KR20210012837A - 화합물, 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치 - Google Patents

화합물, 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치 Download PDF

Info

Publication number
KR20210012837A
KR20210012837A KR1020190091284A KR20190091284A KR20210012837A KR 20210012837 A KR20210012837 A KR 20210012837A KR 1020190091284 A KR1020190091284 A KR 1020190091284A KR 20190091284 A KR20190091284 A KR 20190091284A KR 20210012837 A KR20210012837 A KR 20210012837A
Authority
KR
South Korea
Prior art keywords
group
substituted
unsubstituted
cyano
formula
Prior art date
Application number
KR1020190091284A
Other languages
English (en)
Inventor
신지수
백철
윤성영
최태진
박경배
이계황
최용석
허철준
홍혜림
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020190091284A priority Critical patent/KR20210012837A/ko
Priority to EP20187701.6A priority patent/EP3770163B1/en
Priority to US16/938,031 priority patent/US11713326B2/en
Publication of KR20210012837A publication Critical patent/KR20210012837A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D517/00Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • C07D517/02Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms in which the condensed system contains two hetero rings
    • C07D517/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D517/00Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • C07D517/12Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms in which the condensed system contains three hetero rings
    • C07D517/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0816Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring comprising Si as a ring atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L51/0071
    • H01L51/0094
    • H01L51/42
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

하기 화학식 1의 화합물 및 이를 포함하는 광전 소자, 이미지 센서 및 전자장치를 제공한다:
[화학식 1]
Figure pat00068

상기 화학식 1에서, 각 치환기의 정의는 명세서에 기재된 바와 같다.

