KR20220031799A - 반도체 소자 - Google Patents

반도체 소자 Download PDF

Info

Publication number
KR20220031799A
KR20220031799A KR1020200112608A KR20200112608A KR20220031799A KR 20220031799 A KR20220031799 A KR 20220031799A KR 1020200112608 A KR1020200112608 A KR 1020200112608A KR 20200112608 A KR20200112608 A KR 20200112608A KR 20220031799 A KR20220031799 A KR 20220031799A
Authority
KR
South Korea
Prior art keywords
pattern
semiconductor
source
air gap
layer
Prior art date
Application number
KR1020200112608A
Other languages
English (en)
Inventor
최경인
유해준
이승훈
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020200112608A priority Critical patent/KR20220031799A/ko
Priority to US17/242,823 priority patent/US11605711B2/en
Priority to CN202110691699.0A priority patent/CN114141769A/zh
Publication of KR20220031799A publication Critical patent/KR20220031799A/ko
Priority to US18/182,893 priority patent/US20230223438A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823878Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4983Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
    • H01L29/4991Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material comprising an air gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66553Unipolar field-effect transistors with an insulated gate, i.e. MISFET using inside spacers, permanent or not
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823864Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

본 발명은 반도체 소자에 관한 것으로, 더욱 상세하게는, 기판 상의 활성 패턴; 상기 활성 패턴 상의 소스/드레인 패턴; 상기 소스/드레인 패턴에 연결된 채널 패턴, 상기 채널 패턴은 서로 이격되어 적층된 반도체 패턴들을 포함하고; 상기 채널 패턴을 가로지르며 연장되는 게이트 전극; 및 상기 게이트 전극과 상기 소스/드레인 패턴 사이에 개재된 내측 스페이서들을 포함한다. 상기 반도체 패턴들은, 그의 최하부의 제1 반도체 패턴 및 상기 제1 반도체 패턴 상의 제2 반도체 패턴을 포함하고, 상기 게이트 전극은, 상기 기판과 상기 제1 반도체 패턴 사이의 제1 부분 및 상기 제1 반도체 패턴과 상기 제2 반도체 패턴 사이의 제2 부분을 포함하며, 상기 내측 스페이서들은, 상기 게이트 전극의 상기 제1 부분과 상기 소스/드레인 패턴 사이의 제1 에어갭 및 상기 게이트 전극의 상기 제2 부분과 상기 소스/드레인 패턴 사이의 제2 에어갭을 포함하고, 상기 제1 에어갭의 최대폭은 상기 제2 에어갭의 최대폭보다 크다.

