KR20200132892A - 쇼벨 - Google Patents

쇼벨 Download PDF

Info

Publication number
KR20200132892A
KR20200132892A KR1020207028150A KR20207028150A KR20200132892A KR 20200132892 A KR20200132892 A KR 20200132892A KR 1020207028150 A KR1020207028150 A KR 1020207028150A KR 20207028150 A KR20207028150 A KR 20207028150A KR 20200132892 A KR20200132892 A KR 20200132892A
Authority
KR
South Korea
Prior art keywords
excavation
functional element
bucket
shovel
information
Prior art date
Application number
KR1020207028150A
Other languages
English (en)
Other versions
KR102659077B1 (ko
Inventor
유스케 사노
Original Assignee
스미도모쥬기가이고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미도모쥬기가이고교 가부시키가이샤 filed Critical 스미도모쥬기가이고교 가부시키가이샤
Publication of KR20200132892A publication Critical patent/KR20200132892A/ko
Application granted granted Critical
Publication of KR102659077B1 publication Critical patent/KR102659077B1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2029Controlling the position of implements in function of its load, e.g. modifying the attitude of implements in accordance to vehicle speed
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/439Automatic repositioning of the implement, e.g. automatic dumping, auto-return
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2054Fleet management
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • E02F9/268Diagnosing or detecting failure of vehicles with failure correction follow-up actions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • G01G19/12Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles having electrical weight-sensitive devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Fluid Mechanics (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

본 발명의 실시형태에 관한 쇼벨(100)은, 하부주행체(1)와, 하부주행체(1)에 선회 가능하게 탑재되는 상부선회체(3)와, 상부선회체(3)에 장착되는 굴삭어태치먼트와, 컨트롤러(30)를 구비하고 있다. 컨트롤러(30)는, 굴삭이 개시되기 전의 지형에 관한 정보와 목표굴삭체적에 근거하여 버킷(6)의 치선이 찾아가는(따라가는) 궤도인 목표궤도를 설정하는 설정부(34)를 갖는다.