Description

화합물, 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치{COMPOUND AND PHOTOELECTRIC DEVICE, IMAGE SENSOR AND ELECTRONIC DEVICE INCLUDING THE SAME}
화합물 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치에 관한 것이다.
광전 소자는 광전 효과를 이용하여 빛을 전기 신호로 변환시키는 소자로, 광 다이오드 및 광 트랜지스터 등을 포함하며, 이미지 센서 등에 적용될 수 있다.
광 다이오드를 포함하는 이미지 센서는 날이 갈수록 해상도가 높아지고 있으며, 이에 따라 화소 크기가 작아지고 있다. 현재 주로 사용하는 실리콘 광 다이오드의 경우 화소의 크기가 작아지면서 흡수 면적이 줄어들기 때문에 감도 저하가 발생할 수 있다. 이에 따라 실리콘을 대체할 수 있는 유기 물질이 연구되고 있다.
유기 물질은 흡광 계수가 크고 분자 구조에 따라 특정 파장 영역의 빛을 선택적으로 흡수할 수 있으므로, 광 다이오드와 색 필터를 동시에 대체할 수 있어서 감도 개선 및 고집적에 매우 유리하다.
일 구현예는 녹색 파장 영역의 빛을 선택적으로 흡수할 수 있고 열적 안정성이 우수한 화합물을 제공한다.
다른 구현예는 녹색 파장 영역의 빛을 선택적으로 흡수하고 고온 조건의 공정에서도 효율을 우수하게 유지할 수 있는 광전 소자를 제공한다.
다른 구현예는 상기 광전 소자를 포함하는 이미지 센서를 제공한다.
또 다른 구현예는 상기 이미지 센서를 포함하는 전자 장치를 제공한다.
일 구현예에 따르면, 하기 화학식 1로 표현되는 화합물을 제공한다.
[화학식 1]
Figure pat00001
상기 화학식 1에서,
Ar1은 치환 또는 비치환된 C6 내지 C30 아렌기 및 치환 또는 비치환된 C3 내지 C30 헤테로아렌기에서 선택되고,
Ar2은 C=O, C=S, C=Se 및 C=Te에서 선택되는 적어도 하나의 작용기를 가지는 치환 또는 비치환된 C6 내지 C30 탄화수소 고리기, C=O, C=S, C=Se 및 C=Te에서 선택되는 적어도 하나의 작용기를 가지는 치환 또는 비치환된 C6 내지 C30 헤테로고리기 또는 이들의 융합고리이고,
X는 O, Se, Te, SiRaRb 및 GeRcRd에서 선택되고(여기에서 Ra, Rb, Rc 및 Rd 는 각각 독립적으로 수소, 중수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택되고, 이들은 독립적으로 존재하거나 Ra 및 Rb 또는 Rc 및 Rd가 서로 연결되어 스피로 구조를 형성함),
R1 내지 R3는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 아실기, 할로겐, 시아노기(-CN), 시아노 함유기, 니트로기, -SiRaRbRc (여기에서 Ra, Rb 및 Rc는 각각 독립적으로 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨) 및 이들의 조합에서 선택된다.
상기 화학식 1에서, R1은 치환 또는 비치환된 C1 내지 C30 알킬기 또는 치환 또는 비치환된 C6 내지 C30 아릴기일 수 있다.
상기 화학식 1에서, Ar1은 치환 또는 비치환된 벤젠, 치환 또는 비치환된 나프탈렌, 치환 또는 비치환된 인덴(indene), 치환 또는 비치환된 안트라센(anthracene), 치환 또는 비치환된 페난트렌(phenanthrene), 치환 또는 비치환된 플루오렌(fluorene) 또는 치환 또는 비치환된 아세나프틸렌(acenaphthylnee)일 수 있다.
상기 화학식 1에서, Ar1은 치환 또는 비치환된 피리딘, 치환 또는 비치환된 피리미딘, 치환 또는 비치환된 피라진, 치환 또는 비치환된 인돌, 치환 또는 비치환된 퀴놀린, 치환 또는 비치환된 이소퀴놀린, 치환 또는 비치환된 퀴녹살린, 치환 또는 비치환된 퀴나졸린, 치환 또는 비치환된 카바졸, 치환 또는 비치환된 페나진, 또는 치환 또는 비치환된 페난트롤린일 수 있다.
상기 화학식 1에서, X는 Se 및 Te중 하나일 수 있다.
상기 화학식 1에서, Ar2은 하기 화학식 3으로 표현되는 고리기일 수 있다.
[화학식 3]
Figure pat00002
상기 화학식 3에서,
Ar'은 치환 또는 비치환된 C6 내지 C30 아릴기 및 치환 또는 비치환된 C3 내지 C30 헤테로아릴기에서 선택되고,
Z1은 O, S, Se 및 Te에서 선택되고,
Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이다.
상기 화학식 1에서, Ar2은 하기 화학식 4A 내지 화학식 4F중 어느 하나로 표현되는 고리기일 수 있다.
[화학식 4A]
Figure pat00003
상기 화학식 4A에서,
Z1은 O, S, Se 및 Te에서 선택되고,
Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이고,
Z3는 N 및 CRc에서 선택되고(여기에서 Rc는 수소, 중수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨),
R11, R12, R13, R14 및 R15는 동일하거나 상이하며 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐, 시아노기(-CN), 시아노 함유기 및 이들의 조합에서 선택되거나 또는 R12과 R13 및 R14과 R15는 각각 독립적으로 존재하거나 서로 연결되어 융합된 방향족 고리를 형성할 수 있고,
n은 0 또는 1이고,
*는 결합 위치를 나타내고,
[화학식 4B]
Figure pat00004
상기 화학식 3B에서,
Z1은 O, S, Se 및 Te에서 선택되고,
Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이고,
Y1는 O, S, Se, Te 및 C(Ra)(CN)(여기에서 Ra는 수소, 시아노기(-CN) 및 C1 내지 C10 알킬기에서 선택됨)에서 선택되고,
R11 및 R12는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐, 시아노기(-CN) 및 이들의 조합에서 선택되고,
*는 결합 위치를 나타내고,
[화학식 4C]
Figure pat00005
상기 화학식 4C에서,
Z1은 O, S, Se 및 Te에서 선택되고,
Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이고,
R11, R12 및 R13은 동일하거나 상이하며 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐, 시아노기(-CN) 및 이들의 조합에서 선택되고,
*는 결합 위치를 나타내고,
[화학식 4D]
Figure pat00006
상기 화학식 4D에서,
Z1은 O, S, Se 및 Te에서 선택되고,
Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이고,
Z3는 N 및 CRc에서 선택되고(여기에서 Rc는 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨),
G1은 O, S, Se, Te, SiRxRy 및 GeRzRw에서 선택되고, 여기서 Rx, Ry, Rz 및 Rw는 동일하거나 상이하며 각각 독립적으로 수소, 할로겐, 치환 또는 비치환된 C1 내지 C10 알킬기 및 치환 또는 비치환된 C6 내지 C10 아릴기에서 선택되고,
R11, R12 및 R13은 동일하거나 상이하며 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐, 시아노기, 시아노 함유기 및 이들의 조합에서 선택되고, R12 및 R13은 독립적으로 존재하거나 서로 연결되어 융합된 방향족 고리를 형성할 수 있고,
n은 0 또는 1이고,
*는 결합 위치를 나타내고,
[화학식 4E]
Figure pat00007
상기 화학식 4E에서,
Z1은 O, S, Se 및 Te에서 선택되고,
Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이고,
Z4는 NRa, CRbRc, O, S, Se, Te, S(=O), S(=O)2, SiRdRe 및 GeRfRg에서 선택되고(여기에서 여기에서 Ra, Rb, Rc, Rd, Re, Rd, Re, Rf 및 Rg는 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨),
G2은 O, S, Se, Te, SiRxRy 및 GeRzRw에서 선택되고, 여기서 Rx, Ry, Rz 및 Rw는 동일하거나 상이하며 각각 독립적으로 수소, 할로겐, 치환 또는 비치환된 C1 내지 C10 알킬기 및 치환 또는 비치환된 C6 내지 C10 아릴기에서 선택되고,
R11, R12 및 R13은 동일하거나 상이하며 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐, 시아노기, 시아노 함유기 및 이들의 조합에서 선택되고,
n은 0 또는 1이고,
*는 결합 위치를 나타내고,
[화학식 4F]
Figure pat00008
상기 화학식 4F에서,
Z1은 O, S, Se 및 Te에서 선택되고,
Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이고,
R11는 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐, 시아노기(-CN), 시아노 함유기 및 이들의 조합에서 선택되고,
G3는 O, S, Se, Te, SiRxRy 및 GeRzRw에서 선택되고, 여기서 Rx, Ry, Rz 및 Rw는 동일하거나 상이하며 각각 독립적으로 수소, 할로겐, 치환 또는 비치환된 C1 내지 C10 알킬기 및 치환 또는 비치환된 C6 내지 C10 아릴기에서 선택된다.
상기 화학식 1의 화합물은 하기 화학식 5A 내지 5D로 표현되는 화합물중 어느 하나일 수 있다.
[화학식 5A]
Figure pat00009
상기 화학식 5A에서,
Ar2, X, 및 R1 내지 R3는 화학식 1에서와 동일하고,
Rx는 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 아실기, 할로겐, 시아노기(-CN), 시아노 함유기, 니트로기, -SiRaRbRc (여기에서 Ra, Rb 및 Rc는 각각 독립적으로 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨) 및 이들의 조합에서 선택되고,
m은 1 내지 4의 정수이다.
[화학식 5B]
Figure pat00010
상기 화학식 5B에서,
Ar2, X, 및 R1 내지 R3는 화학식 1에서와 동일하고,
Rx 및 Ry는 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 아실기, 할로겐, 시아노기(-CN), 시아노 함유기, 니트로기, -SiRaRbRc (여기에서 Ra, Rb 및 Rc는 각각 독립적으로 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨) 및 이들의 조합에서 선택되고,
m은 1 내지 4의 정수이고,
n은 1 내지 2의 정수이다.
[화학식 5C]
Figure pat00011
상기 화학식 5C에서,
Ar2, X, 및 R1 내지 R3는 화학식 1에서와 동일하고,
Y1 내지 Y4는 각각 독립적으로 CRxRy 또는 NRz이고(여기에서 Rx, Ry 및 Rz는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 아실기, 할로겐, 시아노기(-CN), 시아노 함유기, 니트로기, -SiRaRbRc (여기에서 Ra, Rb 및 Rc는 각각 독립적으로 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨) 및 이들의 조합에서 선택되고, Y1 내지 Y4중 적어도 하나는 NRz이다.
[화학식 5D]
Figure pat00012
상기 화학식 5D에서,
Ar2, X, 및 R1 내지 R3는 화학식 1에서와 동일하고,
Y1 내지 Y4는 각각 독립적으로 CRxRy 또는 NRz이고(여기에서 Rx, Ry 및 Rz는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 아실기, 할로겐, 시아노기(-CN), 시아노 함유기, 니트로기, -SiRaRbRc (여기에서 Ra, Rb 및 Rc는 각각 독립적으로 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨) 및 이들의 조합에서 선택되고, Y1 내지 Y4중 적어도 하나는 NRz이고,
Y5 및 Y6는 각각 독립적으로 CRxRy 또는 NRz이고(여기에서 Rx, Ry 및 Rz는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 아실기, 할로겐, 시아노기(-CN), 시아노 함유기, 니트로기, -SiRaRbRc (여기에서 Ra, Rb 및 Rc는 각각 독립적으로 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨) 및 이들의 조합에서 선택된다.
상기 화합물은 박막 상태에서 약 500 nm 이상 약 600 nm 이하의 파장 범위에서 최대 흡수 파장(λmax)을 가질 수 있다.
상기 화합물은 박막 상태에서 약 50 nm 내지 약 150 nm 의 반치폭(full width at half maximum, FWHM)을 가지는 흡광 곡선을 나타낼 수 있다.
상기 화합물의 융점과 초기 중량의 10 중량%가 손실(loss)되는 온도(증착 온도)의 차이가 약 10 ℃ 이상일 수 있다.
다른 구현예에 따르면, 서로 마주하는 제1 전극과 제2 전극, 그리고 상기 제1 전극과 상기 제2 전극 사이에 위치하고 상기 화학식 1로 표현되는 화합물을 포함하는 활성층을 포함하는 광전 소자(예를 들어 유기 광전 소자)를 제공한다.
또 다른 구현예에 따르면, 상기 광전 소자를 포함하는 이미지 센서를 제공한다.
상기 이미지 센서는 청색 파장 영역의 광을 감지하는 복수의 제1 광 감지 소자 및 적색 파장 영역의 광을 감지하는 복수의 제2 광 감지 소자가 집적되어 있는 반도체 기판, 그리고 상기 반도체 기판의 상부에 위치하고 녹색 파장 영역의 광을 감지하는 상기 광전 소자를 포함할 수 있다.
상기 제1 광 감지 소자와 상기 제2 광 감지 소자는 반도체 기판에서 수직 방향으로 적층되어 있을 수 있다.
상기 이미지 센서는 청색 파장 영역의 광을 선택적으로 투과하는 청색 필터와 적색 파장 영역의 광을 선택적으로 투과하는 적색 필터를 포함하는 색 필터 층을 더 포함할 수 있다.
상기 이미지 센서는 상기 광전 소자인 녹색 광전 소자, 청색 파장 영역의 광을 감지하는 청색 광전 소자 및 적색 파장 영역의 광을 감지하는 적색 광전 소자가 적층되어 있을 수 있다.
또 다른 구현예에 따르면, 상기 이미지 센서를 포함하는 전자 장치를 제공한다.
녹색 파장 영역의 빛을 선택적으로 흡수할 수 있고 열적 안정성과 전하 이동도가 우수한 화합물을 제공된다. 상기 화합물에 의해 녹색 파장 영역의 파장 선택성을 높여 소자의 효율을 개선할 수 있으며 고온 공정에서도 성능이 저하되지 않는 광전 소자, 이미지 센서 및 전자 장치를 제공한다.
도 1은 일 구현예에 따른 광전 소자를 도시한 단면도이고,
도 2는 다른 구현예에 따른 광전 소자를 도시한 단면도이고,
도 3은 일 구현예에 따른 유기 CMOS 이미지 센서를 개략적으로 도시한 평면도이고,
도 4는 도 3의 유기 CMOS 이미지 센서의 단면도이고,
도 5는 다른 구현예에 따른 유기 CMOS 이미지 센서를 개략적으로 도시한 단면도이고,
도 6은 다른 구현예에 따른 유기 CMOS 이미지 센서를 개략적으로 도시한 단면도이고,
도 7은 또 다른 구현예에 따른 유기 CMOS 이미지 센서의 단면도이고,
도 8은 또 다른 구현예에 따른 유기 CMOS 이미지 센서를 개략적으로 도시한 개략도이다.
도 9는 일 구현예에 따른 이미지 센서를 포함하는 디지털 카메라의 블록 다이어그램이다.
이하, 구현예에 대하여 해당 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 실제 적용되는 구조는 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예에 한정되지 않는다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다. 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.
도면에서 본 구현예를 명확하게 설명하기 위하여 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성 요소에 대해서는 동일한 도면 부호를 사용하였다.
본 명세서에서 "A, B 또는 C중 적어도 하나", "A, B, C 또는 이들의 조합중 하나" 및 "A, B, C 및 이들의 조합중 하나"는 각각의 구성요소 및 이들의 조합을 모두 의미한다(예를 들어 A; B; A 및 B; A 및 C; B 및 C; 또는 A, B, 및 C).
본 명세서에서 별도의 정의가 없는 한, "치환된"이란, 화합물 또는 작용기 중의 수소 원자가 할로겐 원자(F, Br, Cl 또는 I), 히드록시기, 니트로기, 시아노기, 아지도기, 아미디노기, 히드라지노기, 히드라조노기, 카르보닐기, 카르바밀기, 티올기, 에스테르기, 카르복실기나 그의 염, 술폰산기나 그의 염, 인산기나 그의 염, C1 내지 C20 알킬기, C1 내지 C20 알콕시기, C2 내지 C20 알케닐기, C2 내지 C20 알키닐기, C6 내지 C30 아릴기, C7 내지 C30 아릴알킬기, C2 내지 C20 헤테로아릴기, C3 내지 C20 헤테로아릴알킬기, C3 내지 C30 사이클로알킬기, C3 내지 C15 사이클로알케닐기, C6 내지 C15 사이클로알키닐기, C2 내지 C20 헤테로사이클로알킬기, 및 이들의 조합에서 선택된 치환기로 치환된 것을 의미한다.
또한, 본 명세서에서 별도의 정의가 없는 한, "헤테로"란, N, O, S, P 및 Si에서 선택된 헤테로 원자를 1 내지 3개 함유한 것을 의미한다.
본 명세서에서 알킬기는 1가의 직쇄 또는 분지쇄의 포화 탄화수소기, 예를 들어 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, 이소부틸기, t-부틸기, 펜틸기, 헥실기 등을 들 수 있다.
본 명세서에서 "사이클로알킬기"는 고리를 형성하는 원자가 탄소인 1가의 탄화수소 고리기, 예를 들어 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기 등일 수 있다.
본 명세서에서 "아릴(aryl)기"는 환형인 작용기의 모든 원소가 p-오비탈을 가지고 있으며, 이들 p-오비탈이 공액(conjugation)을 형성하고 있는 치환기를 의미하고, 모노시클릭, 폴리시클릭 또는 융합 고리 폴리시클릭(즉, 탄소원자들의 인접한 쌍들을 나눠 가지는 고리) 작용기를 포함한다.
본 명세서에서 별도의 정의가 없는 한, "시아노 함유기"는 C1 내지 C30 알킬기, C2 내지 C30 알케닐기 또는 C2 내지 C30 알키닐기의 적어도 하나의 수소가 시아노기로 치환된 1가의 작용기를 의미할 수 있다. 또한 상기 시아노 함유기는 =CRx'-(CRxRy)p-CRy'(CN)2로 표현되는 작용기와 같은 2가의 작용기를 포함할 수 있으며 여기에서 Rx, Ry, Rx' 및 Ry'는 각각 독립적으로 수소 또는 C1 내지 C10 알킬기이고 p는 0 내지 10(또는 1 내지 10)의 정수이다. 상기 시아노 함유기의 구체적인 예로는 디시아노메틸기(dicyanomethyl group), 디시아노비닐기(dicyanovinyl group), 시아노에티닐기(cyanoethynyl group) 등이 있다. 본 명세서에서 시아노 함유기는 시아노기(-CN)만을 포함하는 작용기는 포함하지 않는다.
본 명세서에서 별도의 정의가 없는 한, "조합"이란 하나의 치환기가 다른 치환기에 치환되거나, 서로 융합하여 존재하거나, 단일결합이나 C1 내지 C10 알킬렌기에 의해 서로 연결된 치환기들을 의미한다. 또한 "조합"이란 적층구조, 혼합물 또는 합금을 의미할 수도 있다.
본 명세서에서 "탄화수소 고리기"는 방향족 고리(아렌 고리)와 비방향족 고리(지환족 고리)의 융합 고리를 의미하며, 예를 들어 C6 내지 C30 아릴기, C6 내지 C20 아릴기 또는 C6 내지 C10 아릴기와 같은 적어도 하나의 방향족 고리(아렌 고리)와 C3 내지 C30 사이클로알킬기, C3 내지 C20 사이클로알킬기 또는 C3 내지 C10 사이클로알킬기와 같은 적어도 하나의 비방향족 고리(지환족 고리)가 서로 연결된 융합고리를 포함할 수 있다.
본 명세서에서 "헤테로고리기"는 아렌기(예를 들어 C6 내지 C30 아릴기, C6 내지 C20 아릴기 또는 C6 내지 C10 아릴기), 지환족 탄화수소기(예를 들어 C3 내지 C30 사이클로알킬기, C3 내지 C20 사이클로알킬기 또는 C3 내지 C10 사이클로알킬기) 또는 이들의 융합 고리에서 선택되는 고리기의 1 내지 3개의 탄소를 N, O, S, P 및 Si에서 선택된 헤테로 원자로 치환한 고리기를 의미할 수 있다. 또한 상기 헤테로고리기의 하나 이상의 탄소 원자는 티오카보닐기(C=S)로 치환될 수 있다.
상기 "아렌기"는 방향족 고리를 가지는 탄화수소기로, 단일환 및 복수환 탄화수소기를 포함하며, 복수환 탄화수소기의 부가적인 고리는 방향족 고리 또는 비방향족 고리일 수 있다. "헤테로아렌기"는 고리내에 N, O, S, P 및 Si에서 선택된 헤테로 원자를 1 내지 3개 함유하는 아렌기를 의미한다.
본 명세서에서, "방향족 탄화수소기"는 페닐기, 나프틸기 등 C6 내지 C30의 아릴기, C6 내지 C30의 아릴렌기 등을 포함하나 이에 제한되지 않는다.
본 명세서에서, "지방족 탄화수소기"는 예컨대, 메틸기, 에틸기, 프로필기 등 C1 내지 C15 알킬기, C1 내지 C15의 알킬렌기, 에테닐기(ethenyl group) 또는 프로페닐기(propenyl group)와 같은 C2 내지 C15 알케닐기, 에티닐기(ethynyl group) 또는 프로피페닐기(propynyl group)와 같은 C2 내지 C15 알키닐기 등을 포함하나 이에 제한되지 않는다.
본 명세서에서 "방향족 고리"는 공액 구조를 제공하는 C5 내지 C10 사이클릭기(예를 들어 C6 내지 C12 아릴기) 또는 공액 구조를 제공하는 C2 내지 C10 헤테로사이클릭기(예를 들어 C2 내지 C4 헤테로아릴기)를 의미한다.
이하, 일 구현예에 따른 화합물을 설명한다. 상기 화합물은 하기 화학식 1로 표현된다.
[화학식 1]
Figure pat00013
상기 화학식 1에서,
Ar1은 치환 또는 비치환된 C6 내지 C30 아렌기 및 치환 또는 비치환된 C3 내지 C30 헤테로아렌기에서 선택되고,
Ar2은 C=O, C=S, C=Se 및 C=Te에서 선택되는 적어도 하나의 작용기를 가지는 치환 또는 비치환된 C6 내지 C30 탄화수소 고리기, C=O, C=S, C=Se 및 C=Te에서 선택되는 적어도 하나의 작용기를 가지는 치환 또는 비치환된 C6 내지 C30 헤테로고리기 또는 이들의 융합고리이고,
X는 O, Se, Te, SiRaRb 및 GeRcRd에서 선택되고(여기에서 Ra, Rb, Rc 및 Rd 는 각각 독립적으로 수소, 중수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택되고, 이들은 독립적으로 존재하거나 Ra 및 Rb 또는 Rc 및 Rd가 서로 연결되어 스피로 구조를 형성함),
R1 내지 R3는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 아실기, 할로겐, 시아노기(-CN), 시아노 함유기, 니트로기, -SiRaRbRc (여기에서 Ra, Rb 및 Rc는 각각 독립적으로 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨) 및 이들의 조합에서 선택된다.
상기 화학식 1로 표현되는 화합물은 헤테로원자(N 및 X)를 함유하는 방향족 고리의 전자 도너 부분(electron donor moiety)과 Ar2로 표시되는 전자 어셉터 부분(electron acceptor moiety)을 포함한다. 상기 화학식 1에서 전자 도너 부분은 평면성 구조를 유도하여 화합물의 전하 이동도를 향상시킬 수 있다.
상기 화학식 1로 표현되는 화합물은 분자 구조에서 화합물의 가장 짧은 길이인 단축(z)의 길이를 가장 긴 길이인 장축(x)의 길이로 나눈애스팩트 비(z/x)가 0.5 이하, 예를 들어 0.4 이하 또는 0.3 이하일 수 있다. 상기 범위에서 화합물을 평면성을 우수하게 유지할 수 있어 전하 이동도룰 개선할 수 있다.
상기 화학식 1에서 헤테로원자(N 및 X)를 함유하는 방향족 고리의 전자 도너 부분은 3 개 이상의 방향족 링을 융합시킴으로써 애스팩트비를 작게 조절하여 평면성을 높일 수 있다.
상기 화학식 1에서 R1 내지 R3는 아민기를 포함하지 않는다. 따라서 상기 화학식 1의 구조는 도너-어셉터 구조를 가지며, 이로써, 흡수파장을 녹색 파장 범위(약 500 nm 이상 약 600 nm 이하, 예를 들어 약 510 nm 이상 약 570 nm 이하 또는 약 510 nm 이상 약 550 nm 이하)로 조절할 수 있고, 증착 온도를 낮출 수 있으며, 흡수계수를 증가시킬 수 있다.
상기 화학식 1에서 X가 SiRaRb 또는 GeRcRd인 경우 Ra, Rb, Rc 및 Rd가 서로 독립적으로 존재하거나 서로 연결되어 스피로 구조를 형성할 수 있다. 상기 스피로 구조는 C5 사이클로알킬기 또는 C6 사이클로알킬기일 수 있다.
상기 화학식 1에서 X가 SiRaRb 또는 GeRcRd이고 Ra, Rb, Rc 및 Rd가 서로 연결되어 스피로 구조를 형성하는 경우 상기 화학식 1로 표현되는 화합물은 하기 화학식 2A 또는 화학식 2B로 표현될 수 있다.
[화학식 2A] [화학식 2B]
Figure pat00014
Figure pat00015
상기 화학식 2A 및 2B에서,
Ar1, Ar2, 및 R1 내지 R3는 화학식 1과 동일하고 X1은 Si 또는 Ge 이고, 스피로 구조의 오각링 또는 육각링의 적어도 하나의 수소는 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 아실기, 할로겐, 시아노기(-CN), 시아노 함유기, 니트로기, -SiRaRbRc (여기에서 Ra, Rb 및 Rc는 각각 독립적으로 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨) 및 이들의 조합에서 선택되는 치환기로 치환될 수 있다.
상기 화학식 1에서, Ar2는 하기 화학식 3으로 표현될 수 있다.
[화학식 3]
Figure pat00016
상기 화학식 3에서,
Ar'은 치환 또는 비치환된 C6 내지 C30 아릴기 및 치환 또는 비치환된 C3 내지 C30 헤테로아릴기에서 선택되고,
Z1은 O, S, Se 및 Te에서 선택되고,
Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이다.
상기 화학식 1에서, Ar2은 하기 화학식 4A 내지 화학식 4F중 어느 하나로 표현되는 고리기일 수 있다.
[화학식 4A]
Figure pat00017
상기 화학식 4A에서,
Z1은 O, S, Se 및 Te에서 선택되고,
Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이고,
Z3는 N 및 CRc에서 선택되고(여기에서 Rc는 수소, 중수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨),
R11, R12, R13, R14 및 R15는 동일하거나 상이하며 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐, 시아노기(-CN), 시아노 함유기 및 이들의 조합에서 선택되거나 또는 R12과 R13 및 R14과 R15는 각각 독립적으로 존재하거나 서로 연결되어 융합된 방향족 고리를 형성할 수 있고,
n은 0 또는 1이고,
*는 결합 위치를 나타내고,
[화학식 4B]
Figure pat00018
상기 화학식 4B에서,
Z1은 O, S, Se 및 Te에서 선택되고,
Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이고,
Y1는 O, S, Se, Te 및 C(Ra)(CN)(여기에서 Ra는 수소, 시아노기(-CN) 및 C1 내지 C10 알킬기에서 선택됨)에서 선택되고,
R11 및 R12는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐, 시아노기(-CN) 및 이들의 조합에서 선택되고,
*는 결합 위치를 나타내고,
[화학식 4C]
Figure pat00019
상기 화학식 4C에서,
Z1은 O, S, Se 및 Te에서 선택되고,
Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이고,
R11, R12 및 R13은 동일하거나 상이하며 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐, 시아노기(-CN) 및 이들의 조합에서 선택되고,
*는 결합 위치를 나타내고,
[화학식 4D]
Figure pat00020
상기 화학식 4D에서,
Z1은 O, S, Se 및 Te에서 선택되고,
Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이고,
Z3는 N 및 CRc에서 선택되고(여기에서 Rc는 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨),
G1은 O, S, Se, Te, SiRxRy 및 GeRzRw에서 선택되고, 여기서 Rx, Ry, Rz 및 Rw는 동일하거나 상이하며 각각 독립적으로 수소, 할로겐, 치환 또는 비치환된 C1 내지 C10 알킬기 및 치환 또는 비치환된 C6 내지 C10 아릴기에서 선택되고,
R11, R12 및 R13은 동일하거나 상이하며 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐, 시아노기, 시아노 함유기 및 이들의 조합에서 선택되고, R12 및 R13은 독립적으로 존재하거나 서로 연결되어 융합된 방향족 고리를 형성할 수 있고,
n은 0 또는 1이고,
*는 결합 위치를 나타내고,
[화학식 4E]
Figure pat00021
상기 화학식 4E에서,
Z1은 O, S, Se 및 Te에서 선택되고,
Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이고,
Z4는 NRa, CRbRc, O, S, Se, Te, S(=O), S(=O)2, SiRdRe 및 GeRfRg에서 선택되고(여기에서 여기에서 Ra, Rb, Rc, Rd, Re, Rd, Re, Rf 및 Rg는 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨),
G2은 O, S, Se, Te, SiRxRy 및 GeRzRw에서 선택되고, 여기서 Rx, Ry, Rz 및 Rw는 동일하거나 상이하며 각각 독립적으로 수소, 할로겐, 치환 또는 비치환된 C1 내지 C10 알킬기 및 치환 또는 비치환된 C6 내지 C10 아릴기에서 선택되고,
R11, R12 및 R13은 동일하거나 상이하며 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐, 시아노기, 시아노 함유기 및 이들의 조합에서 선택되고,
n은 0 또는 1이고,
*는 결합 위치를 나타내고,
[화학식 4F]
Figure pat00022
상기 화학식 4F에서,
Z1은 O, S, Se 및 Te에서 선택되고,
Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이고,
R11는 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐, 시아노기(-CN), 시아노 함유기 및 이들의 조합에서 선택되고,
G3는 O, S, Se, Te, SiRxRy 및 GeRzRw에서 선택되고, 여기서 Rx, Ry, Rz 및 Rw는 동일하거나 상이하며 각각 독립적으로 수소, 할로겐, 치환 또는 비치환된 C1 내지 C10 알킬기 및 치환 또는 비치환된 C6 내지 C10 아릴기에서 선택된다.
상기 화학식 4A로 표현되는 고리기는 하기 화학식 4A-1 또는 화학식 4A-2 로 표현되는 고리기일 수 있다.
[화학식 4A-1]
Figure pat00023
[화학식 4A-2]
Figure pat00024
상기 화학식 4A-1 및 화학식 4A-2에서,
Z3, R11, n, R11, R12, R13, R14 및 R15는 화학식 4A에서와 같다.
상기 화학식 4A로 표현되는 고리기는 R12과 R13 및/또는 R14과 R15는 각각 독립적으로 연결되어 융합된 방향족 고리를 형성하는 경우 하기 화학식 4A-3로 표현되는 고리기일 수 있다.
[화학식 4A-3]
Figure pat00025
상기 화학식 4A-3에서,
Z1, Z2, Z3, R11 및 n은 화학식 4A에서와 같고,
R12a 및 R12b는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐, 시아노기(-CN), 시아노 함유기 및 이들의 조합에서 선택되고,
m1 및 m2는 각각 독립적으로 0 내지 4의 정수이고,
Ph1 및 Ph2는 융합된 페닐렌 링을 의미하며 Ph1과 Ph2중 하나는 선택적으로(optionally) 생략될 수 있다.
상기 화학식 4B로 표현되는 고리기는 예컨대 하기 화학식 4B-1, 4B-2 또는 4B-3으로 표현되는 고리기일 수 있다.
[화학식 4B-1] [화학식 4B-2] [화학식 4B-3]
Figure pat00026
Figure pat00027
Figure pat00028
상기 화학식 4B-1, 4B-2 및 4B-3에서,
R11 및 R12는 화학식 4B에서와 같다.
상기 화학식 4C로 표현되는 고리기는 예컨대 하기 화학식 4C-1 또는 4C-3으로 표현되는 고리기일 수 있다.
[화학식 4C-1] [화학식 4C-2]
Figure pat00029
Figure pat00030
상기 화학식 4C-1 및 4C-2에서,
R11 내지 R13는 화학식 4C에서와 같다.
상기 화학식 1에서, 전자 도너 부분의 헤터로원자(N 및 X) 및 전자 어셉터 부분(Ar2)에 존재하는 헤테로원자(O, S, Se 및 Te)는 분자내 상호작용(intramolecular interaction)을 증가시켜 특정 파장에서의 흡수 강도를 향상시킬 수 있다.
상기 화학식 1의 화합물은 하기 화학식 5A 내지 5D로 표현되는 화합물중 어느 하나일 수 있다.
[화학식 5A]
Figure pat00031
상기 화학식 5A에서,
Ar2, X, 및 R1 내지 R3는 화학식 1에서와 동일하고,
Rx는 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 아실기, 할로겐, 시아노기(-CN), 시아노 함유기, 니트로기, -SiRaRbRc (여기에서 Ra, Rb 및 Rc는 각각 독립적으로 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨) 및 이들의 조합에서 선택되고,
m은 1 내지 4의 정수이다.
[화학식 5B]
Figure pat00032
상기 화학식 5B에서,
Ar2, X, 및 R1 내지 R3는 화학식 1에서와 동일하고,
Rx 및 Ry는 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 아실기, 할로겐, 시아노기(-CN), 시아노 함유기, 니트로기, -SiRaRbRc (여기에서 Ra, Rb 및 Rc는 각각 독립적으로 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨) 및 이들의 조합에서 선택되고,
m은 1 내지 4의 정수이고,
n은 1 내지 2의 정수이다.
[화학식 5C]
Figure pat00033
상기 화학식 5C에서,
Ar2, X, 및 R1 내지 R3는 화학식 1에서와 동일하고,
Y1 내지 Y4는 각각 독립적으로 CRxRy 또는 NRz이고(여기에서 Rx, Ry 및 Rz는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 아실기, 할로겐, 시아노기(-CN), 시아노 함유기, 니트로기, -SiRaRbRc (여기에서 Ra, Rb 및 Rc는 각각 독립적으로 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨) 및 이들의 조합에서 선택되고, Y1 내지 Y4중 적어도 하나는 NRz이다.
[화학식 5D]
Figure pat00034
상기 화학식 5D에서,
Ar2, X, 및 R1 내지 R3는 화학식 1에서와 동일하고,
Y1 내지 Y4는 각각 독립적으로 CRxRy 또는 NRz이고(여기에서 Rx, Ry 및 Rz는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 아실기, 할로겐, 시아노기(-CN), 시아노 함유기, 니트로기, -SiRaRbRc (여기에서 Ra, Rb 및 Rc는 각각 독립적으로 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨) 및 이들의 조합에서 선택되고, Y1 내지 Y4중 적어도 하나는 NRz이고,
Y5 및 Y6는 각각 독립적으로 CRxRy 또는 NRz이고(여기에서 Rx, Ry 및 Rz는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 아실기, 할로겐, 시아노기(-CN), 시아노 함유기, 니트로기, -SiRaRbRc (여기에서 Ra, Rb 및 Rc는 각각 독립적으로 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨) 및 이들의 조합에서 선택된다.
상기 화학식 1의 화합물의 구체적인 예로는 하기 화학식 6A, 화학식 6B, 화학식 6C, 화학식 6D, 화학식 6E 및 화학식 6F의 화합물을 들 수 있으나, 이에 한정되는 것은 아니다.
[화학식 6A]
Figure pat00035
Figure pat00036
상기 화학식 6A에서,
R1, Ra, Rb, Rc 및 Rd는 화학식 1에서와 동일하고,
각각의 방향족 링에 존재하는 수소는 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐(F, Cl, Br, I), 시아노기(-CN), 시아노 함유기 및 이들의 조합에서 선택되는 치환기로 치환될 수 있다.
[화학식 6B]
Figure pat00037
Figure pat00038
상기 화학식 6B에서,
R1, Ra, Rb, Rc 및 Rd는 화학식 1에서와 동일하고,
R11 및 R12은 화학식 4B에서와 동일하고,
각각의 방향족 링에 존재하는 수소는 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐(F, Cl, Br, I), 시아노기(-CN), 시아노 함유기 및 이들의 조합에서 선택되는 치환기로 치환될 수 있다.
[화학식 6C]
Figure pat00039
상기 화학식 6C에서,
R1, Ra, Rb, Rc 및 Rd는 화학식 1에서와 동일하고,
R11 내지 R13은 화학식 4C에서와 같고,
각각의 방향족 링에 존재하는 수소는 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐(F, Cl, Br, I), 시아노기(-CN), 시아노 함유기 및 이들의 조합에서 선택되는 치환기로 치환될 수 있다.
[화학식 6D]
Figure pat00040
상기 화학식 6D에서,
R1, Ra, Rb, Rc 및 Rd는 화학식 1에서와 동일하고,
각각의 방향족 링에 존재하는 수소는 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐(F, Cl, Br, I), 시아노기(-CN), 시아노 함유기 및 이들의 조합에서 선택되는 치환기로 치환될 수 있다.
[화학식 6E]
Figure pat00041
상기 화학식 6E에서,
R1, Ra, Rb, Rc 및 Rd는 화학식 1에서와 동일하고,
각각의 방향족 링에 존재하는 수소는 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐(F, Cl, Br, I), 시아노기(-CN), 시아노 함유기 및 이들의 조합에서 선택되는 치환기로 치환될 수 있다.
[화학식 6F]
Figure pat00042
상기 화학식 6F에서,
R11은 화학식 4F와 동일하고
R1, Ra, Rb, Rc 및 Rd는 화학식 1에서와 동일하고,
각각의 방향족 링에 존재하는 수소는 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐(F, Cl, Br, I), 시아노기(-CN), 시아노 함유기 및 이들의 조합에서 선택되는 치환기로 치환될 수 있다.
상기 화합물은 녹색 파장 영역의 광을 선택적으로 흡수하는 화합물로, 약 500 nm 이상 약 600 nm 이하, 예를 들어 약 510 nm 이상 약 570 nm 이하 또는 약 510 nm 이상 약 550 nm 이하의 파장 범위에서 최대 흡수 파장(λmax)을 가질 수 있다.
상기 화합물은 박막 상태에서 약 50 nm 내지 약 150 nm의 반치폭(full width at half maximum, FWHM)을 가지는 흡광 곡선을 나타낼 수 있다. 여기서 반치폭은 최대 흡광 지점의 반(half)에 대응하는 파장의 폭(width)으로, 반치폭이 작으면 좁은 파장 영역의 빛을 선택적으로 흡수하여 파장 선택성이 높다는 것을 의미한다. 상기 범위의 반치폭을 가짐으로써 녹색 파장 영역에 대한 선택성을 높일 수 있다. 상기 박막은 진공 조건에서 증착된 박막일 수 있다.
상기 화합물은 증착에 의하여 박막으로 형성될 수 있다. 증착법은 균일한 박막 형성이 가능하고 불순물 혼입 가능성이 적어 유리한 점이 있으나 화합물의 융점이 증착 온도보다 낮은 경우 화합물의 분해물이 증착될 수 있어 소자의 성능을 저해할 수 있다. 따라서 증착 온도보다 화합물의 융점이 더 높은 것이 바람직하다. 이런 점에서 상기 화합물은 증착 온도보다 높은, 예를 들어 약 10 ℃ 이상, 예를 들어 15 ℃ 이상, 20 ℃ 이상, 25 ℃ 이상 또는 30 ℃ 이상 높은 융점을 가지므로 증착 공정에 바람직하게 사용될 수 있다.
좀 더 상세히 설명하면 상기 화학식 1의 구조로 표현되는 도너-어셉터형 재료는 융점(Tm)이 분해온도(Td)와 유사하므로 재료의 융점(Tm)에서 열분해될 수 있다. 따라서 진공 증착에 의해 제막하는 온도(승화 온도, 증착 온도, Ts)가 Tm보다 높은 온도라면 승화(증착)보다 분해가 우선적으로 발생하여 정상적인 소자를 제작할 수 없다. 이러한 재료로는 안정적인 이미지 센서 생산이 불가능하기 때문에 Tm은 Ts보다 높아야 하며, 더 바람직한 조건으로는 Tm-Ts≥10 ℃인 것이 좋다.
또한 이미지 센서를 제작할 경우 빛의 집광을 위해 마이크로렌즈 어레이(MLA)를 소자 제작 후에 형성할 필요가 있다. 이 마이크로렌즈 어레이는 형성 시에 비교적 고온(약 160 ℃ 이상, 예를 들어 170 ℃ 이상, 180 ℃ 이상 또는 190 ℃ 이상의 온도)을 필요로 하는데, 광전 소자(예를 들어 유기 광전 소자)는 이러한 열처리 공정에서 성능이 열화되어서는 안된다. MLA 열처리 공정에서 광전 소자가 열화하는 것은 유기 물질이 화학적으로 분해하는 것이 아니라 모폴로지 변화에 의해 발생하는 것이다. 모폴로지 변화는 일반적으로는 열처리에 의해 물질의 열운동이 시작되면서 생기기 시작하며 견고한 분자 구조를 갖는 경우에는 이러한 열진동이 발생하기 어려워져 열처리에 따른 열화를 방지할 수 있게 된다. 상기 화합물은 도너 부위에 공액 구조를 가짐으로써 분자의 열에 의한 진동을 억제하여 MLA 열처리 공정에서도 안정하게 유지될 수 있으며, 이로써 공정안정성을 확보할 수 있다.
상기 화합물은 p 형 반도체 화합물일 수 있다.
상기 화합물은 p형 반도체로 작용하므로 혼합 사용하는 n형 반도체에 비해 LUMO 에너지 레벨의 위치가 높으면 적절하게 사용할 수 있다. 예를 들어 풀러렌과 같은 n형 재료와 혼합 사용하는 경우, 풀러렌의 LUMO 에너지 레벨이 4.2 eV이므로, 4.2 eV보다 높은 LUMO 에너지 레벨을 가지면 된다. 그리고 적절한 HOMO-LUMO 에너지 레벨의 경우, 상기 화합물은 HOMO 에너지 레벨이 약 5.2 eV 내지 약 6.1 eV이고, 약 2.0 eV 내지 약 3.0 eV의 에너지 밴드갭을 가지게 되면, LUMO 에너지 레벨이 약 3.0 eV 내지 약 3.2 eV 사이에 위치하게 된다. 상기 범위의 HOMO 에너지 레벨과 LUMO 에너지 레벨 및 에너지 밴드갭을 가짐으로써 녹색 파장 영역에서 광을 효과적으로 흡수하는 p형 반도체 화합물로 적용될 수 있고 그에 따라 높은 외부 양자 효율(external quantum efficiency, EQE)을 가질 수 있어 광전 변환 효율을 개선할 수 있다.
일 구현예에서 증착에 의해 박막을 형성하는 관점에서 안정적으로 증착가능한 화합물이 사용되는 것이 좋으므로 약 300 g/mol 내지 약 1500 g/mol의 분자량을 가지는 화합물이 증착 공정에 사용될 수 있다. 그러나 상기 범위 외라 하더라도 증착가능한 화합물이라면 제한없이 사용될 수 있다. 또한 도포 공정으로 박막을 형성하는 경우 용매에 용해되고, 도포가능한 화합물이라면 제한없이 사용될 수 있다.
이하 상기 화합물을 포함하는 일 구현예에 따른 광전 소자에 대하여 도면을 참고하여 설명한다.
도 1은 일 구현예에 따른 광전 소자를 도시한 단면도이다.
도 1을 참고하면, 일 구현예에 따른 광전 소자(100)는 서로 마주하는 제1 전극(10)과 제2 전극(20), 그리고 제1 전극(10)과 제2 전극(20) 사이에 위치하는 활성층(30)을 포함한다.
제1 전극(10)과 제2 전극(20) 중 어느 하나는 애노드(anode)이고 다른 하나는 캐소드(cathode)이다. 제1 전극(10)과 제2 전극(20) 중 적어도 하나는 투광 전극일 수 있고, 상기 투광 전극은 예컨대 인듐 틴 옥사이드(indium tin oxide, ITO) 또는 인듐 아연 옥사이드(indium zinc oxide, IZO)와 같은 투명 도전체, 또는 얇은 두께의 단일층 또는 복수층의 금속 박막으로 만들어질 수 있다. 제1 전극(10)과 제2 전극(20) 중 하나가 불투광 전극인 경우 예컨대 알루미늄(Al)과 같은 불투명 도전체로 만들어질 수 있다.
상기 활성층(30)은 p형 반도체 화합물과 n형 반도체 화합물이 포함되어 pn 접합(pn junction)을 형성하는 층으로, 외부에서 빛을 받아 엑시톤(exciton)을 생성한 후 생성된 엑시톤을 정공과 전자로 분리하는 층이다.
상기 활성층(30)은 상기 화학식 1로 표현되는 화합물을 포함한다. 상기 화합물은 활성층(30)에서 p형 반도체 화합물로 적용될 수 있다.
상기 화합물은 녹색 파장 영역의 광을 선택적으로 흡수하는 화합물로, 상기 화합물을 포함하는 활성층(30)은 약 500 nm 이상 약 600 nm 이하, 예를 들어 약 510 nm 이상 약 570 nm 이하의 파장 범위에서 최대 흡수 파장(λmax)을 가질 수 있다.
상기 활성층(30)은 약 50 nm 내지 약 150 nm, 예를 들어 약 50 nm 내지 약 120 nm, 약 50 nm 내지 약 110 nm 또는 약 50 nm 내지 약 100 nm의 비교적 작은 반치폭(FWHM)을 가지는 흡광 곡선을 나타낼 수 있다. 이에 따라 활성층(30)은 녹색 파장 영역의 광에 대하여 높은 선택성을 가질 수 있다.
상기 활성층은 상기 화합물과 C60을 약 0.9: 1 내지 약 1.1: 1, 예를 들어 1:1의 부피비로 포함하고 약 5.5X104 cm-1 이상, 예를 들어 약 5.8X104 cm-1 내지 약 10X104 cm-1 또는 약 7.0X104 cm-1 내지 약 10X104 cm-1의 흡수 계수를 가질 수 있다.
상기 활성층(30)은 pn접합을 형성하기 위한 n형 반도체 화합물을 더 포함할 수 있다.
상기 n형 반도체 화합물은 서브프탈로시아닌 또는 서브프탈로시아닌 유도체, 플러렌 또는 플러렌 유도체, 티오펜 또는 티오펜 유도체 또는 이들의 조합일 수 있다.
상기 플러렌의 예로는 C60, C70, C76, C78, C80, C82, C84, C90, C96, C240, C540, 이들의 혼합물, 플러렌 나노튜브 등이 있다. 상기 플러렌 유도체는 상기 플러렌에 치환기를 가지는 화합물을 의미한다. 상기 플러렌 유도체는 알킬기(예를 들어 C1 내지 C30 알킬기), 아릴기(예를 들어 C6 내지 C30 아릴기), 헤테로고리기 예를 들어 C3 내지 C30 사이클로알킬기) 등의 치환기를 포함할 수 있다. 상기 아릴기와 헤테로고리기의 예로는 벤젠고리, 나프탈렌 고리, 안트라센 고리, 페난트렌 고리, 플루오렌 고리, 트리페닐렌 고리, 나프타센 고리, 바이페닐 고리, 피롤 고리, 퓨란(furan) 고리, 티오펜 고리, 이미다졸 고리, 옥사졸 고리, 티아졸 고리, 피리딘 고리, 피라진 고리, 피리미딘 고리, 피리다진 고리, 인돌진(indolizine) 고리, 인돌 고리, 벤조퓨란 고리, 벤조티오펜 고리, 이소벤조퓨란(isobenzofuran) 고리, 벤즈이미다졸 고리, 이미다조피리딘(imidazopyridine) 고리, 퀴놀리진(quinolizidine) 고리, 퀴놀린 고리, 프탈진(phthalazine) 고리, 나프티리진(naphthyridine) 고리, 퀴녹살린(quinoxaline) 고리, 퀴녹사졸린(quinoxazoline) 고리, 이소퀴놀린(isoquinoline) 고리, 카바졸(carbazole) 고리, 페나트리딘(phenanthridine) 고리, 아크리딘(acridine) 고리, 페난트롤린(phenanthroline) 고리, 티아트렌(thianthrene) 고리, 크로멘(chromene) 고리, 잔텐(xanthene) 고리, 페녹사진(phenoxazine) 고리, 페녹사틴(phenoxathiin) 고리, 페노티아진(phenothiazine) 고리 또는 페나진(phenazine) 고리가 있다.
상기 서브프탈로시아닌 또는 서브프탈로시아닌 유도체는 하기 화학식 7로 표현될 수 있다.
[화학식 7]
Figure pat00043
상기 화학식 7에서,
R31 내지 R33은 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 할로겐, 할로겐 함유기 및 이들의 조합에서 선택되고,
a, b 및 c는 1 내지 3의 정수이고,
Z는 1가의 치환기이다.
일 예로, Z는 할로겐 또는 할로겐 함유기일 수 있으며, 예를 들어 F, Cl, F 함유기 또는 Cl 함유기일 수 있다.
상기 할로겐은 F, Cl, Br 또는 I를 의미할 수 있으며 할로겐 함유기는 알킬기(C1 내지 C30 알킬기)의 수소중 적어도 하나가 F, Cl, Br 또는 I로 치환된 것을 의미할 수 있다.
상기 티오펜 유도체는 예컨대 하기 화학식 8 또는 화학식 9로 표현될 수 있으나, 이에 한정되는 것은 아니다.
[화학식 8]
Figure pat00044
[화학식 9]
Figure pat00045
상기 화학식 8과 화학식 9에서,
T1, T2 및 T3는 치환 또는 비치환된 티오펜부를 가지는 방향족 고리이고,
T1, T2 및 T3는 각각 독립적으로 존재하거나 융합되어 있을 수 있고,
X3 내지 X8은 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로고리기, 시아노기 또는 이들의 조합이고,
EWG1 및 EWG2는 각각 독립적으로 전자흡인기(electron withdrawing group)일 수 있다.
일 예로, 상기 화학식 8에서, X3 내지 X8 중 적어도 하나는 전자 흡인기, 예를 들어 시아노기 또는 시아노 함유기일 수 있다.
상기 활성층(30)은 녹색광을 선택적으로 흡수하는 제2의 p형 반도체 화합물을 더 포함할 수 있다. 상기 제2의 p형 반도체 화합물로는 하기 화학식 10의 화합물을 들 수 있다.
[화학식 10]
Figure pat00046
상기 화학식 10에서,
R41 내지 R43는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C30 지방족 탄화수소기, 치환 또는 비치환된 C6 내지 C30 방향족 탄화수소기, 치환 또는 비치환된 C1 내지 C30 지방족 헤테로고리기, 치환 또는 비치환된 C2 내지 C30 방향족 헤테로고리기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴옥시기, 티올기, 치환 또는 비치환된 C1 내지 C30 알킬티오기, 치환 또는 비치환된 C6 내지 C30 아릴티오기, 시아노기, 시아노 함유기, 할로겐기, 할로겐 함유기, 치환 또는 비치환된 설포닐기(예를 들어, 치환 또는 비치환된 C0 내지 C30 아미노설포닐기, 치환 또는 비치환된 C1 내지 C30 알킬설포닐기 또는 치환 또는 비치환된 C6 내지 C30 아릴설포닐기) 또는 이들의 조합이고, 또는 R41 내지 R43는 인접한 두 개가 연결되어 융합고리를 형성하고,
L1 내지 L3은 각각 독립적으로 단일 결합, 치환 또는 비치환된 C1 내지 C30 알킬렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 2가의 치환 또는 비치환된 C3 내지 C30 헤테로고리기 또는 이들의 조합이고,
R51 내지 R53는 각각 독립적으로 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로고리기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 아민기(예를 들어, 치환 또는 비치환된 C1 내지 C30 알킬아민기 또는 치환 또는 비치환된 C6 내지 C30 아릴아민기), 치환 또는 비치환된 실릴기 또는 이들의 조합이고,
a 내지 c는 각각 독립적으로 0 내지 4의 정수이다.
상기 녹색광을 선택적으로 흡수하는 제2의 p형 반도체 화합물은 상기 화학식 1의 화합물 100 중량부에 대하여 약 500 내지 약 1500 중량부로 포함되는 것이 좋다.
상기 활성층(30)은 단일 층일 수도 있고 복수 층일 수도 있다. 활성층(30)은 예컨대 진성층(instrinsic layer, I층), p형 층/I층, I층/n형 층, p형 층/I층/n형 층, p형 층/n형 층 등 다양한 조합일 수 있다.
상기 진성층(I층)은 상기 화학식 1의 화합물과 상기 n형 반도체 화합물이 약 1:100 내지 약 100:1의 두께 비로 혼합되어 포함될 수 있다. 상기 범위 내에서 약 1:50 내지 50:1의 두께 비로 포함될 수 있으며, 상기 범위 내에서 약 1:10 내지 10:1의 두께 비로 포함될 수 있으며, 상기 범위 내에서 약 1:1의 두께 비로 포함될 수 있다. 상기 범위의 조성비를 가짐으로써 효과적인 엑시톤 생성 및 pn 접합 형성에 유리하다.
상기 p형 층은 상기 화학식 1의 반도체 화합물을 포함할 수 있고, 상기 n형 층은 상기 n형 반도체 화합물을 포함할 수 있다.
상기 활성층(30)은 약 1 nm 내지 약 500 nm의 두께를 가질 수 있다. 상기 범위 내에서 약 5 nm 내지 300 nm의 두께를 가질 수 있다. 상기 범위의 두께를 가짐으로써 빛을 효과적으로 흡수하고 정공과 전자를 효과적으로 분리 및 전달함으로써 광전 변환 효율을 효과적으로 개선할 수 있다. 상기 활성층(30)의 최적의 막 두께는 예컨대 활성층(30)의 흡수 계수를 고려하여 결정할 수 있으며, 예컨대 적어도 약 70% 이상, 예컨대 약 80% 이상, 예컨대 약 90%의 빛을 흡수할 수 있는 두께를 가질 수 있다.
광전 소자(100)는 제1 전극(10) 및/또는 제2 전극(20) 측으로부터 빛이 입사되어 활성층(30)이 소정 파장 영역의 빛을 흡수하면 내부에서 엑시톤이 생성될 수 있다. 엑시톤은 활성층(30)에서 정공과 전자로 분리되고, 분리된 정공은 제1 전극(10)과 제2 전극(20) 중 하나인 애노드 측으로 이동하고 분리된 전자는 제1 전극(10)과 제2 전극(20) 중 다른 하나인 캐소드 측으로 이동하여 광전 소자에 전류가 흐를 수 있게 된다.
이하 도 2를 참고하여 다른 구현예에 따른 광전 소자에 대하여 설명한다.
도 2는 다른 구현예에 따른 광전 소자를 도시한 단면도이다.
도 2를 참고하면, 본 구현예에 따른 광전 소자(100)는 전술한 구현예와 마찬가지로 서로 마주하는 제1 전극(10)과 제2 전극(20), 그리고 제1 전극(10)과 제2 전극(20) 사이에 위치하는 활성층(30)을 포함한다.
그러나 본 구현예에 따른 광전 소자(100)는 전술한 구현예와 달리 제1 전극(10)과 활성층(30) 사이 및 제2 전극(20)과 활성층(30) 사이에 각각 전하 보조층(40, 45)을 더 포함한다. 전하 보조층(40, 45)은 활성층(30)에서 분리된 정공과 전자의 이동을 용이하게 하여 효율을 높일 수 있다.
전하 보조층(40, 45)은 정공의 주입을 용이하게 하는 정공 주입층(hole injecting layer, HIL), 정공의 수송을 용이하게 하는 정공 수송층(hole transporting layer, HTL), 전자의 이동을 저지하는 전자 차단층(electron blocking layer, EBL), 전자의 주입을 용이하게 하는 전자 주입층(electron injecting layer, EIL), 전자의 수송을 용이하게 하는 전자 수송층(electron transporting layer, ETL) 및 정공의 이동을 저지하는 정공 차단층(hole blocking layer, HBL)에서 선택된 적어도 하나를 포함할 수 있다.
전하 보조층(40, 45)은 예컨대 유기물, 무기물 또는 유무기물을 포함할 수 있다. 상기 유기물은 정공 또는 전자 특성을 가지는 유기 화합물일 수 있고, 상기 무기물은 예컨대 몰리브덴 산화물, 텅스텐 산화물, 니켈 산화물과 같은 금속 산화물일 수 있다.
상기 정공 수송층(HTL)은 예컨대 폴리(3,4-에틸렌디옥시티오펜):폴리(스티렌술포네이트)(poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS), 폴리아릴아민, 폴리(N-비닐카바졸)(poly(N-vinylcarbazole), 폴리아닐린(polyaniline), 폴리피롤(polypyrrole), N,N,N',N'-테트라키스(4-메톡시페닐)-벤지딘(N,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine, TPD), 4,4'-비스[N-(1-나프틸)-N-페닐-아미노]비페닐(4,4'-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl, α-NPD), m-MTDATA, 4,4'4"-트리스(N-카바졸릴)-트리페닐아민(4,4',4"-tris(N-carbazolyl)-triphenylamine, TCTA) 및 이들의 조합에서 선택되는 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 전자 차단층(EBL)은 예컨대 폴리(3,4-에틸렌디옥시티오펜):폴리(스티렌술포네이트)(poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS), 폴리아릴아민, 폴리(N-비닐카바졸)(poly(N-vinylcarbazole), 폴리아닐린(polyaniline), 폴리피롤(polypyrrole), N,N,N',N'-테트라키스(4-메톡시페닐)-벤지딘(N,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine, TPD), 4,4'-비스[N-(1-나프틸)-N-페닐-아미노]비페닐(4,4'-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl, α-NPD), m-MTDATA, 4,4',4"-트리스(N-카바졸릴)-트리페닐아민(4,4',4"-tris(N-carbazolyl)-triphenylamine, TCTA) 및 이들의 조합에서 선택되는 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 전자 수송층(ETL)은 예컨대 1,4,5,8-나프탈렌-테트라카르복실릭 디안하이드라이드(1,4,5,8-naphthalene-tetracarboxylic dianhydride, NTCDA), 바소쿠프로인(bathocuproine, BCP), LiF, Alq3, Gaq3, Inq3, Znq2, Zn(BTZ)2, BeBq2 및 이들의 조합에서 선택되는 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 정공 차단층(HBL)은 예컨대 1,4,5,8-나프탈렌-테트라카르복실릭 디안하이드라이드(1,4,5,8-naphthalene-tetracarboxylic dianhydride, NTCDA), 바소쿠프로인(BCP), LiF, Alq3, Gaq3, Inq3, Znq2, Zn(BTZ)2, BeBq2 및 이들의 조합에서 선택되는 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 전하 보조층(40, 45) 중 하나는 생략될 수 있다.
상기 광전 소자는 태양 전지, 이미지 센서, 광 검출기, 광 센서 및 발광 소자 등에 적용될 수 있으나, 이에 한정되는 것은 아니다.
이하 상기 광전 소자를 적용한 이미지 센서의 일 예에 대하여 도면을 참고하여 설명한다. 여기서는 이미지 센서의 일 예로 유기 CMOS 이미지 센서에 대하여 설명한다.
도 3은 일 구현예에 따른 유기 CMOS 이미지 센서를 개략적으로 도시한 평면도이고, 도 4는 도 3의 유기 CMOS 이미지 센서의 단면도이다.
도 3 및 도 4를 참고하면, 일 구현예에 따른 유기 CMOS 이미지 센서(300)는 광 감지 소자(50B, 50R), 전송 트랜지스터(도시하지 않음) 및 전하 저장소(55)가 집적되어 있는 반도체 기판(310), 하부 절연층(60), 색 필터 층(70), 상부 절연층(80) 및 광전 소자(100)를 포함한다.
반도체 기판(310)은 실리콘 기판일 수 있으며, 광 감지 소자(50B, 50R), 전송 트랜지스터(도시하지 않음) 및 전하 저장소(55)가 집적되어 있다. 광 감지 소자(50R, 50B)는 광 다이오드일 수 있다.
광 감지 소자(50B, 50R), 전송 트랜지스터 및/또는 전하 저장소(55)는 각 화소마다 집적되어 있을 수 있으며, 일 예로 도면에서 보는 바와 같이 광 감지 소자(50B, 50R)는 청색 화소 및 적색 화소에 포함될 수 있고 전하 저장소(55)는 녹색 화소에 포함될 수 있다.
광 감지 소자(50B, 50R)는 빛을 센싱하고 센싱된 정보는 전송 트랜지스터에 의해 전달될 수 있고, 전하 저장소(55)는 후술하는 광전 소자(100)와 전기적으로 연결되어 있고 전하 저장소(55)의 정보는 전송 트랜지스터에 의해 전달될 수 있다.
도면에서는 광 감지 소자(50B, 50R)가 나란히 배열된 구조를 예시적으로 도시하였으나 이에 한정되지 않고 청색 광 감지 소자(50B)와 적색 광 감지 소자(50R)가 수직으로 적층되어 있을 수도 있다.
반도체 기판(310) 위에는 또한 금속 배선(도시하지 않음) 및 패드(도시하지 않음)가 형성되어 있다. 금속 배선 및 패드는 신호 지연을 줄이기 위하여 낮은 비저항을 가지는 금속, 예컨대 알루미늄(Al), 구리(Cu), 은(g) 및 이들의 합금으로 만들어질 수 있으나, 이에 한정되는 것은 아니다. 그러나 상기 구조에 한정되지 않고, 금속 배선 및 패드가 광 감지 소자(50B, 50R)의 하부에 위치할 수도 있다.
금속 배선 및 패드 위에는 하부 절연층(60)이 형성되어 있다. 하부 절연층(60)은 산화규소 및/또는 질화규소와 같은 무기 절연 물질 또는 SiC, SiCOH, SiCO 및 SiOF와 같은 저유전율(low K) 물질로 만들어질 수 있다. 하부 절연층(60)은 전하 저장소(55)를 드러내는 트렌치를 가진다. 트렌치는 충전재로 채워져 있을 수 있다.
하부 절연막(60) 위에는 색 필터 층(70)이 형성되어 있다. 색 필터 층(70)은 청색 화소에 형성되어 청색 광을 선택적으로 투과하는 청색 필터(70B)와 적색 화소에 형성되어 적색 광을 선택적으로 투과하는 적색 필터(70R)를 포함한다. 일 구현예에서 상기 청색 필터(70B)와 적색 필터(70R) 대신에 시안 필터(70C)와 옐로우 필터(70Y)가 배치될 수도 있다. 본 구현예에서는 녹색 필터를 구비하지 않은 예를 설명하지만, 경우에 따라 녹색 필터를 구비할 수도 있다.
색 필터 층(70)은 경우에 따라 생략될 수 있으며, 일 예로 청색 광 감지 소자(50B)와 적색 광 감지 소자(50R)가 수직으로 적층되어 있는 구조에서는 청색 광 감지 소자(50B)와 적색 광 감지 소자(50R)가 적층 깊이에 따라 각 파장 영역의 광을 선택적으로 흡수 및/또는 감지할 수 있으므로 색 필터 층(70)을 구비하지 않을 수도 있다.
색 필터 층(70) 위에는 상부 절연층(80)이 형성되어 있다. 상부 절연층(80)은 색 필터 층(70)에 의한 단차를 제거하고 평탄화한다. 상부 절연층(80) 및 하부 절연층(60)은 패드를 드러내는 접촉구(도시하지 않음)와 녹색 화소의 전하 저장소(55)를 드러내는 관통구(85)를 가진다.
상부 절연층(80) 위에는 전술한 광전 소자(100)가 형성되어 있다. 광전 소자(100)는 전술한 바와 같이 제1 전극(10), 활성층(30) 및 제2 전극(20)을 포함한다.
제1 전극(10)과 제2 전극(20)은 모두 투명 전극일 수 있으며, 활성층(30)은 전술한 바와 같다. 활성층(30)은 녹색 파장 영역의 광을 선택적으로 흡수 및/또는 감지할 수 있으며 녹색 화소의 색 필터를 대체할 수 있다.
제2 전극(20) 측으로부터 입사된 광은 활성층(30)에서 녹색 파장 영역의 빛이 주로 흡수되어 광전 변환될 수 있고 나머지 파장 영역의 빛은 제1 전극(10)을 통과하여 광 감지 소자(50B, 50R)에 센싱될 수 있다.
상기와 같이 녹색 파장 영역의 광을 선택적으로 흡수 및/또는 감지하는 광전 소자가 적층된 구조를 가짐으로써 이미지 센서의 크기를 줄여 소형화 이미지 센서를 구현할 수 있다.
또한 전술한 바와 같이 상기 화학식 1로 표현되는 화합물을 반도체 화합물로서 포함함으로써 박막 상태에서도 화합물들 사이의 응집이 발생하는 것을 방지하여 파장에 따른 흡광 특성을 유지할 수 있다. 이에 따라 녹색 파장 선택성을 그대로 유지할 수 있고 그에 따라 녹색 이외의 파장 영역의 광을 불필요하게 흡수하여 발생하는 크로스토크를 줄이고 감도를 높일 수 있다.
일 구현예에서, 도 4에서 추가의 컬러 필터가 광전 소자(100)위에 더 배치될 수 있다. 상기 추가의 컬러 필터는 청색 필터(70B)와 적색 필터(70R) 또는 시안 필터(70C)와 옐로우 필터(70Y)를 포함할 수 있다.
상기 컬러 필터가 광전 소자 위에 배치된 유기 CMOS 이미지 센서는 도 5에 도시되어 있다. 도 5는 일 구현예에 따른 유기 CMOS 이미지 센서(400)을 보인 단면도이다. 도 5를 참고하면, 유기 CMOS 이미지 센서(400)는 청색 필터(72B)와 적색 필터(72R)를 포함하는 컬러 필터 층(72)이 광전 소자(100) 위에 위치한 것을 제외하고 도 4와 동일한 구조를 가진다. 상기 청색 필터(72B)와 적색 필터(72R) 대신에 시안 필터(72C) 및 옐로우 필터(72Y)가 각각 배치될 수도 있다.
도 4와 도 5에서는 도 1의 광전 소자(100)를 포함하는 예를 도시하였지만 이에 한정되지 않고 도 2의 광전 소자(200)를 포함하는 경우에도 동일하게 적용할 수 있다. 도 6은 도 2의 광전 소자(200)을 적용한 유기 CMOS 이미지 센서(500)를 도시한 단면도이다.
도 7은 또 다른 구현예에 따른 유기 CMOS 이미지 센서를 개략적으로 도시한 단면도이다.
도 7을 참고하면, 본 구현예에 따른 유기 CMOS 이미지 센서(500)는 전술한 구현예와 마찬가지로 광 감지 소자(50B, 50R), 전송 트랜지스터(도시하지 않음) 및 전하 저장소(55)가 집적되어 있는 반도체 기판(310), 절연층(80) 및 광전 소자(100)를 포함한다.
그러나 본 구현예에 따른 유기 CMOS 이미지 센서(600)는 전술한 구현예와 달리, 청색 광 감지 소자(50B)와 적색 광 감지 소자(50R)가 적층되어 있고 색 필터 층(70)이 생략될 수 있다. 청색 광 감지 소자(50B)와 적색 광 감지 소자(50R)는 전하 저장소와 전기적으로 연결되어 있고 전송 트랜지스터(도시하지 않음)에 의해 전달될 수 있다. 청색 광 감지 소자(50B)와 적색 광 감지 소자(50R)는 적층 깊이에 따라 각 파장 영역의 광을 선택적으로 흡수 및/또는 감지할 수 있다.
상기와 같이 녹색 파장 영역의 광을 선택적으로 흡수 및/또는 감지하는 광전 소자가 적층된 구조를 가지고 적색 광 감지 소자와 청색 광 감지 소자가 적층된 구조를 가짐으로써 이미지 센서의 크기를 더욱 줄여 소형화 이미지 센서를 구현할 수 있다. 또한 전술한 바와 같이 광전 소자(100)는 녹색 파장 선택성을 높임으로써 녹색 이외의 파장 영역의 광을 불필요하게 흡수하여 발생하는 크로스토크를 줄이고 감도를 높일 수 있다.
도 7에서는 도 1의 광전 소자(100)를 포함하는 예를 도시하였지만 이에 한정되지 않고 도 2의 광전 소자(200)를 포함하는 경우에도 동일하게 적용할 수 있다.
도 8은 또 다른 구현예에 따른 유기 CMOS 이미지 센서를 개략적으로 도시한 개략도이다.
도 8을 참고하면, 본 구현예에 따른 유기 CMOS 이미지 센서는 녹색 파장 영역의 광을 선택적으로 흡수 및/또는 감지하는 녹색 광전 소자(G), 청색 파장 영역의 광을 선택적으로 흡수 및/또는 감지하는 청색 광전 소자(B) 및 적색 파장 영역의 광을 선택적으로 흡수 및/또는 감지하는 적색 광전 소자(R)가 적층되어 있는 구조이다.
도면에서는 적색 광전 소자(R), 청색 광전 소자(B) 및 녹색 광전 소자(G)가 차례로 적층된 구조를 도시하였지만, 이에 한정되지 않고 적층 순서는 다양하게 바뀔 수 있다.
상기 녹색 광전 소자(G)는 전술한 광전 소자(100) 또는 광전 소자(200)일 수 있고, 상기 청색 광전 소자(B)는 서로 마주하는 전극들과 그 사이에 개재되어 있는 청색 파장 영역의 광을 선택적으로 흡수하는 유기 물질을 포함하는 활성층을 포함할 수 있으며, 상기 적색 광전 소자(R)는 서로 마주하는 전극들과 그 사이에 개재되어 있는 적색 파장 영역의 광을 선택적으로 흡수하는 유기 물질을 포함하는 활성층을 포함할 수 있다.
상기와 같이 녹색 파장 영역의 광을 선택적으로 흡수 및/또는 감지하는 녹색 광전 소자(G), 청색 파장 영역의 광을 선택적으로 흡수 및/또는 감지하는 청색 광전 소자(B) 및 적색 파장 영역의 광을 선택적으로 흡수 및/또는 감지하는 적색 광전 소자(R)가 적층된 구조를 가짐으로써 이미지 센서의 크기를 더욱 줄여 소형화 이미지 센서를 구현할 수 있는 동시에 감도를 높이고 크로스토크를 줄일 수 있다.
상기 이미지 센서는 적절한 파장 영역의 흡수를 가짐으로써 적층형 구조를 가지면서도 감도(YSNR10)와 색 재현성(ΔE*ab)을 모두 개선할 수 있다.
여기에서 말하는 YSNR10이란 이미지 센서의 감도를 나타내는 수치이며 2007년 International Image Sensor Workshop(Ogunquit Maine, USA)의 개요집에 기재된 Juha Alakarhu의 "Image Sensors and Image Quality in Mobile Phones" 방법으로 측정된 수치이며, 시그널과 노이즈의 비가 10이 되는 최소 조도를 lux로 표현한 것이다. 따라서 YSNR10의 값은 작으면 작을수록 감도가 높다고 할 수 있다.
한편 색 재현성(ΔE*ab)은 X-Rite 차트의 표준색에 대해 어느 정도 차이가 있는지를 나타내는 수치이며 ΔE*ab는 CIE(국제조명위원회)가 1976년에 L*a*b* 색공간상의 2 점간의 거리를 나타내는 수치로 규정한 것이다. 예를 들어 상기 색차는 하기 수학식 1에 의하여 계산될 수 있다.
[수학식 1]
Figure pat00047
상기 수학식 1에서,
ΔL*는 상온(20 ℃ 내지 25 ℃)에서의 색 좌표 L*와 비교할 때 색 좌표 L*의 변화를 나타내고,
Δa*는 상온에서의 색 좌표 a*와 비교할 때 색 좌표 a*의 변화를 나타내며,
Δb*는 상온에서의 색 좌표 b*와 비교할 때 색 좌표 b*의 변화를 나타낸다.
고감도와 색재현성이 높은 이미지 센서를 만들기 위해서는 ΔE*ab≤3에서 YSNR10≤100 lux 이하일 필요가 있는데 상기 화합물을 사용할 경우 ΔE*ab≤3에서 YSNR10≤100 lux의 감도와 색재현성을 구현할 수 있다.
상기 이미지 센서는 다양한 전자 장치에 적용될 수 있으며, 예컨대 모바일 폰, 디지털 카메라 등에 적용될 수 있으나 이에 한정되는 것은 아니다.
도 9는 일 구현예에 따른 이미지 센서를 포함하는 디지털 카메라의 블록 다이어그램이다.
도 9를 참고하면, 디지털 카메라(1000)는 렌즈(1010), 이미지 센서(1020), 모터 유닛(1030) 및 엔진 유닛(1040)을 포함한다. 상기 이미지 센서(1020)는 상기 도 3 내지 도 8에 도시된 구현예들에 따른 이미지 센서중 어느 하나일 수 있다.
상기 렌즈(1010)는 입사광을 이미지 센서(1020)에 집광한다. 상기 이미지 센서(1020)는 렌즈(1010)을 통하여 수광된 빛에 대하여 RGB 데이터를 생성한다.
일부 구현예에서, 상기 이미지 센서(1020)는 엔진 유닛(1040)과 인터페이스할 수 있다.
상기 모터 유닛(1030)은 렌즈(1010)의 촛점을 조절하거나 엔진 유닛(1040)으로부터 받은 콘트롤 신호에 대응하여 셔터를 조절할 수 있다. 상기 엔진 유닛(1040)은 이미지 센서(1020)와 모터 유닛(1030)을 조절할 수 있다.
상기 엔진 유닛(1040)은 호스트/어플리케이션(1050)에 연결될 수 있다.
이하 실시예를 통하여 상술한 구현예를 보다 상세하게 설명한다. 다만 하기의 실시예는 단지 설명의 목적을 위한 것이며 범위를 제한하는 것은 아니다.
합성예 1: 하기 화학식 1-1로 표현되는 화합물의 합성
[화학식 1-1]
Figure pat00048
[반응식 1-1]
Figure pat00049
(i) 화합물 (1)의 합성
1-아이오도-2-니트로벤젠(1-iodo-2-nitrobenzene) 2.5 g (10.0 mmol), 셀레노펜-3-일 보론산(selenophene-3-yl boronic acid) 2.28 g (13 mmol) 및 테트라키스(트리페닐포스핀)팔라듐(0)(tetrakis(triphenylphosphine)palladium(0)) 0.58 g (0.5 mmol)을 디메틸포름아미드(DMF) 50 ml와 물 50 ml에 녹인 후, 90 ℃에서 12시간 반응시킨다. 상온(24 ℃)에서 디메틸이써(diethyl ether)로 추출 후, 얻어진 생성물을 실리카겔 칼럼 크로마토그래피에 의해 분리 정제(에틸 아세테이트 : 헥산=1:8 부피비)하여 화합물 (1) 2.2g (수율 87.3%)을 얻는다.
(ii) 화합물 (2)의 합성
3-(2-니트로페닐)셀레노펜(3-(2-nitrophenyl)selenophene) 5.0g (19.8 mmol)을 250 ml의 dry THF에 녹이고, 0 ℃로 냉각시킨 후 PhMgBr (1.0M in THF solution) 19.19ml (59.5 mmol)을 천천히 drop하여 첨가한다. 10분에 걸쳐 첨가하는 동안 내부 용액의 온도가 3 ℃를 넘기지 않도록 유의한다. 0 ℃에서 5분간 반응시킨 후, NH4Cl 포화 용액 50 ml을 넣는다. 500 ml의 물을 넣고, 유기층을 염화나트륨 수용액(aqueous sodium chloride solution)로 세정(wash)한 후, 에틸 아세테이트로 3회 추출하여 무수 황산마그네슘(magnesium sulfate anhydrous)를 넣어 건조시킨다. 얻어진 생성물을 실리카겔 칼럼 크로마토그래피에 의해 분리 정제(에틸 아세테이트 : 헥산=1:5 부피비)하여 8H-셀레노페노[2,3-b]인돌(8H-selenopheno[2,3-b]indole, 화합물 (2)) 3.5g (수율 80.2%)을 얻는다.
(iii) 화합물 (3)의 합성
8H-셀레노페노[2,3-b]인돌 3.0g (13.6 mmol)과 수산화 칼륨(potassium hydroxide) 7.65 g (136.3 mmol)를 50 ml의 디메틸 설폭사이드(dimethyl sulfoxide)에 녹인 후, 아이오도메탄(iodomethane) 13.2 g (40.9 mmol)을 적하한다. 30 ℃에서 5시간 동안 교반한다. 250 ml의 물에 넣고, 디클로로메탄(dichloromethane)으로 추출한다. 무수 황산마그네슘(magnesium sulfate anhydrous)를 넣어 건조시킨 후, 실리카겔 칼럼 크로마토그래피에 의해 분리정제 (헥산 : 다이클로메탄=5:1의 부피비)하여 8-메틸-8H-셀레노페노[2,3-b]인돌(8-methyl-8H-selenopheno[2,3-b]indole, 화합물 (3)) 2.80 g (수율 87.7%)을 얻는다.
(iv) 화합물 (4)의 합성
15.0 ml의 N,N-다이메틸포름아마이드(N,N-dimethylformamide)에 2.4 ml의 염화포스포릴(phosphoryl chloride)를 -15 ℃에서 적하한 후 상온(24 ℃)에서 2시간 동안 교반한다. 이를 100 ml의 디클로로메탄(dichloromethane)과 1.3 g의 화합물 (3)를 섞은 것에 -15 ℃에서 천천히 적하한 후 상온에서 30분간 교반하고 감압 농축한다. 여기에 150 ml의 물을 추가하고 pH 값이 14가 될 때까지 수산화나트륨 수용액(aqueous sodium hydroxide solution)을 추가한 후 상온(24 ℃)에서 2시간 교반한다. 디클로로메탄(dichloromethane)으로 추출한 유기층을 염화나트륨 수용액(aqueous sodium chloride solution)로 세정(wash)한 후 무수 황산마그네슘(magnesium sulfate anhydrous)을 넣어 건조시킨다. 얻어진 생성물을 실리카겔 칼럼 크로마토그래피에 의해 분리정제 (헥산 : 에틸 아세테이트=4:1의 부피비)하여 8-메틸―8H-셀레노페노[2,3-b]인돌-2-카브알데히드(8-methyl―8H-selenopheno[2,3-b]indole-2-carbaldehyde, 화합물 (4)) 1.4 g (수율 76.9%)을 얻는다.
(iv) 화합물 (5)의 합성
얻어진 화합물 (4) 0.75 g (2.86 mmol)을 에탄올에 현탁시키고, 여기에 1H-시클로펜타[b]나프탈렌-1,3(2H)-다이온(1H-cyclopenta[b]naphthalene-1,3(2H)-dione) 0.59 g (3.00 mmol)을 첨가하여, 50 ℃에서 2시간 반응시켜 최종 화합물 (5) 1.05 g (수율 83.4%)을 얻는다. 얻어진 화학식 1-1로 표현되는 화합물 (5)을 승화 정제하여 순도 99.9%까지 정제한다.
1H-NMR (500 MHz, Methylene Chloride-d 2): δ 8.8 (d,-2H), 8.3(s, 1H), 8.2(m, 2H), 8.0(d, 1H), 7.8(m,2H), 7.5(m, 2H), 7.2(d, 1H), 6.7(s, 1H), 3.7(s, 3H).
합성예 2: 하기 화학식 1-2로 표현되는 화합물의 합성
[화학식 1-2]
Figure pat00050
[반응식 1-2]
Figure pat00051
(i) 화합물 (1)의 합성
디페닐아민(diphenylamine) (4.07 g, 24.0 mmol), 팔라듐(II) 아세테이트(palladium(II) acetate) (135 mg, 0.6 mmol), 트리시클로헥실포스핀(tricyclohexylphosphine) (336 mg, 1.2 mmol), 소듐 tert-부톡사이드(sodium tert-butoxide) (4.62g, 48.0 mmol), 2,3-디브로모셀레노펜(2,3-dibromoselenophene) (3.47 g, 12.0 mmol)을 톨루엔 300ml에 녹인 후, 질소 환경 하에 110 ℃에서 20시간 반응시킨다. 상온에서 디클로로메탄(dichloromethane)으로 추출 후, 얻어진 생성물을 MgSO4로 건조시키고 실리카겔 칼럼 크로마토그래피에 의해 분리 정제(디클로로메탄 : 헥산=1:9 부피비)하여 화합물 (1) 2.06g (수율 58%)을 얻는다.
(ii) 화합물 (2)의 합성
18.0 ml의 N,N-다이메틸포름아마이드(N,N-dimethylformamide)에 2.9 ml의 염화포스포릴(phosphoryl chloride)를 -15 ℃에서 적하한 후 상온(24 ℃)에서 2시간 동안 교반한다. 이를 120 ml의 디클로로메탄(dichloromethane)과 2.0 g의 화합물 (1)을 섞은 것에 -15 ℃에서 천천히 적하한 후 상온에서 30분간 교반하고 감압 농축한다. 여기에 200 ml의 물을 추가하고 pH 값이 14가 될 때까지 수산화나트륨 수용액(aqueous sodium hydroxide solution)을 추가한 후 상온에서 2시간 교반한다. 디클로로메탄(dichloromethane)으로 추출한 유기층을 염화나트륨 수용액(aqueous sodium chloride solution)로 세정(wash)한 후 무수 황산마그네슘(magnesium sulfate anhydrous)을 넣어 건조시킨다. 얻어진 생성물을 실리카겔 칼럼 크로마토그래피에 의해 분리정제 (헥산 : 에틸 아세테이트=4:1의 부피비)하여 8-페닐-8H-셀레노페노[2,3-b]인돌-2-카브알데히드(8-phenyl-8H-selenopheno[2,3-b]indole-2-carbaldehyde, 화합물 (2)) 1.98 g (수율 88.0%)을 얻는다.
(iii) 화합물 (3)의 합성
얻어진 화합물 (2) 0.98 g (3.02 mmol)을 에탄올에 현탁시키고, 여기에 1H-시클로펜타[b]나프탈렌-1,3(2H)-다이온 0.65 g (3.32 mmol)을 첨가하여, 50 ℃에서 2시간 반응시켜 최종 화합물 (5) 1.25 g (수율 82.2%)을 얻는다. 얻어진 화합물 (3)을 승화 정제하여 순도 99.9%까지 정제한다.
1H-NMR (500 MHz, Methylene Chloride-d 2): δ 8.8 (d, 2H), 8.3(s, 1H), 8.4(t, 1H), 8.2 (t, 2H), 7.8 (m, 2H), 7.6 (m, 6H), 7.3 (t, 2h), 6.7(s, 1H).
비교합성예 1: 하기 화학식 2-1로 표현되는 화합물의 합성
[화학식 2-1]
Figure pat00052
[반응식 2-1]
Figure pat00053
(i) 화합물 (1)의 합성
1-아이오도-2-니트로벤젠 2.5g (10.0 mmol), 티오펜-3-일 보론산 (thiophene-3-yl boronic acid) 1.67g (13 mmol) 및 테트라키스(트리페닐포스핀)팔라듐(0) 0.58 g (0.5 mmol)을 DMF 50ml와 물 50ml에 녹인 후, 90 ℃에서 12시간 반응시킨다. 상온에서 디메틸이써(diethyl ether)로 추출 후, 얻어진 생성물을 실리카겔 칼럼 크로마토그래피에 의해 분리 정제(에틸 아세테이트 : 헥산=1:8 부피비)하여 화합물 (1) 1.82 g (수율 88.6%)을 얻는다.
(ii) 화합물 (2)의 합성
3-(2-니트로페닐)티오펜(3-(2-nitrophenyl)thiophene) 4.0g (19.5 mmol)을 250ml의 dry THF에 녹이고, 0 ℃로 냉각시킨 후 PhMgBr (1.0M in THF solution) 18.9ml (59.5 mmol)을 천천히 drop하여 첨가한다. 10분에 걸쳐 첨가하는 동안 내부 용액의 온도가 3 ℃를 넘기지 않도록 유의한다. 0 ℃에서 5분간 반응시킨 후, NH4Cl 포화 용액 50ml을 넣는다. 500ml의 물을 넣고, 유기층을 염화나트륨 수용액(aqueous sodium chloride solution)로 세정(wash)한 후, 에틸 아세테이트로 3회 추출하여 무수 황산마그네슘(magnesium sulfate anhydrous)를 넣어 건조시킨다. 얻어진 생성물을 실리카겔 칼럼 크로마토그래피에 의해 분리 정제(에틸 아세테이트 : 헥산=1:5 부피비)하여 8H-티에노[2,3-b]인돌(8H-thieno[2,3-b]indole, 화합물 (2)) 2.88g (수율 85.2%)을 얻는다.
(iii) 화합물 (3)의 합성
8H-티에노[2,3-b]인돌 2.5g (14.4 mmol)과 수산화 칼륨 8.10g (144.3 mmol)를 50ml의 디메틸 설폭사이드(dimethyl sulfoxide)에 녹인 후, 아이오도메탄(iodomethane) 6.13g (43.2 mmol)을 적하한다. 30 ℃에서 5시간 동안 교반한다. 250 ml의 물에 넣고, 디클로로메탄(dichloromethane)으로 추출한다. 무수 황산마그네슘(magnesium sulfate anhydrous)를 넣어 건조시킨 후, 실리카겔 칼럼 크로마토그래피에 의해 분리정제 (헥산 : 다이클로메탄=5:1의 부피비)하여 8-메틸-8H-티에노[2,3-b]인돌(8-methyl-8H-thieno[2,3-b]indole, 화합물 (3)) 2.29g (수율 85.2%)을 얻는다.
(iv) 화합물 (4)의 합성
15.0 ml의 N,N-다이메틸포름아마이드(N,N-dimethylformamide)에 2.4 ml의 염화포스포릴(phosphoryl chloride)를 -15 ℃에서 적하한 후 상온에서 2시간 동안 교반한다. 이를 100 ml의 디클로로메탄(dichloromethane)과 1.0 g의 화합물 (3)를 섞은 것에 -15 ℃에서 천천히 적하한 후 상온에서 30분간 교반하고 감압 농축한다. 여기에 150 ml의 물을 추가하고 pH 값이 14가 될 때까지 수산화나트륨 수용액(aqueous sodium hydroxide solution)을 추가한 후 상온(24 ℃)에서 2시간 교반한다. 디클로로메탄(dichloromethane)으로 추출한 유기층을 염화나트륨 수용액(aqueous sodium chloride solution)로 세정(wash)한 후 무수 황산마그네슘(magnesium sulfate anhydrous)을 넣어 건조시킨다. 얻어진 생성물을 실리카겔 칼럼 크로마토그래피에 의해 분리정제 (헥산 : 에틸 아세테이트=4:1의 부피비)하여 8-메틸―8H-셀레노페노[2,3-b]인돌-2-카브알데히드 (화합물 (4)) 1.12 g (수율 98.0%)을 얻는다.
(iv) 화합물 (5)의 합성
얻어진 화합물 (4) 0.7 g (3.25 mmol)을 에탄올에 현탁시키고, 여기에 1H-시클로펜타[b]나프탈렌-1,3(2H)-다이온 0.70 g (3.58 mmol)을 첨가하여, 50 ℃에서 2시간 반응시켜 최종 화합물 (5) 1.08 g (수율 84.7%)을 얻는다. 얻어진 화학식 2-1로 표현되는 화합물 (5)을 승화 정제하여 순도 99.9%까지 정제한다.
1H-NMR (500 MHz, Methylene Chloride-d 2): δ 8.8 (d, 2H), 8.5(s, 1H), 8.2(m, 2H), 8.1(d, 1H), 7.9(s, 1H), 7.8(m,2H), 7.6(d, 1H), 7.3(m, 2H), 3.7(s, 3H).
비교합성예 2: 하기 화학식 2-2로 표현되는 화합물의 합성
[화학식 2-2]
Figure pat00054
[반응식 2-2]
Figure pat00055
(i) 화합물 (1)의 합성
디페닐아민(diphenylamine) (4.07 g, 24.0 mmol), 팔라듐(II) 아세테이트 (135 mg, 0.6 mmol), 트리시클로헥실포스핀 (336 mg, 1.2 mmol), sodium tert-butoxide (4.62g, 48.0 mmol), 2,3-디브로모티오펜(2,3-dibromothiophene) (2.90 g, 12.0 mmol)을 톨루엔 300ml에 녹인 후, 질소 환경 하에 110 ℃에서 20시간 반응시킨다. 상온에서 디클로로메탄(dichloromethane)으로 추출 후, 얻어진 생성물을 MgSO4로 건조시키고 실리카겔 칼럼 크로마토그래피에 의해 분리 정제(디클로로메탄 : 헥산=1:9 부피비)하여 화합물 (1) 1.86g (수율 62%)을 얻는다.
(ii) 화합물 (2)의 합성
15.0 ml의 N,N-다이메틸포름아마이드(N,N-dimethylformamide)에 2.5 ml의 염화포스포릴(phosphoryl chloride)를 -15 ℃에서 적하한 후 상온(24 ℃)에서 2시간 동안 교반한다. 이를 100 ml의 디클로로메탄(dichloromethane)과 1.8 g의 화합물 (1)을 섞은 것에 -15 ℃에서 천천히 적하한 후 상온에서 30분간 교반하고 감압 농축한다. 여기에 150 ml의 물을 추가하고 pH 값이 14가 될 때까지 수산화나트륨 수용액(aqueous sodium hydroxide solution)을 추가한 후 상온(24 ℃)에서 2시간 교반한다. 디클로로메탄(dichloromethane)으로 추출한 유기층을 염화나트륨 수용액(aqueous sodium chloride solution)로 세정(wash)한 후 무수 황산마그네슘(magnesium sulfate anhydrous)을 넣어 건조시킨다. 얻어진 생성물을 실리카겔 칼럼 크로마토그래피에 의해 분리정제 (헥산 : 에틸 아세테이트=4:1의 부피비)하여 8-페닐-8H-티에노[2,3-b]인돌-2-카브알데히드(8-phenyl-8H-thieno[2,3-b]indole-2-carbaldehyde, 화합물 (2)) 1.80 g (수율 90.0%)을 얻는다.
(iii) 화합물 (3)의 합성
얻어진 화합물 (2) 1.00 g (3.61 mmol)을 에탄올에 현탁시키고, 여기에 1H-시클로펜타[b]나프탈렌-1,3(2H)-다이온 0.78 g (3.97 mmol)을 첨가하여, 50 ℃에서 2시간 반응시켜 최종 화합물 (3) 1.40 g (수율 85.2%)을 얻는다. 얻어진 화학식 2-2로 표현되는 화합물 (3)을 승화 정제하여 순도 99.9%까지 정제한다.
1H-NMR (500 MHz, Methylene Chloride-d 2): δ 8.8 (d, 2H), 8.5(s, 1H), 8.6(t, 1H), 8.2 (t, 2H), 7.9(m, 2H), 7.8 (m, 2H), 7.6(m, 5H), 7.4 (t, 1h), 7.2 (t, 1H)
실시예 1: 광전 소자의 제작
유리 기판 위에 ITO를 스퍼터링으로 적층하여 약 150 nm 두께의 애노드를 형성하고 그 위에 합성예 1에 따른 화학식 1-1로 표현되는 화합물(p형 반도체 화합물)과 C60(n형 반도체 화합물)을 1:1 부피비로 공증착하여 100 nm 두께의 활성층을 형성한다. 그 위에 전하 보조층으로 몰리브덴 산화물(MoOx, 0<x≤3) 박막을 10 nm 두께로 적층한다. 이어서 몰리브덴 산화물 박막 위에 ITO를 스퍼터링으로 적층하여 7 nm 두께의 캐소드를 형성하여 광전 소자를 제작한다.
실시예 2, 비교예 1 및 비교예 2: 광전 소자의 제작
상기 합성예 1의 화합물 대신 합성예 2, 비교합성예 1 및 비교합성예 2에 따른 화합물을 각각 사용한 것을 제외하고 실시예 1과 동일한 방법으로 실시예 2, 비교예 1 및 비교예 2에 따른 광전 소자를 제작한다.
평가 1: 화합물의 흡광 특성
합성예 1, 합성예 2 및 비교합성예 2에 따른 화합물의 파장에 따른 흡광 특성(최대 흡수 파장 및 반치폭)을 평가한다. 합성예 1, 합성예 2 및 비교합성예 2에 따른 각각의 화합물(p형 반도체 화합물)과 C60(n형 반도체 화합물)을 1:1 부피비로 공증착하여 100 nm 두께의 박막을 형성한 후 각각의 박막에 대하여 Cary 5000 UV spectroscopy (Varian 사 제조)를 사용하여 자외선-가시광선(UV-Vis) 영역에서 흡광 특성을 평가한다.
화합물 λmax (nm) FWHM (nm)
합성예 1 520 150
합성예 2 510 150
비교합성예 2 490 175
표 1을 참고하면, 합성예 1 및 2에 따른 화합물은 510 nm 이상에서 최대 흡수 파장(λmax)을 보이고 반치폭도 낮은 것으로 나타났다. 따라서 합성예 1 및 2에 따른 화합물이 녹색 파장 영역에서 높은 파장 선택성을 가짐을 확인할 수 있다. 이에 비하여 비교합성예 2에 따른 화합물은 녹색 파장 영역을 벗어나는 영역에서 최대 흡수 파장을 보이고 반치폭도 증가하였다.
평가 2: 화합물의 에너지 레벨 및 밴드갭
합성예 1 및 합성예 2에 따른 화합물에 대하여 AC-3 photoelectron spectrophotometer (RIKEN KEIKI) 장비를 이용하여 HOMO 에너지 레벨을 측정하고, LUMO 에너지 레벨은 Cary 5000 UV spectroscopy (Varian 사 제조)를 이용하여 밴드갭을 구하고 이를 이용하여 LUMO 에너지 레벨을 계산한다. 그 결과를 표 2에 기재한다.
화합물 HOMO (eV) LUMO (eV) 밴드갭 (eV)
합성예 1 -6.03 -3.11 -2.92
합성예 2 -5.95 -3.13 -2.82
표 2를 참고하면, 합성예 1과 합성예 2에 따른 화합물은 p형 반도체 화합물로 적용될 수 있음을 알 수 있다.
평가 3: 화합물의 애스팩트 비
합성예 1과 합성예 2에 따른 화합물에 대하여 Dihedral Functional Theory (DFT) 계산을 통해 에너지적으로 최적화된 구조의 분자 골격을 계산하고, 해당 분자 골격에서 가장 긴 길이인 장축(x) 길이와 가장 짧은 길이인 단축(z) 길이의 값을 측정하여 단축/장축길이의 비(z/x)를 계산하여 애스팩트 비로 하였다. 그 결과를 표 3에 기재한다.
화합물 애스팩트 비(z/x)
합성예 1 0.213
합성예 2 0.304
표 3을 참고하면, 합성예 1과 합성예 2에 따른 화합물의 낮은 애스팩트 비를 가지므로 이들 화합물이 평면성을 유지함을 알 수 있다.
평가 4: 화합물의 열안정성
합성예 1 및 합성예 2에 따른 화합물의 열안정성을 평가하기 위하여 10 Pa에서 10 중량% 분해되는 온도(Ts10, 증착온도) 및 10 Pa에서 50 중량% 분해되는 온도(Ts50, 증착온도)를 측정한다. 상기 증착온도는 열중량 분석(thermal gravimetric analysis, TGA) 방법으로 측정한다. 그 결과를 표 4에 기재한다.
Tm(℃) Ts10 (10중량%, 10 Pa)(℃) Ts50 (50중량%, 10 Pa)(℃) △T
(Tm-Ts)
(℃)
합성예 1 306 250 280 30
합성예 2 325 262 298 36
진공 증착에 의하여 제막하는 경우 화합물의 융점이 진공 증착시의 증착 온도보다 낮으면 화합물의 분해와 동시에 기화가 진행되어 막을 형성하기 어렵다. 따라서 화합물의 융점이 증착온도보다 큰 것이 바람직하다. 표 4를 참고하면, 상기 합성예 1 및 2에 따른 화합물의 융점은 증착온도보다 30 ℃ 이상 큰 것으로 나타났다. 이로부터 합성예 1 및 합성예 2에 따른 화합물은 융점과 증착온도의 차이가 커서 공정안정성을 확보하기에 유리함을 알 수 있다.
평가 5: 광전 소자의 전하 이동도
광전 소자의 전하 이동도를 평가하기 위하여 TOF mobility를 측정한다. 실시예 1, 실시예 2 및 비교예 2에 따른 광전 소자에 광원(light source)은 PTI(Photon Technology International GL-3300, N2 laser, 337 nm)를 사용하고, storage oscilloscope(1 GHz)를 사용하여 TOF mobility를 측정한다. 그 결과를 표 5에 기재한다.
광전 소자 TOF mobility (cm2/ V·sec)
실시예 1 7.2X10-4
실시예 2 2.4X10-4
비교예 2 2.0X10-4
표 5를 참고하면, 합성예 1 및 합성예 2의 화합물을 포함하는 실시예 1 및 실시예 2에 따른 광전 소자가 비교합성예 2에 따른 화합물을 포함하는 비교예 2에 따른 광전 소자에 비하여 우수한 이동도를 보임을 알 수 있다.
평가 6: 광전 소자의 외부 양자 효율
실시예 1, 실시예 2, 비교예 1 및 비교예 2에 따른 광전 소자의 외부 양자 효율(EQE)을 평가한다. 외부 양자 효율은 IPCE measurement system (McScience사, 한국) 설비를 이용하여 측정한다. 먼저, Si 광 다이오드 (Hamamatsu사, 일본)를 이용하여 설비를 보정(calibration)한 후 실시예 1, 실시예 2, 비교예 1 및 비교예 2에 따른 광전 소자를 설비에 장착하고 파장범위 약 350 nm 내지 750 nm 영역에서 측정한다.
또한 실시예 1, 실시예 2, 비교예 1 및 비교예 2에 따른 광전 소자를 각각 160 ℃에서 3시간 및 170 ℃에서 3시간 열처리한 후 파장범위 약 350 nm 내지 약 750 nm 영역에서 상기 설비를 이용하여 외부 양자 효율을 측정한다.
이중 실시예 1, 실시예 2 및 비교예 2의 결과를 표 6에 기재한다. 표 6에서 외부 양자 효율은 -3V 전압을 인가하였을 때 최대 흡광 파장에 있어서의 측정된 값이다.
소자 EQE (%) at -3V
열처리 안함 160 ℃ (3h) 170 ℃ (3h)
실시예 1 56 56 57
실시예 2 42 42 40
비교예 2 35 32 24
표 6을 참고하면, 실시예 1 및 실시예 2의 광전 소자가 비교예 2에 따른 광전 소자에 비하여 상온(무열처리)에서뿐만 아니라 고온 열처리 후에도 우수한 외부 양자 효율을 보임을 알 수 있다.
평가 8: 광전 소자의 응답 시간
실시예 1, 실시예 2, 비교예 1 및 비교예 2에 따른 광전 소자의 응답시간(response time, lag time)을 평가한다. 상기 응답시간은 실시예 1, 실시예 2, 비교예 1 및 비교예 2에 따른 광전 소자를 170 ℃에서 3시간 열처리한 후 상기 광전 소자에 중심파장 530 nm의 LED 빛을 상부 전극(캐소드)측에서 입사하고, 상기 광전 소자에 3V/100nm의 전계강도로 인가하고, 입사한 LED 빛을 끄고 0.1초 후에 잔상전류값을 측정하여 평가하였다.
실시예 1, 비교예 1 및 비교예 2의 그 결과를 표 7에 기재한다.
Lag time @10 μW/cm2 (ms)
실시예 1 280
비교예 1 464
비교예 2 579
표 7을 참고하면, 실시예 1에 따른 광전 소자는 비교예 1과 비교예 2에 따른 광전 소자에 비하여 고온 열처리 후에도 빠른 응답 속도를 보임을 알 수 있다.
이상에서 실시예들에 대하여 상세하게 설명하였지만 실제 구현되는 구조는 이에 한정되는 것이 아니고 다음의 청구 범위에서 정의하고 있는 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 권리 범위에 속하는 것이다.
10: 제1 전극 20: 제2 전극
30: 활성층 40, 45: 전하 보조층
100, 200: 광전 소자 300, 400, 500: 유기 CMOS 이미지 센서
310: 반도체 기판 70B, 72B: 청색 필터 70R, 72R: 적색 필터
70, 72: 색 필터 층 85: 관통구
60: 하부 절연층 80: 상부 절연층
50B, 50R: 광 감지 소자 55: 전하 저장소

Claims (19)

  1. 하기 화학식 1로 표현되는 화합물:
    [화학식 1]
    Figure pat00056

    Ar1은 치환 또는 비치환된 C6 내지 C30 아렌기 및 치환 또는 비치환된 C3 내지 C30 헤테로아렌기에서 선택되고,
    Ar2은 C=O, C=S, C=Se 및 C=Te에서 선택되는 적어도 하나의 작용기를 가지는 치환 또는 비치환된 C6 내지 C30 탄화수소 고리기, C=O, C=S, C=Se 및 C=Te에서 선택되는 적어도 하나의 작용기를 가지는 치환 또는 비치환된 C6 내지 C30 헤테로고리기 또는 이들의 융합고리이고,
    X는 O, Se, Te, SiRaRb 및 GeRcRd에서 선택되고(여기에서 Ra, Rb, Rc 및 Rd 는 각각 독립적으로 수소, 중수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택되고, 이들은 독립적으로 존재하거나 Ra 및 Rb 또는 Rc 및 Rd가 서로 연결되어 스피로 구조를 형성함),
    R1 내지 R3는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 아실기, 할로겐, 시아노기(-CN), 시아노 함유기, 니트로기, -SiRaRbRc (여기에서 Ra, Rb 및 Rc는 각각 독립적으로 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨) 및 이들의 조합에서 선택된다.
  2. 제1항에서,
    상기 화학식 1에서, R1은 치환 또는 비치환된 C1 내지 C30 알킬기 또는 치환 또는 비치환된 C6 내지 C30 아릴기인, 화합물.
  3. 제1항에서,
    상기 화학식 1에서, Ar1은 치환 또는 비치환된 벤젠, 치환 또는 비치환된 나프탈렌, 치환 또는 비치환된 인덴(indene), 치환 또는 비치환된 안트라센(anthracene), 치환 또는 비치환된 페난트렌(phenanthrene), 치환 또는 비치환된 플루오렌(fluorene) 또는 치환 또는 비치환된 아세나프틸렌(acenaphthylnee)인, 화합물.
  4. 제1항에서,
    상기 화학식 1에서, Ar1은 치환 또는 비치환된 피리딘, 치환 또는 비치환된 피리미딘, 치환 또는 비치환된 피라진, 치환 또는 비치환된 인돌, 치환 또는 비치환된 퀴놀린, 치환 또는 비치환된 이소퀴놀린, 치환 또는 비치환된 퀴녹살린, 치환 또는 비치환된 퀴나졸린, 치환 또는 비치환된 카바졸, 치환 또는 비치환된 페나진, 또는 치환 또는 비치환된 페난트롤린인, 화합물.
  5. 제1항에서,
    상기 화학식 1에서, X는 Se 및 Te중 하나인, 화합물.
  6. 제1항에서,
    상기 Ar2는 하기 화학식 3으로 표현되는 고리기인, 화합물:
    [화학식 3]
    Figure pat00057

    상기 화학식 3에서,
    Ar'은 치환 또는 비치환된 C6 내지 C30 아릴기 및 치환 또는 비치환된 C3 내지 C30 헤테로아릴기에서 선택되고,
    Z1은 O, S, Se 및 Te에서 선택되고,
    Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이다.
  7. 제1항에서,
    상기 화학식 1에서, Ar2는 하기 화학식 4A 내지 화학식 4F중 어느 하나로 표현되는 고리기인, 화합물:
    [화학식 4A]
    Figure pat00058

    상기 화학식 4A에서,
    Z1은 O, S, Se 및 Te에서 선택되고,
    Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이고,
    Z3는 N 및 CRc에서 선택되고(여기에서 Rc는 수소, 중수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨),
    R11, R12, R13, R14 및 R15는 동일하거나 상이하며 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐, 시아노기(-CN), 시아노 함유기 및 이들의 조합에서 선택되거나 또는 R12과 R13 및 R14과 R15는 각각 독립적으로 존재하거나 서로 연결되어 융합된 방향족 고리를 형성할 수 있고,
    n은 0 또는 1이고,
    *는 결합 위치를 나타내고,
    [화학식 4B]
    Figure pat00059

    상기 화학식 4B에서,
    Z1은 O, S, Se 및 Te에서 선택되고,
    Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이고,
    Y1는 O, S, Se, Te 및 C(Ra)(CN)(여기에서 Ra는 수소, 시아노기(-CN) 및 C1 내지 C10 알킬기에서 선택됨)에서 선택되고,
    R11 및 R12는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐, 시아노기(-CN) 및 이들의 조합에서 선택되고,
    *는 결합 위치를 나타내고,
    [화학식 4C]
    Figure pat00060

    상기 화학식 4C에서,
    Z1은 O, S, Se 및 Te에서 선택되고,
    Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이고,
    R11, R12 및 R13은 동일하거나 상이하며 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐, 시아노기(-CN) 및 이들의 조합에서 선택되고,
    *는 결합 위치를 나타내고,
    [화학식 4D]
    Figure pat00061

    상기 화학식 4D에서,
    Z1은 O, S, Se 및 Te에서 선택되고,
    Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이고,
    Z3는 N 및 CRc에서 선택되고(여기에서 Rc는 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨),
    G1은 O, S, Se, Te, SiRxRy 및 GeRzRw에서 선택되고, 여기서 Rx, Ry, Rz 및 Rw는 동일하거나 상이하며 각각 독립적으로 수소, 할로겐, 치환 또는 비치환된 C1 내지 C10 알킬기 및 치환 또는 비치환된 C6 내지 C10 아릴기에서 선택되고,
    R11, R12 및 R13은 동일하거나 상이하며 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐, 시아노기, 시아노 함유기 및 이들의 조합에서 선택되고, R12 및 R13은 독립적으로 존재하거나 서로 연결되어 융합된 방향족 고리를 형성할 수 있고,
    n은 0 또는 1이고,
    *는 결합 위치를 나타내고,
    [화학식 4E]
    Figure pat00062

    상기 화학식 4E에서,
    Z1은 O, S, Se 및 Te에서 선택되고,
    Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이고,
    Z4는 NRa, CRbRc, O, S, Se, Te, S(=O), S(=O)2, SiRdRe 및 GeRfRg에서 선택되고(여기에서 여기에서 Ra, Rb, Rc, Rd, Re, Rd, Re, Rf 및 Rg는 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨),
    G2은 O, S, Se, Te, SiRxRy 및 GeRzRw에서 선택되고, 여기서 Rx, Ry, Rz 및 Rw는 동일하거나 상이하며 각각 독립적으로 수소, 할로겐, 치환 또는 비치환된 C1 내지 C10 알킬기 및 치환 또는 비치환된 C6 내지 C10 아릴기에서 선택되고,
    R11, R12 및 R13은 동일하거나 상이하며 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐, 시아노기, 시아노 함유기 및 이들의 조합에서 선택되고,
    *는 결합 위치를 나타내고,
    [화학식 4F]
    Figure pat00063

    상기 화학식 4F에서,
    Z1은 O, S, Se 및 Te에서 선택되고,
    Z2는 O, S, Se, Te 및 CRaRb에서 선택되고, 여기서 Ra 및 Rb는 각각 독립적으로 수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 시아노기 또는 시아노 함유기이고, Z2이 CRaRb인 경우 Ra 및 Rb중 적어도 하나는 시아노기 또는 시아노 함유기이고,
    R11는 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C4 내지 C30 헤테로아릴기, 할로겐, 시아노기(-CN), 시아노 함유기 및 이들의 조합에서 선택되고,
    G3는 O, S, Se, Te, SiRxRy 및 GeRzRw에서 선택되고, 여기서 Rx, Ry, Rz 및 Rw는 동일하거나 상이하며 각각 독립적으로 수소, 할로겐, 치환 또는 비치환된 C1 내지 C10 알킬기 및 치환 또는 비치환된 C6 내지 C10 아릴기에서 선택된다.
  8. 제1항에서,
    상기 화학식 1의 화합물은 하기 화학식 5A 또는 5B로 표현되는 화합물중 어느 하나인, 화합물:
    [화학식 5A]
    Figure pat00064

    상기 화학식 5A에서,
    Ar2, X, 및 R1 내지 R3는 화학식 1에서와 동일하고,
    Rx는 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 아실기, 할로겐, 시아노기(-CN), 시아노 함유기, 니트로기, -SiRaRbRc (여기에서 Ra, Rb 및 Rc는 각각 독립적으로 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨) 및 이들의 조합에서 선택되고,
    m은 1 내지 4의 정수이고,
    [화학식 5B]
    Figure pat00065

    상기 화학식 5B에서,
    Ar2, X, 및 R1 내지 R3는 화학식 1에서와 동일하고,
    Rx 및 Ry는 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 아실기, 할로겐, 시아노기(-CN), 시아노 함유기, 니트로기, -SiRaRbRc (여기에서 Ra, Rb 및 Rc는 각각 독립적으로 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨) 및 이들의 조합에서 선택되고,
    m은 1 내지 4의 정수이고,
    n은 1 내지 2의 정수이다.
  9. 제1항에서,
    상기 화학식 1의 화합물은 하기 화학식 5C 또는 5D로 표현되는 화합물중 어느 하나인, 화합물:
    [화학식 5C]
    Figure pat00066

    상기 화학식 5C에서,
    Ar2, X, 및 R1 내지 R3는 화학식 1에서와 동일하고,
    Y1 내지 Y4는 각각 독립적으로 CRxRy 또는 NRz이고(여기에서 Rx, Ry 및 Rz는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 아실기, 할로겐, 시아노기(-CN), 시아노 함유기, 니트로기, -SiRaRbRc (여기에서 Ra, Rb 및 Rc는 각각 독립적으로 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨) 및 이들의 조합에서 선택되고, Y1 내지 Y4중 적어도 하나는 NRz이고,
    [화학식 5D]
    Figure pat00067

    상기 화학식 5D에서,
    Ar2, X, 및 R1 내지 R3는 화학식 1에서와 동일하고,
    Y1 내지 Y4는 각각 독립적으로 CRxRy 또는 NRz이고(여기에서 Rx, Ry 및 Rz는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 아실기, 할로겐, 시아노기(-CN), 시아노 함유기, 니트로기, -SiRaRbRc (여기에서 Ra, Rb 및 Rc는 각각 독립적으로 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨) 및 이들의 조합에서 선택되고, Y1 내지 Y4중 적어도 하나는 NRz이고,
    Y5 및 Y6는 각각 독립적으로 CRxRy 또는 NRz이고(여기에서 Rx, Ry 및 Rz는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 아실기, 할로겐, 시아노기(-CN), 시아노 함유기, 니트로기, -SiRaRbRc (여기에서 Ra, Rb 및 Rc는 각각 독립적으로 수소 및 치환 또는 비치환된 C1 내지 C10 알킬기에서 선택됨) 및 이들의 조합에서 선택된다.
  10. 제1항에서,
    상기 화합물은 박막 상태에서 500 nm 이상 600 nm 이하에서 최대 흡수 파장(λmax)을 가지는 화합물.
  11. 제1항에서,
    상기 화합물은 박막 상태에서 50 nm 내지 150 nm의 반치폭을 가지는 흡광 곡선을 나타내는 화합물.
  12. 제1항에서,
    상기 화합물의 융점과 초기 중량의 10 중량%가 손실되는 온도(증착 온도)의 차이가 10 ℃이상인 화합물.
  13. 서로 마주하는 제1 전극과 제2 전극, 그리고
    상기 제1 전극과 상기 제2 전극 사이에 위치하는 활성층
    을 포함하고,
    상기 활성층은 제1항 내지 제12항 중 어느 하나의 항에 따른 화합물을 포함하는 광전 소자.
  14. 제13항에 따른 광전 소자를 포함하는 이미지 센서.
  15. 제14항에서,
    청색 파장 영역의 광을 감지하는 복수의 제1 광 감지 소자 및 적색 파장 영역의 광을 감지하는 복수의 제2 광 감지 소자가 집적되어 있는 반도체 기판, 그리고
    상기 반도체 기판의 상부에 위치하고 녹색 파장 영역의 광을 선택적으로 감지하는 광전 소자
    를 포함하고
    상기 광전 소자는 제13항에 따른 광전 소자인, 이미지 센서.
  16. 제15항에서,
    청색 파장 영역의 광을 선택적으로 투과하는 청색 필터와 적색 파장 영역의 광을 선택적으로 투과하는 적색 필터를 포함하는 색 필터 층을 더 포함하는 이미지 센서.
  17. 제15항에서,
    상기 제1 광 감지 소자와 상기 제2 광 감지 소자는 반도체 기판에서 수직 방향으로 적층되어 있는 이미지 센서.
  18. 제14항에서,
    녹색 파장 영역의 광을 감지하는 녹색 광전 소자, 청색 파장 영역의 광을 감지하는 청색 광전 소자 및 적색 파장 영역의 광을 감지하는 적색 광전 소자가 적층되어 있고,
    상기 녹색 광전 소자는 제13항에 따른 광전 소자인, 이미지 센서.
  19. 제14항에 따른 이미지 센서를 포함하는 전자 장치.
KR1020190091284A 2019-07-26 2019-07-26 화합물, 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치 KR20210012837A (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020190091284A KR20210012837A (ko) 2019-07-26 2019-07-26 화합물, 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치
EP20187701.6A EP3770163B1 (en) 2019-07-26 2020-07-24 Compound and photoelectric device, image sensor and electronic device including the same
US16/938,031 US11713326B2 (en) 2019-07-26 2020-07-24 Compound and photoelectric device, image sensor and electronic device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190091284A KR20210012837A (ko) 2019-07-26 2019-07-26 화합물, 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치

Publications (1)

Publication Number Publication Date
KR20210012837A true KR20210012837A (ko) 2021-02-03

Family

ID=71786845

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190091284A KR20210012837A (ko) 2019-07-26 2019-07-26 화합물, 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치

Country Status (3)

Country Link
US (1) US11713326B2 (ko)
EP (1) EP3770163B1 (ko)
KR (1) KR20210012837A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102582997B1 (ko) * 2023-04-25 2023-09-27 덕산네오룩스 주식회사 유기 광전 소자용 화합물 및 이를 포함하는 유기광전소자, 이미지 센서 및 전자장치

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210234103A1 (en) * 2020-01-13 2021-07-29 Samsung Electronics Co., Ltd. Compound and photoelectric device, image sensor, and electronic device including the same
EP4124618B1 (en) * 2021-07-30 2024-07-24 Samsung Electronics Co., Ltd. Compound, photoelectric device, light absorption sensor, sensor-embedded display panel, and electronic device
US12048172B2 (en) 2021-09-03 2024-07-23 Visera Technologies Company Limited Solid-state image sensor
WO2023247345A1 (de) 2022-06-20 2023-12-28 Merck Patent Gmbh Heterocyclen für photoelektrische vorrichtungen
WO2023247338A1 (de) 2022-06-20 2023-12-28 Merck Patent Gmbh Organische heterocyclen für photoelektrische vorrichtungen

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783575A (en) 1994-03-14 1998-07-21 Novo Nordisk A/S Antagonists, their preparation and use
AU2492399A (en) 1998-02-02 1999-08-16 Uniax Corporation Image sensors made from organic semiconductors
US7129466B2 (en) 2002-05-08 2006-10-31 Canon Kabushiki Kaisha Color image pickup device and color light-receiving device
DE102005010978A1 (de) 2005-03-04 2006-09-07 Technische Universität Dresden Photoaktives Bauelement mit organischen Schichten
JP4911445B2 (ja) 2005-06-29 2012-04-04 富士フイルム株式会社 有機と無機のハイブリッド光電変換素子
US20070272918A1 (en) 2006-05-25 2007-11-29 Barry Rand Organic photosensitive devices using subphthalocyanine compounds
JP2008258474A (ja) 2007-04-06 2008-10-23 Sony Corp 固体撮像装置および撮像装置
JP5520560B2 (ja) 2009-09-29 2014-06-11 富士フイルム株式会社 光電変換素子、光電変換素子材料、光センサ、及び撮像素子
JP5114541B2 (ja) 2010-02-25 2013-01-09 富士フイルム株式会社 光センサの製造方法
JP5805438B2 (ja) 2010-06-30 2015-11-04 株式会社Adeka 新規化合物、光電変換材料及び光電変換素子
KR102293606B1 (ko) 2014-10-21 2021-08-24 삼성전자주식회사 유기 광전 소자 및 이를 포함하는 이미지 센서와 전자 장치
JP6777983B2 (ja) 2014-11-04 2020-10-28 三星電子株式会社Samsung Electronics Co.,Ltd. 有機光電素子用化合物及びこれを含む有機光電素子並びにイメージセンサー及び電子装置
KR102314133B1 (ko) 2014-11-25 2021-10-15 삼성전자주식회사 유기 광전 소자용 화합물, 유기 광전 소자 및 이미지 센서
KR102427157B1 (ko) 2015-01-20 2022-07-29 삼성전자주식회사 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자, 이미지 센서 및 전자장치
KR102491494B1 (ko) * 2015-09-25 2023-01-20 삼성전자주식회사 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자 및 이미지 센서
KR102455528B1 (ko) 2015-11-24 2022-10-14 삼성전자주식회사 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자, 이미지 센서 및 전자 장치
KR102557864B1 (ko) 2016-04-06 2023-07-19 삼성전자주식회사 화합물, 및 이를 포함하는 유기 광전 소자, 이미지 센서 및 전자 장치
KR102601055B1 (ko) 2016-05-10 2023-11-09 삼성전자주식회사 화합물, 및 이를 포함하는 유기 광전 소자, 이미지 센서 및 전자 장치
KR102569965B1 (ko) * 2016-05-31 2023-08-22 삼성전자주식회사 화합물, 및 이를 포함하는 유기 광전 소자, 이미지 센서 및 전자 장치
US10461256B2 (en) 2016-06-03 2019-10-29 Samsung Electronics Co., Ltd. Compound and photoelectric device, image sensor and electronic device including the same
JP2018002690A (ja) 2016-07-08 2018-01-11 キヤノン株式会社 有機化合物、有機光電変換素子、撮像素子および撮像装置
CN107235990B (zh) 2017-06-11 2019-01-29 湘潭大学 多取代吲哚并噻吩及衍生物及其合成方法
US10944055B2 (en) * 2017-08-10 2021-03-09 Samsung Electronics Co., Ltd. Compound and organic photoelectric device, image sensor and electronic device including the same
JP7077326B2 (ja) * 2017-09-11 2022-05-30 富士フイルム株式会社 光電変換素子、光センサ、撮像素子、化合物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102582997B1 (ko) * 2023-04-25 2023-09-27 덕산네오룩스 주식회사 유기 광전 소자용 화합물 및 이를 포함하는 유기광전소자, 이미지 센서 및 전자장치

Also Published As

Publication number Publication date
US11713326B2 (en) 2023-08-01
US20210024544A1 (en) 2021-01-28
EP3770163A1 (en) 2021-01-27
EP3770163B1 (en) 2023-05-10

Similar Documents

Publication Publication Date Title
KR102601055B1 (ko) 화합물, 및 이를 포함하는 유기 광전 소자, 이미지 센서 및 전자 장치
KR102455528B1 (ko) 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자, 이미지 센서 및 전자 장치
EP3228623B1 (en) Compound and organic photoelectric device, image sensor and electronic device including the same
KR102491493B1 (ko) 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자, 이미지 센서 및 전자장치
US10224486B2 (en) Compound for organic photoelectric device and organic photoelectric device and image sensor including the same
EP3770163B1 (en) Compound and photoelectric device, image sensor and electronic device including the same
KR20220028957A (ko) 광전 소자용 조성물 및 이를 포함하는 이미지 센서 및 전자 장치
EP3473622B1 (en) Compound and organic photoelectric device, image sensor and electronic device including the same
KR20160089809A (ko) 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자, 이미지 센서 및 전자장치
US11401289B2 (en) Compound and photoelectric device, image sensor and electronic device including the same
EP3442022B1 (en) Compound and organic photoelectric device, image sensor and electronic device including the same
US11793072B2 (en) Compound and photoelectric device, image sensor, and electronic device including the same
KR20220091870A (ko) 화합물 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치
US11466001B2 (en) Compound and photoelectric device, image sensor and electronic device including the same
KR20190049600A (ko) 화합물, 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치
KR20200127530A (ko) 화합물, 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치
KR102718272B1 (ko) 화합물, 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치
KR20210098127A (ko) 화합물, 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치
KR20210042689A (ko) 화합물 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치

Legal Events

Date Code Title Description
E902 Notification of reason for refusal