Description

반도체 소자{Semiconductor device}
본 발명은 반도체 소자에 관한 것으로, 더욱 상세하게는 전계 효과 트랜지스터를 포함하는 반도체 소자에 관한 것이다.
반도체 소자는 모스 전계 효과 트랜지스터들(MOS(Metal Oxide Semiconductor) FET)로 구성된 집적회로를 포함한다. 반도체 소자의 크기 및 디자인 룰(Design rule)이 점차 축소됨에 따라, 모스 전계 효과 트랜지스터들의 크기 축소(scale down)도 점점 가속화되고 있다. 모스 전계 효과 트랜지스터들의 크기 축소에 따라 반도체 소자의 동작 특성이 저하될 수 있다. 이에 따라, 반도체 소자의 고집적화에 따른 한계를 극복하면서 보다 우수한 성능을 반도체 소자를 형성하기 위한 다양한 방법이 연구되고 있다.
본 발명이 해결하고자 하는 과제는, 전기적 특성이 향상된 반도체 소자를 제공하는데 있다.
본 발명의 개념에 따른, 반도체 소자는, 기판 상의 활성 패턴; 상기 활성 패턴 상의 소스/드레인 패턴; 상기 소스/드레인 패턴에 연결된 채널 패턴, 상기 채널 패턴은 서로 이격되어 적층된 반도체 패턴들을 포함하고; 상기 채널 패턴을 가로지르며 연장되는 게이트 전극; 및 상기 게이트 전극과 상기 소스/드레인 패턴 사이에 개재된 내측 스페이서들을 포함할 수 있다. 상기 반도체 패턴들은, 그의 최하부의 제1 반도체 패턴 및 상기 제1 반도체 패턴 상의 제2 반도체 패턴을 포함하고, 상기 게이트 전극은, 상기 기판과 상기 제1 반도체 패턴 사이의 제1 부분 및 상기 제1 반도체 패턴과 상기 제2 반도체 패턴 사이의 제2 부분을 포함하며, 상기 내측 스페이서들은, 상기 게이트 전극의 상기 제1 부분과 상기 소스/드레인 패턴 사이의 제1 에어갭 및 상기 게이트 전극의 상기 제2 부분과 상기 소스/드레인 패턴 사이의 제2 에어갭을 포함하고, 상기 제1 에어갭의 최대폭은 상기 제2 에어갭의 최대폭보다 클 수 있다.
본 발명의 다른 개념에 따른, 반도체 소자는, 기판 상의 활성 패턴; 상기 활성 패턴 상의 소스/드레인 패턴; 상기 소스/드레인 패턴에 연결된 채널 패턴, 상기 채널 패턴은 서로 이격되어 적층된 반도체 패턴들을 포함하고; 상기 채널 패턴을 가로지르며 연장되는 게이트 전극, 상기 게이트 전극은 상기 기판과 상기 반도체 패턴들 중 최하부의 반도체 패턴 사이에 개재된 부분을 포함하고; 및 상기 게이트 전극의 상기 부분과 상기 소스/드레인 패턴 사이의 내측 스페이서를 포함할 수 있다. 상기 내측 스페이서는, 내측 절연 패턴 및 상기 내측 절연 패턴과 상기 소스/드레인 패턴에 의해 정의되는 에어갭을 포함하고, 상기 에어갭의 폭은, 상기 기판의 상면에 수직한 방향으로 갈수록 증가하다가 최대 값에 도달하고, 이후 다시 감소할 수 있다.
본 발명의 또 다른 개념에 따른, 반도체 소자는, 제1 방향으로 서로 인접하는 PMOSFET 영역 및 NMOSFET 영역을 포함하는 기판; 상기 PMOSFET 및 NMOSFET 영역들 상에 각각 제공된 제1 활성 패턴 및 제2 활성 패턴; 상기 제1 활성 패턴 상의 제1 소스/드레인 패턴 및 상기 제2 활성 패턴 상의 제2 소스/드레인 패턴; 상기 제1 소스/드레인 패턴에 연결된 제1 채널 패턴 및 상기 제2 소스/드레인 패턴에 연결된 제2 채널 패턴, 상기 제1 및 제2 채널 패턴들 각각은 순차적으로 서로 이격되어 적층된 제1 반도체 패턴, 제2 반도체 패턴 및 제3 반도체 패턴을 포함하고; 상기 제1 및 제2 채널 패턴들을 각각 가로지르며 상기 제1 방향으로 연장되는 제1 게이트 전극 및 제2 게이트 전극, 상기 제1 및 제2 게이트 전극들 각각은 상기 기판과 상기 제1 반도체 패턴 사이에 개재된 제1 부분, 상기 제1 반도체 패턴과 상기 제2 반도체 패턴 사이에 개재된 제2 부분, 상기 제2 반도체 패턴과 상기 제3 반도체 패턴 사이에 개재된 제3 부분, 및 상기 제3 반도체 패턴 상의 제4 부분을 포함하고; 상기 제2 게이트 전극의 상기 제1 내지 제3 부분들과 상기 제2 소스/드레인 패턴 사이에 각각 개재된 내측 스페이서들; 상기 제1 채널 패턴과 상기 제1 게이트 전극 사이 및 상기 제2 채널 패턴과 상기 제2 게이트 전극 사이에 각각 개재된 제1 게이트 절연막 및 제2 게이트 절연막; 상기 제1 및 제2 게이트 전극들의 측벽들 상에 각각 제공된 제1 게이트 스페이서 및 제2 게이트 스페이서; 상기 제1 및 제2 게이트 전극들의 상면들 상에 각각 제공된 제1 게이트 캐핑 패턴 및 제2 게이트 캐핑 패턴; 상기 제1 및 제2 게이트 캐핑 패턴들 상의 제1 층간 절연막; 상기 제1 층간 절연막을 관통하여 상기 제1 및 제2 소스/드레인 패턴들에 각각 접속하는 활성 콘택들; 상기 제1 층간 절연막을 관통하여 상기 제1 및 제2 게이트 전극들에 각각 접속하는 게이트 콘택들; 상기 제1 층간 절연막 상의 제2 층간 절연막; 상기 제2 층간 절연막 내에 제공된 제1 금속 층, 상기 제1 금속 층은 상기 활성 콘택들 및 상기 게이트 콘택들과 각각 전기적으로 연결되는 제1 배선들을 포함하고; 상기 제2 층간 절연막 상의 제3 층간 절연막; 및 상기 제3 층간 절연막 내에 제공된 제2 금속 층을 포함할 수 있다. 상기 제2 금속 층은 상기 제1 배선들과 각각 전기적으로 연결되는 제2 배선들을 포함하고, 상기 내측 스페이서들 각각은, 내측 절연 패턴 및 상기 내측 절연 패턴과 상기 제2 소스/드레인 패턴에 의해 정의되는 에어갭을 포함하고, 상기 제2 게이트 전극의 상기 제1 내지 제3 부분들 중 적어도 하나는 리세스된 측벽을 갖고, 상기 내측 절연 패턴은, 그의 상부의 제1 수평 연장부, 그의 하부의 제2 수평 연장부, 및 상기 제1 및 제2 수평 연장부들을 연결하는 돌출부를 포함하고, 상기 돌출부는 상기 리세스된 측벽을 마주보며 상기 리세스된 측벽에 대응하는 프로파일을 가질 수 있다.
본 발명에 따른 반도체 소자는, 게이트 전극과 제2 소스/드레인 패턴 사이에 매우 낮은 유전상수를 갖는 내측 스페이서를 제공할 수 있다. 이로써, 게이트 전극과 제2 소스/드레인 패턴 사이의 기생 캐피시턴스를 줄이고, 소자의 성능 및 전기적 특성이 향상될 수 있다.
도 1은 본 발명의 실시예들에 따른 반도체 소자를 설명하기 위한 평면도이다.
도 2a 내지 도 2d는 각각 도 1의 A-A'선, B-B'선, C-C'선 및 D-D'선에 따른 단면도들이다.
도 3은 도 2b의 M 영역을 확대한 단면도이다.
도 4a 내지 도 10d는 본 발명의 실시예들에 따른 반도체 소자의 제조방법을 설명하기 위한 단면도들이다.
도 11 내지 도 19는 본 발명의 실시예들에 따른 내측 스페이서를 형성하는 방법을 설명하기 위한 것으로, 도 6b 및 도 7b의 M 영역을 확대한 단면도들이다.
도 20 내지 도 22 각각은 본 발명의 다른 실시예들에 따른 반도체 소자를 설명하기 위한 것으로, 도 2b의 M 영역을 확대한 단면도이다.
도 23은 본 발명의 다른 실시예에 따른 반도체 소자를 설명하기 위한 것으로, 도 1의 A-A'선에 따른 단면도이다.
도 1은 본 발명의 실시예들에 따른 반도체 소자를 설명하기 위한 평면도이다. 도 2a 내지 도 2d는 각각 도 1의 A-A'선, B-B'선, C-C'선 및 D-D'선에 따른 단면도들이다. 도 3은 도 2b의 M 영역을 확대한 단면도이다.
도 1 및 도 2a 내지 도 2d를 참조하면, 기판(100) 상에 로직 셀(LC)이 제공될 수 있다. 로직 셀(LC) 상에는 로직 회로를 구성하는 로직 트랜지스터들이 배치될 수 있다. 기판(100)은 실리콘, 게르마늄, 실리콘-게르마늄 등을 포함하는 반도체 기판이거나 화합물 반도체 기판일 수 있다. 일 예로, 기판(100)은 실리콘 기판일 수 있다.
로직 셀(LC)은 PMOSFET 영역(PR) 및 NMOSFET 영역(NR)을 포함할 수 있다. 기판(100)의 상부에 형성된 제2 트렌치(TR2)에 의해 PMOSFET 영역(PR) 및 NMOSFET 영역(NR)이 정의될 수 있다. 다시 말하면, PMOSFET 영역(PR) 및 NMOSFET 영역(NR) 사이에 제2 트렌치(TR2)가 위치할 수 있다. PMOSFET 영역(PR) 및 NMOSFET 영역(NR)은, 제2 트렌치(TR2)를 사이에 두고 제1 방향(D1)으로 서로 이격될 수 있다.
기판(100)의 상부에 형성된 제1 트렌치(TR1)에 의해 제1 활성 패턴(AP1) 및 제2 활성 패턴(AP2)이 정의될 수 있다. 제1 활성 패턴(AP1) 및 제2 활성 패턴(AP2)은 각각 PMOSFET 영역(PR) 및 NMOSFET 영역(NR) 상에 제공될 수 있다. 제1 트렌치(TR1)는 제2 트렌치(TR2)에 비해 얕을 수 있다. 제1 및 제2 활성 패턴들(AP1, AP2)은 제2 방향(D2)으로 연장될 수 있다. 제1 및 제2 활성 패턴들(AP1, AP2)은 기판(100)의 일부로써, 수직하게 돌출된 부분들일 수 있다.
소자 분리막(ST)이 제1 및 제2 트렌치들(TR1, TR2)을 채울 수 있다. 소자 분리막(ST)은 실리콘 산화막을 포함할 수 있다. 제1 및 제2 활성 패턴들(AP1, AP2)의 상부들은 소자 분리막(ST) 위로 수직하게 돌출될 수 있다 (도 2d 참조). 소자 분리막(ST)은 제1 및 제2 활성 패턴들(AP1, AP2)의 상부들을 덮지 않을 수 있다. 소자 분리막(ST)은 제1 및 제2 활성 패턴들(AP1, AP2)의 하부 측벽들을 덮을 수 있다.
제1 활성 패턴(AP1)은 그의 상부에 제1 채널 패턴(CH1)을 포함할 수 있다. 제2 활성 패턴(AP2)은 그의 상부에 제2 채널 패턴(CH2)을 포함할 수 있다. 제1 채널 패턴(CH1) 및 제2 채널 패턴(CH2) 각각은, 순차적으로 적층된 제1 반도체 패턴(SP1), 제2 반도체 패턴(SP2) 및 제3 반도체 패턴(SP3)을 포함할 수 있다. 제1 내지 제3 반도체 패턴들(SP1, SP2, SP3)은 수직적 방향(즉, 제3 방향(D3))으로 서로 이격될 수 있다.
제1 내지 제3 반도체 패턴들(SP1, SP2, SP3) 각각은 실리콘(Si), 게르마늄(Ge) 또는 실리콘-게르마늄(SiGe)을 포함할 수 있다. 바람직하기로, 제1 내지 제3 반도체 패턴들(SP1, SP2, SP3) 각각은 결정질 실리콘(crystalline silicon)을 포함할 수 있다.
제1 활성 패턴(AP1)의 상부에 복수개의 제1 리세스들(RS1)이 형성될 수 있다. 제1 소스/드레인 패턴들(SD1)이 제1 리세스들(RS1) 내에 각각 제공될 수 있다. 제1 소스/드레인 패턴들(SD1)은 제1 도전형(예를 들어, p형)의 불순물 영역들일 수 있다. 한 쌍의 제1 소스/드레인 패턴들(SD1) 사이에 제1 채널 패턴(CH1)이 개재될 수 있다. 다시 말하면, 적층된 제1 내지 제3 반도체 패턴들(SP1, SP2, SP3)이 한 쌍의 제1 소스/드레인 패턴들(SD1)을 서로 연결할 수 있다.
제2 활성 패턴(AP2)의 상부에 복수개의 제2 리세스들(RS2)이 형성될 수 있다. 제2 소스/드레인 패턴들(SD2)이 제2 리세스들(RS2) 내에 각각 제공될 수 있다. 제2 소스/드레인 패턴들(SD2)은 제2 도전형(예를 들어, n형)의 불순물 영역들일 수 있다. 한 쌍의 제2 소스/드레인 패턴들(SD2) 사이에 제2 채널 패턴(CH2)이 개재될 수 있다. 다시 말하면, 적층된 제1 내지 제3 반도체 패턴들(SP1, SP2, SP3)이 한 쌍의 제2 소스/드레인 패턴들(SD2)을 서로 연결할 수 있다.
제1 및 제2 소스/드레인 패턴들(SD1, SD2)은 선택적 에피택시얼 성장(SEG) 공정으로 형성된 에피택시얼 패턴들일 수 있다. 일 예로, 제1 및 제2 소스/드레인 패턴들(SD1, SD2) 각각의 상면은, 제3 반도체 패턴(SP3)의 상면과 실질적으로 동일한 레벨에 위치할 수 있다. 다른 예로, 제1 및 제2 소스/드레인 패턴들(SD1, SD2) 각각의 상면은, 제3 반도체 패턴(SP3)의 상면보다 높을 수 있다.
제1 소스/드레인 패턴들(SD1)은 기판(100)의 반도체 원소의 격자 상수보다 큰 격자 상수를 갖는 반도체 원소(예를 들어, SiGe)를 포함할 수 있다. 이로써, 한 쌍의 제1 소스/드레인 패턴들(SD1)은, 그들 사이의 제1 채널 패턴(CH1)에 압축 응력(compressive stress)을 제공할 수 있다. 제2 소스/드레인 패턴들(SD2)은 기판(100)과 동일한 반도체 원소(예를 들어, Si)를 포함할 수 있다.
각각의 제1 소스/드레인 패턴들(SD1)은 제1 반도체 층(SEL1) 및 제1 반도체 층(SEL1) 상의 제2 반도체 층(SEL2)을 포함할 수 있다. 도 2a를 다시 참조하여, 제1 소스/드레인 패턴(SD1)의 제2 방향(D2)으로의 단면의 형태를 설명한다.
제1 반도체 층(SEL1)은 제1 리세스(RS1)의 내측벽을 덮을 수 있다. 제1 반도체 층(SEL1)의 두께는, 그의 하부에서 그의 상부로 갈수록 얇아질 수 있다. 예를 들어, 제1 리세스(RS1)의 바닥 상의 제1 반도체 층(SEL1)의 제3 방향(D3)으로의 두께는, 제1 리세스(RS1)의 상부 상의 제1 반도체 층(SEL1)의 제2 방향(D2)으로의 두께보다 클 수 있다. 제1 반도체 층(SEL1)은, 제1 리세스(RS1)의 프로파일을 따라 U자 형태를 가질 수 있다.
제2 반도체 층(SEL2)은 제1 반도체 층(SEL1)을 제외한 제1 리세스(RS1)의 남은 영역을 채울 수 있다. 제2 반도체 층(SEL2)의 부피는 제1 반도체 층(SEL1)의 부피보다 클 수 있다. 다시 말하면, 제1 소스/드레인 패턴(SD1)의 전체 부피에 대한 제2 반도체 층(SEL2)의 부피의 비는, 제1 소스/드레인 패턴(SD1)의 전체 부피에 대한 제1 반도체 층(SEL1)의 부피의 비보다 클 수 있다.
제1 반도체 층(SEL1) 및 제2 반도체 층(SEL2) 각각은 실리콘-게르마늄(SiGe)을 포함할 수 있다. 구체적으로, 제1 반도체 층(SEL1)은 상대적으로 저농도의 게르마늄(Ge)을 함유할 수 있다. 본 발명의 다른 실시예로, 제1 반도체 층(SEL1)은 게르마늄(Ge)을 제외한 실리콘(Si)만을 함유할 수도 있다. 제1 반도체 층(SEL1)의 게르마늄(Ge)의 농도는 0 at% 내지 10 at%일 수 있다.
제2 반도체 층(SEL2)은 상대적으로 고농도의 게르마늄(Ge)을 함유할 수 있다. 일 예로, 제2 반도체 층(SEL2)의 게르마늄(Ge)의 농도는 30 at% 내지 70 at%일 수 있다. 제2 반도체 층(SEL2)의 게르마늄(Ge)의 농도는 제3 방향(D3)으로 갈수록 증가할 수 있다. 예를 들어, 제1 반도체 층(SEL1)에 인접하는 제2 반도체 층(SEL2)은 약 40 at%의 게르마늄(Ge) 농도를 갖지만, 제2 반도체 층(SEL2)의 상부는 약 60 at%의 게르마늄(Ge) 농도를 가질 수 있다.
제1 및 제2 반도체 층들(SEL1, SEL2)은, 제1 소스/드레인 패턴(SD1)이 p형을 갖도록 하는 불순물(예를 들어, 보론)을 포함할 수 있다. 제2 반도체 층(SEL2)의 불순물의 농도(예를 들어, 원자 퍼센트)는 제1 반도체 층(SEL1)의 불순물의 농도보다 클 수 있다.
제1 반도체 층(SEL1)은, 기판(100)과 제2 반도체 층(SEL2) 사이, 및 제1 내지 제3 반도체 패턴들(SP1, SP2, SP3)과 제2 반도체 층(SEL2) 사이의 적층 결함(stacking fault)을 방지할 수 있다. 적층 결함이 발생할 경우, 채널 저항이 증가할 수 있다. 적층 결함은 제1 리세스(RS1)의 바닥에서 쉽게 발생될 수 있다. 따라서 적층 결함을 방지하기 위해서는, 제1 리세스(RS1)의 바닥에 인접하는 제1 반도체 층(SEL1)의 두께가 상대적으로 큼이 바람직할 수 있다.
제1 반도체 층(SEL1)은, 희생층들(SAL)을 게이트 전극(GE)의 제1 내지 제3 부분들(PO1, PO2, PO3)로 교체하는 공정 동안, 제2 반도체 층(SEL2)을 보호할 수 있다. 다시 말하면, 제1 반도체 층(SEL1)은 희생층들(SAL)을 제거하는 식각 물질이 제2 반도체 층(SEL2)으로 침투하여 이를 식각하는 것을 방지할 수 있다.
제1 및 제2 활성 패턴들(AP1, AP2)을 가로지르며 제1 방향(D1)으로 연장되는 게이트 전극들(GE)이 제공될 수 있다. 게이트 전극들(GE)은 제1 피치(P1)에 따라 제2 방향(D2)으로 배열될 수 있다. 각각의 게이트 전극들(GE)은 제1 및 제2 채널 패턴들(CH1, CH2)과 수직적으로 중첩될 수 있다.
게이트 전극(GE)은, 기판(100)과 제1 반도체 패턴(SP1) 사이에 개재된 제1 부분(PO1), 제1 반도체 패턴(SP1)과 제2 반도체 패턴(SP2) 사이에 개재된 제2 부분(PO2), 제2 반도체 패턴(SP2)과 제3 반도체 패턴(SP3) 사이에 개재된 제3 부분(PO3), 및 제3 반도체 패턴(SP3) 위의 제4 부분(PO4)을 포함할 수 있다.
도 2a를 다시 참조하면, PMOSFET 영역(PR) 상의 게이트 전극(GE)의 제1 내지 제3 부분들(PO1, PO2, PO3)은 서로 다른 폭을 가질 수 있다. 예를 들어, 제3 부분(PO3)의 제2 방향(D2)으로의 최대폭은, 제2 부분(PO2)의 제2 방향(D2)으로의 최대폭보다 클 수 있다. 제1 부분(PO1)의 제2 방향(D2)으로의 최대폭은, 제3 부분(PO3)의 제2 방향(D2)으로의 최대폭보다 클 수 있다.
도 2d를 다시 참조하면, 게이트 전극(GE)은 제1 내지 제3 반도체 패턴들(SP1, SP2, SP3) 각각의 상면(TS), 바닥면(BS) 및 양 측벽들(SW) 상에 제공될 수 있다. 다시 말하면, 본 실시예에 따른 로직 트랜지스터는, 게이트 전극(GE)이 채널을 3차원적으로 둘러싸는 3차원 전계 효과 트랜지스터(예를 들어, MBCFET)일 수 있다.
도 1 및 도 2a 내지 도 2d를 다시 참조하면, 게이트 전극(GE)의 제4 부분(PO4)의 양 측벽들 상에 한 쌍의 게이트 스페이서들(GS)이 각각 배치될 수 있다. 게이트 스페이서들(GS)은 게이트 전극(GE)을 따라 제1 방향(D1)으로 연장될 수 있다. 게이트 스페이서들(GS)의 상면들은 게이트 전극(GE)의 상면보다 높을 수 있다. 게이트 스페이서들(GS)의 상면들은 후술할 제1 층간 절연막(110)의 상면과 공면을 이룰 수 있다. 게이트 스페이서들(GS)은 SiCN, SiCON 및 SiN 중 적어도 하나를 포함할 수 있다. 다른 예로, 게이트 스페이서들(GS)은 SiCN, SiCON 및 SiN 중 적어도 두 개로 이루어진 다중 막(multi-layer)을 포함할 수 있다.
게이트 전극(GE) 상에 게이트 캐핑 패턴(GP)이 제공될 수 있다. 게이트 캐핑 패턴(GP)은 게이트 전극(GE)을 따라 제1 방향(D1)으로 연장될 수 있다. 게이트 캐핑 패턴(GP)은 후술하는 제1 및 제2 층간 절연막들(110, 120)에 대하여 식각 선택성이 있는 물질을 포함할 수 있다. 구체적으로, 게이트 캐핑 패턴(GP)은 SiON, SiCN, SiCON 및 SiN 중 적어도 하나를 포함할 수 있다.
게이트 전극(GE)과 제1 채널 패턴(CH1) 사이 및 게이트 전극(GE1)과 제2 채널 패턴(CH2) 사이에 게이트 절연막(GI)이 개재될 수 있다. 게이트 절연막(GI)은, 제1 내지 제3 반도체 패턴들(SP1, SP2, SP3) 각각의 상면(TS), 바닥면(BS) 및 양 측벽들(SW)을 덮을 수 있다. 게이트 절연막(GI)은, 게이트 전극(GE) 아래의 소자 분리막(ST)의 상면을 덮을 수 있다 (도 2d 참조).
본 발명의 일 실시예로, 게이트 절연막(GI)은 실리콘 산화막, 실리콘 산화질화막 및/또는 고유전막을 포함할 수 있다. 상기 고유전막은, 실리콘 산화막보다 유전상수가 높은 고유전율 물질을 포함할 수 있다. 일 예로, 상기 고유전율 물질은 하프늄 산화물, 하프늄 실리콘 산화물, 하프늄 지르코늄 산화물, 하프늄 탄탈 산화물, 란탄 산화물, 지르코늄 산화물, 지르코늄 실리콘 산화물, 탄탈 산화물, 티타늄 산화물, 바륨 스트론튬 티타늄 산화물, 바륨 티타늄 산화물, 스트론튬 티타늄 산화물, 리튬 산화물, 알루미늄 산화물, 납 스칸듐 탄탈 산화물, 및 납 아연 니오브산염 중 적어도 하나를 포함할 수 있다.
다른 실시예로, 본 발명의 반도체 소자는 네거티브 커패시터(Negative Capacitor)를 이용한 NC(Negative Capacitance) FET을 포함할 수 있다. 예를 들어, 게이트 절연막(GI)은 강유전체 특성을 갖는 강유전체 물질막과, 상유전체 특성을 갖는 상유전체 물질막을 포함할 수 있다.
강유전체 물질막은 음의 커패시턴스를 가질 수 있고, 상유전체 물질막은 양의 커패시턴스를 가질 수 있다. 예를 들어, 두 개 이상의 커패시터가 직렬 연결되고, 각각의 커패시터의 커패시턴스가 양의 값을 가질 경우, 전체 커패시턴스는 각각의 개별 커패시터의 커패시턴스보다 감소하게 된다. 반면, 직렬 연결된 두 개 이상의 커패시터의 커패시턴스 중 적어도 하나가 음의 값을 가질 경우, 전체 커패시턴스는 양의 값을 가지면서 각각의 개별 커패시턴스의 절대값보다 클 수 있다.
음의 커패시턴스를 갖는 강유전체 물질막과, 양의 커패시턴스를 갖는 상유전체 물질막이 직렬로 연결될 경우, 직렬로 연결된 강유전체 물질막 및 상유전체 물질막의 전체적인 커패시턴스 값은 증가할 수 있다. 전체적인 커패시턴스 값이 증가하는 것을 이용하여, 강유전체 물질막을 포함하는 트랜지스터는 상온에서 60 mV/decade 미만의 문턱전압이하 스윙(subthreshold swing(SS))을 가질 수 있다.
강유전체 물질막은 강유전체 특성을 가질 수 있다. 강유전체 물질막은 예를 들어, 하프늄 산화물(hafnium oxide), 하프늄 지르코늄 산화물(hafnium zirconium oxide), 바륨 스트론튬 티타늄 산화물(barium strontium titanium oxide), 바륨 티타늄 산화물(barium titanium oxide) 및 납 지르코늄 티타늄 산화물(lead zirconium titanium oxide) 중 적어도 하나를 포함할 수 있다. 여기에서, 일 예로, 하프늄 지르코늄 산화물(hafnium zirconium oxide)은 하프늄 산화물(hafnium oxide)에 지르코늄(Zr)이 도핑된 물질일 수 있다. 다른 예로, 하프늄 지르코늄 산화물(hafnium zirconium oxide)은 하프늄(Hf)과 지르코늄(Zr)과 산소(O)의 화합물일 수도 있다.
강유전체 물질막은 도핑된 도펀트를 더 포함할 수 있다. 예를 들어, 도펀트는 알루미늄(Al), 티타늄(Ti), 니오븀(Nb), 란타넘(La), 이트륨(Y), 마그네슘(Mg), 실리콘(Si), 칼슘(Ca), 세륨(Ce), 디스프로슘(Dy), 어븀(Er), 가돌리늄(Gd), 게르마늄(Ge), 스칸듐(Sc), 스트론튬(Sr) 및 주석(Sn) 중 적어도 하나를 포함할 수 있다. 강유전체 물질막이 어떤 강유전체 물질을 포함하냐에 따라, 강유전체 물질막에 포함된 도펀트의 종류는 달라질 수 있다.
강유전체 물질막이 하프늄 산화물을 포함할 경우, 강유전체 물질막에 포함된 도펀트는 예를 들어, 가돌리늄(Gd), 실리콘(Si), 지르코늄(Zr), 알루미늄(Al) 및 이트륨(Y) 중 적어도 하나를 포함할 수 있다.
도펀트가 알루미늄(Al)일 경우, 강유전체 물질막은 3 내지 8 at%(atomic %)의 알루미늄을 포함할 수 있다. 여기에서, 도펀트의 비율은 하프늄 및 알루미늄의 합에 대한 알루미늄의 비율일 수 있다.
도펀트가 실리콘(Si)일 경우, 강유전체 물질막은 2 내지 10 at%의 실리콘을 포함할 수 있다. 도펀트가 이트륨(Y)일 경우, 강유전체 물질막은 2 내지 10 at%의 이트륨을 포함할 수 있다. 도펀트가 가돌리늄(Gd)일 경우, 강유전체 물질막은 1 내지 7 at%의 가돌리늄을 포함할 수 있다. 도펀트가 지르코늄(Zr)일 경우, 강유전체 물질막은 50 내지 80 at%의 지르코늄을 포함할 수 있다.
상유전체 물질막은 상유전체 특성을 가질 수 있다. 상유전체 물질막은 예를 들어, 실리콘 산화물(silicon oxide) 및 고유전율을 갖는 금속 산화물 중 적어도 하나를 포함할 수 있다. 상유전체 물질막에 포함된 금속 산화물은 예를 들어, 하프늄 산화물(hafnium oxide), 지르코늄 산화물(zirconium oxide) 및 알루미늄 산화물(aluminum oxide) 중 적어도 하나를 포함할 수 있지만, 이에 제한되는 것은 아니다.
강유전체 물질막 및 상유전체 물질막은 동일한 물질을 포함할 수 있다. 강유전체 물질막은 강유전체 특성을 갖지만, 상유전체 물질막은 강유전체 특성을 갖지 않을 수 있다. 예를 들어, 강유전체 물질막 및 상유전체 물질막이 하프늄 산화물을 포함할 경우, 강유전체 물질막에 포함된 하프늄 산화물의 결정 구조는 상유전체 물질막에 포함된 하프늄 산화물의 결정 구조와 다르다.
강유전체 물질막은 강유전체 특성을 갖는 두께를 가질 수 있다. 강유전체 물질막의 두께는 예를 들어, 0.5 내지 10nm 일 수 있지만, 이에 제한되는 것은 아니다. 각각의 강유전체 물질마다 강유전체 특성을 나타내는 임계 두께가 달라질 수 있으므로, 강유전체 물질막의 두께는 강유전체 물질에 따라 달라질 수 있다.
일 예로, 게이트 절연막(GI)은 하나의 강유전체 물질막을 포함할 수 있다. 다른 예로, 게이트 절연막(GI)은 서로 간에 이격된 복수의 강유전체 물질막을 포함할 수 있다. 게이트 절연막(GI)은 복수의 강유전체 물질막과, 복수의 상유전체 물질막이 교대로 적층된 적층막 구조를 가질 수 있다.
게이트 전극(GE)은, 제1 금속 패턴, 및 상기 제1 금속 패턴 상의 제2 금속 패턴을 포함할 수 있다. 제1 금속 패턴은 게이트 절연막(GI) 상에 제공되어, 제1 내지 제3 반도체 패턴들(SP1, SP2, SP3)에 인접할 수 있다. 제1 금속 패턴은 트랜지스터의 문턱 전압을 조절하는 일함수 금속을 포함할 수 있다. 제1 금속 패턴의 두께 및 조성을 조절하여, 트랜지스터의 목적하는 문턱 전압을 달성할 수 있다. 예를 들어, 게이트 전극(GE)의 제1 내지 제3 부분들(PO1, PO2, PO3)은 일함수 금속인 제1 금속 패턴으로 구성될 수 있다.
제1 금속 패턴은 금속 질화막을 포함할 수 있다. 예를 들어, 제1 금속 패턴은 티타늄(Ti), 탄탈(Ta), 알루미늄(Al), 텅스텐(W) 및 몰리브덴(Mo)으로 이루어진 군에서 선택된 적어도 하나의 금속 및 질소(N)를 포함할 수 있다. 나아가, 제1 금속 패턴은 탄소(C)를 더 포함할 수도 있다. 제1 금속 패턴은, 적층된 복수개의 일함수 금속막들을 포함할 수 있다.
제2 금속 패턴은 제1 금속 패턴에 비해 저항이 낮은 금속을 포함할 수 있다. 예를 들어, 제2 금속 패턴은 텅스텐(W), 알루미늄(Al), 티타늄(Ti) 및 탄탈(Ta)로 이루어진 군에서 선택된 적어도 하나의 금속을 포함할 수 있다. 예를 들어, 게이트 전극(GE)의 제4 부분(PO4)은 제1 금속 패턴 및 제1 금속 패턴 상의 제2 금속 패턴을 포함할 수 있다.
도 2b를 다시 참조하면, NMOSFET 영역(NR) 상에 내측 스페이서들(IP)이 제공될 수 있다. 내측 스페이서들(IP)은, 게이트 전극(GE)의 제1 내지 제3 부분들(PO1, PO2, PO3)과 제2 소스/드레인 패턴(SD2) 사이에 각각 개재될 수 있다. 내측 스페이서들(IP)은 제2 소스/드레인 패턴(SD2)과 직접 접촉할 수 있다. 게이트 전극(GE)의 제1 내지 제3 부분들(PO1, PO2, PO3) 각각은, 내측 스페이서(IP)에 의해 제2 소스/드레인 패턴(SD2)과 이격될 수 있다. 내측 스페이서(IP)에 관한 보다 상세한 설명은 도 3을 참조하여 후술한다.
기판(100) 상에 제1 층간 절연막(110)이 제공될 수 있다. 제1 층간 절연막(110)은 게이트 스페이서들(GS) 및 제1 및 제2 소스/드레인 패턴들(SD1, SD2)을 덮을 수 있다. 제1 층간 절연막(110)의 상면은, 게이트 캐핑 패턴(GP)의 상면 및 게이트 스페이서(GS)의 상면과 실질적으로 공면을 이룰 수 있다. 제1 층간 절연막(110) 상에, 게이트 캐핑 패턴(GP)을 덮는 제2 층간 절연막(120)이 배치될 수 있다. 일 예로, 제1 및 제2 층간 절연막들(110, 120)은 실리콘 산화막을 포함할 수 있다.
로직 셀(LC)의 양 측에 제2 방향(D2)으로 서로 대향하는 한 쌍의 분리 구조체들(DB)이 제공될 수 있다. 분리 구조체(DB)는 제1 방향(D1)으로 게이트 전극들(GE)과 평행하게 연장될 수 있다. 분리 구조체(DB)와 그에 인접하는 게이트 전극(GE)간의 피치는 제1 피치(P1)와 동일할 수 있다.
분리 구조체(DB)는 제1 및 제2 층간 절연막들(110, 120)을 관통하여, 제1 및 제2 활성 패턴들(AP1, AP2) 내부로 연장될 수 있다. 분리 구조체(DB)는 제1 및 제2 활성 패턴들(AP1, AP2) 각각의 상부를 관통할 수 있다. 분리 구조체(DB)는, 로직 셀(LC)의 제1 및 제2 활성 영역들(PR, NR)을 인접하는 로직 셀의 활성 영역으로부터 분리시킬 수 있다.
제1 및 제2 활성 패턴들(AP1, AP2) 각각의 상부는, 분리 구조체(DB)에 인접하는 희생층들(SAL)을 더 포함할 수 있다. 희생층들(SAL)은, 서로 이격되어 적층될 수 있다. 희생층들(SAL)은, 게이트 전극(GE)의 제1 내지 제3 부분들(PO1, PO2, PO3)과 각각 동일한 레벨에 위치할 수 있다. 분리 구조체(DB)는 희생층들(SAL)을 관통할 수 있다.
희생층들(SAL)은 실리콘-게르마늄(SiGe)을 포함할 수 있다. 희생층들(SAL) 각각의 게르마늄(Ge)의 농도는 10 at% 내지 30 at%일 수 있다. 희생층(SAL)의 게르마늄의 농도는, 앞서 설명한 제1 반도체 층(SEL1)의 게르마늄의 농도보다 높을 수 있다.
제1 및 제2 층간 절연막들(110, 120)을 관통하여 제1 및 제2 소스/드레인 패턴들(SD1, SD2)과 각각 전기적으로 연결되는 활성 콘택들(AC)이 제공될 수 있다. 한 쌍의 활성 콘택들(AC)이, 게이트 전극(GE)의 양 측에 각각 제공될 수 있다. 평면적 관점에서, 활성 콘택(AC)은 제1 방향(D1)으로 연장되는 바 형태를 가질 수 있다.
활성 콘택(AC)은 자기 정렬된 콘택(self-aligned conatact)일 수 있다. 다시 말하면, 활성 콘택(AC)은 게이트 캐핑 패턴(GP) 및 게이트 스페이서(GS)를 이용하여 자기 정렬적으로 형성될 수 있다. 예를 들어, 활성 콘택(AC)은 게이트 스페이서(GS)의 측벽의 적어도 일부를 덮을 수 있다. 도시되진 않았지만, 활성 콘택(AC)은, 게이트 캐핑 패턴(GP)의 상면의 일부를 덮을 수 있다.
활성 콘택(AC)과 제1 소스/드레인 패턴(SD1) 사이, 및 활성 콘택(AC)과 제2 소스/드레인 패턴(SD2) 사이에 실리사이드 패턴들(SC)이 각각 개재될 수 있다. 활성 콘택(AC)은, 실리사이드 패턴(SC)을 통해 소스/드레인 패턴(SD1, SD2)과 전기적으로 연결될 수 있다. 실리사이드 패턴(SC)은 금속-실리사이드(Metal-Silicide)를 포함할 수 있으며, 일 예로 티타늄-실리사이드, 탄탈륨-실리사이드, 텅스텐-실리사이드, 니켈-실리사이드, 및 코발트-실리사이드 중 적어도 하나를 포함할 수 있다.
제2 층간 절연막(120) 및 게이트 캐핑 패턴(GP)을 관통하여 게이트 전극(GE)과 전기적으로 연결되는 게이트 콘택(GC)이 제공될 수 있다. 일 예로, 도 2b를 참조하면, 게이트 콘택(GC)에 인접하는 활성 콘택들(AC) 각각의 상부는, 상부 절연 패턴(UIP)으로 채워질 수 있다. 이로써, 게이트 콘택(GC)이 인접하는 활성 콘택(AC)과 접촉하여 쇼트가 발생하는 공정 결함을 방지할 수 있다.
활성 콘택(AC) 및 게이트 콘택(GC) 각각은, 도전 패턴(FM) 및 도전 패턴(FM)을 감싸는 배리어 패턴(BM)을 포함할 수 있다. 예를 들어, 도전 패턴(FM)은 알루미늄, 구리, 텅스텐, 몰리브데늄 및 코발트 중 적어도 하나의 금속을 포함할 수 있다. 배리어 패턴(BM)은 도전 패턴(FM)의 측벽들 및 바닥면을 덮을 수 있다. 배리어 패턴(BM)은 금속막/금속 질화막을 포함할 수 있다. 상기 금속막은 티타늄, 탄탈륨, 텅스텐, 니켈, 코발트 및 백금 중 적어도 하나를 포함할 수 있다. 상기 금속 질화막은 티타늄 질화막(TiN), 탄탈륨 질화막(TaN), 텅스텐 질화막(WN), 니켈 질화막(NiN), 코발트 질화막(CoN) 및 백금 질화막(PtN) 중 적어도 하나를 포함할 수 있다.
제3 층간 절연막(130) 내에 제1 금속 층(M1)이 제공될 수 있다. 제1 금속 층(M1)은 제1 하부 배선들(M1_R), 제2 하부 배선들(M1_I) 및 하부 비아들(VI1)을 포함할 수 있다. 하부 비아들(VI1)은, 제1 및 제2 하부 배선들(M1_R, M1_I) 아래에 제공될 수 있다.
제1 하부 배선들(M1_R) 각각은 로직 셀(LC)을 가로지르며 제2 방향(D2)으로 연장될 수 있다. 제1 하부 배선들(M1_R) 각각은 파워 배선일 수 있다. 예를 들어, 제1 하부 배선(M1_R)에 드레인 전압(VDD) 또는 소스 전압(VSS)이 인가될 수 있다.
도 1을 참조하면, 로직 셀(LC)에 제2 방향(D2)으로 연장되는 제1 셀 경계(CB1)가 정의될 수 있다. 로직 셀(LC)에 있어서, 제1 셀 경계(CB1)의 반대편에 제2 방향(D2)으로 연장되는 제2 셀 경계(CB2)가 정의될 수 있다. 제1 셀 경계(CB1) 상에 드레인 전압(VDD), 즉 파워 전압이 인가되는 제1 하부 배선(M1_R)이 배치될 수 있다. 드레인 전압(VDD)이 인가되는 제1 하부 배선(M1_R)은, 제1 셀 경계(CB1)를 따라 제2 방향(D2)으로 연장될 수 있다. 제2 셀 경계(CB2) 상에 소스 전압(VSS), 즉 접지 전압이 인가되는 제1 하부 배선(M1_R)이 배치될 수 있다. 소스 전압(VSS)이 인가되는 제1 하부 배선(M1_R)은, 제2 셀 경계(CB2)를 따라 제2 방향(D2)으로 연장될 수 있다.
제2 하부 배선들(M1_I)은, 드레인 전압(VDD)이 인가되는 제1 하부 배선(M1_R)과 소스 전압(VSS)이 인가되는 제1 하부 배선(M1_R) 사이에 제1 방향(D1)을 따라 배치될 수 있다. 제2 하부 배선들(M1_I) 각각은, 제2 방향(D2)으로 연장되는 라인 형태 또는 바 형태를 가질 수 있다. 제2 하부 배선들(M1_I)은, 제2 피치(P2)로 제1 방향(D1)을 따라 배열될 수 있다. 제2 피치(P2)는 제1 피치(P1)보다 작을 수 있다.
하부 비아들(VI1)은 제1 금속 층(M1)의 제1 및 제2 하부 배선들(M1_R, M1_I) 아래에 제공될 수 있다. 하부 비아들(VI1)은, 활성 콘택들(AC)과 제1 및 제2 하부 배선들(M1_R, M1_I) 사이에 각각 개재될 수 있다. 하부 비아들(VI1)은, 게이트 콘택들(GC)과 제2 하부 배선들(M1_I) 사이에 각각 개재될 수 있다.
제1 금속 층(M1)의 하부 배선(M1_R 또는 M1_I)과 그 아래의 하부 비아(VI1)는, 서로 각각 별도의 공정으로 형성될 수 있다. 다시 말하면, 하부 배선(M1_R 또는 M1_I) 및 하부 비아(VI1) 각각은 싱글 다마신 공정으로 형성될 수 있다. 본 실시예에 따른 반도체 소자는, 20 nm 미만의 공정을 이용하여 형성된 것일 수 있다.
제4 층간 절연막(140) 내에 제2 금속 층(M2)이 제공될 수 있다. 제2 금속 층(M2)은 상부 배선들(M2_I)을 포함할 수 있다. 상부 배선들(M2_I) 각각은 제1 방향(D1)으로 연장되는 라인 형태 또는 바 형태를 가질 수 있다. 다시 말하면, 상부 배선들(M2_I)은 제1 방향(D1)으로 서로 평행하게 연장될 수 있다. 평면적 관점에서, 상부 배선들(M2_I)은 게이트 전극들(GE)과 평행할 수 있다. 상부 배선들(M2_I)은 제3 피치(P3)로 제2 방향(D2)을 따라 배열될 수 있다. 제3 피치(P3)는 제1 피치(P1)보다 작을 수 있다. 제3 피치(P3)는 제2 피치(P2)보다 클 수 있다.
제2 금속 층(M2)은, 상부 비아들(VI2)을 더 포함할 수 있다. 상부 비아들(VI2)은 상부 배선들(M2_I) 아래에 제공될 수 있다. 상부 비아들(VI2)은, 하부 배선들(M1_R, M1_I)과 상부 배선들(M2_I) 사이에 각각 개재될 수 있다.
제2 금속 층(M2)의 상부 배선(M2_I)과 그 아래의 상부 비아(VI2)는 서로 동일한 공정으로 일체로 형성될 수 있다. 다시 말하면, 제2 금속 층(M2)의 상부 배선(M2_I) 및 상부 비아(VI2)는 듀얼 다마신 공정으로 함께 형성될 수 있다.
제1 금속 층(M1)의 하부 배선들(M1_R, M1_I)과 제2 금속 층(M2)의 상부 배선들(M2_I)은 서로 동일하거나 다른 도전 물질을 포함할 수 있다. 예를 들어, 하부 배선들(M1_R, M1_I)과 상부 배선들(M2_I)은, 알루미늄, 구리, 텅스텐, 몰리브데늄 및 코발트 중에서 선택된 적어도 하나의 금속 물질을 포함할 수 있다.
본 발명의 일 실시예로, 도시되진 않았지만, 제4 층간 절연막(140) 상에 적층된 금속 층들(예를 들어, M3, M4, M5 등)이 추가로 제공될 수 있다. 상기 적층된 금속 층들 각각은 라우팅 배선들을 포함할 수 있다.
도 3를 참조하여, NMOSFET 영역(NR) 상의 내측 스페이서들(IP)에 대해 보다 상세히 설명한다. 내측 스페이서들(IP)은, 게이트 전극(GE)의 제1 내지 제3 부분들(PO1, PO2, PO3)과 제2 소스/드레인 패턴(SD2) 사이에 각각 개재될 수 있다. 각각의 내측 스페이서들(IP)은, 내측 절연 패턴(ISP) 및 에어갭(AG)을 포함할 수 있다.
게이트 전극(GE)의 제1 내지 제3 부분들(PO1, PO2, PO3) 각각은, 리세스된 측벽(RSW)을 포함할 수 있다. 리세스된 측벽(RSW)은, 제2 소스/드레인 패턴(SD2)으로부터 멀어지는 방향으로 리세스될 수 있다. 내측 절연 패턴(ISP)은 리세스된 측벽(RSW)에 인접하여, 이를 마주볼 수 있다. 내측 절연 패턴(ISP)과 리세스된 측벽(RSW) 사이에 게이트 절연막(GI)이 개재될 수 있다.
내측 절연 패턴(ISP)은 C자 형태를 가질 수 있다. 구체적으로 내측 절연 패턴(ISP)은, 내측 스페이서(IP)의 상부의 제1 수평 연장부(HP1), 내측 스페이서(IP)의 하부의 제2 수평 연장부(HP2), 및 이들을 연결하는 돌출부(PRP)를 포함할 수 있다. 제1 및 제2 수평 연장부들(HP1, HP2) 각각은 제2 방향(D2)으로 연장될 수 있다. 제1 및 제2 수평 연장부들(HP1, HP2) 각각은, 반도체 패턴(SP1, SP2 또는 SP3)과 직접 접촉할 수 있다.
일 예로, 내측 절연 패턴(ISP)의 제1 및 제2 수평 연장부들(HP1, HP2)은 제2 방향(D2)으로 서로 다른 길이를 가질 수 있다. 제2 수평 연장부(HP2)가 제1 수평 연장부(HP1)보다 더 길 수 있다.
돌출부(PRP)는 제3 방향(D3)으로 연장되면서 제1 및 제2 수평 연장부들(HP1, HP2)을 연결할 수 있다. 돌출부(PRP)는 리세스된 측벽(RSW)을 마주볼 수 있다. 돌출부(PRP)는 리세스된 측벽(RSW)에 대응하는 프로파일을 가질 수 있다. 다시 말하면, 돌출부(PRP)는 제2 소스/드레인 패턴(SD2)으로부터 멀어지는 방향으로 돌출될 수 있다. 돌출부(PRP)는 게이트 전극(GE)의 부분(PO1, PO2 또는 PO3)을 향해 돌출될 수 있다.
제2 소스/드레인 패턴(SD2)의 측벽(OSW)은, 제1 측벽(OSW1) 및 제2 측벽(OSW2)을 포함할 수 있다. 제1 측벽(OSW1)은 에어갭(AG)과 접촉할 수 있고, 제2 측벽(OSW2)은 반도체 패턴(SP1, SP2 또는 SP3)과 접촉할 수 있다. 제2 소스/드레인 패턴(SD2)의 바닥면(OBS)은 제2 리세스(RS2)의 바닥, 즉 기판(100)과 접촉할 수 있다.
내측 절연 패턴(ISP)은 저유전율 물질을 포함할 수 있다. 상기 저유전율 물질은, 실리콘 산화물 또는 실리콘 산화물보다 유전상수가 낮은 물질을 포함할 수 있다. 예를 들어 상기 저유전율 물질은, 실리콘 산화물, 불소 또는 탄소가 도핑된 실리콘 산화물, 다공성 실리콘 산화물(porous silicon oxide), 및 유기 폴리머 유전체(organic polymeric dielectric) 중 적어도 하나를 포함할 수 있다.
에어갭(AG)은, 내측 절연 패턴(ISP)과 제2 소스/드레인 패턴(SD2) 사이에 개재될 수 있다. 에어갭(AG)은, 제1 및 제2 수평 연장부들(HP1, HP2), 돌출부(PRP) 및 제1 측벽(OSW1)에 의해 둘러싸일 수 있다. 에어갭(AG)은, 제1 및 제2 수평 연장부들(HP1, HP2), 돌출부(PRP) 및 제1 측벽(OSW1)에 의해 정의되는 빈 공간일 수 있다. 에어갭(AG)은 공기를 포함할 수 있다.
에어갭(AG)은, 기판(100)과 제1 반도체 패턴(SP1) 사이의 제1 에어갭(AG1), 제1 반도체 패턴(SP1)과 제2 반도체 패턴(SP2) 사이의 제2 에어갭(AG2), 및 제2 반도체 패턴(SP2)과 제3 반도체 패턴(SP3) 사이의 제3 에어갭(AG3)을 포함할 수 있다.
본 발명의 일 실시예로, 제1 에어갭(AG1)의 제2 방향(D2)으로의 폭은, 제3 방향(D3)으로 갈수록 변화할 수 있다. 구체적으로, 제1 에어갭(AG1)의 폭은, 제3 방향(D3)으로 갈수록 증가하면서 최대 값에 도달하고, 이후 다시 감소할 수 있다. 제1 에어갭(AG1)은 그의 하부에서 제1 폭(W1), 그의 중간부에서 제2 폭(W2) 및 그의 상부에서 제3 폭(W3)을 가질 수 있다. 제2 폭(W2)은 제1 폭(W1)보다 클 수 있고, 제1 폭(W1)은 제3 폭(W3)보다 클 수 있다. 다시 말하면, 제1 에어갭(AG1)의 폭은 그의 중간부에서 최대폭(W2)을 가질 수 있다.
제2 에어갭(AG2)의 최대폭은 제4 폭(W4)일 수 있고, 제3 에어갭(AG3)의 최대폭은 제5 폭(W5)일 수 있다. 제1 내지 제3 에어갭들(AG1, AG2, AG3)은 서로 다른 최대폭을 가질 수 있다. 예를 들어, 제1 에어갭(AG1)의 최대폭(W2)은 제2 에어갭(AG2)의 최대폭(W4)보다 클 수 있고, 제2 에어갭(AG2)의 최대폭(W4)은 제3 에어갭(AG3)의 최대폭(W5)보다 클 수 있다. 다시 말하면, 제1 내지 제3 에어갭들(AG1, AG2, AG3)의 최대폭들은, 제3 방향(D3)으로 갈수록 감소할 수 있다.
본 실시예에 따르면, 에어갭(AG)의 부피가 내측 스페이서(IP)의 부피보다 클 수 있다. 다시 말하면, 내측 스페이서(IP) 내의 에어갭(AG)의 부피 분율은, 내측 스페이서(IP) 내의 내측 절연 패턴(ISP)의 부피 분율보다 클 수 있다. 이로써 내측 스페이서(IP)의 유전상수는 에어갭(AG)에 의해 주로 결정될 수 있다. 결과적으로, 내측 스페이서(IP)의 유전상수를 공기의 유전상수에 가깝게 낮출 수 있다.
게이트 전극(GE)과 제2 소스/드레인 패턴(SD2) 사이에 개재된 유전체(즉, 내측 스페이서(IP))로 인해, 게이트 전극(GE)과 제2 소스/드레인 패턴(SD2) 사이에 기생 캐패시턴스가 발생할 수 있다. 이러한 기생 캐패시턴스는 반도체 소자의 성능 및 전기적 특성을 저해할 수 있다.
본 발명의 실시예들에 따르면, 내측 스페이서(IP)는 저유전율 물질인 내측 절연 패턴(ISP)과 에어갭(AG)의 조합으로, 매우 낮은 유전상수 값을 가질 수 있다. 내측 스페이서(IP)의 유전상수가 작아지므로, 게이트 전극(GE)과 제2 소스/드레인 패턴(SD2) 사이의 기생 캐패시턴스를 줄일 수 있다. 결과적으로 본 발명에 따른 반도체 소자는, 그의 성능 및 전기적 특성이 향상될 수 있다.
도 4a 내지 도 10d는 본 발명의 실시예들에 따른 반도체 소자의 제조방법을 설명하기 위한 단면도들이다. 구체적으로, 도 4a, 도 5a, 도 6a, 도 7a, 도 8a, 도 9a 및 도 10a는 도 1의 A-A'선에 대응하는 단면도들이다. 도 6b, 도 7b, 도 8b, 도 9b, 및 도 10b는 도 1의 B-B'선에 대응하는 단면도들이다. 도 6c, 도 7c, 도 8c, 도 9c, 및 도 10c는 도 1의 C-C'선에 대응하는 단면도들이다. 도 4b, 도 5b, 도 6d, 도 7d, 도 8d, 도 9d, 및 도 10d는 도 1의 D-D'선에 대응하는 단면도들이다. 도 11 내지 도 19는 본 발명의 실시예들에 따른 내측 스페이서를 형성하는 방법을 설명하기 위한 것으로, 도 6b 및 도 7b의 M 영역을 확대한 단면도들이다.
도 4a 및 도 4b를 참조하면, PMOSFET 영역(PR) 및 NMOSFET 영역(NR)을 포함하는 기판(100)이 제공될 수 있다. 기판(100) 상에 서로 교번적으로 적층된 희생층들(SAL) 및 활성층들(ACL)이 형성될 수 있다. 희생층들(SAL)은 실리콘(Si), 게르마늄(Ge) 및 실리콘-게르마늄(SiGe) 중 하나를 포함할 수 있고, 활성층들(ACL)은 실리콘(Si), 게르마늄(Ge) 및 실리콘-게르마늄(SiGe) 중 다른 하나를 포함할 수 있다.
예를 들어, 희생층들(SAL)은 실리콘-게르마늄(SiGe)을 포함할 수 있고, 활성층들(ACL)은 실리콘(Si)을 포함할 수 있다. 희생층들(SAL) 각각의 게르마늄(Ge)의 농도는 10 at% 내지 30 at%일 수 있다.
기판(100)의 PMOSFET 영역(PR) 및 NMOSFET 영역(NR) 상에 마스크 패턴들이 각각 형성될 수 있다. 상기 마스크 패턴은 제2 방향(D2)으로 연장되는 라인 형태 또는 바(bar) 형태를 가질 수 있다.
상기 마스크 패턴들을 식각 마스크로 제1 패터닝 공정을 수행하여, 제1 활성 패턴(AP1) 및 제2 활성 패턴(AP2)을 정의하는 제1 트렌치(TR1)가 형성될 수 있다. 제1 활성 패턴(AP1) 및 제2 활성 패턴(AP2)은 PMOSFET 영역(PR) 및 NMOSFET 영역(NR) 상에 각각 형성될 수 있다. 제1 활성 패턴(AP1) 및 제2 활성 패턴(AP2) 각각은, 그의 상부에 서로 교번적으로 적층된 희생층들(SAL) 및 활성층들(ACL)을 포함할 수 있다.
기판(100) 상에 제2 패터닝 공정을 수행하여, PMOSFET 영역(PR) 및 NMOSFET 영역(NR)을 정의하는 제2 트렌치(TR2)가 형성될 수 있다. 제2 트렌치(TR2)는 제1 트렌치(TR1)보다 깊게 형성될 수 있다.
기판(100) 상에 제1 및 제2 트렌치들(TR1, TR2)을 채우는 소자 분리막(ST)이 형성될 수 있다. 구체적으로, 기판(100) 상에 제1 및 제2 활성 패턴들(AP1, AP2)을 덮는 절연막이 형성될 수 있다. 희생층들(SAL)이 노출될 때까지 상기 절연막을 리세스하여, 소자 분리막(ST)이 형성될 수 있다.
소자 분리막(ST)은, 실리콘 산화막 같은 절연 물질을 포함할 수 있다. 제1 및 제2 활성 패턴들(AP1, AP2) 각각의 상부는 소자 분리막(ST) 위로 노출될 수 있다. 다시 말하면, 제1 및 제2 활성 패턴들(AP1, AP2) 각각의 상부는 소자 분리막(ST) 위로 수직하게 돌출될 수 있다.
도 5a 및 도 5b를 참조하면, 기판(100) 상에, 제1 및 제2 활성 패턴들(AP1, AP2)을 가로지르는 희생 패턴들(PP)이 형성될 수 있다. 각각의 희생 패턴들(PP)은 제1 방향(D1)으로 연장되는 라인 형태(line shape) 또는 바 형태(bar shape)로 형성될 수 있다. 희생 패턴들(PP)은 소정의 피치로 제2 방향(D2)을 따라 배열될 수 있다.
구체적으로 희생 패턴들(PP)을 형성하는 것은, 기판(100)의 전면 상에 희생막을 형성하는 것, 상기 희생막 상에 하드 마스크 패턴들(MP)을 형성하는 것, 및 하드 마스크 패턴들(MP)을 식각 마스크로 상기 희생막을 패터닝하는 것을 포함할 수 있다. 상기 희생막은 폴리 실리콘을 포함할 수 있다.
희생 패턴들(PP) 각각의 양 측벽들 상에 한 쌍의 게이트 스페이서들(GS)이 형성될 수 있다. 게이트 스페이서들(GS)을 형성하는 것은, 기판(100)의 전면 상에 게이트 스페이서막을 콘포멀하게 형성하는 것, 및 상기 게이트 스페이서막을 이방성 식각하는 것을 포함할 수 있다. 상기 게이트 스페이서막은 SiCN, SiCON 및 SiN 중 적어도 하나를 포함할 수 있다. 다른 예로, 상기 게이트 스페이서막은 SiCN, SiCON 및 SiN 중 적어도 두 개를 포함하는 다중 막(multi-layer)일 수 있다.
도 6a 내지 도 6d를 참조하면, 제1 활성 패턴(AP1)의 상부에 제1 리세스들(RS1)이 형성될 수 있다. 제2 활성 패턴(AP2)의 상부에 제2 리세스들(RS2)이 형성될 수 있다. 제1 및 제2 리세스들(RS1, RS2)을 형성하는 동안, 제1 및 제2 활성 패턴들(AP1, AP2) 각각의 양 측 상의 소자 분리막(ST)이 리세스될 수 있다 (도 6c 참고).
구체적으로, 하드 마스크 패턴들(MA) 및 게이트 스페이서들(GS)을 식각 마스크로 제1 활성 패턴(AP1)의 상부를 식각하여, 제1 리세스들(RS1)이 형성될 수 있다. 제1 리세스(RS1)는, 한 쌍의 희생 패턴들(PP) 사이에 형성될 수 있다. 제2 활성 패턴(AP2)의 상부의 제2 리세스들(RS2)은, 제1 리세스들(RS1)을 형성하는 것과 동일한 방법으로 형성될 수 있다.
도 7a 내지 도 7d를 참조하면, 제1 리세스들(RS1) 내에 제1 소스/드레인 패턴들(SD1)이 각각 형성될 수 있다. 구체적으로, 제1 리세스(RS1)의 내측벽을 시드층(seed layer)으로 하는 제1 SEG 공정을 수행하여, 제1 반도체 층(SEL1)이 형성될 수 있다. 제1 반도체 층(SEL1)은, 제1 리세스(RS1)에 의해 노출된 제1 내지 제3 반도체 패턴들(SP1, SP2, SP3) 및 기판(100)을 시드로 하여 성장될 수 있다. 일 예로, 상기 제1 SEG 공정은 화학 기상 증착(Chemical Vapor Deposition: CVD) 공정 또는 분자 빔 에피택시(Molecular Beam Epitaxy: MBE) 공정을 포함할 수 있다.
제1 반도체 층(SEL1)은 기판(100)의 반도체 원소의 격자 상수보다 큰 격자 상수를 갖는 반도체 원소(예를 들어, SiGe)를 포함할 수 있다. 제1 반도체 층(SEL1)은 상대적으로 저농도의 게르마늄(Ge)을 함유할 수 있다. 본 발명의 다른 실시예로, 제1 반도체 층(SEL1)은 게르마늄(Ge)을 제외한 실리콘(Si)만을 함유할 수도 있다. 제1 반도체 층(SEL1)의 게르마늄(Ge)의 농도는 0 at% 내지 10 at%일 수 있다.
제1 반도체 층(SEL1) 상에 제2 SEG 공정을 수행하여, 제2 반도체 층(SEL2)이 형성될 수 있다. 제2 반도체 층(SEL2)은 제1 리세스(RS1)를 완전히 채우도록 형성될 수 있다. 제2 반도체 층(SEL2)은 상대적으로 고농도의 게르마늄(Ge)을 함유할 수 있다. 일 예로, 제2 반도체 층(SEL2)의 게르마늄(Ge)의 농도는 30 at% 내지 70 at%일 수 있다.
제1 반도체 층(SEL1) 및 제2 반도체 층(SEL2)은 제1 소스/드레인 패턴(SD1)을 구성할 수 있다. 상기 제1 및 제2 SEG 공정 동안, 불순물이 인-시추(in-situ)로 주입될 수 있다. 다른 예로, 제1 소스/드레인 패턴(SD1)이 형성된 후 제1 소스/드레인 패턴(SD1)에 불순물이 주입될 수 있다. 제1 소스/드레인 패턴(SD1)은 제1 도전형(예를 들어, p형)을 갖도록 도핑될 수 있다.
제2 리세스들(RS2) 내에 제2 소스/드레인 패턴들(SD2)이 각각 형성될 수 있다. 구체적으로, 제2 소스/드레인 패턴(SD2)은 제2 리세스(RS2)의 내측벽을 시드층으로 하는 SEG 공정을 수행하여 형성될 수 있다. 일 예로, 제2 소스/드레인 패턴(SD2)은 기판(100)과 동일한 반도체 원소(예를 들어, Si)를 포함할 수 있다. 제2 소스/드레인 패턴(SD2)은 제2 도전형(예를 들어, n형)을 갖도록 도핑될 수 있다. 제2 소스/드레인 패턴(SD2)과 희생층들(SAL) 사이에 내측 스페이서들(IP)이 각각 형성될 수 있다. 내측 스페이서들(IP) 및 제2 소스/드레인 패턴(SD2)을 형성하는 것은, 도 11 내지 도 19를 참조하여 보다 구체적으로 후술한다.
도 8a 내지 도 8d를 참조하면, 제1 및 제2 소스/드레인 패턴들(SD1, SD2), 하드 마스크 패턴들(MP) 및 게이트 스페이서들(GS)을 덮는 제1 층간 절연막(110)이 형성될 수 있다. 일 예로, 제1 층간 절연막(110)은 실리콘 산화막을 포함할 수 있다.
희생 패턴들(PP)의 상면들이 노출될 때까지 제1 층간 절연막(110)이 평탄화될 수 있다. 제1 층간 절연막(110)의 평탄화는 에치백(Etch Back) 또는 CMP(Chemical Mechanical Polishing) 공정을 이용하여 수행될 수 있다. 상기 평탄화 공정 동안, 하드 마스크 패턴들(MP)은 모두 제거될 수 있다. 결과적으로, 제1 층간 절연막(110)의 상면은 희생 패턴들(PP)의 상면들 및 게이트 스페이서들(GS)의 상면들과 공면을 이룰 수 있다.
노출된 희생 패턴들(PP)이 선택적으로 제거될 수 있다. 제1 희생 패턴(PP1)이 제거됨으로써, 제1 및 제2 활성 패턴들(AP1, AP2)을 노출하는 제1 빈 공간들(ET1)이 형성될 수 있다 (도 8d 참조).
한편, 희생 패턴들(PP) 중 일부는 제거되지 않을 수 있다. 예를 들어, 셀 경계에 위치하는 희생 패턴(PP)은 제거되지 않을 수 있다. 구체적으로, 제거되지 말아야 할 희생 패턴들(PP) 상에 마스크막을 형성함으로써, 이들이 제거되지 않고 잔류할 수 있다. 희생 패턴(PP)이 제거됨으로써, 제1 빈 공간(ET1)을 통해 제1 및 제2 활성 패턴들(AP1, AP2)이 노출될 수 있다. 제1 빈 공간(ET1)을 통해, 제1 및 제2 활성 패턴들(AP1, AP2) 각각의 희생층들(SAL)이 노출될 수 있다.
도 9a 내지 도 9d를 참조하면, 제1 빈 공간(ET1)을 통해 노출된 희생층들(SAL)이 선택적으로 제거될 수 있다. 구체적으로, 희생층들(SAL)을 선택적으로 식각하는 식각 공정을 수행하여, 제1 내지 제3 반도체 패턴들(SP1, SP2, SP3)은 그대로 잔류시킨 채 희생층들(SAL)만을 제거할 수 있다.
상기 식각 공정은, 상대적으로 높은 게르마늄 농도를 갖는 실리콘-게르마늄에 대해 높은 식각률을 가질 수 있다. 예를 들어, 상기 식각 공정은 게르마늄 농도가 10 at%보다 큰 실리콘-게르마늄에 대해 높은 식각률을 가질 수 있다.
상기 식각 공정 동안 PMOSFET 영역(PR) 및 NMOSFET 영역(NR) 상의 희생층들(SAL)이 제거될 수 있다. 상기 식각 공정은 습식 식각일 수 있다. 상기 식각 공정에 사용되는 식각 물질(ETC)은 상대적으로 높은 게르마늄 농도를 갖는 희생층(SAL)을 빠르게 제거할 수 있다. 한편, PMOSFET 영역(PR)의 제1 소스/드레인 패턴(SD1)은, 상대적으로 낮은 게르마늄의 농도를 갖는 제1 반도체 층(SEL1)으로 인해 상기 식각 공정 동안 보호될 수 있다.
도 9d를 다시 참조하면, 희생층들(SAL)이 선택적으로 제거됨으로써, 각각의 제1 및 제2 활성 패턴들(AP1, AP2) 상에는 제1 내지 제3 반도체 패턴들(SP1, SP2, SP3)만이 잔류할 수 있다. 희생층들(SAL)이 제거된 영역들을 통해 제2 빈 공간들(ET2)이 형성될 수 있다. 제2 빈 공간들(ET2)은 제1 내지 제3 반도체 패턴들(SP1, SP2, SP3) 사이에 정의될 수 있다.
도 10a 내지 도 10d를 참조하면, 제1 및 제2 빈 공간들(ET1, ET2) 내에 게이트 절연막(GI)이 콘포멀하게 형성될 수 있다. 게이트 절연막(GI) 상에 게이트 전극(GE)이 형성될 수 있다. 게이트 전극(GE)은 제1 및 제2 빈 공간들(ET1, ET2)을 채우도록 형성될 수 있다. 구체적으로, 게이트 전극(GE)은, 제2 빈 공간들(ET2)을 채우는 제1 내지 제3 부분들(PO1, PO2, PO3)을 포함할 수 있다. 게이트 전극(GE)은, 제1 빈 공간(ET1)을 채우는 제4 부분(PO4)을 더 포함할 수 있다. 게이트 전극(GE) 상에 게이트 캐핑 패턴(GP)이 형성될 수 있다.
도 1 및 도 2a 내지 도 2d를 다시 참조하면, 제1 층간 절연막(110) 상에 제2 층간 절연막(120)이 형성될 수 있다. 제2 층간 절연막(120)은 실리콘 산화막을 포함할 수 있다. 제2 층간 절연막(120) 및 제1 층간 절연막(110)을 관통하여 제1 및 제2 소스/드레인 패턴들(SD1, SD2)과 전기적으로 연결되는 활성 콘택들(AC)이 형성될 수 있다. 제2 층간 절연막(120) 및 게이트 캐핑 패턴(GP)을 관통하여 게이트 전극(GE)과 전기적으로 연결되는 게이트 콘택(GC)이 형성될 수 있다.
로직 셀(LC)의 양 측에 한 쌍의 분리 구조체들(DB)이 형성될 수 있다. 분리 구조체(DB)는, 제2 층간 절연막(120), 잔류하는 희생 패턴(PP), 및 희생 패턴(PP) 아래의 활성 패턴(AP1 또는 AP2)의 상부를 관통할 수 있다. 분리 구조체(DB)는 실리콘 산화막 또는 실리콘 질화막과 같은 절연 물질을 포함할 수 있다.
활성 콘택들(AC) 게이트 콘택들(GC) 상에 제3 층간 절연막(130)이 형성될 수 있다. 제3 층간 절연막(130) 내에 제1 금속 층(M1)이 형성될 수 있다. 제3 층간 절연막(130) 상에 제4 층간 절연막(140)이 형성될 수 있다. 제4 층간 절연막(140) 내에 제2 금속 층(M2)이 형성될 수 있다.
도 11 내지 도 19를 참조하여, 내측 스페이서들(IP) 및 제2 소스/드레인 패턴(SD2)을 형성하는 것에 대해 보다 자세히 설명한다. 도 11을 참조하면, 한 쌍의 희생 패턴들(PP) 사이에 제2 리세스(RS2)가 형성될 수 있다. 제2 리세스(RS2)의 제2 방향(D2)으로의 폭은, 제3 방향(D3)으로 갈수록 증가하는 프로파일을 가질 수 있다. 제2 리세스(RS2)를 통해 제1 내지 제3 반도체 패턴들(SP1, SP2, SP3) 및 기판(100)이 노출될 수 있다. 제2 리세스(RS2)를 통해 희생층들(SAL)이 노출될 수 있다.
도 12를 참조하면, 노출된 희생층들(SAL)을 선택적으로 식각하는 등방성 식각 공정이 수행될 수 있다. 구체적으로, 제2 리세스(RS2)를 통해 습식 식각 공정을 수행하여, 노출된 희생층들(SAL)을 리세스할 수 있다. 희생층들(SAL)이 리세스됨으로써, 제3 리세스들(RS3)이 형성될 수 있다. 제3 리세스들(RS3) 각각은, 제2 리세스(RS2)로부터 그와 멀어지는 방향으로 수평적으로 리세스된 영역일 수 있다. 일 예로, 제3 리세스(RS3)에 의해, 적어도 하나의 희생층들(SAL)에 리세스된 측벽(RSW)이 형성될 수 있다.
도 13을 참조하면, 제2 및 제3 리세스들(RS2, RS3) 내에 내측 절연막(ISL)이 콘포멀하게 형성될 수 있다. 내측 절연막(ISL)은 제3 리세스(RS3)를 완전히 채우지 않도록 형성될 수 있다. 다시 말하면, 내측 절연막(ISL)의 두께(T1)는, 제3 리세스(RS3)의 제3 방향(D3)으로의 높이(H1)의 절반보다 작을 수 있다 (즉, T1 < H1/2). 예를 들어, 내측 절연막(ISL)은 실리콘 산화물 또는 실리콘 산화물보다 유전상수가 낮은 저유전율 물질을 포함할 수 있다.
도 14를 참조하면, 내측 절연막(ISL) 상에 제3 리세스들(RS3)을 완전히 채우는 보호막(PTL)이 형성될 수 있다. 보호막(PTL)은 내측 절연막(ISL)과 식각 선택성이 있는 물질을 포함할 수 있다. 예를 들어, 보호막(PTL)은 알루미늄 산화물 또는 실리콘 산화물을 포함할 수 있다.
도 15를 참조하면, 보호막(PTL)을 선택적으로 식각하는 등방성 식각 공정이 수행될 수 있다. 상기 식각 공정은, 제1 내지 제3 반도체 패턴들(SP1, SP2, SP3) 상의 내측 절연막(ISL)이 노출될 때까지 수행될 수 있다. 다시 말하면, 제1 내지 제3 반도체 패턴들(SP1, SP2, SP3)의 측벽들을 덮는 내측 절연막(ISL)의 일부가 보호막(PTL)으로부터 노출될 수 있다.
도 16을 참조하면, 보호막(PTL)에 의해 노출된 내측 절연막(ISL)의 일부가 선택적으로 식각될 수 있다. 내측 절연막(ISL)의 노출된 부분이 제거됨으로써, 제3 리세스들(RS3) 내에 내측 절연 패턴들(ISP)이 각각 형성될 수 있다. 내측 절연막(ISL)의 노출된 부분이 제거됨으로써, 제1 내지 제3 반도체 패턴들(SP1, SP2, SP3) 및 기판(100)이 제2 리세스(RS2)에 의해 다시 노출될 수 있다.
도 17을 참조하면, 잔류하는 보호막(PTL)을 완전히 제거할 수 있다. 보호막(PTL)을 제거하는 것은, 앞서 설명한 보호막(PTL)을 선택적으로 식각하는 식각 공정을 다시 수행하는 것을 포함할 수 있다. 보호막(PTL)이 완전히 제거되어, 제3 리세스(RS3) 내에는 내측 절연 패턴(ISP)만 잔류할 수 있다. 내측 절연 패턴(ISP)을 제외한 제3 리세스(RS3)의 나머지 공간은 빈 공간으로 잔류할 수 있다.
도 18을 참조하면, 제2 리세스(RS2)에 의해 노출된 제1 내지 제3 반도체 패턴들(SP1, SP2, SP3) 및 기판(100)을 시드층으로 하는 SEG 공정을 수행하여, 에피층(EPL)이 성장될 수 있다. 에피층(EPL)은 내측 절연 패턴(ISP) 상에서는 성장되지 않을 수 있다.
에피층(EPL)은 특정한 방향성을 갖고 성장할 수 있다. 에피층(EPL)은 제2 리세스(RS2)의 중심을 향하는 방향으로 우선적으로 성장할 수 있다. 다시 말하면, 에피층(EPL)의 성장 속도는, 제2 리세스(RS2)의 중심을 향하는 방향에서 가장 빠를 수 있다. 내측 절연 패턴(ISP)에 의해 제3 리세스(RS3) 내부에서의 에피층(EPL)의 성장은 방지될 수 있다. 따라서, 에피층(EPL)은 제2 리세스(RS2)를 우선적으로 채우도록 성장될 뿐, 제3 리세스(RS3)를 채우지는 못할 수 있다.
도 19를 참조하면, 에피층(EPL)이 제2 리세스(RS2)를 채움으로써 제2 소스/드레인 패턴(SD2)이 형성될 수 있다. 구체적으로, 제1 내지 제3 반도체 패턴들(SP1, SP2, SP3) 및 기판(100) 상에서 각각 성장된 에피층들(EPL)이 서로 병합되어 하나의 제2 소스/드레인 패턴(SD2)을 구성할 수 있다.
에피층(EPL)의 성장 방향성으로 인해, 제2 소스/드레인 패턴(SD2)은 제2 리세스(RS2)를 채우더라도 제3 리세스(RS3)를 채우지는 못할 수 있다. 이로써, 제2 소스/드레인 패턴(SD2)에 의해 채워지지 않은 제3 리세스(RS3)의 남은 공간이 에어갭(AG)으로 정의될 수 있다. 내측 스페이서(IP)는 저유전율 물질로 이루어진 내측 절연 패턴(ISP)과 에어갭(AG)을 포함하므로, 내측 스페이서(IP)는 공기에 가까운 유전 상수를 갖도록 형성될 수 있다.
제3 리세스(RS3) 내의 내측 절연 패턴(ISP)과 에어갭(AG)은 내측 스페이서(IP)를 구성할 수 있다. 내측 스페이서(IP)에 의해 희생층(SAL)은 제2 소스/드레인 패턴(SD2)으로부터 이격될 수 있다.
도 20 내지 도 22 각각은 본 발명의 다른 실시예들에 따른 반도체 소자를 설명하기 위한 것으로, 도 2b의 M 영역을 확대한 단면도이다. 본 실시예에서는, 앞서 도 1, 도 2a 내지 도 2d 및 도 3을 참조하여 설명한 것과 중복되는 기술적 특징에 대한 상세한 설명은 생략하고, 차이점에 대해 상세히 설명한다.
도 20을 참조하면, 에어갭(AG)은 갭 영역(AGR) 및 갭 영역(AGR)으로부터 제2 소스/드레인 패턴(SD2)을 향해 연장되는 돌출 영역(AGP)을 포함할 수 있다. 갭 영역(AGR)은 내측 절연 패턴(ISP)에 의해 둘러싸일 수 있다. 돌출 영역(AGP)은 제2 소스/드레인 패턴(SD2)에 의해 둘러싸일 수 있다.
구체적으로, 제2 에어갭(AG2)을 예시적으로 살펴본다. 제2 에어갭(AG2)의 갭 영역(AGR)은 제3 방향(D3)으로 제2 높이(H2)을 가질 수 있다. 제2 에어갭(AG2)의 돌출 영역(AGP)은 제3 방향(D3)으로 제3 높이(H3)을 가질 수 있다. 제3 높이(H3)는 갭 영역(AGR)으로부터 멀어질수록 감소할 수 있다. 제3 높이(H3)의 최대값은 제2 높이(H2)보다 클 수 있다. 따라서, 제2 에어갭(AG2)은 화살 모양을 가질 수 있다. 제2 소스/드레인 패턴(SD2)의 제1 측벽(OSW1)은, 돌출 영역(AGP)의 모양에 대응하여 움푹 파인 프로파일을 가질 수 있다.
도 21을 참조하면, 에어갭(AG)은 갭 영역(AGR) 및 돌출 영역(AGP)을 포함할 수 있다. 구체적으로, 제2 에어갭(AG2)을 예시적으로 살펴본다. 제2 에어갭(AG2)의 갭 영역(AGR)은 제2 높이(H2)을 가질 수 있다. 제2 에어갭(AG2)의 돌출 영역(AGP)은 제4 높이(H4)을 가질 수 있다. 제4 높이(H4)은 갭 영역(AGR)으로부터 멀어질수록 감소할 수 있다. 단, 앞서 설명한 도 20과 달리, 제4 높이(H4)의 최대값은 제2 높이(H2)와 같거나 작을 수 있다. 따라서, 제2 에어갭(AG2)은 오각형(pentagon) 모양을 가질 수 있다.
도 22를 참조하면, 제2 소스/드레인 패턴(SD2)은 에어갭(AG) 내부로 연장되는 돌출 패턴(SDP)을 포함할 수 있다. 돌출 패턴(SDP)은 에어갭(AG) 내부로 연장되지만, 에어갭(AG) 내부를 완전히 채우지 않을 수 있다.
구체적으로, 제2 에어갭(AG2)을 예시적으로 살펴본다. 제2 에어갭(AG2)은 제2 높이(H2)을 가질 수 있다. 돌출 패턴(SDP)은 제3 방향(D3)으로 제5 높이(H5)을 가질 수 있다. 제5 높이(H5)은 제2 소스/드레인 패턴(SD2)으로부터 멀어질수록 감소할 수 있다. 제5 높이(H5)의 최대값은 제2 높이(H2)과 같거나 작을 수 있다. 제2 에어갭(AG2)은 왕관(crown) 모양을 가질 수 있다.
앞서 도 3에서 설명한 것과 달리, 제1 에어갭(AG1)의 폭은, 제3 방향(D3)으로 갈수록 감소하다가 최소 값에 도달하고, 이후 다시 증가할 수 있다. 구체적으로, 제1 에어갭(AG1)의 제2 폭(W2)은 제1 폭(W1)보다 작을 수 있다. 제1 에어갭(AG1)의 제2 폭(W2)은 제3 폭(W3)보다 작을 수 있다.
앞서 도 3 및 도 20 내지 도 22를 참조하여 살펴본 바와 같이, 본 발명의 실시예들에 따른 에어갭(AG)은 다양한 모양을 가질 수 있다. 에어갭(AG)의 모양은 내측 절연 패턴(ISP)의 두께 및 앞서 도 18을 참조하여 설명한 SEG의 공정 조건에 따라 변화될 수 있다. 구체적으로, 에피 성장 공정 조건에 따라 도 18의 에피층(EPL)의 성장 방향성이 달라질 수 있고, 이에 따라 에어갭(AG)의 모양이 다양하게 변화될 수 있다.
도 23은 본 발명의 다른 실시예에 따른 반도체 소자를 설명하기 위한 것으로, 도 1의 A-A'선에 따른 단면도이다. 본 실시예에서는, 앞서 도 1, 도 2a 내지 도 2d 및 도 3을 참조하여 설명한 것과 중복되는 기술적 특징에 대한 상세한 설명은 생략하고, 차이점에 대해 상세히 설명한다.
도 23을 참조하면, PMOSFET 영역(PR) 상에도 NMOSFET 영역(NR)과 마찬가지로 내측 스페이서들(IP)이 제공될 수 있다. 즉, 내측 스페이서들(IP)이 게이트 전극(GE)의 제1 내지 제3 부분들(PO1, PO2, PO3)과 제1 소스/드레인 패턴(SD1) 사이에 각각 개재될 수 있다. PMOSFET 영역(PR) 상의 내측 스페이서들(IP) 각각은 NMOSFET 영역(NR)과 마찬가지로 내측 절연 패턴(ISP) 및 에어갭(AG)을 포함할 수 있다.
PMOSFET 영역(PR) 상의 내측 스페이서들(IP)은 게이트 전극(GE)과 제1 소스/드레인 패턴(SD1) 사이의 기생 캐패시턴스를 줄일 수 있다. 따라서, NMOSFET 뿐만 아니라 PMOSFET에 있어서도 소자의 성능 및 전기적 특성을 향상시킬 수 있다.
한편 SEG 공정을 이용해 SiGe를 성장시킬 경우, SiGe는 실리콘 질화막 또는 실리콘 산화막과 같은 절연막 상에서 결함이 쉽게 생성되는 문제가 있다. 제1 소스/드레인 패턴(SD1)은 SEG 공정으로 SiGe를 성장시켜 형성되는데, 만약 내측 스페이서(IP)가 상기 절연막만으로 구성될 경우 제1 소스/드레인 패턴(SD1) 내에 결함이 생성될 수 있다. 그러나 본 발명의 실시예에 따른 내측 스페이서(IP)는 주로 에어갭(AG)으로 이루어지므로, SiGe의 성장 시 결함이 생성되는 문제를 방지할 수 있다. 따라서, 본 발명은 제1 소스/드레인 패턴(SD1) 내의 결함을 방지함으로써 소자 성능 저하를 방지할 수 있다.
이상, 첨부된 도면들을 참조하여 본 발명의 실시 예들을 설명하였지만, 본 발명은 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수도 있다. 그러므로 이상에서 기술한 실시 예들에는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.

Claims (10)

  1. 기판 상의 활성 패턴;
    상기 활성 패턴 상의 소스/드레인 패턴;
    상기 소스/드레인 패턴에 연결된 채널 패턴, 상기 채널 패턴은 서로 이격되어 적층된 반도체 패턴들을 포함하고;
    상기 채널 패턴을 가로지르며 연장되는 게이트 전극; 및
    상기 게이트 전극과 상기 소스/드레인 패턴 사이에 개재된 내측 스페이서들을 포함하되,
    상기 반도체 패턴들은, 그의 최하부의 제1 반도체 패턴 및 상기 제1 반도체 패턴 상의 제2 반도체 패턴을 포함하고,
    상기 게이트 전극은, 상기 기판과 상기 제1 반도체 패턴 사이의 제1 부분 및 상기 제1 반도체 패턴과 상기 제2 반도체 패턴 사이의 제2 부분을 포함하며,
    상기 내측 스페이서들은, 상기 게이트 전극의 상기 제1 부분과 상기 소스/드레인 패턴 사이의 제1 에어갭 및 상기 게이트 전극의 상기 제2 부분과 상기 소스/드레인 패턴 사이의 제2 에어갭을 포함하고,
    상기 제1 에어갭의 최대폭은 상기 제2 에어갭의 최대폭보다 큰 반도체 소자.
  2. 제1항에 있어서,
    상기 내측 스페이서들은, 상기 제1 부분과 상기 제1 에어갭 사이의 제1 내측 절연 패턴 및 상기 제2 부분과 상기 제2 에어갭 사이의 제2 내측 절연 패턴을 더 포함하는 반도체 소자.
  3. 제2항에 있어서,
    상기 제1 및 제2 내측 절연 패턴들 각각은 실리콘 산화물 또는 실리콘 산화물보다 유전상수가 낮은 물질을 포함하는 반도체 소자.
  4. 제2항에 있어서,
    상기 제1 에어갭의 부피는 상기 제1 내측 절연 패턴의 부피보다 큰 반도체 소자.
  5. 제2항에 있어서,
    상기 제1 에어갭의 폭은, 상기 기판의 상면에 수직한 방향으로 갈수록 증가하다가 상기 최대폭에 도달하고, 이후 다시 감소하는 반도체 소자.
  6. 제2항에 있어서,
    상기 제1 에어갭의 폭은, 상기 기판의 상면에 수직한 방향으로 갈수록 감소하다가 최소값에 도달하고, 이후 다시 증가하는 반도체 소자.
  7. 제2항에 있어서,
    상기 게이트 전극의 상기 제1 부분은 리세스된 측벽을 갖고,
    상기 제1 내측 절연 패턴은, 그의 상부의 제1 수평 연장부, 그의 하부의 제2 수평 연장부, 및 상기 제1 및 제2 수평 연장부들을 연결하는 돌출부를 포함하고,
    상기 돌출부는 상기 리세스된 측벽을 마주보며 상기 리세스된 측벽에 대응하는 프로파일을 갖는 반도체 소자.
  8. 제1항에 있어서,
    상기 반도체 패턴들은, 상기 제2 반도체 패턴 상의 제3 반도체 패턴을 더 포함하고,
    상기 게이트 전극은, 상기 제2 반도체 패턴과 상기 제3 반도체 패턴 사이의 제3 부분을 더 포함하며,
    상기 내측 스페이서들은, 상기 게이트 전극의 상기 제3 부분과 상기 소스/드레인 패턴 사이의 제3 에어갭을 더 포함하고,
    상기 제2 에어갭의 최대폭은 상기 제3 에어갭의 최대폭보다 큰 반도체 소자.
  9. 제1항에 있어서,
    상기 제2 에어갭은, 갭 영역 및 상기 갭 영역으로부터 상기 소스/드레인 패턴을 향해 연장되는 돌출 영역을 포함하고,
    상기 돌출 영역의 높이는, 상기 갭 영역으로부터 멀어질수록 감소하는 반도체 소자.
  10. 제1항에 있어서,
    상기 소스/드레인 패턴의 바닥면은 상기 기판과 접촉하며,
    상기 소스/드레인 패턴은 n형의 도전형을 갖는 반도체 소자.
KR1020200112608A 2020-09-03 2020-09-03 반도체 소자 KR20220031799A (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020200112608A KR20220031799A (ko) 2020-09-03 2020-09-03 반도체 소자
US17/242,823 US11605711B2 (en) 2020-09-03 2021-04-28 Semiconductor device having an air gap between gate electrode and source/drain pattern
CN202110691699.0A CN114141769A (zh) 2020-09-03 2021-06-22 半导体器件
US18/182,893 US20230223438A1 (en) 2020-09-03 2023-03-13 Semiconductor device having air gap between gate electrode and source/drain pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200112608A KR20220031799A (ko) 2020-09-03 2020-09-03 반도체 소자

Publications (1)

Publication Number Publication Date
KR20220031799A true KR20220031799A (ko) 2022-03-14

Family

ID=80358893

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200112608A KR20220031799A (ko) 2020-09-03 2020-09-03 반도체 소자

Country Status (3)

Country Link
US (2) US11605711B2 (ko)
KR (1) KR20220031799A (ko)
CN (1) CN114141769A (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220085138A (ko) * 2020-12-15 2022-06-22 삼성전자주식회사 반도체 장치, 반도체 장치의 레이아웃 디자인 방법 및 반도체 장치의 제조 방법
US11908921B2 (en) * 2021-08-26 2024-02-20 Taiwan Semiconductor Manufacturing Co., Ltd. Transistor isolation structures
KR20230146316A (ko) * 2022-04-12 2023-10-19 삼성전자주식회사 반도체 소자 및 그의 제조 방법
CN117497598A (zh) * 2023-12-08 2024-02-02 芯联集成电路制造股份有限公司 一种碳化硅平面mos器件及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102315275B1 (ko) 2015-10-15 2021-10-20 삼성전자 주식회사 집적회로 소자 및 그 제조 방법
KR102527382B1 (ko) 2016-06-21 2023-04-28 삼성전자주식회사 반도체 소자
EP3369702A1 (en) 2017-03-03 2018-09-05 IMEC vzw Internal spacers for nanowire semiconductor devices
US10269983B2 (en) 2017-05-09 2019-04-23 Globalfoundries Inc. Stacked nanosheet field-effect transistor with air gap spacers
US9954058B1 (en) * 2017-06-12 2018-04-24 International Business Machines Corporation Self-aligned air gap spacer for nanosheet CMOS devices
DE102017124637A1 (de) 2017-08-30 2019-02-28 Taiwan Semiconductor Manufacturing Co., Ltd. Herstellungsverfahren für ein Halbleiter-Bauelement und ein Halbleiter-Bauelement
US10170322B1 (en) * 2017-11-16 2019-01-01 Taiwan Semiconductor Manufacturing Co., Ltd. Atomic layer deposition based process for contact barrier layer
KR102399071B1 (ko) * 2017-11-17 2022-05-17 삼성전자주식회사 반도체 장치
US10553696B2 (en) 2017-11-21 2020-02-04 International Business Machines Corporation Full air-gap spacers for gate-all-around nanosheet field effect transistors
US10566438B2 (en) 2018-04-02 2020-02-18 International Business Machines Corporation Nanosheet transistor with dual inner airgap spacers
US11271113B2 (en) * 2020-06-12 2022-03-08 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device structure and method for forming the same

Also Published As

Publication number Publication date
US20220069078A1 (en) 2022-03-03
CN114141769A (zh) 2022-03-04
US20230223438A1 (en) 2023-07-13
US11605711B2 (en) 2023-03-14

Similar Documents

Publication Publication Date Title
KR20220031799A (ko) 반도체 소자
KR20220077273A (ko) 반도체 소자
TW202249183A (zh) 半導體裝置
CN114664813A (zh) 半导体装置
US20230079697A1 (en) Semiconductor device
KR20220072119A (ko) 반도체 소자
TW202145349A (zh) 半導體元件
US20230059169A1 (en) Semiconductor device including a field effect transistor and method for manufacturing the same
US20240162311A1 (en) Semiconductor device and method of manufacturing the same
US20230420552A1 (en) Semiconductor device and method of fabricating the same
KR20220115245A (ko) 반도체 소자 및 그의 제조 방법
KR20230127800A (ko) 반도체 소자
KR20220091655A (ko) 반도체 소자 및 그의 제조 방법
KR20230033120A (ko) 반도체 소자
KR20230051370A (ko) 반도체 소자
KR20230048184A (ko) 반도체 소자
KR20230000485A (ko) 반도체 소자 및 그의 제조 방법
KR20230115804A (ko) 반도체 소자
KR20230161174A (ko) 반도체 소자
KR20240070179A (ko) 반도체 소자 및 그의 제조 방법
KR20230041126A (ko) 반도체 소자 및 이의 제조 방법
KR20220167805A (ko) 반도체 소자
KR20220056904A (ko) 반도체 소자의 제조방법
KR20230033029A (ko) 반도체 소자 및 그의 제조 방법
KR20240032544A (ko) 반도체 소자 및 그의 제조 방법