Description

쇼벨
본 개시는, 쇼벨에 관한 것이다.
종래, 버킷 내의 토사의 중량을 산출할 수 있도록 구성된 쇼벨이 알려져 있다(특허문헌 1 참조).
특허문헌 1: 일본 공개특허공보 평 6-10378호
그러나, 상술한 쇼벨은, 붐실린더의 보텀측유실에 있어서의 작동유의 압력에 근거하여 버킷 내의 토사의 중량을 산출하고 있다. 즉, 버킷을 지면으로부터 들어 올렸을 때에 비로소 토사의 중량을 산출할 수 있다. 이것은, 버킷이 지면에 접하고 있는 한, 버킷 내의 토사의 중량을 산출할 수 없는 것을 의미한다. 그 때문에, 필요 이상으로 토사를 버킷 내에 도입해 버릴 우려가 있다.
그래서, 토사 등의 피굴삭물이 필요 이상으로 버킷 내에 도입되어 버리는 것을 방지할 수 있는 쇼벨을 제공하는 것이 바람직하다.
본 발명의 실시형태에 관한 쇼벨은, 하부주행체와, 상기 하부주행체에 선회 가능하게 탑재되는 상부선회체와, 상기 상부선회체에 장착되는 굴삭어태치먼트와, 제어장치를 구비하고, 상기 제어장치는, 굴삭이 개시되기 전의 지형에 관한 정보와 목표굴삭체적에 근거하여 상기 버킷에 있어서의 소정 부위가 찾아가는(따라가는) 궤도인 목표궤도를 설정하는 설정부를 갖는다.
상술한 수단에 의하여, 토사 등의 피굴삭물이 필요 이상으로 버킷 내에 도입되어 버리는 것을 방지할 수 있는 쇼벨이 제공될 수 있다.
도 1은 본 발명의 실시형태에 관한 쇼벨의 측면도이다.
도 2는 도 1의 쇼벨의 구동계의 구성예를 나타내는 블록도이다.
도 3은 쇼벨의 측면도이다.
도 4는 쇼벨의 측면도이다.
도 5는 굴삭대상범위를 설정할 때에 표시되는 설정화면의 구성예를 나타내는 도이다.
도 6은 쇼벨의 상면도이다.
도 7은 자율제어기능의 구성예를 나타내는 블록도이다.
도 8은 목표궤도에 관한 화상의 표시예를 나타내는 도이다.
도 9는 자율제어기능의 구성예를 나타내는 블록도이다.
도 10은 자율제어기능의 다른 구성예를 나타내는 블록도이다.
도 11은 전기식 조작시스템의 구성예를 나타내는 도이다.
도 12는 쇼벨의 관리시스템의 구성예를 나타내는 개략도이다.
도 1은 본 발명의 실시형태에 관한 굴삭기로서의 쇼벨(100)의 측면도이다. 쇼벨(100)의 하부주행체(1)에는 선회기구(2)를 통하여 상부선회체(3)가 선회 가능하게 탑재되어 있다. 상부선회체(3)에는 붐(4)이 장착되고, 붐(4)의 선단에는 암(5)이 장착되며, 암(5)의 선단에는 엔드어태치먼트로서의 버킷(6)이 장착되어 있다.
붐(4), 암(5), 및 버킷(6)은, 어태치먼트의 일례로서의 굴삭어태치먼트를 구성하고 있다. 붐(4)은 붐실린더(7)로 구동되고, 암(5)은 암실린더(8)로 구동되며, 버킷(6)은 버킷실린더(9)로 구동된다. 붐(4)에는 붐각도센서(S1)가 장착되고, 암(5)에는 암각도센서(S2)가 장착되며, 버킷(6)에는 버킷각도센서(S3)가 장착되어 있다.
붐각도센서(S1)는 붐(4)의 회동(回動)각도를 검출한다. 본 실시형태에서는, 붐각도센서(S1)는 가속도센서이며, 상부선회체(3)에 대한 붐(4)의 회동각도(이하, "붐각도"라고 함)를 검출할 수 있다. 붐각도는, 예를 들면 붐(4)을 최대로 하강시켰을 때에 최소각도가 되고, 붐(4)을 상승시킴에 따라 커진다.
암각도센서(S2)는 암(5)의 회동각도를 검출한다. 본 실시형태에서는, 암각도센서(S2)는 가속도센서이며, 붐(4)에 대한 암(5)의 회동각도(이하, "암각도"라고 함)를 검출할 수 있다. 암각도는, 예를 들면 암(5)을 최대로 접었을 때에 최소각도가 되고, 암(5)을 펼침에 따라 커진다.
버킷각도센서(S3)는 버킷(6)의 회동각도를 검출한다. 본 실시형태에서는, 버킷각도센서(S3)는 가속도센서이며, 암(5)에 대한 버킷(6)의 회동각도(이하, "버킷각도"라고 함)를 검출할 수 있다. 버킷각도는, 예를 들면 버킷(6)을 최대로 접었을 때에 최소각도가 되고, 버킷(6)을 펼침에 따라 커진다.
붐각도센서(S1), 암각도센서(S2), 및 버킷각도센서(S3)는 각각, 가변저항기를 이용한 퍼텐쇼미터, 대응하는 유압실린더의 스트로크량을 검출하는 스트로크센서, 연결핀 둘레의 회동각도를 검출하는 로터리인코더, 자이로센서, 또는 가속도센서와 자이로센서의 조합 등이어도 된다.
붐실린더(7)에는 붐로드압센서(S7R) 및 붐보텀압센서(S7B)가 장착되어 있다. 암실린더(8)에는 암로드압센서(S8R) 및 암보텀압센서(S8B)가 장착되어 있다. 버킷실린더(9)에는 버킷로드압센서(S9R) 및 버킷보텀압센서(S9B)가 장착되어 있다. 붐로드압센서(S7R), 붐보텀압센서(S7B), 암로드압센서(S8R), 암보텀압센서(S8B), 버킷로드압센서(S9R), 및 버킷보텀압센서(S9B)는, 집합적으로 "실린더압센서"라고도 칭해진다.
붐로드압센서(S7R)는 붐실린더(7)의 로드측유실의 압력(이하, "붐로드압"이라고 함)을 검출하고, 붐보텀압센서(S7B)는 붐실린더(7)의 보텀측유실의 압력(이하, "붐보텀압"이라고 함)을 검출한다. 암로드압센서(S8R)는 암실린더(8)의 로드측유실의 압력(이하, "암로드압"이라고 함)을 검출하고, 암보텀압센서(S8B)는 암실린더(8)의 보텀측유실의 압력(이하, "암보텀압"이라고 함)을 검출한다. 버킷로드압센서(S9R)는 버킷실린더(9)의 로드측유실의 압력(이하, "버킷로드압"이라고 함)을 검출하고, 버킷보텀압센서(S9B)는 버킷실린더(9)의 보텀측유실의 압력(이하, "버킷보텀압"이라고 함)을 검출한다.
상부선회체(3)에는 운전실인 캐빈(10)이 마련되고 또한 엔진(11) 등의 동력원이 탑재되어 있다. 또, 상부선회체(3)에는, 컨트롤러(30), 표시장치(40), 입력장치(42), 소리출력장치(43), 기억장치(47), 방향검출장치(D1), 측위장치(P1), 기체경사센서(S4), 선회각속도센서(S5), 촬상장치(S6), 및 통신장치(T1)가 장착되어 있다. 상부선회체(3)에는, 전력을 공급하는 축전부, 및 엔진(11)의 회전구동력을 이용하여 발전하는 전동발전기 등이 탑재되어 있어도 된다. 축전부는, 예를 들면 커패시터 또는 리튬이온전지 등이다. 전동발전기는, 발전기로서 기능하여 전기부하에 전력을 공급해도 되고, 전동기로서 기능하여 엔진(11)의 회전을 어시스트해도 된다.
컨트롤러(30)는, 쇼벨(100)의 구동제어를 행하는 주제어부로서 기능한다. 본 실시형태에서는, 컨트롤러(30)는, CPU, RAM, 및 ROM 등을 포함하는 컴퓨터로 구성되어 있다. 컨트롤러(30)의 각종 기능은, 예를 들면 ROM에 저장된 프로그램을 CPU가 실행함으로써 실현된다. 각종 기능은, 예를 들면 조작자에 의한 쇼벨(100)의 수동조작을 가이드(안내)하는 머신가이던스기능, 및 조작자에 의한 쇼벨(100)의 수동조작을 자율적으로 지원하는 머신컨트롤기능 등을 포함하고 있어도 된다.
표시장치(40)는, 각종 정보를 표시하도록 구성되어 있다. 표시장치(40)는, CAN 등의 통신네트워크를 통하여 컨트롤러(30)에 접속되어 있어도 되고, 전용선을 통하여 컨트롤러(30)에 접속되어 있어도 된다.
입력장치(42)는, 조작자가 각종 정보를 컨트롤러(30)에 입력할 수 있도록 구성되어 있다. 입력장치(42)는, 예를 들면 캐빈(10) 내에 설치된 터치패널, 마이크로폰, 노브스위치, 및 멤브레인스위치 등 중 적어도 하나를 포함하고 있어도 된다.
소리출력장치(43)는, 소리를 출력하도록 구성되어 있다. 소리출력장치(43)는, 예를 들면 컨트롤러(30)에 접속되는 스피커여도 되고, 버저 등의 경보기여도 된다. 본 실시형태에서는, 소리출력장치(43)는, 컨트롤러(30)로부터의 음성출력지령에 따라 각종 정보에 관한 소리 또는 음성을 출력하도록 구성되어 있다.
기억장치(47)는, 각종 정보를 기억하도록 구성되어 있다. 기억장치(47)는, 예를 들면 반도체메모리 등의 불휘발성 기억매체여도 된다. 기억장치(47)는, 쇼벨(100)의 동작 중에 각종 기기가 출력하는 정보를 기억해도 되고, 쇼벨(100)의 동작이 개시되기 전에 각종 기기를 통하여 취득하는 정보를 기억해도 된다. 기억장치(47)는, 예를 들면 통신장치(T1) 등을 통하여 취득되는 데이터를 기억하고 있어도 된다.
방향검출장치(D1)는, 상부선회체(3)의 방향과 하부주행체(1)의 방향의 상대적인 관계에 관한 정보를 검출하도록 구성되어 있다. 방향검출장치(D1)는, 예를 들면 하부주행체(1)에 장착된 지자기(地磁氣)센서와 상부선회체(3)에 장착된 지자기센서의 조합으로 구성되어 있어도 된다. 혹은, 방향검출장치(D1)는, 하부주행체(1)에 장착된 GNSS 수신기와, 상부선회체(3)에 장착된 GNSS 수신기의 조합으로 구성되어 있어도 된다. 방향검출장치(D1)는, 로터리인코더 또는 로터리포지션센서 등이어도 된다. 선회전동발전기로 상부선회체(3)가 선회구동되는 구성에서는, 방향검출장치(D1)는, 리졸버로 구성되어 있어도 된다. 방향검출장치(D1)는, 예를 들면 하부주행체(1)와 상부선회체(3)의 사이의 상대회전을 실현하는 선회기구(2)에 관련되어 마련되는 센터조인트에 장착되어 있어도 된다.
방향검출장치(D1)는, 상부선회체(3)에 장착된 카메라로 구성되어 있어도 된다. 이 경우, 방향검출장치(D1)는, 예를 들면 상부선회체(3)에 장착되어 있는 카메라가 촬상한 화상(입력화상)에 이미 알려진 화상처리를 실시한다. 입력화상에 포함되는 하부주행체(1)의 화상을 인식하기 위함이다. 그리고, 방향검출장치(D1)는, 이미 알려진 화상인식기술을 이용하여 하부주행체(1)의 화상을 인식함으로써, 하부주행체(1)의 길이방향을 특정한다. 그리고, 방향검출장치(D1)는, 상부선회체(3)의 전후축의 방향과 하부주행체(1)의 길이방향의 사이에 형성되는 각도를 도출한다. 상부선회체(3)의 전후축의 방향은, 카메라의 장착위치로부터 도출된다. 특히, 하부주행체(1)를 구성하는 크롤러는 상부선회체(3)로부터 돌출되어 있기 때문에, 방향검출장치(D1)는, 크롤러의 화상을 검출함으로써 하부주행체(1)의 길이방향을 특정할 수 있다. 이와 같이 하여, 방향검출장치(D1)는, 상부선회체(3)의 방향과 하부주행체(1)의 방향의 상대적인 관계에 관한 정보를 검출한다. 이 경우, 방향검출장치(D1)는, 컨트롤러(30)에 통합되어 있어도 된다.
측위장치(P1)는, 상부선회체(3)의 위치를 측정하도록 구성되어 있다. 측위장치(P1)는, 상부선회체(3)의 방향을 추가적으로 측정하도록 구성되어 있어도 된다. 본 실시형태에서는, 측위장치(P1)는, GNSS 컴퍼스이며, 상부선회체(3)의 위치 및 방향을 검출하고, 검출값을 컨트롤러(30)에 대하여 출력한다. 그 때문에, 측위장치(P1)는, 상부선회체(3)의 방향을 검출하는 방향검출장치로서도 기능할 수 있다.
기체경사센서(S4)는, 예를 들면 소정의 평면에 대한 상부선회체(3)의 경사를 검출하도록 구성되어 있다. 본 실시형태에서는, 기체경사센서(S4)는, 수평면에 대한 상부선회체(3)의 전후축 둘레의 경사각 및 좌우축 둘레의 경사각을 검출하는 가속도센서이다. 상부선회체(3)의 전후축 및 좌우축은, 예를 들면 쇼벨(100)의 선회축상의 일점인 쇼벨중심점에서 서로 직교한다.
선회각속도센서(S5)는, 상부선회체(3)의 선회각속도를 검출하도록 구성되어 있다. 선회각속도센서(S5)는, 상부선회체(3)의 선회각도를 검출하도록 구성되어 있어도 된다. 본 실시형태에서는, 선회각속도센서(S5)는, 자이로센서이다. 선회각속도센서(S5)는, 리졸버 또는 로터리인코더 등이어도 된다.
촬상장치(S6)는 쇼벨(100)의 주변의 화상을 취득하도록 구성되어 있다. 본 실시형태에서는, 촬상장치(S6)는, 쇼벨(100)의 전방의 공간을 촬상하는 전카메라(S6F), 쇼벨(100)의 좌방의 공간을 촬상하는 좌카메라(S6L), 쇼벨(100)의 우방의 공간을 촬상하는 우카메라(S6R), 및 쇼벨(100)의 후방의 공간을 촬상하는 후카메라(S6B)를 포함한다.
주위감시장치로서의 촬상장치(S6)는, 예를 들면 CCD나 CMOS 등의 촬상소자를 갖는 단안(單眼)카메라이며, 촬상한 화상을 표시장치(40)에 출력한다. 주위감시장치로서의 촬상장치(S6)는, LIDAR, 스테레오카메라, 또는 거리화상카메라 등이어도 된다. 또, 촬상장치(S6)는, 촬상장치(S6) 또는 쇼벨(100)로부터 인식된 물체까지의 거리를 산출하도록 구성되어 있어도 된다. 주위감시장치로서 밀리파레이더, 초음파센서, 또는 레이저레이더 등이 이용되는 경우에는, 쇼벨(100)은, 촬상한 화상을 이용할 뿐만 아니라, 주위감시장치로부터 다수의 신호(레이저광 등)를 물체를 향하여 발신하고, 그 반사신호를 수신함으로써, 반사신호로부터 물체의 거리 및 방향을 도출해도 된다.
전카메라(S6F)는, 예를 들면 캐빈(10)의 천장, 즉 캐빈(10)의 내부에 장착되어 있다. 단, 캐빈(10)의 지붕 또는 붐(4)의 측면 등, 캐빈(10)의 외부에 장착되어 있어도 된다. 좌카메라(S6L)는, 상부선회체(3)의 상면좌단에 장착되고, 우카메라(S6R)는, 상부선회체(3)의 상면우단에 장착되며, 후카메라(S6B)는, 상부선회체(3)의 상면후단에 장착되어 있다.
통신장치(T1)는, 쇼벨(100)의 외부에 있는 외부기기와의 통신을 제어하도록 구성되어 있다. 본 실시형태에서는, 통신장치(T1)는, 위성통신망, 휴대전화통신망, 및 인터넷망 등 중 적어도 하나를 통한 외부기기와의 통신을 제어한다.
도 2는, 쇼벨(100)의 구동계의 구성예를 나타내는 블록도이며, 기계적 동력전달계, 작동유라인, 파일럿라인, 및 전기제어계를 각각 이중선, 실선, 파선, 및 점선으로 나타내고 있다.
쇼벨의 구동계는, 주로, 엔진(11), 레귤레이터(13), 메인펌프(14), 파일럿펌프(15), 컨트롤밸브(17), 조작장치(26), 토출압센서(28), 조작압센서(29), 컨트롤러(30), 연료탱크(55), 및 엔진컨트롤러유닛(ECU(74)) 등을 포함한다.
엔진(11)은, 쇼벨의 구동원이다. 본 실시형태에서는, 엔진(11)은, 예를 들면 소정의 회전수를 유지하도록 동작하는 디젤엔진이다. 또, 엔진(11)의 출력축은, 메인펌프(14) 및 파일럿펌프(15)의 각각의 입력축에 연결되어 있다.
메인펌프(14)는, 작동유라인을 통하여 작동유를 컨트롤밸브(17)에 공급하도록 구성되어 있다. 본 실시형태에서는, 메인펌프(14)는, 사판식(斜板式) 가변용량형 유압펌프이다.
레귤레이터(13)는, 메인펌프(14)의 토출량을 제어하도록 구성되어 있다. 본 실시형태에서는, 레귤레이터(13)는, 컨트롤러(30)로부터의 제어지령에 따라 메인펌프(14)의 사판경전각(斜板傾轉角)을 조절함으로써 1회전당 변위용적을 증감시켜 메인펌프(14)의 토출량을 제어한다. 예를 들면, 컨트롤러(30)는, 조작압센서(29) 등의 출력을 수신하고, 필요에 따라 레귤레이터(13)에 대하여 제어지령을 출력하여, 메인펌프(14)의 토출량을 변화시킨다.
파일럿펌프(15)는, 파일럿라인을 통하여 조작장치(26)을 포함하는 각종 유압제어기기에 작동유를 공급하도록 구성되어 있다. 본 실시형태에서는, 파일럿펌프(15)는, 고정용량형 유압펌프이다. 단, 파일럿펌프(15)는, 생략되어도 된다. 이 경우, 파일럿펌프(15)가 담당하고 있던 기능은, 메인펌프(14)에 의하여 실현되어도 된다. 즉, 메인펌프(14)는, 컨트롤밸브(17)에 작동유를 공급하는 기능과는 별도로, 스로틀 등에 의하여 작동유의 압력을 저하시킨 후에 조작장치(26) 등에 작동유를 공급하는 기능을 구비하고 있어도 된다.
컨트롤밸브(17)는, 쇼벨에 있어서의 유압시스템을 제어하는 유압제어장치이다. 컨트롤밸브(17)는, 제어밸브(171~176)를 포함한다. 컨트롤밸브(17)는, 제어밸브(171~176)를 통하여, 메인펌프(14)가 토출하는 작동유를 하나 또는 복수의 유압액추에이터에 선택적으로 공급할 수 있다. 제어밸브(171~176)는, 메인펌프(14)로부터 유압액추에이터에 흐르는 작동유의 유량, 및 유압액추에이터로부터 작동유탱크에 흐르는 작동유의 유량을 제어한다. 유압액추에이터는, 붐실린더(7), 암실린더(8), 버킷실린더(9), 좌측주행용 유압모터(1L), 우측주행용 유압모터(1R), 및 선회용 유압모터(2A)를 포함한다. 선회용 유압모터(2A)는, 전동액추에이터로서의 선회용 전동발전기여도 된다. 이 경우, 선회용 전동발전기는, 축전부 또는 전동발전기로부터 전력의 공급을 받아도 된다.
조작장치(26)는, 조작자가 액추에이터의 조작을 위하여 이용하는 장치이다. 액추에이터는, 유압액추에이터 및 전동액추에이터 중 적어도 일방을 포함한다. 본 실시형태에서는, 조작장치(26)는, 파일럿라인을 통하여, 파일럿펌프(15)가 토출하는 작동유를, 컨트롤밸브(17) 내의 대응하는 제어밸브의 파일럿포트에 공급한다. 파일럿포트의 각각에 공급되는 작동유의 압력(파일럿압)은, 원칙적으로, 유압액추에이터의 각각에 대응하는 조작장치(26)의 조작방향 및 조작량에 따른 압력이다.
토출압센서(28)는, 메인펌프(14)의 토출압을 검출하도록 구성되어 있다. 본 실시형태에서는, 토출압센서(28)는, 검출한 값을 컨트롤러(30)에 대하여 출력한다.
조작압센서(29)는, 조작장치(26)을 이용한 조작자의 조작내용을 검출하도록 구성되어 있다. 본 실시형태에서는, 조작압센서(29)는, 액추에이터의 각각에 대응하는 조작장치(26)의 조작방향 및 조작량을 압력의 형태로 검출하고, 검출한 값을 컨트롤러(30)에 대하여 출력한다. 조작장치(26)의 조작내용은, 조작압센서 이외의 다른 센서를 이용하여 검출되어도 된다.
연료탱크(55)는, 연료를 수용하는 용기이다. 연료탱크(55)에 수용되어 있는 연료의 잔량상태는, 연료잔량센서(55a)에 의하여 검출된다. 연료잔량센서(55a)는, 연료의 잔량상태에 관한 정보를 컨트롤러(30)에 대하여 출력한다.
ECU(74)는, 엔진(11)을 제어하는 장치이다. 본 실시형태에서는, ECU(74)는, 엔진(11)에 있어서의 연료분사량, 연료분사타이밍, 및 부스트압 등을 제어한다. 또, ECU(74)는, 엔진(11)에 관한 정보를 컨트롤러(30)에 대하여 출력한다.
다음으로, 컨트롤러(30)가 갖는 기능요소에 대하여 설명한다. 본 실시형태에서는, 컨트롤러(30)는, 제1 정보취득부(31), 제2 정보취득부(32), 산출부(33), 설정부(34), 및 자율제어부(35)를 기능요소로서 갖고 있다.
제1 정보취득부(31)는, 덤프트럭의 최대적재량에 관한 정보를 취득하도록 구성되어 있다. 덤프트럭은, 쇼벨(100)이 굴삭한 토사 등의 피굴삭물을 운반하는 기계의 일례이며, 짐받이에 적재 가능한 피굴삭물의 최대한도중량인 최대적재량이 개별적으로 설정되어 있다. 본 실시형태에서는, 제1 정보취득부(31)는, 촬상장치(S6)가 취득한 덤프트럭의 화상에 이미 알려진 화상처리를 실시하여 덤프트럭의 사이즈를 식별하여 그 덤프트럭의 최대적재량을 도출한다. 제1 정보취득부(31)는, 예를 들면 덤프트럭의 후면에 있는 최대적재량표시, 차종명, 및 넘버 등 중 적어도 하나를 인식하여 그 덤프트럭의 최대적재량을 도출해도 된다.
제1 정보취득부(31)는, 통신장치(T1)를 통하여 덤프트럭으로부터 식별정보를 수신함으로써 그 덤프트럭의 최대적재량을 도출해도 된다. 식별정보는, 예를 들면 덤프트럭에 탑재되어 있는 GNSS 수신기의 식별번호이다. 이 경우, 제1 정보취득부(31)는, 예를 들면 식별정보와 최대적재량의 대응관계를 기억하고 있는 탐색테이블을 참조하여 식별정보로부터 최대적재량을 도출해도 된다. 탐색테이블은, 쇼벨의 불휘발성 기억매체에 기억되어 있어도 되고, 관리센터 등의 외부시설에 설치된 서버 등에 기억되어 있어도 된다.
제1 정보취득부(31)는, 통신장치(T1)를 통하여 쇼벨(100)의 주위에 존재하는 복수의 덤프트럭의 각각으로부터 위치정보를 수신하고, 표시장치(40)에 표시된 지도화상 상에 각 덤프트럭을 나타내는 도형을 중첩표시시켜도 된다. 이 경우, 입력장치(42)를 통하여 덤프트럭의 도형의 하나가 조작자에 의하여 선택되면, 제1 정보취득부(31)는, 그 덤프트럭의 최대적재량을 취득할 수 있다. 덤프트럭의 도형의 하나는, 예를 들면 가장 가까이에 존재하는 덤프트럭에 관한 도형이어도 된다. 이 경우, 덤프트럭에 관한 도형은, 자동적으로 선택되어도 된다.
제2 정보취득부(32)는, 굴삭어태치먼트의 굴삭동작으로 굴삭되는 피굴삭물의 중량인 굴삭중량에 관한 정보를 취득하도록 구성되어 있다. 본 실시형태에서는, 제2 정보취득부(32)는, 정보취득장치의 출력에 근거하여 굴삭중량에 관한 정보를 취득하도록 구성되어 있다. 정보취득장치는, 방향검출장치(D1), 붐각도센서(S1), 암각도센서(S2), 버킷각도센서(S3), 기체경사센서(S4), 선회각속도센서(S5), 촬상장치(S6), 붐로드압센서(S7R), 붐보텀압센서(S7B), 암로드압센서(S8R), 암보텀압센서(S8B), 버킷로드압센서(S9R), 버킷보텀압센서(S9B), 토출압센서(28), 및 조작압센서(29) 등 중 적어도 하나를 포함한다.
제2 정보취득부(32)는, 예를 들면 도 3에 나타내는 바와 같이, 촬상장치(S6)로서의 3차원 거리화상센서(S6A)가 촬상한 쇼벨(100)의 전방의 공간에 관한 거리화상에 근거하여, 굴삭어태치먼트에 의하여 굴삭된 토사 등의 피굴삭물의 중량을 굴삭중량으로서 산출한다. 도 3의 굵은 선(GS)은, 3차원 거리화상센서(S6A)의 촬상범위의 일부를 나타내고 있다. 3차원 거리화상센서(S6A)는, 예를 들면 레이저로 지형을 계측하는 3차원 레이저스캐너이다. 단, 3차원 거리화상센서(S6A)는, 예를 들면 LIDAR여도 되고, 스테레오카메라여도 된다. 구체적으로는, 제2 정보취득부(32)는, 굴삭동작이 시작되기 전에 촬상된 거리화상과, 굴삭동작이 종료된 후에 촬상된 거리화상에 근거하여, 그 1회의 굴삭동작으로 굴삭된 피굴삭물의 체적인 굴삭체적을 산출한다. 그리고, 제2 정보취득부(32)는, 굴삭체적에 밀도를 곱하여 굴삭중량을 산출한다. 밀도는 미리 설정되어 있는 값이어도 되고, 입력장치(42) 등을 통하여 자동적으로 설정되는 값이어도 된다.
이와 같이 하여, 제2 정보취득부(32)는, 굴삭 전의 지형과 굴삭 후의 지형을 비교하여, 그 변화에 근거하여 1회의 굴삭동작에 의한 굴삭중량을 산출할 수 있다. 1회의 굴삭동작은, 버킷(6) 내에 피굴삭물을 도입하는 동작이며, 예를 들면 피굴삭물을 도입하고 있지 않는 버킷(6)이 지면에 접촉했을 때에 시작되었다고 판정되고, 피굴삭물을 도입한 버킷(6)이 지면으로부터 떨어졌을 때에 종료되었다고 판정된다. 단, 굴삭동작이 시작되었다고 판정하기 위한 조건, 및 굴삭동작이 종료되었다고 판정하기 위한 조건은, 임의로 설정될 수 있다. 제2 정보취득부(32)는, 예를 들면 조작압센서(29) 및 실린더압센서 등 중 적어도 하나의 출력에 근거하여, 굴삭동작이 시작되었는지 여부, 및 굴삭동작이 종료되었는지 여부를 판정해도 된다.
제2 정보취득부(32)는, 굴삭어태치먼트의 자세를 검출하는 자세센서의 출력에 근거하여, 굴삭동작이 시작되었는지 여부, 및 굴삭동작이 종료되었는지 여부를 판정해도 된다. 자세센서는, 예를 들면 붐각도센서(S1), 암각도센서(S2), 및 버킷각도센서(S3)를 포함한다. 자세센서는, 붐실린더스트로크센서, 암실린더스트로크센서, 및 버킷실린더스트로크센서의 조합이어도 된다.
이 구성에 의하여, 컨트롤러(30)는, 소정 시간 내에 행해진 1회 또는 복수 회의 굴삭동작의 각각에 관한 피굴삭물의 중량의 적산(積算)값을 소정 시간에 있어서의 누적굴삭중량으로서 산출할 수 있다.
제2 정보취득부(32)는, 자세센서 및 실린더압센서 등의 출력에 근거하여 1회의 굴삭동작에 의한 굴삭중량을 산출해도 된다. 예를 들면, 제2 정보취득부(32)는, 피굴삭물을 도입한 버킷(6)이 공중에 들어 올려졌을 때의 굴삭어태치먼트의 자세와 붐보텀압에 근거하여, 1회의 굴삭동작으로 굴삭된 피굴삭물의 중량을 굴삭중량으로서 산출해도 된다.
제2 정보취득부(32)는, 도 4에 나타내는 바와 같이, 버킷(6)의 소정 부위의 위치의 시간적 추이(推移)에 근거하여 굴삭중량을 산출해도 된다. 버킷(6)의 소정 부위는, 예를 들면 버킷(6)의 치선이다. 제2 정보취득부(32)는, 예를 들면 붐(4), 암(5), 및 버킷(6)의 각각의 회동각도에 근거하여 작업부위로서의 버킷(6)의 치선의 위치를 산출한다.
이 경우, 제2 정보취득부(32)는, 예를 들면 비행체가 탑재되어 있는 3차원 거리화상센서가 생성한 쇼벨(100)의 전방의 공간에 관한 거리화상에 근거하여, 굴삭동작이 시작되기 전의 지형을 도출한다. 비행체가 탑재되어 있는 3차원 거리화상센서는, 3차원 레이저스캐너, 스테레오카메라, 및 LIDAR 등 중 어느 것이어도 된다. 비행체는, 예를 들면 멀티콥터 또는 비행선 등이며, 거리화상의 위치 및 방향을 특정할 수 있도록 측위장치를 탑재하고 있다. 또, 비행체는, 쇼벨(100)과의 통신을 가능하게 하는 통신장치를 탑재하고 있다.
제2 정보취득부(32)는, 예를 들면 통신장치(T1)를 통하여, 비행체에 장착되어 있는 스테레오카메라가 생성한 거리화상을 수신하고, 그 거리화상에 근거하여 굴삭동작이 시작되기 전의 지형을 도출한다. 제2 정보취득부(32)는, 통신장치(T1)를 통하여, 스테레오카메라가 촬상한 화상을 수신하고, 그 화상으로부터 거리화상을 생성하여, 그 거리화상에 근거하여 굴삭동작이 시작되기 전의 지형을 도출하도록 구성되어 있어도 된다.
그 후, 제2 정보취득부(32)는, 예를 들면 산출한 버킷(6)의 치선의 위치의 궤도(도 4의 점선(L1) 참조)와, 굴삭동작이 시작되기 전의 지형(도 4의 일점쇄선(L2) 참조)에 근거하여 굴삭체적을 산출해도 된다. 제2 정보취득부(32)는, 예를 들면 버킷(6)의 좌단면을 포함하는 평면과, 버킷(6)의 우단면을 포함하는 평면과, 일점쇄선(L2)을 포함하는 상면과, 점선(L1)을 포함하는 하면으로 둘러싸인 공간의 체적을 굴삭체적으로서 산출해도 된다.
제2 정보취득부(32)는, 전카메라(S6F)가 촬상한 쇼벨(100)의 전방의 공간에 관한 화상에 근거하여 1회의 굴삭동작에 의한 굴삭중량을 산출해도 된다. 이 경우, 전카메라(S6F)는, 단안카메라여도 되고, 스테레오카메라여도 되며, 3차원 거리화상센서여도 된다.
제2 정보취득부(32)는, 예를 들면 단안카메라로서의 전카메라(S6F)가 촬상한 버킷(6)에 관한 화상으로부터 굴삭체적을 산출해도 된다. 구체적으로는, 제2 정보취득부(32)는, 피굴삭물을 도입한 버킷(6)이 공중에 들어 올려졌을 때에 전카메라(S6F)가 촬상한 버킷(6)에 관한 화상에 각종 화상처리를 실시함으로써 버킷(6) 내의 피굴삭물의 화상을 인식한다. 그리고, 제2 정보취득부(32)는, 피굴삭물의 화상의 크기 등에 근거하여 굴삭체적을 도출한다. 제2 정보취득부(32)는, 굴삭체적을 도출하기 위하여, 자세센서 등의 다른 정보취득장치의 출력을 추가적으로 이용해도 된다.
혹은, 제2 정보취득부(32)는, 스테레오카메라로서의 전카메라(S6F)를 이용하여 굴삭동작이 개시되기 전에 취득한 지형에 관한 정보와, 그 굴삭동작이 종료된 후에 취득한 지형에 관한 정보에 근거하여 1회의 굴삭동작에 의한 굴삭중량을 산출해도 된다.
제2 정보취득부(32)는, 굴삭어태치먼트의 굴삭동작으로 굴삭되는 피굴삭물의 밀도에 관한 정보를 취득하도록 구성되어 있어도 된다. 이 경우, 제2 정보취득부(32)는, 굴삭체적과 굴삭중량에 근거하여 밀도를 산출해도 된다. 굴삭체적은, 예를 들면 굴삭동작이 시작되기 전의 지형과 굴삭동작이 종료된 후의 지형에 근거하여 산출되어도 된다. 굴삭중량은, 예를 들면 실린더압센서의 출력에 근거하여 산출되어도 되고, 자세센서의 출력과 실린더압센서의 출력에 근거하여 산출되어도 된다.
산출부(33)는, 최대적재량에 관한 정보와 굴삭중량에 관한 정보에 근거하여 적재잔중량을 산출하도록 구성되어 있다. 적재잔중량은, 덤프트럭에 적재할 수 있는 피굴삭물의 중량을 의미한다. 예를 들면, 최대적재량이 10톤의 덤프트럭의 짐받이에 이미 5톤의 피굴삭물이 적재되어 있는 경우, 굴삭동작으로 버킷(6)에 도입해야 할 피굴삭물의 중량인 목표굴삭중량으로서의 적재잔중량은 5톤이 된다. 본 실시형태에서는, 산출부(33)는, 제1 정보취득부(31)가 취득한 덤프트럭의 최대적재량에 관한 정보와, 제2 정보취득부(32)가 취득한 굴삭중량에 관한 정보에 근거하여 적재잔중량을 산출한다. 그리고, 산출부(33)는, 적재잔중량과 토질정보에 근거하여, 목표굴삭체적을 산출한다. 토질정보는, 예를 들면 피굴삭물의 밀도, 종류, 또는 경도 등에 관한 정보이다. 토질정보는, 기억장치(47)에 미리 기억되어 있는 정보여도 된다. 그 후, 산출부(33)는, 굴삭이 개시되기 전의 지형에 관한 정보와 목표굴삭체적에 근거하여 굴삭궤도를 도출한다.
설정부(34)는, 버킷(6)에 있어서의 소정 부위가 찾아가는 궤도인 목표궤도를 설정하도록 구성되어 있다. 버킷(6)에 있어서의 소정 부위는, 예를 들면 버킷(6)의 치선이다. 본 실시형태에서는, 설정부(34)는, 적재잔중량이 소정 중량 미만이 된 경우에, 목표궤도를 설정하도록 구성되어 있다. 목표궤도는, 예를 들면 등거리간격으로 배치되는 복수의 3차원 좌표점으로 구성되어 있어도 된다. 소정 중량은, 예를 들면 1회의 굴삭동작으로 굴삭 가능한 피굴삭물의 최대중량(이하, "최대굴삭중량"이라고 함)이며, 불휘발성 기억매체 등에 미리 기억되어 있어도 되고, 자동적으로 설정되어도 된다. 설정부(34)는, 예를 들면 1회의 굴삭동작에 의한 굴삭중량과 적재잔중량이 동일해지도록 목표궤도를 설정한다. 1회의 굴삭동작은, 전형적으로는, 1대의 덤프트럭의 짐받이에 최대적재량이 될 때까지 피굴삭물을 적재하기 위하여 복수 회의 굴삭동작이 행해지는 경우의 마지막 굴삭동작이다. 마지막 굴삭동작에 의한 피굴삭물이 덤프트럭에 적재되었을 때에, 덤프트럭에 적재된 피굴삭물의 총 중량이 최대적재량에 대략 동일해지도록 하기 위함이다. 도 4의 점선(L1)으로 나타내는 궤도는, 목표궤도의 일례를 나타내고 있다. 이 목표궤도를 찾아가도록 하여 행해진 굴삭동작에 의하여 버킷(6) 내에 도입된 피굴삭물(EX)의 중량인 굴삭중량은, 적재잔중량에 대략 동일하다. 그 때문에, 피굴삭물(EX)이 덤프트럭(DT)에 적재되면, 덤프트럭(DT)에 적재된 피굴삭물(EX)의 총 중량은 최대적재량과 대략 동일해진다. 이와 같이, 설정부(34)는, 적재잔중량이 최대굴삭중량을 하회하는 경우에는, 굴삭중량이 제한되도록 목표궤도를 설정한다.
구체적으로는, 설정부(34)는, 마지막 굴삭동작을 행하기 전의 지형에 근거하여 복수의 굴삭궤도를 생성한다. 그리고, 설정부(34)는, 마지막 굴삭동작을 행하기 전의 지형과 복수의 굴삭궤도에 근거하여, 복수의 굴삭궤도의 각각에 대하여, 마지막 굴삭동작에 의한 굴삭중량을 산출한다. 설정부(34)는, 산출된 굴삭중량이 마지막 굴삭동작에 있어서 필요한 잔중량과 동일해지는 굴삭궤도를, 복수의 굴삭궤도로부터 선택한다. 이와 같이 하여, 설정부(34)는, 선택된 굴삭궤도를 목표궤도로서 설정할 수 있다.
설정부(34)는, 적재잔중량이 소정 중량 미만인지 여부에 관계없이 목표궤도를 설정하도록 구성되어 있어도 된다. 이 경우, 설정부(34)는 필요에 따라서, 각 회의 굴삭동작에 의한 굴삭중량이 소정 중량 미만이 되도록, 각 회의 굴삭동작이 행해지기 전에 목표궤도를 다시 설정해도 된다. 이것은, 예를 들면 성토(盛土) 등의 굴삭대상물의 형상의 변화에 따른 적절한 굴삭동작이 행해지도록 하기 위함이다. 구체적으로는, 만일 각 회의 굴삭동작에 의한 굴삭중량이 가능한 한 커지도록 각 회의 굴삭동작이 무제한으로 행해져 버린 경우에는, 각 회의 굴삭동작에 의한 굴삭중량의 불균형이 커질 우려가 있으므로, 그와 같은 무제한의 굴삭동작이 행해져 버리는 것을 방지하기 위함이다. 혹은, 경우에 따라서는, 덤프트럭(DT)의 짐받이에 대한 1회의 배토(排土)동작이 행해지기 전에 복수 회의 굴삭동작에 의한 피굴삭물의 집적이 행해질 필요가 발생해 버릴 우려가 있으므로, 그와 같은 무제한의 굴삭동작이 행해져 버리는 것을 방지하기 위함이다. 그 때문에, 설정부(34)는, 각 회의 굴삭동작에 의한 굴삭중량의 불균형이 가능한 한 작아지도록, 혹은 평균 굴삭중량이 가능한 한 커지도록, 각 회의 굴삭동작이 행해지기 전에 목표궤도를 다시 설정해도 된다.
설정부(34)는, 제2 정보취득부(32)가 취득한 피굴삭물(EX)의 밀도에 관한 정보와 적재잔중량에 근거하여 적재잔체적을 산출하고, 그 적재잔체적과 동일한 굴삭체적의 피굴삭물(EX)이 마지막 1회의 굴삭동작으로 굴삭되도록 목표궤도를 설정해도 된다. 이와 같이, 설정부(34)는, 적재잔체적이 최대굴삭체적을 하회하는 경우에는, 굴삭체적이 제한되도록 목표궤도를 설정해도 된다. 다만, 최대굴삭체적은, 1회의 굴삭동작으로 굴삭 가능한 피굴삭물의 최대체적이다.
자율제어부(35)는, 액추에이터를 자율적으로 동작시킴으로써 조작자에 의한 쇼벨(100)의 수동조작을 자율적으로 지원하도록 구성되어 있다. 예를 들면, 자율제어부(35)는, 조작자가 수동으로 암접음조작을 행하고 있는 경우에, 버킷(6)의 치선의 궤도가 목표궤도와 일치하도록 붐실린더(7), 암실린더(8), 및 버킷실린더(9) 중 적어도 하나를 자율적으로 신축시켜도 된다. 이 경우, 조작자는, 예를 들면 암조작레버를 접음방향으로 조작하는 것만으로, 버킷(6)의 치선의 궤도를 목표궤도에 일치시키면서, 암(5)을 접을 수 있다. 이 자율제어는, 입력장치(42)의 하나인 소정의 스위치가 압하되었을 때에 실행되도록 구성되어 있어도 된다. 소정의 스위치는, 예를 들면 머신컨트롤스위치(이하, "MC스위치"라고 함)이며, 노브스위치로서 조작장치(26)의 선단에 배치되어 있어도 된다.
본 실시형태에서는, 자율제어부(35)는, 각 액추에이터에 대응하는 제어밸브에 작용하는 파일럿압을 개별적으로 또한 자율적으로 조정함으로써 각 액추에이터를 자율적으로 동작시킬 수 있다.
다음으로, 도 5 및 도 6을 참조하여, 컨트롤러(30)가 1회의 굴삭동작에 의한 굴삭중량을 제어하는 처리에 대하여 설명한다. 도 5는, 굴삭대상범위(R1)를 설정할 때에 표시장치(40)에 표시되는 설정화면(GM)의 구성예를 나타낸다. 도 6은, 설정화면(GM)에서 설정된 굴삭대상범위(R1)에 있는 굴삭대상물(BK)을 굴삭하는 쇼벨(100)의 상면도이다. 도 6에서는, 쇼벨(100)은, 굴삭대상물(BK)을 굴삭하여 버킷(6) 내에 도입한 피굴삭물을 덤프트럭(DT)의 짐받이에 적재하고 있다. 덤프트럭(DT)의 짐받이에 적재되어 있는 피굴삭물(EX1)은 1회째의 굴삭동작으로 굴삭된 피굴삭물에 대응하고, 피굴삭물(EX2)은 2번째의 굴삭동작으로 굴삭된 피굴삭물에 대응하고 있다.
굴삭대상범위(R1)는, 쇼벨(100)의 주위로 설정되는 범위이다. 굴삭대상범위(R1)는, 예를 들면 깊이제한이 있는 입체적인 범위이다. 굴삭어태치먼트에 의한 굴삭의 대상인 굴삭대상물(BK)은, 예를 들면 지산(地山), 성토, 표토(表土), 또는 퇴적물 등의 지물(地物)이다. 굴삭대상물(BK)은, 덤프트럭(DT)으로의 적재를 위하여 모아진 피굴삭물(EX)에 의하여 형성되는 토사산이어도 된다. 반대로, 굴삭대상범위(R1)의 외측에 있는 지물은, 굴삭어태치먼트에 의한 굴삭의 대상은 되지 않는다. 그 때문에, 자율제어부(35)에 의하여 굴삭어태치먼트가 작동될 때에, 굴삭대상범위(R1)의 밖에 있는 지물이 굴삭되는 경우는 없다.
굴삭대상범위(R1)가 설정되는 실시형태에서는, 설정부(34)는, 굴삭대상범위(R1) 내에서 목표궤도를 설정하도록 구성되어 있다. 그 때문에, 컨트롤러(30)는, 정보취득장치의 출력에 근거하여 굴삭대상범위(R1) 내의 지형을 검출한다. 도 5 및 도 6에 나타내는 예에서는, 카메라, 레이더, 및 LIDAR 등 중 적어도 하나의 출력에 근거하여 굴삭대상범위(R1) 내의 지형을 검출한다.
컨트롤러(30)는, 예를 들면 MC스위치가 압하되었을 때에, 도 5에 나타내는 설정화면(GM)을 표시장치(40)에 표시시킨다. 설정화면(GM)은, 쇼벨도형(G1) 및 덤프도형(G2)을 포함한다
쇼벨도형(G1)은, 상부선회체(3)의 위치 및 방향을 나타내는 도형이다. 덤프도형(G2)은, 덤프트럭(DT)의 위치 및 방향을 나타내는 도형이다. 컨트롤러(30)는, 예를 들면 방향검출장치(D1), 측위장치(P1), 및 촬상장치(S6) 등의 출력에 근거하여 쇼벨(100)과 덤프트럭(DT)의 위치관계를 파악하여, 그 위치관계에 대응하도록 쇼벨도형(G1) 및 덤프도형(G2)을 표시시킨다.
쇼벨도형(G1)의 주위에는 주위화상이 표시되어 있어도 된다. 도 5의 예에서는, 주위화상은, 후카메라(S6B), 전카메라(S6F), 좌카메라(S6L), 및 우카메라(S6R)의 각각이 촬상한 화상에 시점변환처리를 실시하여 생성되는 합성화상으로서의 부감화상이다. 단, 주위화상은, 컴퓨터그래픽이어도 된다.
쇼벨(100)의 조작자는, 설정화면(GM)을 보면서, 입력장치(42)를 이용하여 굴삭대상범위(R1)를 설정해도 된다. 도 5의 예에서는, 조작자는, 입력장치(42)로서의 터치패널을 이용하여, 쇼벨도형(G1)의 좌측으로 범위도형(G3)을 설정하고 있다. 범위도형(G3)은, 굴삭대상범위(R1)를 나타내는 도형이다. 구체적으로는, 조작자는, 핀치아웃조작에 의하여 원하는 사이즈의 범위도형(G3)을 설정하고 있다. 조작자는, 탭조작에 의하여 범위도형(G3)을 설정해도 된다. 이 경우, 범위도형(G3)은, 예를 들면 탭조작된 점을 중심으로 하는 소정 사이즈의 범위로서 설정된다.
도 5의 예에서는, 범위도형(G3)은, 직사각형이지만, 원형 또는 타원형 등의 다른 형상이어도 된다. 또, 범위도형(G3)은, 복잡한 윤곽을 갖는 도형이어도 된다. 이 경우, 조작자는 예를 들면 터치패널 상에서 원하는 범위의 윤곽을 덧그림으로써 그 범위에 대응하는 범위도형(G3)을 설정해도 된다.
조작자는, 설정화면(GM)에 미리 표시되어 있는 복수의 범위도형으로부터 하나의 범위도형을 선택해도 된다. 또, 조작자는, 서로 독립되어 있는 복수의 굴삭대상범위에 대응하는 복수의 범위도형을 선택해도 된다. 이 경우, 굴삭대상범위 내의 굴삭대상물은, 선택된 순으로 굴삭되어 있어도 된다. 예를 들면, 최초로 선택된 범위도형에 대응하는 굴삭대상범위 내에 있는 굴삭대상물이 최초로 굴삭되어도 된다.
컨트롤러(30)는, 예를 들면 MC스위치가 압하될 때에, 상술과 같이 하여 설정된 굴삭대상범위(R1) 내에서 목표궤도를 설정하여, 버킷(6)의 치선을 굴삭개시지점 위에 이동시킨다. 그리고, 컨트롤러(30)는, 암조작레버가 수동으로 조작되면, 버킷(6)의 치선이 그리는 궤도가 목표궤도를 따르도록 붐실린더(7), 암실린더(8), 및 버킷실린더(9) 중 적어도 하나를 신축시킨다.
도 6의 예에서는, 컨트롤러(30)는, 굴삭대상범위(R1)의 지면과, 쇼벨(100)이 위치하는 평면을 포함하는 가상평면이 단차가 없어지도록 목표궤도를 설정한다. 단, 컨트롤러(30)는, 쇼벨(100)이 위치하는 평면을 포함하는 가상평면에 대하여 굴삭대상범위(R1)의 지면의 깊이가 소정의 깊이가 되도록 목표궤도를 설정해도 된다. 또, 컨트롤러(30)는, 쇼벨(100)이 위치하는 평면을 포함하는 가상평면에 대한 굴삭대상범위(R1)의 지면의 경사각도가 소정 각도가 되도록 목표궤도를 설정해도 된다.
이와 같이, 본 발명의 실시형태에 관한 쇼벨(100)은, 하부주행체(1)와, 하부주행체(1)에 선회 가능하게 탑재되는 상부선회체(3)와, 상부선회체(3)에 장착되는 굴삭어태치먼트와, 제어장치로서의 컨트롤러(30)를 구비하고 있다. 컨트롤러(30)는, 굴삭이 개시되기 전의 지형에 관한 정보와 목표굴삭체적에 근거하여 굴삭어태치먼트에 있어서의 소정 부위가 나타내는 궤도인 목표궤도를 설정하는 설정부(34)를 갖는다. 이 구성에 의하여, 쇼벨(100)은, 예를 들면 토사 등의 피굴삭물이 필요 이상으로 버킷 내에 도입되어 버리는 것을 방지할 수 있다. 다만, 컨트롤러(30)는, 목표굴삭체적을 목표굴삭중량과 토질정보에 근거하여 산출해도 된다.
또, 컨트롤러(30)는, 덤프트럭(DT)의 최대적재량에 관한 정보를 취득하는 제1 정보취득부(31)와, 굴삭어태치먼트의 굴삭동작으로 굴삭되는 토사 등의 피굴삭물의 중량인 굴삭중량에 관한 정보를 취득하는 제2 정보취득부(32)와, 최대적재량에 관한 정보와 굴삭중량에 관한 정보에 근거하여 적재잔중량을 산출하는 산출부(33)를 갖고 있어도 된다. 이 구성에 의하여, 쇼벨(100)은, 예를 들면 복수 회의 굴삭동작에 의한 굴삭중량의 합계가 덤프트럭(DT)의 최대적재량이 되도록 1회의 굴삭동작에 의한 굴삭중량을 적절히 조정할 수 있다. 그 때문에, 쇼벨(100)은, 덤프트럭(DT)으로의 적재에 관한 굴삭작업의 효율을 높일 수 있다. 또, 쇼벨(100)은, 과적재 및 과소적재를 방지할 수 있다. 또, 쇼벨(100)은 쇼벨(100)의 조작자의 작업부하를 경감할 수 있다.
또, 쇼벨(100)은, 예를 들면 1회의 굴삭동작에 의한 굴삭중량이 적재잔중량을 초과하지 않도록 목표궤도를 설정함으로써, 피굴삭물이 필요 이상으로 버킷(6) 내에 도입되어 버리는 것을 방지할 수 있다. 즉, 쇼벨(100)의 조작자는, 피굴삭물을 도입한 상태의 버킷(6)이 공중에 들어 올려지기 전에 굴삭중량을 조정할 수 있기 때문에, 버킷(6)이 들어 올려진 후에 또한 덤프트럭(DT)의 짐받이에 배토되기 전에 피굴삭물의 일부를 지면에 떨어뜨려 굴삭중량을 조정할 필요가 없다. 그 때문에, 쇼벨(100)의 조작자는, 덤프트럭(DT)의 짐받이에 적재되는 피굴삭물의 총 중량이 최대적재량을 초과하지 않도록, 버킷(6) 내에 도입된 피굴삭물의 일부를 지면에 버리는 것과 같은 여분의 조작을 행할 필요가 없다.
제1 정보취득부(31)는, 덤프트럭(DT)의 식별정보를 취득하고, 그 식별정보에 근거하여 덤프트럭(DT)의 최대적재량에 관한 정보를 취득하도록 구성되어 있어도 된다. 제1 정보취득부(31)는, 예를 들면 카메라, 레이더, 및 LIDAR 등 중 적어도 하나의 출력에 근거하여 덤프트럭의 최대적재량에 관한 정보를 취득하도록 구성되어 있어도 된다. 이 구성에 의하여, 쇼벨(100)은, 덤프트럭(DT)에 관한 피굴삭물의 과적재를 보다 확실히 방지할 수 있다.
설정부(34)는, 소정의 굴삭대상범위(R1) 내에서 목표궤도를 설정하도록 구성되어 있어도 된다. 굴삭대상범위(R1)는, 전형적으로는, 상부선회체(3)의 주위에 있는 영역이다. 그리고, 굴삭대상범위(R1)는, 입력장치(42)를 이용하여 설정되어도 된다. 이 구성에 의하여, 쇼벨(100)의 조작자는, 원하는 굴삭대상범위를 지정할 수 있고, 컨트롤러(30)는, 원하는 굴삭대상물이 굴삭되도록 굴삭어태치먼트를 제어할 수 있다.
컨트롤러(30)는, 목표궤도를 적절히 설정할 수 없다고 판정한 경우, 그 취지를 알리도록 구성되어 있어도 된다. 컨트롤러(30)는, 예를 들면 굴삭대상범위(R1) 내의 지면이 평탄하게 될 때까지 굴삭대상범위(R1) 내에서 굴삭동작을 행했다고 해도 덤프트럭(DT)에 적재되는 피굴삭물의 총 중량이 최대적재량에 도달하지 않는다고 판정한 경우에 목표궤도를 적절히 설정할 수 없다고 판정해도 된다. 이 경우, 컨트롤러(30)는, 덤프트럭(DT)에 적재되는 피굴삭물의 총 중량이 최대적재량에 도달하지 않는 취지를 전하는 정보를 표시장치(40)에 표시시켜도 되고, 그 취지를 전하는 소리 또는 음성을 소리출력장치(43)로부터 출력시켜도 된다.
제2 정보취득부(32)는, 굴삭어태치먼트의 굴삭동작으로 굴삭되는 피굴삭물의 밀도에 관한 정보를 취득하도록 구성되어 있어도 된다. 이 경우, 설정부(34)는, 밀도에 관한 정보와 적재잔중량에 근거하여 적재잔체적을 산출하고, 그 적재잔체적에 상당하는 체적의 피굴삭물이 1회의 굴삭동작으로 굴삭되도록 목표궤도를 설정해도 된다. 이 구성에 의하여, 쇼벨(100)은, 1회의 굴삭동작에 의한 굴삭중량 및 굴삭체적을 보다 정확하게 조정할 수 있다.
이상, 본 발명의 바람직한 실시형태에 대하여 상세하게 설명했다. 그러나, 본 발명은, 상술한 실시형태에 제한되는 경우는 없다. 상술한 실시형태는, 본 발명의 범위를 벗어나지 않고, 다양한 변형 또는 치환 등이 적용될 수 있다. 또, 따로 따로 설명된 특징은, 기술적인 모순이 발생하지 않는 한, 조합이 가능하다.
예를 들면, 쇼벨(100)은, 이하에 나타내는 바와 같은 자율제어기능을 실행하여 굴삭동작 등의 복합조작을 자율적으로 실행해도 된다. 도 7은, 자율제어기능의 구성예를 나타내는 블록도이다. 도 7의 예에서는, 컨트롤러(30)는, 자율제어의 실행에 관한 기능요소(FA~FL 및 F1~F6)를 갖는다. 기능요소는, 소프트웨어로 구성되어 있어도 되고, 하드웨어로 구성되어 있어도 되며, 소프트웨어와 하드웨어의 조합으로 구성되어 있어도 된다.
기능요소(FA)는, 지형을 계측하도록 구성되어 있다. 도 7의 예에서는, 기능요소(FA)는, 주위감시장치로서의 촬상장치(S6)가 촬상한 화상에 근거하여, 쇼벨(100)의 주위에 있는 지형의 최신상태를 계측한다.
주위감시장치는, 쇼벨(100)의 주위에 존재하는 물체를 검지하도록 구성되어 있다. 물체는, 예를 들면 사람, 동물, 차량, 건설기계, 건축물, 벽, 울타리, 구멍, 헬멧, 안전베스트, 작업복, 또는 헬멧에 있어서의 소정의 마크 등이다. 주위감시장치는, 밀리파레이더, 초음파센서, 또는 레이저레이더 등이어도 된다.
주위감시장치는, 쇼벨(100)의 주위에 설정된 소정 영역 내의 소정 물체를 검지하도록 구성되어 있어도 된다. 즉, 주위감시장치는, 물체의 종류, 위치, 및 형상 등 중 적어도 하나를 식별할 수 있도록 구성되어 있어도 된다. 예를 들면, 주위감시장치는, 사람과 사람 이외의 물체를 구별할 수 있도록 구성되어 있어도 된다. 또, 주위감시장치는, 주위감시장치 또는 쇼벨(100)로부터 인식된 물체까지의 거리를 산출하도록 구성되어도 된다.
기능요소(FB)는, 굴삭체적을 산출하도록 구성되어 있다. 도 7의 예에서는, 기능요소(FB)는, 촬상장치(S6)가 촬상한 화상에 근거하여, 1회의 굴삭동작으로 실제로 굴삭된 피굴삭물의 체적을 굴삭체적으로서 산출한다.
기능요소(FC)는, 각종 이상의 유무를 판정하도록 구성되어 있다. 도 7의 예에서는, 기능요소(FC)는 촬상장치(S6)가 촬상한 화상에 근거하여 촬상장치(S6)의 이상의 유무를 판정하도록 구성되어 있다. 그리고, 기능요소(FC)는 촬상장치(S6)의 상태가 이상하다고 판정한 경우, 후술하는 기능요소(F4)에 대하여 지령을 출력하여, 쇼벨(100)의 움직임을 감속시키거나 혹은 정지시킨다.
기능요소(FD)는, 덤프트럭(DT)을 검지하도록 구성되어 있다. 도 7의 예에서는, 기능요소(FD)는, 촬상장치(S6)가 촬상한 화상에 근거하여 덤프트럭(DT)을 검지한다.
기능요소(FE)는, 기능요소(FD)가 검지한 덤프트럭(DT)의 최대적재량을 도출하도록 구성되어 있다. 도 7의 예에서는, 기능요소(FE)는, 촬상장치(S6)가 촬상한 화상에 근거하여 덤프트럭(DT)의 최대적재량을 도출한다. 기능요소(FE)는, 예를 들면 덤프트럭(DT)이 10톤트럭인지 여부를 식별함으로써, 덤프트럭(DT)의 최대적재량을 도출한다.
기능요소(FF)는, 붐(4)의 상태를 판정하도록 구성되어 있다. 도 7의 예에서는, 기능요소(FF)는, 피굴삭물을 도입한 버킷(6)이 지면으로부터 떨어지는 높이까지 붐(4)이 상승했는지 여부를 판정한다. 굴삭동작이 종료된 것을 검지하기 위함이다.
구체적으로는, 기능요소(FF)는, 후술하는 기능요소(F2)에 의하여 산출되는 버킷(6)의 현재의 치선위치에 근거하여, 피굴삭물을 도입한 버킷(6)이 지면으로부터 떨어지는 높이까지 붐(4)이 상승했는지 여부를 판정한다. 기능요소(FF)는, 촬상장치(S6)가 촬상한 화상에 근거하여, 피굴삭물을 도입한 버킷(6)이 지면으로부터 떨어지는 높이까지 붐(4)이 상승했는지 여부를 판정해도 된다.
기능요소(FG)는, 버킷(6)에 도입된 피굴삭물의 중량을 산출하도록 구성되어 있다. 도 7의 예에서는, 기능요소(FG)는, 피굴삭물을 도입한 버킷(6)이 지면으로부터 떨어지는 높이까지 붐(4)이 상승했다고 기능요소(FF)가 판정한 경우, 실린더압센서의 출력에 근거하여, 버킷(6)에 도입된 피굴삭물의 중량을 산출한다. 기능요소(FG)는, 후술하는 기능요소(F2)에 의하여 산출되는 굴삭어태치먼트의 자세와, 실린더압센서의 출력에 근거하여, 버킷(6)에 도입된 피굴삭물의 중량을 산출해도 된다.
기능요소(FH)는, 덤프트럭(DT)에 적재된 피굴삭물의 총 중량을 산출하도록 구성되어 있다. 도 7의 예에서는, 기능요소(FH)는, 기능요소(FG)에 의하여 산출된, 각 회의 굴삭동작에 의하여 굴삭된 피굴삭물의 중량을 적산함으로써, 덤프트럭(DT)의 짐받이에 이미 적재되어 있는 피굴삭물의 총 중량을 산출한다.
기능요소(FI)는, 적재잔중량을 산출하도록 구성되어 있다. 도 7의 예에서는, 기능요소(FI)는, 기능요소(FE)가 도출한 최대적재량으로부터, 기능요소(FH)가 산출한 피굴삭물의 총 중량을 뺌으로써, 적재잔중량을 산출한다. 예를 들면, 최대적재량이 10톤이고, 덤프트럭(DT)의 짐받이에 이미 적재되어 있는 피굴삭물의 총 중량이 6톤인 경우, 기능요소(FH)는, 적재잔중량으로서 4톤을 산출한다.
기능요소(FJ)는, 다음의 굴삭동작으로 버킷(6)에 도입해야 할 피굴삭물의 중량인 목표굴삭중량을 취득하고, 필요에 따라 그 취득한 값을 제한하도록 구성되어 있다. 도 7의 예에서는, 기능요소(FJ)는, 1회의 굴삭동작으로 굴삭 가능한 피굴삭물의 최댓값인 최대굴삭중량을, 기억장치(47)로부터 독출하여 취득한다. 그리고, 기능요소(FJ)는, 기능요소(FI)가 산출한 적재잔중량이 최대굴삭중량보다 큰 경우, 목표굴삭중량을 최대굴삭중량으로 제한한다. 기능요소(FJ)는, 예를 들면 적재잔중량이 4톤이어도, 최대굴삭중량이 3톤인 경우에는, 목표굴삭중량으로서 3톤을 출력한다. 다만, 최대굴삭중량은, 자동적으로 입력되거나 혹은 산출되는 값이어도 된다.
기능요소(FK)는, 목표굴삭체적을 산출하도록 구성되어 있다. 도 7의 예에서는, 기능요소(FK)는, 기능요소(FJ)가 출력하는 목표굴삭중량과, 입력장치(42)를 통하여 입력된 토질정보에 근거하여, 목표굴삭체적을 산출한다. 기능요소(FK)는, 예를 들면 목표굴삭중량과 피굴삭물의 밀도에 근거하여 목표굴삭체적을 산출한다. 기능요소(FK)는, 예를 들면 목표굴삭중량인 3톤에 대응하는 목표굴삭체적을 산출한다. 기본적으로는, 목표굴삭중량이 3톤이어도, 피굴삭물의 밀도가 작을수록, 목표굴삭체적은 커진다.
기능요소(FL)는, 목표굴삭체적을 제한하도록 구성되어 있다. 도 7의 예에서는, 기능요소(FL)는, 기능요소(FK)가 산출한 목표굴삭체적이 최대굴삭체적보다 큰 경우, 목표굴삭체적을 최대굴삭체적으로 제한한다. 기능요소(FL)는, 예를 들면 목표굴삭체적이 3세제곱미터여도, 최대굴삭체적이 2세제곱미터인 경우에는, 목표굴삭체적으로서 2세제곱미터를 출력한다. 이와 같이, 컨트롤러(30)는, 버킷(6) 내에 도입된 피굴삭물이 그 후의 선회동작 등의 시에 넘쳐 나와 버리는 것을 방지하기 위하여, 필요에 따라 목표굴삭체적을 제한한다. 다만, 최대굴삭체적은, 자동적으로 입력되거나 혹은 산출되는 값이어도 된다.
기능요소(F1)는, 목표궤도를 생성하도록 구성되어 있다. 도 7의 예에서는, 기능요소(F1)는, 입력장치(42)를 통하여 입력된 굴삭에 관한 정보와, 기능요소(FA)가 계측한 현재의 지형과, 기능요소(FB)가 산출한 과거의 굴삭동작에 의한 실제의 굴삭체적과, 기능요소(FL)가 출력하는 목표굴삭체적에 근거하여 버킷(6)의 치선이 찾아가야 할 궤도를 목표궤도로서 생성한다. 굴삭에 관한 정보는, 예를 들면 미리 설정되어 있는 굴삭조건에 관한 정보이다. 굴삭조건은, 예를 들면 깊게 하거나 또는 얕게 하는 것 등이다.
기능요소(F1)는, 전형적으로는, 각 회의 굴삭동작이 개시되기 전에, 목표궤도를 산출하도록 구성되어 있다. 즉, 목표궤도는 전형적으로는, 각 회의 굴삭동작이 개시되기 전에 갱신된다. 구체적으로는, 목표궤도의 시점인 굴삭개시위치의 좌표, 및 목표궤도의 종점인 굴삭종료위치의 좌표는, 각 회의 굴삭동작이 개시되기 전에 갱신된다.
기능요소(F1)는, 생성한 목표궤도에 관한 화상을 표시장치(40)에 표시시키도록 구성되어 있어도 된다. 도 8은, 기능요소(F1)에 의하여 표시장치(40)에 표시되는 목표궤도에 관한 화상(Gx)의 표시예를 나타낸다. 화상(Gx)은, 굴삭동작 시에 표시되는 화상이며, 도형(G11~G23)을 포함한다. 도형(G11)은, 굴삭동작이 개시되기 전의 현재의 굴삭어태치먼트의 상태를 나타낸다. 도형(G12)은, 굴삭동작이 종료된 후의 장래의 굴삭어태치먼트의 상태를 나타낸다. 도형(G13)은, 목표궤도를 나타내는 선분이며, 도형(G13A) 및 도형(G13B)을 포함한다. 도형(G13A)은, 목표궤도의 시점인 굴삭개시위치를 나타낸다. 도형(G13B)은, 목표궤도의 종점인 굴삭종료위치를 나타낸다. 도 8의 예에서는, 굴삭종료위치는, 버킷(6)이 지면으로부터 떨어진 후의 치선의 위치이다. 도형(G14)은, 목표궤도를 따라 움직이는 버킷(6)을 나타낸다. 도 8의 예에서는, 도형(G14)은, 2개의 도형(G14A) 및 도형(G14B)을 포함한다. 도형(G14)으로서의 버킷(6)을 나타내는 도형의 수는, 1개여도 되고, 3개 이상이어도 된다. 도형(G15)은, 이번 굴삭동작에 의하여 굴삭되는 구멍의 길이를 나타내는 양 화살표이다. 도형(G16)은, 이번 굴삭동작에 의하여 굴삭되는 구멍의 깊이를 나타내는 양 화살표이다. 도 8의 예에서는, 화상(Gx)은, 길이 XX미터, 깊이 YY미터의 구멍이 형성되는 것을 나타내고 있다. 쇼벨(100)의 조작자는, 화상(Gx)을 봄으로써, 굴삭동작이 어떻게 실행되는지를 용이하게 파악할 수 있다.
도형(G17)은, 현재실행 중의 굴삭동작으로 버킷(6) 내에 도입되어 있는 피굴삭물의 현재의 중량(현중량)을 나타낸다. 도 8의 예에서는, 도형(G17)은, 현중량이 "***kg"인 것을 나타내고 있다. 도형(G18)은, 덤프트럭(DT)의 짐받이에 적재된 피굴삭물의 누적중량을 나타낸다. 도 8의 예에서는, 도형(G18)은, 누적중량이 "○○○○kg"인 것을 나타내고 있다. 도형(G19)은, 적재잔중량을 나타낸다. 도 8의 예에서는, 도형(G19)은, 적재잔중량(잔중량)이 "×××kg"인 것을 나타내고 있다. 도형(G20)은, 이번 굴삭동작으로 버킷(6) 내에 도입해야 할 피굴삭물의 중량인 목표굴삭중량을 나타낸다. 도 8의 예에서는, 도형(G20)는, 목표굴삭중량(목표중량)이 "□□□kg"인 것을 나타내고 있다. 도형(G21)은, 이번 굴삭동작으로 버킷(6) 내에 도입해야 할 피굴삭물의 체적인 목표굴삭체적을 나타낸다. 도 8의 예에서는, 도형(G21)는, 목표굴삭체적(목표체적)이 "△△△m3"인 것을 나타내고 있다. 도형(G22)은, 피굴삭물의 성질에 관한 정보인 토질정보를 나타낸다. 도 8의 예에서는, 도형(G22)는, 피굴삭물의 밀도가 "○○kg/m3"인 것, 및 피굴삭물의 종류가 "**"인 것을 나타내고 있다. 도형(G23)은, 소프트웨어버튼으로서의 누적리셋버튼을 나타내고 있다. 누적리셋버튼은, 조작되었을 때에 누적중량을 리셋하도록 구성되어 있다. 누적중량은, 통상, 피굴삭물의 적재대상인 덤프트럭(DT)이 다른 덤프트럭으로 바꿔 넣어진 것이 검지되었을 때에 자동적으로 리셋된다. 그러나, 조작자는, 누적리셋버튼을 조작함으로써, 임의의 타이밍에 누적중량을 리셋할 수 있다.
기능요소(F1)는, 후방감시화상 및 주위감시화상 중 적어도 일방과 함께 목표궤도에 관한 화상을 표시장치(40)에 표시시켜도 된다. 후방감시화상은, 쇼벨(100)의 후방을 조작자가 감시할 수 있도록 하기 위한 화상이며, 예를 들면 후카메라(S6B)가 촬상한 화상에 근거하여 생성된다. 주위감시화상은, 쇼벨(100)의 주위를 조작자가 감시할 수 있도록 하기 위한 화상이며, 예를 들면 후카메라(S6B), 좌카메라(S6L), 및 우카메라(S6R)의 각각이 촬상한 화상을 합성하여 생성되는 시점변환화상으로서의 부감화상이다. 부감화상은, 전형적으로는, 쇼벨(100)의 주위를 바로 위의 가상시점에서 보았을 때의 모습을 나타내는 화상이다. 기능요소(F1)는, 예를 들면 후방감시화상 및 주위감시화상 중 적어도 일방에 인접하도록 목표궤도에 관한 화상을 표시장치(40)에 표시시켜도 된다.
혹은, 기능요소(F1)는, 엔진회전수모드, 주행모드, 어태치먼트의 종류, 및 엔진제어상태 등 중 적어도 하나에 관한 정보인 쇼벨(100)의 설정상태에 관한 정보와 함께, 목표궤도에 관한 화상을 표시장치(40)에 표시시켜도 된다. 혹은, 기능요소(F1)는, 요소수잔량, 연료잔량, 냉각수온, 엔진가동시간, 및 누적가동시간 등 중 적어도 하나에 관한 정보인 쇼벨의 운전 상태에 관한 정보와 함께, 목표궤도에 관한 화상을 표시장치(40)에 표시시켜도 된다.
기능요소(F2)는, 현재의 치선위치를 산출하도록 구성되어 있다. 도 7의 예에서는, 기능요소(F2)는, 붐각도센서(S1)가 검출한 붐각도(β1)와, 암각도센서(S2)가 검출한 암각도(β2)와, 버킷각도센서(S3)가 검출한 버킷각도(β3)와, 선회각속도센서(S5)가 검출한 선회각도(α1)에 근거하여, 버킷(6)의 치선의 좌표점을 현재의 치선위치로서 산출한다. 기능요소(F2)는, 현재의 치선위치를 산출할 때에, 기체경사센서(S4)의 출력을 이용해도 된다.
기능요소(F3)는, 다음의 치선위치를 산출하도록 구성되어 있다. 도 7의 예에서는, 기능요소(F3)는, 조작압센서(29)가 출력하는 조작데이터와, 기능요소(F1)가 생성한 목표궤도와 기능요소(F2)가 산출한 현재의 치선위치에 근거하여, 소정 시간 후의 치선위치를 목표치선위치로서 산출한다.
기능요소(F3)는, 현재의 치선위치와 목표궤도의 사이의 괴리가 허용범위 내에 들어가 있는지 여부를 판정해도 된다. 도 7의 예에서는, 기능요소(F3)는, 현재의 치선위치와 목표궤도의 사이의 거리가 소정 값 이하인지 여부를 판정한다. 그리고, 기능요소(F3)는, 그 거리가 소정 값 이하인 경우, 괴리가 허용범위 내에 들어가 있다고 판정하고, 목표치선위치를 산출한다. 한편, 기능요소(F3)는, 그 거리가 소정 값을 상회하고 있는 경우, 괴리가 허용범위 내에 들어가 있지 않다고 판정하고, 레버조작량과는 관계없이, 액추에이터의 움직임을 감속시키거나 혹은 정지시킨다.
기능요소(F4)는, 치선의 속도에 관한 지령값을 생성하도록 구성되어 있다. 도 7의 예에서는, 기능요소(F4)는, 기능요소(F2)가 산출한 현재의 치선위치와, 기능요소(F3)가 산출한 다음의 치선위치에 근거하여, 소정 시간에서 현재의 치선위치를 다음의 치선위치로 이동시키기 위하여 필요한 치선의 속도를 치선의 속도에 관한 지령값으로서 산출한다.
기능요소(F5)는, 치선의 속도에 관한 지령값을 제한하도록 구성되어 있다. 도 7의 예에서는, 기능요소(F5)는, 기능요소(F2)가 산출한 현재의 치선위치와, 주위감시장치로서의 촬상장치(S6)가 촬상한 화상에 근거하여, 치선과 덤프트럭(DT) 등의 소정 물체의 사이의 거리가 소정 값 미만이라고 판정한 경우, 치선의 속도에 관한 지령값을 소정의 상한값으로 제한한다. 이와 같이 하여, 컨트롤러(30)는, 치선이 소정 물체에 접근했을 때에 치선의 속도를 감속시킨다. 기능요소(F5)는, 버킷(6) 내에 도입된 피굴삭물의 중량에 근거하여 상한값을 변경하도록 구성되어 있어도 된다. 혹은, 기능요소(F5)는, 굴삭어태치먼트의 선회반경에 근거하여 상한값을 변경하도록 구성되어 있어도 된다. 굴삭어태치먼트의 선회반경은, 기능요소(F2)로 산출되어도 되고, 기능요소(F2)의 출력에 근거하여 기능요소(F5)로 산출되어도 된다.
기능요소(F6)는, 액추에이터를 동작시키기 위한 지령값을 산출하도록 구성되어 있다. 도 7의 예에서는, 기능요소(F6)는, 현재의 치선위치를 목표치선위치로 이동시키기 위하여, 기능요소(F3)가 산출한 목표치선위치에 근거하여, 붐각도(β1)에 관한 지령값(β1r), 암각도(β2)에 관한 지령값(β2r), 버킷각도(β3)에 관한 지령값(β3r), 및 선회각도(α1)에 관한 지령값(α1r)을 산출한다. 기능요소(F6)는, 붐(4)이 조작되어 있지 않을 때여도, 필요에 따라 지령값(β1r)을 산출한다. 이것은, 붐(4)을 자동적으로 동작시키기 위함이다. 암(5), 버킷(6), 및 선회기구(2)에 대해서도 동일하다.
다음으로, 도 9를 참조하여, 기능요소(F6)의 상세에 대하여 설명한다. 도 9는, 각종 지령값을 산출하는 기능요소(F6)의 구성예를 나타내는 블록도이다.
컨트롤러(30)는, 도 9에 나타내는 바와 같이, 지령값의 생성에 관한 기능요소(F11~F13, F21~F23, F31~F33, 및 F50)를 더 갖는다. 기능요소는, 소프트웨어로 구성되어 있어도 되고, 하드웨어로 구성되어 있어도 되며, 소프트웨어와 하드웨어의 조합으로 구성되어 있어도 된다.
기능요소(F11~F13)는, 지령값(β1r)에 관한 기능요소이며, 기능요소(F21~F23)는, 지령값(β2r)에 관한 기능요소이고, 기능요소(F31~F33)는, 지령값(β3r)에 관한 기능요소이며, 기능요소(F41~F43)는, 지령값(α1r)에 관한 기능요소이다.
기능요소(F11, F21, F31, 및 F41)는, 액추에이터제어기구에 대하여 출력되는 전류지령을 생성하도록 구성되어 있다. 본 실시형태에서는, 기능요소(F11)는, 붐제어기구(31C)에 대하여 붐전류지령을 출력하고, 기능요소(F21)는, 암제어기구(31A)에 대하여 암전류지령을 출력하며, 기능요소(F31)는, 버킷제어기구(31D)에 대하여 버킷전류지령을 출력하고, 기능요소(F41)는, 선회제어기구(31B)에 대하여 선회전류지령을 출력한다.
붐제어기구(31C)는, 붐실린더파일럿압지령에 대응하는 제어전류에 따른 파일럿압을 붐제어밸브로서의 제어밸브(175)에 대하여 작용시킬 수 있도록 구성되어 있다.
암제어기구(31A)는, 암실린더파일럿압지령에 대응하는 제어전류에 따른 파일럿압을 암제어밸브로서의 제어밸브(176)에 대하여 작용시킬 수 있도록 구성되어 있다.
버킷제어기구(31D)는, 버킷실린더파일럿압지령에 대응하는 제어전류에 따른 파일럿압을 버킷제어밸브로서의 제어밸브(174)에 대하여 작용시킬 수 있도록 구성되어 있다.
선회제어기구(31B)는, 선회용 유압모터파일럿압지령에 대응하는 제어전류에 따른 파일럿압을 선회제어밸브로서의 제어밸브(173)에 대하여 작용시킬 수 있도록 구성되어 있다.
기능요소(F12, F22, F32, 및 F42)는, 스풀밸브를 구성하는 스풀의 변위량을 산출하도록 구성되어 있다. 본 실시형태에서는, 기능요소(F12)는, 붐스풀변위센서(S7)의 출력에 근거하여, 붐실린더(7)에 관한 제어밸브(175)를 구성하는 붐스풀의 변위량을 산출한다. 기능요소(F22)는, 암스풀변위센서(S8)의 출력에 근거하여, 암실린더(8)에 관한 제어밸브(176)를 구성하는 암스풀의 변위량을 산출한다. 기능요소(F32)는, 버킷스풀변위센서(S9)의 출력에 근거하여, 버킷실린더(9)에 관한 제어밸브(174)를 구성하는 버킷스풀의 변위량을 산출한다. 기능요소(F42)는, 선회스풀변위센서(S2A)의 출력에 근거하여, 선회용 유압모터(2A)에 관한 제어밸브(173)를 구성하는 선회스풀의 변위량을 산출한다. 다만, 붐스풀변위센서(S7)는, 제어밸브(175)를 구성하는 스풀의 변위량을 검출하는 센서이다. 암스풀변위센서(S8)는, 제어밸브(176)를 구성하는 스풀의 변위량을 검출하는 센서이다. 버킷스풀변위센서(S9)는, 제어밸브(174)를 구성하는 스풀의 변위량을 검출하는 센서이다. 그리고, 선회스풀변위센서(S2A)는, 제어밸브(173)를 구성하는 스풀의 변위량을 검출하는 센서이다.
기능요소(F13, F23, F33, 및 F43)는, 작업체의 회동각도를 산출하도록 구성되어 있다. 본 실시형태에서는, 기능요소(F13)는, 붐각도센서(S1)의 출력에 근거하여, 붐각도(β1)를 산출한다. 기능요소(F23)는, 암각도센서(S2)의 출력에 근거하여, 암각도(β2)를 산출한다. 기능요소(F33)는, 버킷각도센서(S3)의 출력에 근거하여, 버킷각도(β3)를 산출한다. 기능요소(F43)는, 선회각속도센서(S5)의 출력에 근거하여, 선회각도(α1)를 산출한다.
구체적으로는, 기능요소(F11)는, 기본적으로, 기능요소(F6)가 생성한 지령값(β1r)과 기능요소(F13)가 산출한 붐각도(β1)의 차가 제로가 되도록, 붐제어기구(31C)에 대한 붐전류지령을 생성한다. 그때에, 기능요소(F11)는, 붐전류지령으로부터 도출되는 목표붐스풀변위량과 기능요소(F12)가 산출한 붐스풀변위량의 차가 제로가 되도록, 붐전류지령을 조절한다. 그리고, 기능요소(F11)는, 그 조절 후의 붐전류지령을 붐제어기구(31C)에 대하여 출력한다.
붐제어기구(31C)는, 붐전류지령에 따라 개구면적을 변화시켜, 그 개구면적의 크기에 대응하는 파일럿압을 제어밸브(175)의 파일럿포트에 작용시킨다. 제어밸브(175)는, 파일럿압에 따라 붐스풀을 이동시켜, 붐실린더(7)에 작동유를 유입시킨다. 붐스풀변위센서(S7)는, 붐스풀의 변위를 검출하고, 그 검출결과를 컨트롤러(30)의 기능요소(F12)에 피드백한다. 붐실린더(7)는, 작동유의 유입에 따라 신축하여, 붐(4)을 상하동시킨다. 붐각도센서(S1)는, 상하동하는 붐(4)의 회동각도를 검출하고, 그 검출결과를 컨트롤러(30)의 기능요소(F13)에 피드백한다. 기능요소(F13)는, 산출한 붐각도(β1)를 기능요소(F4)에 피드백한다.
기능요소(F21)는, 기본적으로, 기능요소(F6)가 생성한 지령값(β2r)과 기능요소(F23)가 산출한 암각도(β2)의 차가 제로가 되도록, 암제어기구(31A)에 대한 암전류지령을 생성한다. 그때에, 기능요소(F21)는, 암전류지령으로부터 도출되는 목표 암스풀변위량과 기능요소(F22)가 산출한 암스풀변위량의 차가 제로가 되도록, 암전류지령을 조절한다. 그리고, 기능요소(F21)는, 그 조절 후의 암전류지령을 암제어기구(31A)에 대하여 출력한다.
암제어기구(31A)는, 암전류지령에 따라 개구면적을 변화시켜, 그 개구면적의 크기에 대응하는 파일럿압을 제어밸브(176)의 파일럿포트에 작용시킨다. 제어밸브(176)는, 파일럿압에 따라 암스풀을 이동시켜, 암실린더(8)에 작동유를 유입시킨다. 암스풀변위센서(S8)는, 암스풀의 변위를 검출하고, 그 검출결과를 컨트롤러(30)의 기능요소(F22)에 피드백한다. 암실린더(8)은, 작동유의 유입에 따라 신축하여, 암(5)을 펼치기·접기(開閉)시킨다. 암각도센서(S2)는, 펼치기·접기하는 암(5)의 회동각도를 검출하고, 그 검출결과를 컨트롤러(30)의 기능요소(F23)에 피드백한다. 기능요소(F23)는, 산출한 암각도(β2)를 기능요소(F4)에 피드백한다.
기능요소(F31)는, 기본적으로, 기능요소(F6)가 생성한 지령값(β3r)과 기능요소(F33)가 산출한 버킷각도(β3)의 차가 제로가 되도록, 버킷제어기구(31D)에 대한 버킷전류지령을 생성한다. 그때에, 기능요소(F31)는, 버킷전류지령으로부터 도출되는 목표버킷스풀변위량과 기능요소(F32)가 산출한 버킷스풀변위량의 차가 제로가 되도록, 버킷전류지령을 조절한다. 그리고, 기능요소(F31)는, 그 조절 후의 버킷전류지령을 버킷제어기구(31D)에 대하여 출력한다.
버킷제어기구(31D)는, 버킷전류지령에 따라 개구면적을 변화시켜, 그 개구면적의 크기에 대응하는 파일럿압을 제어밸브(174)의 파일럿포트에 작용시킨다. 제어밸브(174)는, 파일럿압에 따라 버킷스풀을 이동시켜, 버킷실린더(9)에 작동유를 유입시킨다. 버킷스풀변위센서(S9)는, 버킷스풀의 변위를 검출하고, 그 검출결과를 컨트롤러(30)의 기능요소(F32)에 피드백한다. 버킷실린더(9)는, 작동유의 유입에 따라 신축하여, 버킷(6)을 펼치기·접기시킨다. 버킷각도센서(S3)는, 펼치기·접기하는 버킷(6)의 회동각도를 검출하고, 그 검출결과를 컨트롤러(30)의 기능요소(F33)에 피드백한다. 기능요소(F33)는, 산출한 버킷각도(β3)을 기능요소(F4)에 피드백한다.
기능요소(F41)는, 기본적으로, 기능요소(F6)가 생성한 지령값(α1r)과 기능요소(F43)가 산출한 선회각도(α1)의 차가 제로가 되도록, 선회제어기구(31B)에 대한 선회전류지령을 생성한다. 그때에, 기능요소(F41)는, 선회전류지령으로부터 도출되는 목표선회스풀변위량과 기능요소(F42)가 산출한 선회스풀변위량의 차가 제로가 되도록, 선회전류지령을 조절한다. 그리고, 기능요소(F41)는, 그 조절 후의 선회전류지령을 선회제어기구(31B)에 대하여 출력한다. 다만, 기능요소(F6)가 생성한 지령값(α1r)과 기능요소(F43)가 산출한 선회각도(α1)의 차는, 기능요소(F41)에 입력되기 전에, 제한부(F50)에 의하여 제한되는 경우가 있다.
제한부(F50)는, 기능요소(F13)가 산출한 붐각도(β1)에 근거하여, 붐(4)이 소정의 높이(각도)까지 상승하고 있는지 여부를 판정하도록 구성되어 있다. 그리고, 제한부(F50)는, 붐(4)이 소정의 높이(각도)까지 상승하고 있지 않다고 판정한 경우, 기능요소(F41)에 대하여 출력되는 차인 지령값(α1r)과 선회각도(α1)의 차를 소정 값 이하로 제한하도록 구성되어 있다. 붐(4)이 충분히 상승하고 있지 않은 단계에서 상부선회체(3)가 급선회되어 버리는 것을 방지하기 위함이다.
선회제어기구(31B)는, 선회전류지령에 따라 개구면적을 변화시켜, 그 개구면적의 크기에 대응하는 파일럿압을 제어밸브(173)의 파일럿포트에 작용시킨다. 제어밸브(173)는, 파일럿압에 따라 선회스풀을 이동시켜, 선회용 유압모터(2A)에 작동유를 유입시킨다. 선회스풀변위센서(S2A)는, 선회스풀의 변위를 검출하고, 그 검출결과를 컨트롤러(30)의 기능요소(F42)에 피드백한다. 선회용 유압모터(2A)는, 작동유의 유입에 따라 회전하여, 상부선회체(3)를 선회시킨다. 선회각속도센서(S5)는, 상부선회체(3)의 선회각도를 검출하고, 그 검출결과를 컨트롤러(30)의 기능요소(F43)에 피드백한다. 기능요소(F43)는, 산출한 선회각도(α1)를 기능요소(F4)에 피드백한다.
상술한 바와 같이, 컨트롤러(30)는, 작업체마다, 3단의 피드백루프를 구성하고 있다. 즉, 컨트롤러(30)는, 스풀변위량에 관한 피드백루프, 작업체의 회동각도에 관한 피드백루프, 및 치선위치에 관한 피드백루프를 구성하고 있다. 그 때문에, 컨트롤러(30)는, 자율제어 시에, 버킷(6)의 치선의 움직임을 고정밀도로 제어할 수 있다.
다음으로, 도 10을 참조하여, 자율제어기능의 다른 구성예에 대하여 설명한다. 도 10은, 자율제어기능의 다른 구성예를 나타내는 블록도이다. 도 10에 나타내는 구성은, 자동운전식의 무인(無人)쇼벨을 동작시키기 위한 기능요소를 포함하는 점에서, 수동운전식의 유인(有人)쇼벨을 동작시키기 위한 기능요소를 포함하는 도 7에 나타내는 구성과 다르다. 구체적으로는, 도 10에 나타내는 구성은, 조작압센서(29)의 출력이 아니라 통신장치(T1)의 출력에 근거하여 다음의 치선위치를 산출하는 점, 및 기능요소(FM~FP)를 갖는 점에서, 도 7에 나타내는 구성과 다르다. 그 때문에, 이하에서는, 도 7에 나타내는 구성과 공통되는 부분의 설명이 생략되고, 상이부분이 상세하게 설명된다.
통신장치(T1)는, 쇼벨(100)과 쇼벨(100)의 외부에 있는 외부기기의 사이의 통신을 제어하도록 구성되어 있다. 도 10의 예에서는, 통신장치(T1)는, 외부기기로부터 수신한 신호에 근거하여 기능요소(FM)에 개시지령을 출력하도록 구성되어 있다. 통신장치(T1)는, 외부기기로부터 수신한 신호에 근거하여 기능요소(FM)에 조작데이터를 출력하도록 구성되어 있어도 된다. 단, 통신장치(T1)는, 쇼벨(100)에 탑재되어 있는 입력장치(42)여도 된다.
기능요소(FM)는, 작업의 개시를 판정하도록 구성되어 있다. 도 10의 예에서는, 기능요소(FM)는, 통신장치(T1)로부터 개시지령을 받은 경우에, 작업의 개시가 지시되었다고 판정하여, 기능요소(FN)에 대하여 개시지령을 출력하도록 구성되어 있다. 기능요소(FM)는, 통신장치(T1)로부터 개시지령을 받은 경우, 주위감시장치로서의 촬상장치(S6)의 출력에 근거하여 쇼벨(100)의 주위에 물체가 존재하지 않는다고 판정할 수 있었을 때에, 기능요소(FN)에 대하여 개시지령을 출력하도록 구성되어 있어도 된다. 기능요소(FM)는, 기능요소(FN)에 대하여 개시지령을 출력할 때에, 파일럿펌프(15)와 컨트롤밸브(17)를 연결하는 파일럿라인에 배치된 전자개폐밸브에 지령을 출력하여, 그 파일럿라인을 개통시켜도 된다.
기능요소(FN)는, 동작의 내용을 판정하도록 구성되어 있다. 도 10의 예에서는, 기능요소(FN)는, 기능요소(FM)로부터 개시지령을 받은 경우에, 기능요소(F2)가 산출한 현재의 치선위치에 근거하여, 굴삭동작, 붐상승선회동작, 배토동작, 및 붐하강선회동작 등 중 어느 동작이 현재 행해지고 있는지, 혹은 어느 동작도 행해지고 있지 않은지를 판정하도록 구성되어 있다. 그리고, 기능요소(FN)는 기능요소(F2)가 산출한 현재의 치선위치에 근거하여 붐하강선회동작이 종료되었다고 판정한 경우, 기능요소(FO)에 대하여 개시지령을 출력하도록 구성되어 있다.
기능요소(FO)는, 쇼벨(100)의 동작조건을 설정하도록 구성되어 있다. 도 10의 예에서는, 기능요소(FO)는, 기능요소(FN)로부터 개시지령을 받은 경우에, 자율제어에 의한 굴삭동작이 행해질 때의 굴삭깊이(깊게 하거나 또는 얕게 하는 것), 굴삭길이 등의 동작조건을 설정하도록 구성되어 있다. 그리고, 기능요소(FO)는, 동작조건을 설정한 후에, 기능요소(FP)에 대하여 개시지령을 출력하도록 구성되어 있다.
기능요소(FP)는, 소정 동작의 개시를 판정하도록 구성되어 있다. 도 10의 예에서는, 기능요소(FP)는, 기능요소(FO)로부터 개시지령을 받은 경우에, 기능요소(F2)에 의하여 산출되는 현재의 버킷(6)의 치선위치에 근거하여, 굴삭동작을 개시시킬 수 있는지 여부를 판정한다. 구체적으로는, 기능요소(FP)는, 현재의 치선위치에 근거하여, 붐하강선회동작이 종료되었는지 여부, 및 버킷(6)의 치선이 굴삭개시위치에 도달하고 있는지 여부 등을 판정한다. 그리고, 기능요소(FP)는, 붐하강선회동작이 종료되어 있고, 또한 버킷(6)의 치선이 굴삭개시위치에 도달하고 있다고 판정한 경우, 굴삭동작을 개시시킬 수 있다고 판정한다. 그리고, 기능요소(FP)는, 굴삭동작을 개시시킬 수 있다고 판정한 경우, 자동운전식의 무인쇼벨에 있어서 자동적으로 생성되는 조작데이터가 기능요소(F3)에 입력되도록 한다.
이 구성에 의하여, 컨트롤러(30)는, 자동운전식의 무인쇼벨에 있어서도, 수동운전식의 유인쇼벨에 있어서의 경우와 동일하게, 자율제어에 의한 굴삭동작을 실행할 수 있다.
또, 상술한 실시형태에서는, 유압식 파일럿회로를 구비한 유압식 조작시스템이 개시되어 있다. 구체적으로는, 암조작레버에 관한 유압식 파일럿회로에서는, 파일럿펌프(15)로부터 암조작레버의 리모콘밸브에 공급되는 작동유가, 암조작레버의 경도(傾倒)에 의하여 개폐되는 리모콘밸브의 개도(開度)에 따른 유량으로, 암제어밸브로서의 제어밸브(176)의 파일럿포트로 전달된다.
단, 이와 같은 유압식 파일럿회로를 구비한 유압식 조작시스템이 아니라, 전기식 파일럿회로를 구비한 전기식 조작레버를 포함하는 전기식 조작시스템이 채용되어도 된다. 이 경우, 전기식 조작레버의 레버조작량은, 전기신호로서 컨트롤러(30)에 입력된다. 또, 파일럿펌프(15)와 각 제어밸브의 파일럿포트의 사이에는 전자밸브가 배치된다. 전자밸브는, 컨트롤러(30)로부터의 전기신호에 따라 동작하도록 구성된다. 이 구성에 의하여, 전기식 조작레버를 이용한 수동조작이 행해지면, 컨트롤러(30)는, 레버조작량에 대응하는 전기신호에 의하여 전자밸브를 제어하여 파일럿압을 증감시킴으로써 각 제어밸브를 컨트롤밸브(17) 내에서 이동시킬 수 있다. 다만, 각 제어밸브는 전자스풀밸브로 구성되어 있어도 된다. 이 경우, 전자스풀밸브는, 전기식 조작레버의 레버조작량에 대응하는 컨트롤러(30)로부터의 전기신호에 따라 동작한다.
전기식 조작레버를 포함하는 전기식 조작시스템이 채용된 경우, 컨트롤러(30)는, 유압식 조작레버를 포함하는 유압식 조작시스템이 채용되는 경우에 비하여, 자율제어기능을 용이하게 실행할 수 있다. 도 11은, 전기식 조작시스템의 구성예를 나타낸다. 구체적으로는, 도 11의 전기식 조작시스템은, 붐조작시스템의 일례이며, 주로, 파일럿압작동형의 컨트롤밸브(17)와, 전기식 조작레버로서의 붐조작레버(26A)와, 컨트롤러(30)와, 붐상승조작용의 전자밸브(65)와, 붐하강조작용의 전자밸브(66)로 구성되어 있다. 도 11의 전기식 조작시스템은, 암조작시스템 및 버킷조작시스템 등에도 동일하게 적용될 수 있다.
파일럿압작동형의 컨트롤밸브(17)는, 붐실린더(7)에 관한 제어밸브(175)(도 2 참조), 암실린더(8)에 관한 제어밸브(176)(도 2 참조), 및 버킷실린더(9)에 관한 제어밸브(174)(도 2 참조) 등을 포함한다. 전자밸브(65)는, 파일럿펌프(15)와 제어밸브(175)의 상승측 파일럿포트를 연결하는 관로의 유로면적을 조절할 수 있도록 구성되어 있다. 전자밸브(66)는, 파일럿펌프(15)와 제어밸브(175)의 하강측 파일럿포트를 연결하는 관로의 유로면적을 조절할 수 있도록 구성되어 있다.
수동조작이 행해지는 경우, 컨트롤러(30)는, 붐조작레버(26A)의 조작신호생성부가 출력하는 조작신호(전기신호)에 따라 붐상승조작신호(전기신호) 또는 붐하강조작신호(전기신호)를 생성한다. 붐조작레버(26A)의 조작신호생성부가 출력하는 조작신호는, 붐조작레버(26A)의 조작량 및 조작방향에 따라 변화하는 전기신호이다.
구체적으로는, 컨트롤러(30)는, 붐조작레버(26A)가 붐상승방향으로 조작된 경우, 레버조작량에 따른 붐상승조작신호(전기신호)를 전자밸브(65)에 대하여 출력한다. 전자밸브(65)는, 붐상승조작신호(전기신호)에 따라 유로면적을 조절하여, 제어밸브(175)의 상승측 파일럿포트에 작용하는, 붐상승조작신호(압력신호)로서의 파일럿압을 제어한다. 동일하게, 컨트롤러(30)는 붐조작레버(26A)가 붐하강방향으로 조작된 경우, 레버조작량에 따른 붐하강조작신호(전기신호)를 전자밸브(66)에 대하여 출력한다. 전자밸브(66)는, 붐하강조작신호(전기신호)에 따라 유로면적을 조절하여, 제어밸브(175)의 하강측 파일럿포트에 작용하는, 붐하강조작신호(압력신호)로서의 파일럿압을 제어한다.
자율제어를 실행하는 경우, 컨트롤러(30)는, 예를 들면 붐조작레버(26A)의 조작신호생성부가 출력하는 조작신호(전기신호)에 따르는 대신, 보정조작신호(전기신호)에 따라 붐상승조작신호(전기신호) 또는 붐하강조작신호(전기신호)를 생성한다. 보정조작신호는, 컨트롤러(30)가 생성하는 전기신호여도 되고, 컨트롤러(30) 이외의 외부의 제어장치 등이 생성하는 전기신호여도 된다.
도 7 및 도 10에 나타내는 실시형태에서는, 컨트롤러(30)는, 덤프트럭(DT)으로의 최대적재량에 근거하여 목표굴삭중량을 산출하고, 목표굴삭중량을 목표굴삭체적으로 변환한 후에, 목표궤도를 생성하도록 구성되어 있다. 그러나, 이 구성의 대상이 되는 작업은, 반드시 덤프트럭(DT)으로의 적재작업에는 한정되지 않는다. 컨트롤러(30)는, 예를 들면 되메움작업에 있어서, 되메움작업의 대상이 되는 구멍 등의 개구부의 체적에 근거하여 목표굴삭체적을 산출해도 된다. 이 경우, 컨트롤러(30)는, 임시적재되어 있는 토사를 걷어 낼 때의 궤도를 목표궤도로서 산출해도 된다. 그리고, 컨트롤러(30)는, 개구부의 체적과, 되메운 토사의 누적체적의 차에 근거하여 목표굴삭체적을 산출해도 된다.
쇼벨(100)이 취득하는 정보는, 도 12에 나타내는 바와 같은 쇼벨의 관리시스템(SYS)을 통하여, 관리자 및 다른 쇼벨의 조작자 등과 공유되어도 된다. 도 12는, 쇼벨의 관리시스템(SYS)의 구성예를 나타내는 개략도이다. 관리시스템(SYS)은, 1대 또는 복수 대의 쇼벨(100)을 관리하는 시스템이다. 본 실시형태에서는, 관리시스템(SYS)은, 주로, 쇼벨(100), 지원장치(200), 및 관리장치(300)로 구성되어 있다. 관리시스템(SYS)을 구성하는 쇼벨(100), 지원장치(200), 및 관리장치(300)의 각각은, 1대여도 되고, 복수 대여도 된다. 도 12의 예에서는, 관리시스템(SYS)은, 1대의 쇼벨(100)과, 1대의 지원장치(200)와, 1대의 관리장치(300)를 포함한다.
지원장치(200)는, 전형적으로는 휴대단말장치이며, 예를 들면 시공현장에 있는 작업자 등이 휴대하는 노트 PC, 태블릿 PC, 또는 스마트폰 등이다. 지원장치(200)는, 쇼벨(100)의 조작자가 휴대하는 컴퓨터여도 된다. 지원장치(200)는, 고정단말장치여도 된다.
관리장치(300)는, 전형적으로는 고정단말장치이며, 예를 들면 시공현장 외의 관리센터 등에 설치되는 서버컴퓨터이다. 관리장치(300)는, 가반성(可搬性)의 컴퓨터(예를 들면, 노트 PC, 태블릿 PC, 또는 스마트폰 등의 휴대단말장치)여도 된다.
지원장치(200) 및 관리장치(300) 중 적어도 일방은, 모니터와 원격조작용의 조작장치를 구비하고 있어도 된다. 이 경우, 조작자는, 원격조작용의 조작장치를 이용하면서, 쇼벨(100)을 조작해도 된다. 원격조작용의 조작장치는, 예를 들면 무선통신네트워크 등의 통신네트워크를 통하여, 컨트롤러(30)에 접속된다. 이하에서는, 쇼벨(100)과 관리장치(300)의 사이에서의 정보의 교환에 대하여 설명하지만, 이하의 설명은, 쇼벨(100)과 지원장치(200)의 사이에서의 정보의 교환에 대해서도 동일하게 적용된다.
상술한 바와 같은 쇼벨(100)의 관리시스템(SYS)에서는, 쇼벨(100)의 컨트롤러(30)는, 자율제어를 개시 혹은 정지시켰을 때의 시각과 장소, 자율제어 시에 이용된 목표궤도, 및 자율제어 시에 소정 부위가 실제로 나타낸 궤적 등 중 적어도 하나에 관한 정보를 관리장치(300)에 송신해도 된다. 그때, 컨트롤러(30)는, 예를 들면 주위감시장치로서의 촬상장치(S6)가 촬상한 화상 등을 관리장치(300)에 송신해도 된다. 화상은, 자율제어가 실행된 기간을 포함하는 소정 기간 중에 촬상된 복수의 화상이어도 된다. 또한, 컨트롤러(30)는, 자율제어가 실행된 기간을 포함하는 소정 기간에 있어서의 쇼벨(100)의 작업내용에 관한 데이터, 쇼벨(100)의 자세에 관한 데이터, 및 굴삭어태치먼트의 자세에 관한 데이터 등 중 적어도 하나에 관한 정보를 관리장치(300)에 송신해도 된다. 관리장치(300)를 이용하는 관리자가, 작업현장에 관한 정보를 입수할 수 있도록 하기 위함이다. 쇼벨(100)의 작업내용에 관한 데이터는, 예를 들면 배토동작이 행해진 횟수인 적재횟수, 덤프트럭(DT)의 짐받이에 적재한 토사 등의 피굴삭물에 관한 정보, 적재작업에 관한 덤프트럭(DT)의 종류, 적재작업이 행해졌을 때의 쇼벨(100)의 위치에 관한 정보, 작업환경에 관한 정보, 및 적재작업이 행해졌을 때의 쇼벨(100)의 동작에 관한 정보 등 중 적어도 하나이다. 피굴삭물에 관한 정보는, 예를 들면 각 회의 굴삭동작으로 굴삭된 피굴삭물의 중량 및 종류 등, 덤프트럭(DT)에 적재된 피굴삭물의 중량 및 종류 등, 및 1일의 적재작업으로 적재된 피굴삭물의 중량 및 종류 등 중 적어도 하나이다. 작업환경에 관한 정보는, 예를 들면 쇼벨(100)의 주위에 있는 지면의 경사에 관한 정보, 또는 작업현장의 주변의 날씨에 관한 정보등이다. 쇼벨(100)의 동작에 관한 정보는, 예를 들면 조작압센서(29)의 출력, 및 실린더압센서의 출력 등 중 적어도 하나이다.
또, 상술한 실시형태에서는, 자율제어부(35)는, 조작자에 의한 쇼벨(100)의 수동조작을 자율적으로 지원하도록 구성되어 있다. 예를 들면, 자율제어부(35)는, 조작자가 수동으로 암접음조작을 행하고 있을 때에, 버킷(6)의 치선의 궤도가 목표궤도와 일치하도록 붐실린더(7), 암실린더(8), 및 버킷실린더(9) 중 적어도 하나를 신축시킨다. 그러나, 본 발명은, 이 구성에 한정되지 않는다. 자율제어부(35)는, 예를 들면 조작자가 조작장치(26)를 조작하고 있지 않을 때에, 버킷(6)의 치선의 궤도가 목표궤도와 일치하도록 붐실린더(7), 암실린더(8), 및 버킷실린더(9) 중 적어도 하나를 신축시켜도 된다. 즉, 자율제어부(35)는, 조작자에 의한 조작에 관계없이, 굴삭어태치먼트를 자율적으로 움직여도 된다.
또, 상술한 실시형태에서는, 굴삭동작 후의 붐상승선회동작 및 배토동작은, 쇼벨(100)의 조작자에 의한 수동조작에 따라 실행되지만, 자율제어부(35)에 의하여 실행되어도 된다. 배토동작 후의 붐하강선회동작에 대해서도 동일하다.
본원은, 2018년 3월 27일에 출원한 일본 특허출원 2018-059273호에 근거하여 우선권을 주장하는 것이며, 이 일본 특허출원의 전체내용을 본원에 참조에 의하여 원용한다.
1…하부주행체
1L…좌측주행용 유압모터
1R…우측주행용 유압모터
2…선회기구
2A…선회용 유압모터
3…상부선회체
4…붐
5…암
6…버킷
7…붐실린더
8…암실린더
9…버킷실린더
10…캐빈
11…엔진
13…레귤레이터
14…메인펌프
15…파일럿펌프
17…컨트롤밸브
26…조작장치
28…토출압센서
29…조작압센서
30…컨트롤러
40…표시장치
42…입력장치
43…소리출력장치
47…기억장치
50…머신가이던스부
55…연료탱크
55a…연료잔량센서
74…엔진컨트롤러유닛
100…쇼벨
171~176…제어밸브
S1…붐각도센서
S2…암각도센서
S3…버킷각도센서
S4…기체경사센서
S5…선회각속도센서
S6…촬상장치
S6A…3차원 거리화상센서
S6B…후카메라
S6D…스테레오카메라
S6F…전카메라
S6L…좌카메라
S6R…우카메라
S7B…붐보텀압센서
S7R…붐로드압센서
S8B…암보텀압센서
S8R…암로드압센서
S9B…버킷보텀압센서
S9R…버킷로드압센서
P1…측위장치
T1…통신장치

Claims (9)

  1. 하부주행체와,
    상기 하부주행체에 선회 가능하게 탑재되는 상부선회체와,
    상기 상부선회체에 장착되는 굴삭어태치먼트와,
    제어장치를 구비하고,
    상기 제어장치는, 굴삭이 개시되기 전의 지형에 관한 정보와 목표굴삭체적에 근거하여 상기 굴삭어태치먼트에 있어서의 소정 부위가 찾아가는 궤도인 목표궤도를 설정하는 설정부를 갖는, 쇼벨.
  2. 제1항에 있어서,
    상기 제어장치는, 상기 목표굴삭체적을 목표굴삭중량과 토질정보에 근거하여 산출하는, 쇼벨.
  3. 제1항에 있어서,
    상기 제어장치는,
    덤프트럭의 최대적재량에 관한 정보를 취득하는 제1 정보취득부와,
    상기 굴삭어태치먼트의 굴삭동작으로 굴삭되는 피굴삭물의 중량인 굴삭중량에 관한 정보를 취득하는 제2 정보취득부와,
    상기 최대적재량에 관한 정보와 상기 굴삭중량에 관한 정보에 근거하여 목표굴삭중량을 산출하는 산출부를 갖는, 쇼벨.
  4. 제3항에 있어서,
    상기 제1 정보취득부는, 상기 덤프트럭의 식별정보를 취득하여, 상기 식별정보에 근거하여 상기 최대적재량에 관한 정보를 취득하도록 구성되어 있는, 쇼벨.
  5. 제3항에 있어서,
    상기 제1 정보취득부는, 카메라, 레이더 및 LIDAR 중 적어도 하나의 출력에 근거하여 상기 최대적재량에 관한 정보를 취득하는, 쇼벨.
  6. 제1항에 있어서,
    상기 설정부는, 소정의 굴삭대상범위 내에서 상기 목표궤도를 설정하도록 구성되어 있는, 쇼벨.
  7. 제6항에 있어서,
    입력장치를 구비하고,
    상기 굴삭대상범위는, 상기 상부선회체의 주위에 있는 영역이며, 상기 입력장치를 이용하여 설정되는, 쇼벨.
  8. 제1항에 있어서,
    상기 제어장치는, 상기 목표궤도를 적절히 설정할 수 없다고 판정한 경우, 그 취지를 알리도록 구성되어 있는, 쇼벨.
  9. 제3항에 있어서,
    상기 제2 정보취득부는, 상기 굴삭어태치먼트의 굴삭동작으로 굴삭되는 피굴삭물의 밀도에 관한 정보를 취득하고,
    상기 설정부는, 적재잔중량과 상기 밀도에 근거하여 적재잔체적을 산출하여, 상기 적재잔체적에 상당하는 체적의 상기 피굴삭물이 1회의 굴삭동작으로 굴삭되도록, 상기 목표궤도를 설정하도록 구성되어 있는, 쇼벨.
KR1020207028150A 2018-03-27 2019-03-26 쇼벨 KR102659077B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2018-059273 2018-03-27
JP2018059273 2018-03-27
PCT/JP2019/013014 WO2019189260A1 (ja) 2018-03-27 2019-03-26 ショベル

Publications (2)

Publication Number Publication Date
KR20200132892A true KR20200132892A (ko) 2020-11-25
KR102659077B1 KR102659077B1 (ko) 2024-04-18

Family

ID=68060143

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207028150A KR102659077B1 (ko) 2018-03-27 2019-03-26 쇼벨

Country Status (6)

Country Link
US (1) US11959254B2 (ko)
EP (1) EP3779067A4 (ko)
JP (1) JPWO2019189260A1 (ko)
KR (1) KR102659077B1 (ko)
CN (1) CN111902585A (ko)
WO (1) WO2019189260A1 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6850078B2 (ja) * 2016-03-23 2021-03-31 株式会社小松製作所 モータグレーダ
JP7204366B2 (ja) * 2018-07-31 2023-01-16 株式会社小松製作所 作業機械を制御するためのシステム及び方法
JP7175680B2 (ja) * 2018-08-31 2022-11-21 株式会社小松製作所 表示制御装置、表示制御システム、および表示制御方法
JP7287047B2 (ja) * 2019-03-27 2023-06-06 コベルコ建機株式会社 遠隔操作システムおよび遠隔操作サーバ
JP7246294B2 (ja) * 2019-11-26 2023-03-27 コベルコ建機株式会社 計測装置、及び建設機械
JP7455632B2 (ja) 2020-03-30 2024-03-26 住友重機械工業株式会社 ショベル及びショベルの管理装置
DE102020206370B4 (de) 2020-05-20 2022-10-06 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Ausgeben eines Signals in Abhängigkeit einer ermittelten maximalen Ladekapazität eines Transportfahrzeugs für Schüttgut
JP2021188364A (ja) * 2020-05-29 2021-12-13 株式会社小松製作所 作業システムおよび制御方法
US11624171B2 (en) 2020-07-31 2023-04-11 Baidu Usa Llc Engineering machinery equipment, and method, system, and storage medium for operation trajectory planning thereof
JP2022030484A (ja) * 2020-08-07 2022-02-18 株式会社小松製作所 掘削情報処理装置、作業機械、掘削支援装置および掘削情報処理方法
JP7484630B2 (ja) 2020-09-29 2024-05-16 コベルコ建機株式会社 積込ポイント決定システム
JP2022077325A (ja) * 2020-11-11 2022-05-23 日本電気株式会社 制御装置、制御システム、および制御方法
FI129572B (fi) * 2021-01-27 2022-05-13 Mikrosys Menetelmä ja järjestelmä kuorman punnitsemiseksi työkoneen kauhassa sekä työkone
CN113107044A (zh) * 2021-04-21 2021-07-13 立澈(上海)自动化有限公司 挖掘机的铲斗位置确定方法、装置以及电子设备
WO2024034624A1 (ja) * 2022-08-09 2024-02-15 住友重機械工業株式会社 支援装置、作業機械、支援システム、プログラム
US11746501B1 (en) 2022-08-29 2023-09-05 RIM Intelligent Machines, Inc. Autonomous control of operations of powered earth-moving vehicles using data from on-vehicle perception systems
US11898324B1 (en) 2022-12-19 2024-02-13 AIM Intelligent Machines, Inc. Adaptive control system for autonomous control of powered earth-moving vehicles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938576U (ja) * 1982-09-03 1984-03-12 新キャタピラー三菱株式会社 荷役積載重量監視装置
JPH0610378A (ja) 1992-06-26 1994-01-18 Komatsu Ltd 掘削積込機の作業量検出装置
JP2000291076A (ja) * 1999-04-01 2000-10-17 Tokai Rika Co Ltd パワーショベル
KR20100093709A (ko) * 2009-02-17 2010-08-26 (주)넥스지오 덤프트럭 적재 토량 산출방법 및 토량환산계수 산출방법
JP2016169571A (ja) * 2015-03-13 2016-09-23 住友重機械工業株式会社 ショベル
JP2017014726A (ja) * 2015-06-29 2017-01-19 日立建機株式会社 作業機械の作業支援システム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205127A (ja) * 1992-01-27 1993-08-13 Mitsubishi Heavy Ind Ltd 有料道路の料金収受装置
JPH0689550A (ja) 1992-09-09 1994-03-29 Nikon Corp 光ディスク装置
JP2000291276A (ja) * 1999-04-06 2000-10-17 Yamaha Livingtec Corp 浴室の天井構造
CN100545359C (zh) * 2003-09-02 2009-09-30 株式会社小松制作所 施工目标指示装置
JP5238997B2 (ja) * 2008-11-19 2013-07-17 新明和工業株式会社 コンテナ管理システム
US20110309935A1 (en) * 2009-02-26 2011-12-22 Southern Plant Hire Pty Ltd Workplace management system
JP5419998B2 (ja) * 2010-01-22 2014-02-19 日立建機株式会社 積載案内システム
JP5519414B2 (ja) * 2010-06-03 2014-06-11 住友重機械工業株式会社 建設機械
JP2012035973A (ja) * 2010-08-06 2012-02-23 Ohbayashi Corp 積込量管理システム及び積込量管理方法
JP5864138B2 (ja) * 2011-06-13 2016-02-17 住友重機械工業株式会社 ショベル
US9267837B2 (en) * 2014-03-31 2016-02-23 Siemens Industry, Inc. Methods and systems for active load weight for mining excavating equipment
JP6314105B2 (ja) * 2015-03-05 2018-04-18 株式会社日立製作所 軌道生成装置および作業機械
JP7210129B2 (ja) * 2016-03-16 2023-01-23 住友重機械工業株式会社 ショベル
JP6773973B2 (ja) 2016-10-03 2020-10-21 ジャパンパイル株式会社 杭孔の施工管理装置、杭孔の施工管理システム、及び杭孔の施工管理方法
WO2018136889A1 (en) * 2017-01-23 2018-07-26 Built Robotics Inc. Excavating earth from a dig site using an excavation vehicle
US20200217050A1 (en) * 2017-09-06 2020-07-09 Hitachi Construction Machinery Co., Ltd. Work machine
JP7011924B2 (ja) * 2017-11-09 2022-01-27 株式会社小松製作所 情報提供装置、積込作業支援システム及び情報提供方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938576U (ja) * 1982-09-03 1984-03-12 新キャタピラー三菱株式会社 荷役積載重量監視装置
JPH0610378A (ja) 1992-06-26 1994-01-18 Komatsu Ltd 掘削積込機の作業量検出装置
JP2000291076A (ja) * 1999-04-01 2000-10-17 Tokai Rika Co Ltd パワーショベル
KR20100093709A (ko) * 2009-02-17 2010-08-26 (주)넥스지오 덤프트럭 적재 토량 산출방법 및 토량환산계수 산출방법
JP2016169571A (ja) * 2015-03-13 2016-09-23 住友重機械工業株式会社 ショベル
JP2017014726A (ja) * 2015-06-29 2017-01-19 日立建機株式会社 作業機械の作業支援システム

Also Published As

Publication number Publication date
EP3779067A1 (en) 2021-02-17
KR102659077B1 (ko) 2024-04-18
CN111902585A (zh) 2020-11-06
US20210017738A1 (en) 2021-01-21
EP3779067A4 (en) 2021-04-07
WO2019189260A1 (ja) 2019-10-03
US11959254B2 (en) 2024-04-16
JPWO2019189260A1 (ja) 2021-04-01

Similar Documents

Publication Publication Date Title
KR102659077B1 (ko) 쇼벨
US20200340208A1 (en) Shovel and shovel management system
US11492777B2 (en) Shovel and system of managing shovel
JP7402736B2 (ja) ショベル及びその制御方法
KR20210106409A (ko) 쇼벨
US20210010239A1 (en) Work machine and information processing apparatus
EP4159932A1 (en) Excavator and excavator system
US20240026651A1 (en) Display device for shovel, and shovel
US20230071015A1 (en) Construction assist system for shovel
KR102615982B1 (ko) 쇼벨 및 쇼벨의 관리시스템
KR20210143792A (ko) 쇼벨
KR20220158686A (ko) 건설기계의 정보통신시스템, 건설기계의 표시장치, 기계학습장치
US20220341124A1 (en) Shovel and remote operation support apparatus
JP2022154722A (ja) ショベル
CN113445555A (zh) 施工支援系统及施工机械
JP2021156078A (ja) ショベル
US20230408322A1 (en) Work machine and work machine support system
JP2023151634A (ja) 建設機械の作業支援システム
JP2023151585A (ja) 建設機械の作業支援システム

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant