정식에 기반하여, 측정된 데이터 포인트들로부터 UUT에 대한 Po(즉, 포인트(406))에서의 dP/dt의 보정된 값이 외삽된다. 실제 질량 유동에 대한 방정식은 다음과 같다:
마지막으로, 위의 방정식을 사용하여, 임의의 에러를 결정하도록, 테스트 세트 포인트와 비교되는 실제 질량 유동(dn/dt)을 컴퓨팅하기 위해, UUT에 대한 Po에서의 dP/dt의 보정된 값이 사용된다. 일부 실시예들에서, 에러에 기반하여, UUT MFC가 에러를 보정하기 위해 교정될 수 있다.
[0025]
MFC 검증을 위한 대안적인 제2 예시적인 방법이 검증의 정확도를 추가로 향상시키기 위해 사용될 수 있다. 제2 방법은 도 2에 도시된 MFC 검증 시스템(200)을 사용한다. 질량 유동 검증 시스템(200)은 적합한 가스(예컨대, 질소, 산소, CDA(clean dry air) 등)의 가압된 유동을 위치(204)에 제공하는 가스 공급부(202)를 포함한다. 가스의 유량은, 적절한 모니터링 볼륨(210) 및 유동 제한기(216) 사이즈들을 특정함으로써, 무제한으로 스케일링 가능하다. 위치(204)에서, 레퍼런스(예컨대, 교정 유동 스탠다드) 또는 UUT가 가스를 수용하기 위해 포지셔닝될 수 있다. 위치(204)에서의 레퍼런스 또는 UUT의 출력은 모니터링 볼륨(210)에 커플링된 밸브(208)(예컨대, 격리 밸브)로 이어지는 라인(206)에 커플링될 수 있다. 모니터링 볼륨(210)은 연결된 열전대(212) 및 연결된 압력계(214)를 사용하여 모니터링된다. 모니터링 볼륨(210)의 출력은 유동 제한기(216)에 커플링된 제2 밸브(222)에 커플링된다. 일부 실시예들에서, 유동 제한기(216)는, 유동 제한기(216)의 하류에서 압력 및 온도가 측정될 때, 다공성 매체 유동 제한기일 수 있거나, 또는 드릴링된 오리피스 제한기일 수 있다. 유동 제한기(216)의 출력은 진공 펌프(218)에 커플링된다. 질량 유동 검증 시스템(200)은 각각의 동작가능 컴포넌트 및 각각의 센서 컴포넌트에 커플링될 수 있는 제어기(220)의 제어 하에서 동작된다(주의, 연결들은 예시의 명확성을 위해 도시되지 않음).
[0026]
MFC 검증 시스템(200)은, 제어기(220)에 의해 동작되는 제2 밸브(222)가 모니터링 볼륨(210)과 유동 제한기(216) 사이의 라인에 배치되는 것을 제외하고, 도 1의 MFC 검증 시스템(100)과 구조적으로 동일하다는 것을 유의한다. 제2 밸브(222)의 사용은, 제어 볼륨 내의 초기 압력이, 제1 예시적인 방법에서 사용되는 초기 압력과 비교하여, 초기 안정화 압력을 초과하여 승압(boost)될 수 있게 한다. 감쇠 기간이 시작되기 전에 초기 압력을 승압시킴으로써, 연장된 감쇠 기간에 걸쳐 더 많은 압력 측정들을 행하여, 더 정확한 특성 방정식을 결정하기 위한 결과적으로 더 정확한 곡선에 피팅될 더 많은 데이터 포인트들을 갖는 것이 가능하게 된다. 승압된 초기 압력은 도 4의 그래프(400)에서의 시간 경과에 따른 압력 변화 dP/dt 플롯(408) 상에 Po'로서 표현된다.
[0027]
MFC 검증을 위한 대안적인 제2 예시적인 방법은 다음의 것을 포함한다. 초기에, 정상 상태의 안정적인 유동을 설정하고 압력을 측정하기에 충분히 오랫동안 밸브(208)와 밸브(222) 둘 모두가 개방된다. 이어서, 밸브(222)는 제어 볼륨에서 Po'까지 압력 상승을 생성하기에 충분한 시간 기간 동안 폐쇄된다. Po'에 도달되면, 밸브(222)는 밸브(208)가 폐쇄되는 것과 동시에 개방된다. 다음으로, dP/dt 플롯(408) 상에 감쇠 압력 변곡 포인트(410)를 위치시킴으로써, 시간 to' + Δt'가 결정된다. 다음으로, 감쇠 압력에 대한 방정식을 결정하기 위해, 시간 to' + Δt' 이후의 측정된 데이터 포인트들이 사용된다. 곡선의 방정식을 결정하기 위해, 임의의 수의 상이한 곡선 피팅 알고리즘들 또는 방법들이 사용될 수 있다. 다음으로, 결정된 방정식에 기반하여, 측정된 데이터 포인트들로부터 Po'(즉, 포인트(412))에서의 dP/dt의 보정된 값이 외삽된다. 이어서, 위에서 설명된 바와 같이, 다음의 방정식에 기반하여 V를 계산하기 위해, 교정 유동 스탠다드에 대한 Po'에서의 dP/dt의 보정된 값이 사용된다:
다음으로, 레퍼런스 대신에 MFC UUT가 테스트 세트 포인트로 세팅되어 위치(204)에 설치되고, 위에서 설명된 방법이 Po'에서의 dP/dt를 결정하기 위해 반복된다. 실제 질량 유동에 대한 방정식은 다음과 같다:
마지막으로, 위의 방정식을 사용하여, 임의의 에러를 결정하도록, 테스트 세트 포인트와 비교되는 실제 질량 유동(dn/dt)을 컴퓨팅하기 위해, UUT에 대한 Po'에서의 dP/dt의 보정된 값이 사용된다. 일부 실시예들에서, 에러에 기반하여, UUT MFC가 에러를 보정하기 위해 교정될 수 있다.
[0028]
MFC 검증을 위한 대안적인 제3 예시적인 방법이 검증의 정확도를 추가로 향상시키기 위해 사용될 수 있다. 제3 방법은 도 3에 도시된 MFC 검증 시스템(300)을 사용한다. 질량 유동 검증 시스템(300)은 적합한 가스(예컨대, 질소, 산소, CDA(clean dry air) 등)의 가압된 유동을 위치(304)에 제공하는 가스 공급부(302)를 포함한다. 가스의 유량은, 적절한 모니터링 볼륨(310) 및 유동 제한기(316) 사이즈들을 특정함으로써, 무제한으로 스케일링 가능하다. 위치(304)에서, 레퍼런스(예컨대, 교정 유동 스탠다드) 또는 UUT가 가스를 수용하기 위해 포지셔닝될 수 있다. 위치(304)에서의 레퍼런스 또는 UUT의 출력은 모니터링 볼륨(310)에 커플링된 밸브(308)(예컨대, 격리 밸브)로 이어지는 라인(306)에 커플링될 수 있다. 모니터링 볼륨(310)은 연결된 열전대(312) 및 연결된 압력계(314) 또는 다른 적합한 압력 센서를 사용하여 모니터링된다. 모니터링 볼륨(310)의 출력은 유동 제한기(316)에 커플링된다. 일부 실시예들에서, 유동 제한기(316)는, 유동 제한기(316)의 하류에서 압력 및 온도가 측정될 때, 다공성 매체 유동 제한기일 수 있거나, 또는 드릴링된 오리피스 제한기일 수 있다. 유동 제한기(316)의 출력은 진공 펌프(318)에 커플링된다. 질량 유동 검증 시스템(300)은 각각의 동작가능 컴포넌트 및 각각의 센서 컴포넌트에 커플링될 수 있는 제어기(320)의 제어 하에서 동작된다(주의, 연결들은 예시의 명확성을 위해 도시되지 않음). 또한, 제2 볼륨(326)에 커플링된 제2 밸브(324)가 라인(306)에 (밸브(308)와 병렬로) 연결된다. 제2 볼륨(326)은 제3 밸브(328)에 커플링된 출력을 포함하며, 제3 밸브(328)는 그 출력이 모니터링 볼륨(310)에 커플링된다.
[0029]
제2 밸브(324), 제2 볼륨(326), 및 제3 밸브(328)의 사용은, 제어 볼륨 내의 초기 압력이, 제1 예시적인 방법에서 사용되는 초기 압력과 비교하여, 초기 안정화 압력을 초과하여 승압될 수 있게 한다. 가압된 가스의 저장물(store)이 제2 볼륨(326)에 보유되고, 모니터링 볼륨(310) 내로 주입되어, 감쇠 기간이 시작되기 전에 모니터링 볼륨(310) 내의 초기 압력을 승압시킨다. 제2 예시적인 방법과 마찬가지로, 이는 (예컨대, 제1 예시적인 방법에 비하여) 연장된 감쇠 기간 동안 더 많은 압력 측정들이 행해질 수 있게 하여, 더 정확한 특성 방정식을 결정하기 위한 결과적으로 더 정확한 곡선에 피팅될 더 많은 데이터 포인트들을 가질 수 있게 한다. 제2 예시적인 방법과 마찬가지로, 승압된 초기 압력은 도 4의 그래프(400)에서의 시간 경과에 따른 압력 변화 dP/dt 플롯(408) 상에 Po'로서 표현된다.
[0030]
MFC 검증을 위한 대안적인 제3 예시적인 방법은 다음의 것을 포함한다. 초기에, 유동을 설정하고 제2 볼륨(326)을 가압하기 위해 제2 밸브(324)가 개방된다. 제2 볼륨(326)은 가스 공급부(302)의 압력 레벨까지 가압될 수 있다. 일부 실시예들에서, 제2 볼륨(326)을 더 높은 레벨들까지 가압하기 위해, 부가적인 장비(예컨대, 펌프)가 사용될 수 있다. 이어서, 제2 밸브(324)가 폐쇄되고, 정상 상태의 안정적인 유동을 설정하고 모니터링 볼륨(310)에서 압력을 측정하기에 충분히 오랫동안 제1 밸브(308)가 개방된다. 베이스라인 Po 안정화 압력에 도달되면, 제1 밸브(308)는 제3 밸브(328)가 개방되는 것과 동시에 폐쇄된다. 제3 밸브(328)는 제어 볼륨에서 Po'까지 압력 상승을 생성하기에 충분한 시간 기간 동안 개방된 상태로 유지된다. Po'에 도달되면, 제3 밸브(328)는 폐쇄된다. 다음으로, dP/dt 플롯(408) 상에 감쇠 압력 변곡 포인트(410)를 위치시킴으로써, 시간 to' + Δt'가 결정된다. 다음으로, 감쇠 압력에 대한 방정식을 결정하기 위해, 시간 to' + Δt' 이후의 측정된 데이터 포인트들이 사용된다. 곡선의 방정식을 결정하기 위해, 임의의 수의 상이한 곡선 피팅 알고리즘들 또는 방법들이 사용될 수 있다. 다음으로, 결정된 방정식에 기반하여, 측정된 데이터 포인트들로부터 Po'(즉, 포인트(412))에서의 dP/dt의 보정된 값이 역으로 외삽된다. 이어서, 위에서 설명된 바와 같이, 다음의 방정식에 기반하여 V를 계산하기 위해, 교정 유동 스탠다드에 대한 Po'에서의 dP/dt의 보정된 값이 사용된다:
다음으로, 레퍼런스 대신에 MFC UUT가 테스트 세트 포인트로 세팅되어 위치(304)에 설치되고, 위에서 설명된 방법이 Po'에서의 dP/dt를 결정하기 위해 반복된다. 실제 질량 유동에 대한 방정식은 다음과 같다:
마지막으로, 위의 방정식을 사용하여, 임의의 에러를 결정하도록, 테스트 세트 포인트와 비교되는 실제 질량 유동(dn/dt)을 컴퓨팅하기 위해, UUT에 대한 Po'에서의 dP/dt의 보정된 값이 사용된다. 일부 실시예들에서, 에러에 기반하여, UUT MFC가 에러를 보정하기 위해 교정될 수 있다.
[0031]
특히 작은 직경의 드릴링된 오리피스들을 갖는 유동 제한기들은 엄격한 재현성 사양들로 인해 제조하는 것이 어렵다. 본 예시적인 방법들 및 장치는 방정식으로부터 유동 제한기의 가변성을 제거한다. 일부 실시예들에서, 본 예시적인 방법들 및 장치는, 드릴링된 오리피스들의 토출 계수를 결정하고, 그리고 이론적으로 컴퓨팅된 질량 유량에 대한 실제 질량 유량의 비율을 계산함으로써 다공성 매체 유동 제한기들을 특성화하는 데 사용될 수 있다.
[0032]
감압(즉, 진공-기반) 애플리케이션들에 대한 위에서 설명된 바와 같은 이상적인 가스 방정식의 사용은 감압 MFC들의 검증을 위한 충분한 정확도를 제공한다. 대기 애플리케이션들(예컨대, 진공 펌프들이 없음)에 대해 구성된 실시예들에서, 비-이상적인 가스 방정식(이를테면, 아래의 반 데르 발스 방정식)이 질량 유동 검증을 위한 본 방법들 및 장치에 적용될 수 있다. 반 데르 발스 방정식은 다음과 같이 주어지고,
그리고 분자간 힘들(파라미터 a) 및 유한 분자 사이즈(파라미터 b)에 대한 가스 특정 보정들을 위의 방정식에 적용함으로써, 대기 애플리케이션들에 대해 이상적인 가스 법칙 대신에 사용될 수 있다. 더 넓은 범위의 질량 유동 검증 요건들을 위해, 다수의 볼륨 사이즈들이 사용될 수 있다. 이들 경우들에서, 적절한 파티션(partition)들을 갖는 단일의 최적화된 볼륨이 사용될 수 있다. 파티션들은 볼륨을 더 작은 세그먼트들로 분할하며, 파티션들의 선택적인 제거에 의해, 더 큰 볼륨들의 다수의 조합들이 생성될 수 있다.
[0033]
도 5는 하나 이상의 실시예들에 따른 전자 디바이스 제조 시스템(500)을 예시한다. 전자 디바이스 제조 시스템(500)은 MFC(502), 질량 유동 검증 시스템(504), 및 프로세스 챔버(506)를 포함할 수 있다. 일부 실시예들에서, MFC(502)는 공통 매니폴드(manifold) 또는 헤더를 통해 공통 유출구에 커플링된 복수의 MFC들을 표현할 수 있으며, 여기서, 아래에서 설명되는 바와 같은 MFC(502)는 검증될 복수의 MFC들 중 하나의 MFC(즉, 검증 동안 가스를 유동시키는, 복수의 MFC들 중 유일한 MFC)를 표현할 수 있다.
[0034]
프로세스 챔버(506)는, 격리 밸브(510)를 통해 질량 유동 제어기(502)에 커플링된 유동 경로(508)에 커플링될 수 있다. 프로세스 챔버(506)는 MFC(502)를 통해 하나 이상의 프로세스 케미스트리들을 수용하고, 그 내부에서, 감압 화학 기상 증착 프로세스, 또는 감압 에피택시 프로세스, 또는 하나 이상의 증착, 산화, 질화, 에칭, 폴리싱, 세정, 및/또는 리소그래피 프로세스들이 수행되게 하도록 구성될 수 있다.
[0035]
질량 유동 검증 시스템(504)은 유입구(512) 및 유출구(514)를 가질 수 있다. 유입구(512)는 격리 밸브(510)를 통해 MFC(502)에 커플링될 수 있다. 질량 유동 검증 시스템(504)은 위에서 설명된 질량 유동 검증 시스템들(100, 200, 또는 300) 중 임의의 하나일 수 있다.
[0036]
전자 디바이스 제조 시스템(500)이 감압 애플리케이션 하에서 동작하는 그러한 실시예들에서, 질량 유동 검증 시스템(504)은 질량 유동 검증 시스템들(100, 200, 또는 300) 중 임의의 하나일 수 있다. 질량 유동 검증 시스템(504)은 유출구(514)를 통하여 격리 밸브(518)를 통해 전자 디바이스 제조 시스템(500)의 시스템 진공 펌프(516)에 커플링될 수 있다. 시스템 진공 펌프(516)는 또한, 격리 밸브(518)를 통해 프로세스 챔버(506)에 커플링될 수 있다.
[0037]
전자 디바이스 제조 시스템(500)이 대기 애플리케이션 하에서 동작하는 그러한 실시예들에서, 질량 유동 검증 시스템(504)은 질량 유동 검증 시스템(100, 200, 또는 300)일 수 있으며, 시스템 진공 펌프(516)는 전자 디바이스 제조 시스템(500)으로부터 제외될 수 있다.
[0038]
전자 디바이스 제조 시스템(500) 및/또는 질량 유동 검증 시스템(504)의 동작은, 예컨대, 제어기들(120, 220, 또는 320) 중 하나와 같은 제어기에 의해 제어될 수 있다.
[0039]
도 6은 하나 이상의 실시예들에 따른, MFC 유량을 검증하는 방법(600)의 흐름도를 예시한다. 초기에, 가스가 교정 유동 스탠다드로 공급되고, 직렬로 연결된 제어 볼륨 및 유동 제한기를 통해 유동된다(602). 가스는 제어 볼륨에서 정상 상태의 안정화 압력이 달성될 때까지 유동된다. 선택적으로, 감쇠 압력이 측정될 수 있는 더 넓은 범위를 제공하기 위해, 제어 볼륨 내의 압력이 승압될 수 있다(604). 다음으로, 유동 제한기의 상류에서의 제어 볼륨에서 압력이 측정된다(606). 가스 공급부로부터의 유동이 중단되고, 제어 볼륨 내의 가스 압력 감쇠가 시간 경과에 따라 측정되며(608), 이 데이터는, 교정 유동 스탠다드의 세트 포인트와 함께, 제어 볼륨의 실제 볼륨을 컴퓨팅하는 데 사용된다(608). 교정 제어 스탠다드는 테스트될 MFC(UUT)로 교체되고, 제어 볼륨에서 정상 상태의 안정화 압력이 달성될 때까지 가스가 유동된다(610). 선택적으로, 감쇠 압력이 측정될 수 있는 더 넓은 범위를 제공하기 위해, 제어 볼륨 내의 압력이 승압될 수 있다(612). 제어 볼륨 내의 압력이 측정되며(614), 가스 공급부로부터의 유동이 중단되고, 컴퓨팅된 실제 제어 볼륨에 기반하여 시간 경과에 따라 제어 볼륨 내의 가스 압력 감쇠가 측정된다(616). 테스트 하의 MFC의 세트 포인트는, 테스트되는 MFC가 설치된 상태로 압력 감쇠를 측정하여 결정된 실제 컴퓨팅된 질량 유동과 테스트 하의 MFC의 세트 포인트를 비교함으로써 검증되며, 여기서, 임의의 차이는 MFC에서의 에러이다(618). MFC에서 결정된 에러를 보정하기 위해 MFC가 교정된다(620).
[0040]
방법(600)의 위의 프로세스 블록들은 도시 및 설명된 순서 및 시퀀스로 제한되지 않는 순서 또는 시퀀스로 실행 또는 수행될 수 있다. 예컨대, 일부 실시예들에서, 하나의 프로세스 블록이 다른 프로세스 블록과 동시에 또는 다른 프로세스 블록 후에 수행될 수 있다. 일부 실시예들에서, 비-일시적 컴퓨터-판독가능 매체, 이를테면 예컨대, 제거가능 저장 디스크, 메모리, 또는 디바이스는 그 비-일시적 컴퓨터-판독가능 매체 상에 저장된 컴퓨터 판독가능 명령들을 포함할 수 있으며, 그 컴퓨터 판독가능 명령들은, 프로세서, 이를테면 예컨대, 제어기들(120, 220, 320)에 의해, 방법(600)의 프로세스 블록들(602 내지 620)을 수행하도록 실행될 수 있다.
[0041]
전술된 설명은 본 개시내용의 단지 예시적인 실시예들을 개시한다. 위에서 개시된 조립체들, 장치, 시스템들, 및 방법들의 수정들은 본 개시내용의 범위 내에 속할 수 있다. 따라서, 본 개시내용의 예시적인 실시예들이 개시되었지만, 청구항들에 의해 정의되는 바와 같은, 본 개시내용의 범위 내에 다른 실시예들이 속할 수 있다는 것이 이해되어야 한다.
Claims (20)
- 전자 디바이스 제조 시스템으로서,
가스 공급부;
상기 가스 공급부에 커플링된 질량 유동 제어기(mass flow controller; MFC);
상기 MFC에 커플링된 유입구;
유출구;
가스 유동을 수용하기 위해 상기 유입구에 직렬로 커플링된 제어 볼륨(contorl volume);
상기 제어 볼륨 및 상기 유출구에 직렬로 커플링된 유동 제한기(flow restrictor);
상기 가스 공급부로 하여금 상기 제어 볼륨 내의 안정적인 압력을 달성하기 위해 상기 제어 볼륨 및 상기 유동 제한기를 통해 가스를 유동시킬 수 있게 하고, 상기 가스 공급부로부터의 가스 유동을 중단시키고, 그리고 상기 제어 볼륨 내의 시간 경과에 따른 압력 감쇠 레이트를 측정하도록 구성되는 제어기; 및
상기 MFC에 커플링된 유동 경로에 커플링된 프로세스 챔버
를 포함하고,
상기 프로세스 챔버는 상기 MFC를 통해 하나 이상의 프로세스 케미스트리(chemistry)들을 수신하는,
전자 디바이스 제조 시스템. - 제1 항에 있어서,
상기 유입구와 상기 제어 볼륨 사이에 커플링된 밸브를 더 포함하며, 상기 밸브는 상기 가스 공급부로부터의 가스 유동을 중단시키도록 상기 제어기에 의해 동작가능한,
전자 디바이스 제조 시스템. - 제1 항에 있어서,
상기 제어기는, 상기 MFC의 세트 포인트(set point)를 상기 제어 볼륨의 볼륨에 기초하여 계산된 실제 질량 유동과 비교함으로써, 상기 MFC의 에러를 결정하고,
상기 볼륨은, 교정 가스 유동 스탠다드(calibrated gas flow standard)로 측정된 상기 제어 볼륨 내의 시간 경과에 따른 상기 압력 감쇠 레이트에 기초하여 결정되는,
전자 디바이스 제조 시스템. - 제1 항에 있어서,
상기 유동 제한기는 드릴링된 오리피스(drilled orifice) 유동 제한기 또는 다공성 매체(porous media) 유동 제한기 중 적어도 하나인,
전자 디바이스 제조 시스템. - 제1 항에 있어서,
상기 제어 볼륨과 상기 유동 제한기 사이에 커플링된 밸브를 더 포함하며, 상기 밸브는 상기 제어 볼륨 내에 압력이 형성되게(build) 하도록 상기 제어기에 의해 동작가능한,
전자 디바이스 제조 시스템. - 제1 항에 있어서,
상기 제어 볼륨에 커플링가능하며 그리고 상기 제어 볼륨에 가압된 가스를 공급함으로써 상기 제어 볼륨 내의 압력을 승압(boost)시키도록 상기 제어기에 의해 동작가능한 제2 볼륨을 더 포함하는,
전자 디바이스 제조 시스템. - 제6 항에 있어서,
상기 제2 볼륨을 상기 유입구에 커플링하기 위한 제1 밸브; 및
상기 제2 볼륨을 상기 제어 볼륨에 커플링하기 위한 제2 밸브
를 더 포함하는,
전자 디바이스 제조 시스템. - 제1 항에 있어서,
상기 프로세스 챔버는, 상기 프로세스 챔버 내에서 수행되는 증착, 산화, 질화, 에칭, 폴리싱, 세정, 또는 리소그래피 프로세스 중 적어도 하나의 프로세스, 감압 화학 기상 증착 프로세스, 또는 감압 에피택시 프로세스 중 하나 이상의 프로세스를 수행하는,
전자 디바이스 제조 시스템. - 질량 유동 제어기를 검증하는 방법으로서,
제어 볼륨에서 측정된 일정한(steady) 압력에서, 가스가 가스 공급부로부터 교정 유동 스탠다드, 제어 볼륨 및 유동 제한기를 통해 유동하도록 하는 단계;
상기 가스 공급부로부터의 가스 유동을 중단시키는 단계;
상기 제어 볼륨 내의 제1 가스 압력 감쇠 레이트를 측정하는 단계;
상기 교정 유동 스탠다드를 상기 질량 유동 제어기로 교체하는 단계;
상기 제어 볼륨에서 측정된 안정적인 압력에서, 상기 가스가 상기 가스 공급부로부터 상기 질량 유동 제어기, 상기 제어 볼륨 및 상기 유동 제한기를 통해 유동하도록 하는 단계;
상기 가스 공급부로부터의 가스 유동을 중단시키는 단계; 및
상기 질량 유동 제어기를 검증하기 위한 목적으로 상기 제어 볼륨 내의 제2 가스 압력 감쇠 레이트를 측정하는 단계
를 포함하는,
질량 유동 제어기를 검증하는 방법. - 제9 항에 있어서,
상기 제1 가스 압력 감쇠 레이트에 기초하여 상기 제어 볼륨의 볼륨을 산출하고(computing);
상기 산출된 볼륨을 사용하여 상기 제2 가스 압력 감쇠 레이트에 기초하여 실제 질량 유동을 결정하고; 그리고
상기 실제 질량 유동을 상기 질량 유동 제어기의 세트 포인트와 비교함으로써,
상기 질량 유동 제어기의 에러를 결정하는 단계를 더 포함하는,
질량 유동 제어기를 검증하는 방법. - 제10 항에 있어서,
상기 질량 유동 제어기의 결정된 에러에 기초하여 상기 질량 유동 제어기를 교정하는 단계를 더 포함하는,
질량 유동 제어기를 검증하는 방법. - 제9 항에 있어서,
상기 제1 가스 압력 감쇠 레이트 및 상기 제2 가스 압력 감쇠 레이트를 측정하기 전에, 상기 제어 볼륨 내의 상기 안정적인 압력을 증가시키는 단계를 더 포함하는,
질량 유동 제어기를 검증하는 방법. - 컴퓨터 판독가능 명령들이 저장된 비일시적 컴퓨터 판독가능 저장 매체로서,
상기 컴퓨터 판독가능 명령들은, 프로세서에 의해 실행될 때, 상기 프로세서로 하여금 제9 항의 방법을 수행하도록 하는,
비일시적 컴퓨터 판독가능 저장 매체. - 시스템으로서,
질량 유동 제어기에 커플링된 유입구 ― 상기 질량 유동 제어기는 가스 공급부에 커플링됨 ―;
유출구;
가스 유동을 수용하기 위해 상기 유입구에 직렬로 커플링된 제어 볼륨;
상기 제어 볼륨 및 상기 유출구에 직렬로 커플링된 유동 제한기; 및
상기 제어 볼륨 내의 안정적인 압력을 달성하기 위해, 상기 가스 공급부로 하여금 상기 제어 볼륨 및 상기 유동 제한기를 통해 가스를 유동시킬 수 있게 하고, 상기 가스 공급부로부터의 가스 유동을 중단시키고, 상기 질량 유동 제어기를 검증하기 위해 상기 제어 볼륨 내의 시간 경과에 따른 압력 감쇠 레이트를 측정하도록 구성된 제어기
를 포함하는,
시스템. - 제14 항에 있어서,
상기 유입구와 상기 제어 볼륨 사이에 커플링된 밸브를 더 포함하며, 상기 밸브는 상기 가스 공급부로부터의 가스 유동을 중단시키기 위해 상기 제어기에 의해 동작가능한,
시스템. - 제14 항에 있어서,
상기 제어기는 추가로, 상기 질량 유동 제어기의 세트 포인트를 상기 제어 볼륨의 볼륨에 기초하여 계산된 실제 질량 유동과 비교함으로써, 상기 질량 유동 제어기의 에러를 결정하고,
상기 볼륨은, 교정 가스 유동 스탠다드로 측정된 상기 제어 볼륨 내의 시간 경과에 따른 압력 감쇠 레이트에 기초하여 결정되는,
시스템. - 제14 항에 있어서,
상기 유동 제한기는 드릴링된 오리피스 유동 제한기 또는 다공성 매체 유동 제한기 중 적어도 하나인,
시스템. - 제14 항에 있어서,
상기 제어 볼륨과 상기 유동 제한기 사이에 커플링된 밸브를 더 포함하며, 상기 밸브는 상기 제어 볼륨 내에 압력이 형성되게 하도록 상기 제어기에 의해 동작가능한,
시스템. - 제14 항에 있어서,
상기 제어 볼륨에 커플링가능하며 그리고 상기 제어 볼륨에 가압된 가스를 공급함으로써 상기 제어 볼륨 내의 압력을 승압시키도록 상기 제어기에 의해 동작가능한 제2 볼륨을 더 포함하는,
시스템. - 제19 항에 있어서,
상기 제2 볼륨을 상기 유입구에 커플링하기 위한 제1 밸브; 및
상기 제2 볼륨을 상기 제어 볼륨에 커플링하기 위한 제2 밸브
를 더 포함하는,
시스템.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/936,428 US10866135B2 (en) | 2018-03-26 | 2018-03-26 | Methods, systems, and apparatus for mass flow verification based on rate of pressure decay |
US15/936,428 | 2018-03-26 | ||
PCT/US2019/018800 WO2019190656A1 (en) | 2018-03-26 | 2019-02-20 | Methods, systems, and apparatus for mass flow verification based on rate of pressure decay |
KR1020207030271A KR102420515B1 (ko) | 2018-03-26 | 2019-02-20 | 압력 감쇠 레이트에 기반한 질량 유동 검증을 위한 방법들, 시스템들, 및 장치 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207030271A Division KR102420515B1 (ko) | 2018-03-26 | 2019-02-20 | 압력 감쇠 레이트에 기반한 질량 유동 검증을 위한 방법들, 시스템들, 및 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220103195A true KR20220103195A (ko) | 2022-07-21 |
KR102545164B1 KR102545164B1 (ko) | 2023-06-16 |
Family
ID=67984920
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207030271A KR102420515B1 (ko) | 2018-03-26 | 2019-02-20 | 압력 감쇠 레이트에 기반한 질량 유동 검증을 위한 방법들, 시스템들, 및 장치 |
KR1020227023468A KR102545164B1 (ko) | 2018-03-26 | 2019-02-20 | 압력 감쇠 레이트에 기반한 질량 유동 검증을 위한 방법들, 시스템들, 및 장치 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207030271A KR102420515B1 (ko) | 2018-03-26 | 2019-02-20 | 압력 감쇠 레이트에 기반한 질량 유동 검증을 위한 방법들, 시스템들, 및 장치 |
Country Status (6)
Country | Link |
---|---|
US (2) | US10866135B2 (ko) |
JP (2) | JP7105905B2 (ko) |
KR (2) | KR102420515B1 (ko) |
CN (1) | CN112020689B (ko) |
TW (2) | TWI782196B (ko) |
WO (1) | WO2019190656A1 (ko) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11789435B2 (en) * | 2018-04-19 | 2023-10-17 | Horiba Stec, Co., Ltd. | Flow control device, diagnostic method, and program for flow control device |
GB201903473D0 (en) * | 2019-03-14 | 2019-05-01 | Sumitomo Chemical Co | Interferent and baseline drift correcting gas sensor system |
JP7376959B2 (ja) * | 2020-03-30 | 2023-11-09 | 株式会社フジキン | ガス供給量測定方法およびガス供給量制御方法 |
US11733081B2 (en) * | 2021-04-13 | 2023-08-22 | Applied Materials, Inc. | Methods, systems, and apparatus for conducting a calibration operation for a plurality of mass flow controllers (MFCs) of a substrate processing system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008170410A (ja) * | 2006-03-20 | 2008-07-24 | Hitachi Metals Ltd | 質量流量制御装置、その検定方法及び半導体製造装置 |
KR20090023123A (ko) * | 2007-08-29 | 2009-03-04 | 씨케이디 가부시키 가이샤 | 유량검정시스템 및 유량검정방법 |
JP2011515660A (ja) * | 2008-03-18 | 2011-05-19 | エム ケー エス インストルメンツ インコーポレーテッド | 複数の流入口を備えた高精度質量流量検証器 |
WO2018008420A1 (ja) * | 2016-07-05 | 2018-01-11 | 株式会社フジキン | 流量制御機器、流量制御機器の流量校正方法、流量測定機器および流量測定機器を用いた流量測定方法 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6363958B1 (en) * | 1999-05-10 | 2002-04-02 | Parker-Hannifin Corporation | Flow control of process gas in semiconductor manufacturing |
JP4086057B2 (ja) | 2004-06-21 | 2008-05-14 | 日立金属株式会社 | 質量流量制御装置及びこの検定方法 |
US7474968B2 (en) | 2005-03-25 | 2009-01-06 | Mks Instruments, Inc. | Critical flow based mass flow verifier |
US7461549B1 (en) * | 2007-06-27 | 2008-12-09 | Mks Instruments, Inc. | Mass flow verifiers capable of providing different volumes, and related methods |
US7673645B2 (en) * | 2005-04-21 | 2010-03-09 | Mks Instruments, Inc. | Gas delivery method and system including a flow ratio controller using a multiple antisymmetric optimal control arrangement |
US7621290B2 (en) * | 2005-04-21 | 2009-11-24 | Mks Instruments, Inc. | Gas delivery method and system including a flow ratio controller using antisymmetric optimal control |
JP4648098B2 (ja) * | 2005-06-06 | 2011-03-09 | シーケーディ株式会社 | 流量制御機器絶対流量検定システム |
US7881886B1 (en) * | 2006-11-17 | 2011-02-01 | Lam Research Corporation | Methods for performing transient flow prediction and verification using discharge coefficients |
KR20090008047A (ko) | 2007-07-16 | 2009-01-21 | 삼성전자주식회사 | 동작 및 위치를 검출하는 음성 입력장치와 노래 반주기 및이를 적용한 노래반주방법 |
US7615748B2 (en) * | 2007-09-25 | 2009-11-10 | Varian Semiconductor Equipment Associates, Inc. | Outgassing rate detection |
WO2009091935A1 (en) | 2008-01-18 | 2009-07-23 | Pivotal Systems Corporation | Method and apparatus for in situ testing of gas flow controllers |
US8340827B2 (en) * | 2008-06-20 | 2012-12-25 | Lam Research Corporation | Methods for controlling time scale of gas delivery into a processing chamber |
JP5346628B2 (ja) | 2009-03-11 | 2013-11-20 | 株式会社堀場エステック | マスフローコントローラの検定システム、検定方法、検定用プログラム |
JP5337542B2 (ja) * | 2009-03-12 | 2013-11-06 | 株式会社堀場エステック | マスフローメータ、マスフローコントローラ、それらを含むマスフローメータシステムおよびマスフローコントローラシステム |
US8793082B2 (en) | 2009-07-24 | 2014-07-29 | Mks Instruments, Inc. | Upstream volume mass flow verification systems and methods |
TWI470388B (zh) * | 2009-11-05 | 2015-01-21 | Horiba Stec Co | 質量流量控制器 |
CN102096420B (zh) * | 2009-12-15 | 2015-01-14 | 株式会社堀场Stec | 质量流量控制器 |
US9557744B2 (en) | 2012-01-20 | 2017-01-31 | Mks Instruments, Inc. | System for and method of monitoring flow through mass flow controllers in real time |
US9739655B2 (en) | 2012-03-07 | 2017-08-22 | Illinois Tool Works Inc. | System and method for using a rate of decay measurement for real time measurement and correction of zero offset and zero drift of a mass flow controller or mass flow meter |
US9810377B2 (en) * | 2012-03-07 | 2017-11-07 | Illinois Tool Works Inc. | System and method for improving the accuracy of a rate of decay (ROD) measurement in a mass flow controller |
US9169975B2 (en) * | 2012-08-28 | 2015-10-27 | Asm Ip Holding B.V. | Systems and methods for mass flow controller verification |
US10031005B2 (en) | 2012-09-25 | 2018-07-24 | Mks Instruments, Inc. | Method and apparatus for self verification of pressure-based mass flow controllers |
US9476517B2 (en) * | 2014-02-28 | 2016-10-25 | Mks Instruments, Inc. | Pilot valve structures and mass flow controllers |
CA2957400C (en) * | 2014-08-05 | 2022-11-29 | Solidia Technologies, Inc. | Method and apparatus for the curing of composite material by control over rate limiting steps in water removal |
US10453721B2 (en) | 2016-03-15 | 2019-10-22 | Applied Materials, Inc. | Methods and assemblies for gas flow ratio control |
US10269600B2 (en) | 2016-03-15 | 2019-04-23 | Applied Materials, Inc. | Methods and assemblies for gas flow ratio control |
US10684159B2 (en) | 2016-06-27 | 2020-06-16 | Applied Materials, Inc. | Methods, systems, and apparatus for mass flow verification based on choked flow |
-
2018
- 2018-03-26 US US15/936,428 patent/US10866135B2/en active Active
-
2019
- 2019-02-20 WO PCT/US2019/018800 patent/WO2019190656A1/en active Application Filing
- 2019-02-20 JP JP2020551281A patent/JP7105905B2/ja active Active
- 2019-02-20 CN CN201980028315.8A patent/CN112020689B/zh active Active
- 2019-02-20 KR KR1020207030271A patent/KR102420515B1/ko active IP Right Grant
- 2019-02-20 KR KR1020227023468A patent/KR102545164B1/ko active IP Right Grant
- 2019-03-20 TW TW108109517A patent/TWI782196B/zh active
- 2019-03-20 TW TW111137825A patent/TWI837862B/zh active
-
2020
- 2020-11-30 US US17/247,091 patent/US11604089B2/en active Active
-
2022
- 2022-07-12 JP JP2022111502A patent/JP7149444B1/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008170410A (ja) * | 2006-03-20 | 2008-07-24 | Hitachi Metals Ltd | 質量流量制御装置、その検定方法及び半導体製造装置 |
KR20090023123A (ko) * | 2007-08-29 | 2009-03-04 | 씨케이디 가부시키 가이샤 | 유량검정시스템 및 유량검정방법 |
JP2011515660A (ja) * | 2008-03-18 | 2011-05-19 | エム ケー エス インストルメンツ インコーポレーテッド | 複数の流入口を備えた高精度質量流量検証器 |
WO2018008420A1 (ja) * | 2016-07-05 | 2018-01-11 | 株式会社フジキン | 流量制御機器、流量制御機器の流量校正方法、流量測定機器および流量測定機器を用いた流量測定方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201945695A (zh) | 2019-12-01 |
US11604089B2 (en) | 2023-03-14 |
KR20200123860A (ko) | 2020-10-30 |
TW202309482A (zh) | 2023-03-01 |
KR102420515B1 (ko) | 2022-07-13 |
US20190293476A1 (en) | 2019-09-26 |
JP2021518947A (ja) | 2021-08-05 |
CN112020689B (zh) | 2024-10-15 |
WO2019190656A1 (en) | 2019-10-03 |
KR102545164B1 (ko) | 2023-06-16 |
TWI837862B (zh) | 2024-04-01 |
CN112020689A (zh) | 2020-12-01 |
TWI782196B (zh) | 2022-11-01 |
US20210080313A1 (en) | 2021-03-18 |
JP7149444B1 (ja) | 2022-10-06 |
US10866135B2 (en) | 2020-12-15 |
JP7105905B2 (ja) | 2022-07-25 |
JP2022160437A (ja) | 2022-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102420515B1 (ko) | 압력 감쇠 레이트에 기반한 질량 유동 검증을 위한 방법들, 시스템들, 및 장치 | |
US11519773B2 (en) | Methods, systems, and apparatus for mass flow verification based on choked flow | |
EP2247819B1 (en) | Method and apparatus for in situ testing of gas flow controllers | |
KR101425007B1 (ko) | 상이한 체적을 제공할 수 있는 질량 유동 검증기 및 그 방법 | |
JP5530718B2 (ja) | 実流量の妥当性確認の実施方法 | |
WO2012014375A1 (ja) | ガス供給装置用流量制御器の校正方法及び流量計測方法 | |
US7174263B2 (en) | External volume insensitive flow verification | |
US7881886B1 (en) | Methods for performing transient flow prediction and verification using discharge coefficients | |
JP5054500B2 (ja) | 圧力制御式流量基準器 | |
US9778083B2 (en) | Metrology method for transient gas flow | |
US10090178B2 (en) | Gas temperature measurement method and gas introduction system | |
JP7249030B2 (ja) | 流量測定装置内の容積測定方法および流量測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |