KR20200077232A - 프로필렌 중합용 고체 촉매 및 이를 이용한 블록 공중합체의 제조방법 - Google Patents

프로필렌 중합용 고체 촉매 및 이를 이용한 블록 공중합체의 제조방법 Download PDF

Info

Publication number
KR20200077232A
KR20200077232A KR1020180166543A KR20180166543A KR20200077232A KR 20200077232 A KR20200077232 A KR 20200077232A KR 1020180166543 A KR1020180166543 A KR 1020180166543A KR 20180166543 A KR20180166543 A KR 20180166543A KR 20200077232 A KR20200077232 A KR 20200077232A
Authority
KR
South Korea
Prior art keywords
solid catalyst
propylene
magnesium
carbon atoms
reaction
Prior art date
Application number
KR1020180166543A
Other languages
English (en)
Other versions
KR102178630B1 (ko
Inventor
이영주
김은일
박형철
고수민
Original Assignee
한화토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화토탈 주식회사 filed Critical 한화토탈 주식회사
Priority to KR1020180166543A priority Critical patent/KR102178630B1/ko
Priority to EP19215811.1A priority patent/EP3670546A1/en
Priority to US16/721,068 priority patent/US11427657B2/en
Priority to CN201911324587.0A priority patent/CN111349185B/zh
Publication of KR20200077232A publication Critical patent/KR20200077232A/ko
Application granted granted Critical
Publication of KR102178630B1 publication Critical patent/KR102178630B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • C08F297/083Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins the monomers being ethylene or propylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/643Component covered by group C08F4/64 with a metal or compound covered by group C08F4/44 other than an organo-aluminium compound
    • C08F4/6432Component of C08F4/64 containing at least two different metals
    • C08F4/6435Component of C08F4/64 containing at least two different metals containing magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6493Catalysts containing a specific non-metal or metal-free compound organic containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6494Catalysts containing a specific non-metal or metal-free compound organic containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2400/00Characteristics for processes of polymerization
    • C08F2400/02Control or adjustment of polymerization parameters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/03Multinuclear procatalyst, i.e. containing two or more metals, being different or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/30Chemical modification of a polymer leading to the formation or introduction of aliphatic or alicyclic unsaturated groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 프로필렌 중합용 고체 촉매 및 이를 이용한 프로필렌 중합체 또는 공중합체의 제조방법에 대한 것으로써 금속 마그네슘과 알코올의 반응시 금속 마그네슘, 알코올 및 반응개시제의 투입양과 투입횟수, 및 반응온도를 조절하여 입자크기가 10~100㎛ 범위로 균일하고 입자형태가 구형인 디알콕시마그네슘 담체를 제조하는 담체를 금속할라이드와의 반응을 통해서 생성된 담체와 티타늄할라이드, 유기전자공여체 등으로 이루어진 고체촉매 및 이를 이용한 프로필렌-알파올레핀의 공중합을 통한 프로필렌 중합체 또는 공중합체의 제조방법을 제공하는 것이다.
특히 본 발명에 사용하는 2종이상의 유기전자공여체 중 카보닐기와 알콕시기가 포함된 내부전자공여체를 사용하는 것으로써 본 발명에서 제시하는 고체촉매 및 이를 이용한 프로필렌 중합체 또는 공중합체의 제조방법을 통한 중합을 통하여, 높은 활성과 입체규칙성이 우수하며 수소반응성이 우수한 폴리프로필렌을 제조할 수 있을 뿐만 아니라, 알파올레핀과의 공중합을 통하여 높은 고무함량의 블록공중합체를 제조할 수 있다.

Description

프로필렌 중합용 고체 촉매 및 이를 이용한 블록 공중합체의 제조방법{A SOLID CATALYST FOR PRODUCING POLYPROPYLENE AND A METHOD FOR PREPARATION OF BLOCK COPOLYMER}
본 발명은, 디알콕시마그네슘을 금속할라이드와의 반응을 통해서 생성된 담체, 티타늄할라이드 및 유기전자공여체 등으로 이루어진 고체촉매 및 이를 이용한 블록 공중합체의 제조방법에 관한 것으로, 보다 상세하게는, 이러한 고체 촉매계로 이루어진 지글러-나타 촉매를 사용하여 프로필렌 중합체를 제조할 경우, 높은 활성과 입체규칙성이 우수하며 수소반응성이 우수한 폴리프로필렌을 제조할 수 있을 뿐만 아니라, 알파올레핀과의 공중합을 통하여 높은 고무함량의 블록공중합체를 제조할 수 있는 고체촉매 및 이를 이용한 블록 공중합체의 제조방법에 관한 것이다.
폴리프로필렌은 실생활에서나 상업적으로 매우 유용하게 소재물질로써 특히 식품용기등의 생활용품에서부터 자동차 및 전자제품 등에 널리 사용되고 있다. 이러한 폴리프로필렌의 다양한 제품성능을 위해서는 높은 결정화도를 통한 강성을 개선하는 것이 중요하다. 한편 이와 아울러 자동차 내외장제 등에서 요구되는 충격강도 프로필렌계의 고무함량이 높은 블록 공중합체를 제조하므로서 충족시킬 수 있는데, 이를 위해서는 중합촉매의 역할이 무엇보다도 절실히 요구된다. 즉 생성되는 고분자의 입체규칙성을 향상과 알파올레핀과의 높은 공중합성을 충족시키도록 촉매시스템의 디자인이 수반되어야 한다. 이와 아울러 고분자 제조에 있어서의 경제성을 위해서는 촉매의 중합활성이 높을수록 더욱 유리하다.
한편 프로필렌의 기상중합, 슬러리 중합 및 벌크 중합에 사용되는 촉매계는 지글러-나타계 촉매 성분, 알킬알루미늄 및 외부전자공여체로 구성되어 있는 것이 일반적이다. 특히 이러한 촉매성분은 마그네슘, 티타늄, 및 내부전자공여체 및 할로겐을 필수성분으로서 함유하는 고체촉매로 알려져 있으며, 특히 내부 전자공여체는 분자구조에 따라 촉매의 활성 및 입체규칙성 등에 상당한 영향을 미치는 것으로 알려져 있다. 촉매 활성 증가를 통해 원가를 낮추고, 입체규칙성 등의 촉매 성능을 향상시켜 중합체의 물성을 개선시키기 위하여, 내부전자공여체로서 방향족 디카르복실산의 디에스테르를 사용하는 것은 보편적으로 널리 알려진 방법이며, 이에 관한 특허들이 출원되었다. 미국 특허 제4,562,173호, 미국 특허 제4,981,930호, 한국 특허 제0072844호 등은 그 예라고 할 수 있으며, 상기 특허들은 방향족 디알킬디에스테르 또는 방향족 모노알킬모노에스테르를 사용하여 고활성, 고입체규칙성을 발현하는 촉매 제조 방법을 소개하고 있다.
상기 특허들의 방법은 고입체규칙성 중합체를 높은 수율로 얻기에는 충분히 만족스러운 것이 아니며 개선이 요구된다.
한국 특허 제0491387호에는 비방향족인 디에테르 물질을, 한국 특허 제0572616호에는 비방향족이면서 케톤과 에테르 작용기를 동시에 가지는 물질을 내부전자공여체로 사용한 촉매 제조 방법이 되어 있다. 그러나, 이 두 방법 모두 활성과 입체규칙성 측면 모두에서 크게 개선되어야할 여지가 있다.
또한 미국 특허 제2011/0040051호에는 디에틸 2,3-디이소프로필-2-시아노숙시네이트와 9,9-비스메톡시플로렌의 혼합물을 내부전자공여체로 사용하여 촉매를 제조하는 방법을 제안하고 있으나, 활성과 입체규칙성 측면 모두에서 매우 열세하여 개선이 요구되고 있다.
본 발명의 목적은 상기와 같은 종래기술들의 문제점을 해결하고자 하는 것으로서, 높은 입체규칙성을 갖고 활성이 우수한 폴리프로필렌을 제조할 수 있으며, 수소 반응성이 우수한 폴리프로필렌을 제조할 수 있을 뿐만 아니라, 알파올레핀과의 공중합을 통하여 높은 고무함량의 블록공중합체를 제조할 수 있는 고체촉매 및 이를 이용한 프로필렌 공중합체의 제조방법을 제공하는 것이다.
본 발명의 프로필렌 중합용 고체촉매의 제조방법은, 다음의 단계를 포함하여 이루어지는 것을 특징으로 한다.
(1) 디알콕시마그네슘을 유기용매 존재하에서 금속할라이드 화합물과 비교적 낮은 온도에서 반응시키는 (1)단계;
(2) 상기 (1)단계의 디알콕시마그네슘 반응 후 반응 생성물에 반응온도를 승온하면서 2종 이상의 내부전자공여체를 반응시키는 (2)단계; 및
(3) 상기 (2)단계 반응 생성물과 티타늄할라이드를 높은온도에서 반응시키는 (3)단계.
상기에 명시된 고체촉매의 제조공정에 있어서, (1)단계에서 사용된 디알콕시마그네슘은 금속마그네슘, 알코올 및 반응개시제를 반응시키는 것을 포함하고, 금속마그네슘 중량(g):알코올 부피(ml)로 1:5~1:100의 양으로 금속 마그네슘에 알코올을 3 ~ 6회 분할하여 첨가하고, 상기 반응 개시제를 반응계 내부로 최초 반응개시시 주입한 후 추가 반응 중에 필요에 따라 2 ~ 5회 분할하여 첨가하는 것을 특징으로 한다.
본 프로필렌 중합용 고체촉매 제조시 사용되는 상기 금속 마그네슘 입자의 형태에는 크게 제한이 없으나, 그 크기에 있어서는 평균입경이 10~500㎛인 분말상인 것이 바람직하며, 50~300㎛인 분말상의 것이 보다 바람직하다. 상기 금속 마그네슘의 평균입경이 10㎛ 미만이면 생성물인 담체의 평균 입자크기가 너무 미세해지고, 500㎛를 초과하면 담체의 평균입자크기가 너무 커지고, 담체의 모양이 균일한 구형의 형태로 되기 어려워져, 이후 촉매 제조시 균일한 입자형상을 갖기 어렵다.
상기 알코올로는, 예를 들면, 메탄올, 에탄올, 노말프로판올, 이소프로판올, 노말부탄올, 이소부탄올, 노말펜탄올, 이소펜탄올, 네오펜탄올, 시클로펜탄올, 시클로헥산올 등과 같이 일반식 ROH(여기에서, R은 탄소수 1~6의 알킬기이다)로 표시되는 지방족 알코올 또는 페놀과 같은 방향족 알코올로부터 선택된 1종류 또는 2종류 이상의 알코올을 단독 또는 혼합하여 사용하는 것이 바람직하고, 메탄올, 에탄올, 프로판올 또는 부탄올로부터 선택된 1종류 또는 2종류 이상의 알코올을 단독 또는 혼합하여 사용하는 것이 보다 바람직하며, 에탄올을 사용하는 것이 가장 바람직하다.
상기 금속 마그네슘에 대한 알코올의 사용비는, 금속 마그네슘 중량(g):알코올 부피(ml)로 1:5~1:100인 것이 바람직하며, 1:10~1:50인 것이 보다 바람직하다. 상기 사용비가 1:5 미만이면 슬러리의 점도가 급격히 증가하여 균일한 교반이 어렵게 되고, 1:100을 초과하면 생성되는 담체의 입자표면이 거칠어지거나 입자형성이 이루어지지 않는 문제가 발생한다.
상기 금속 마그네슘과 알코올의 반응에 사용되는 반응개시제로는 질소 할로겐 화합물이 사용될 수 있다.
상기 반응개시제로서 사용될 수 있는 질소 할로겐화합물은 특별히 제한되지는 않으나, 다음 일반식 (1)~(4)로 이루어지는 군으로부터 선택되는 하나 이상의 화합물이 사용될 수 있다:
(1) N-할라이드 숙신이미드계 화합물
Figure pat00001
……(1)
상기 일반식 (1)은 N-할라이드 숙신이미드계 화합물로서, X는 할로겐이고, R1, R2, R3 및 R4는 수소, C1~C12의 알킬 또는 C6~C20의 아릴이다.
(2) 트리할로이소시아눌산계 화합물
 
Figure pat00002
……(2)
상기 일반식 (2)는 트리할로이소시아눌산계 화합물로서, X는 할로겐이다.
(3) N-할로프탈이미드계 화합물
 
Figure pat00003
……(3)
상기 일반식 (3)은 N-할로프탈이미드계 화합물로서, X는 할로겐이고, R1, R2, R3 및 R4는 수소, C1~C12의 알킬 또는 C6~C20의 아릴이다.
(4) 히단토인계 화합물
 
Figure pat00004
……(4)
상기 일반식 (4)는 히단토인계 화합물로서, X는 할로겐이고, R1 및 R2는 수소, C1~C12의 알킬 또는 C6~C20의 아릴이다.
한편 반응개시제로는 할로겐화합물 또는 마그네슘 할라이드화합물이 사용될 수 있다. 구체적인 예로는 상기 할로겐화합물로는 Br2 또는 I2 등을 포함하는 화합물이며, 상기 마그네슘 할라이드화합물로는 MgCl2, MgBr2, MgI2 등을 사용할 수 있다.
상기 반응개시제의 양은 전체 사용한 금속 마그네슘 1 중량부에 대해 0.001~0.2중량부의 양으로 사용되는 것이 바람직하다. 반응개시제의 사용량이 0.001중량부 미만이면 반응속도가 너무 느려지고, 0.2중량부를 초과하면 생성물의 입자크기가 너무 커지거나 미세입자가 다량 생성될 수 있다.
본 발명의 담체 제조방법에 있어서, 상기 금속 마그네슘과 알코올의 반응에서, 금속 마그네슘에 알코올을 3 ~ 6회 분할첨가 할 수 있으며, 반응개시제는 반응계 내부로 최초 반응개시시 주입한 후 반응 중에 필요에 따라 2 ~ 5회로 분할하여 첨가하는 것이 바람직하다. 이는 금속 마그네슘 및 알코올을 분할 횟수 및 반응개시제의 횟수를 2회 이하로 할 경우 입자크기를 조절하는데 한계가 있고, 구형의 입자형상을 형성시키기 어려울 뿐만 아니라 담체의 겉보기 밀도를 감소시키는 단점이 있다.
이와 더불어 알코올 분할 주입시 2회이상으로 분할 주입하므로써 담체의 겉보기 밀도 감소를 완화시키는 동시에 미세입자 생성을 방지할 수 있다.
또한 상기 반응시 교반속도는 50~300rpm이 바람직하며, 70~250rpm이 보다 바람직하다. 교반 속도가 너무 느리거나 빠르면 입자가 균일하지 않은 단점이 있다.
또한, 금속 마그네슘과 알코올의 반응은 상기 반응개시제의 존재 하에서 25~110℃의 온도에서 이루어지는 것이 바람직하며, 50~100℃의 온도에서 이루어지는 것이 보다 바람직하다. 이후 숙성 처리는 60~110℃의 온도에서 이루어지는 것이 바람직하다. 상기 반응은 알코올의 끓는점 온도에서 냉각 환류시키면서 이루어질 수도 있다. 상기 반응온도 및 숙성처리온도가 상기 온도 범위를 벗어날 경우 50도 이하에서는 반응속도가 매우 느려지며, 110℃를 초과할 경우 반응이 매우 급격하게 일어남에 따라, 미세입자 생성 및 입자간 뭉침현상이 발생할 수 있으므로 바람직하지 않다.
한편 상기의 방법으로 제조된 디알콕시마그네슘의 벌크 비중은 0.20∼0.40g/㎖, 보다 바람직하게는 0.20∼0.30g/㎖의 것을 사용하는 것이 바람직하다. 이 벌크 비중이 0.20g/㎖ 미만이면, 입자형성이 어렵거나 미분함량이 증가하고, 고 입체규칙성 폴리올레핀을 고수율로 얻는 것이 불가능해진다. 한편, 벌크 비중이 0.40g/㎖를 넘으면 생성 폴리올레핀의 입자 성상에 바람직하지 못한 영향을 준다. 또한, 디알콕시마그네슘의 세공 용적은 O.O1∼O.1㎖/g의 것이 바람직하고, 보다 바람직하게는 0.01∼0.06㎖/g, 더욱 바람직하게는 0.015∼0.05㎖/g의 범위인 것이 바람직하다. 이와 같이 비교적 작은 특정 범위의 세공 용적을 갖는 다공질 디알콕시마그네슘을 사용하여 조제한 고체 촉매 성분을 올레핀류의 중합에 사용하였을 때, 고 입체규칙성과 우수한 입자 성상을 갖는 중합체가 고 수율로 얻어지고, 또한 블록 공중합에 있어서는 고무상 중합체의 생성비율이 높은 경우이어도 우수한 입자 성상의 공중합체를 고수율로 얻는 것이 가능해진다.
상기 (1)단계에서 사용되는 유기용매로서는, 그 종류에 특별한 제한이 없으며, 탄소수 6~12개의 지방족 탄화수소 및 방향족 탄화수소, 할로겐화 탄화수소 등이 사용될 수 있으며, 보다 바람직하게는 탄소수 7~10개의 포화 지방족 탄화수소 또는 방향족 탄화수소, 할로겐화 탄화수소가 사용될 수 있으며, 그 구체적인 예로는 헵탄, 옥탄, 노난, 데칸, 톨루엔, 자일렌, 클로로헥산, 클로로 헵탄 등으로부터 선택되는 1종이상을 혼합하여 사용할 수 있다.
즉, 상기 생성된 디알콕시 마그네슘과 티타늄, 할로겐, 및 제1내부전자공여체로서 비방향족 알콕시에스테르계 화합물과 제2내부전자공여체로서 프탈산에스테르 또는 1,3-디에테르류로 이루어진 내부전자공여체를 포함하는 촉매를 제조하고자 한다.
또한 상기 디알콕시마그네슘에 대한 상기 유기용매의 사용비는 디알콕시마그네슘 중량 : 유기용매 부피로 1:5~1:50인 것이 바람직하며, 1:7 ~ 1:20 인 것이 보다 바람직한데, 상기 사용비가 1:5 미만이면 슬러리의 점도가 급격히 증가하여 균일한 교반이 어렵고, 1:50을 초과하면 생성되는 담체의 겉보기 밀도가 급격히 감소하거나 입자표면이 거칠어지는 문제가 발생하여 바람직하지 않다.
상기 고체촉매의 제조과정에서 사용되는 금속할라이드는 티타늄 할라이드를 사용하고, 하기의 일반식 (I)로 표시할 수 있다:
Ti(OR)nX(4-n) ………… (I)
여기에서 R은 탄소원자 1~10개의 알킬기이고, X는 할로겐 원소를 나타내며, n 은 일반식의 원자가를 맞추기 위한 것으로 0~3 의 정수이다. 구체적인 예로는 TiCl4, Ti(OCH3)Cl3, Ti(OC2H5)Cl3, Ti(OC3H7)Cl3, Ti(O(n-C4H9))Cl3, Ti(OCH3)2Cl2,Ti(OC2H5)2Cl2, Ti(OC3H7)2Cl2, Ti(O(n-C4H9))2Cl2, Ti(OCH3)3Cl, Ti(OC2H5)3Cl, Ti(OC3H7)3Cl, Ti(O(n-C4H9))3Cl 등이며, 이들 중 TiCl4가 바람직하게 사용된다. 또한 이들 4가 티타늄할라이드 화합물은 1종 단독 또는 2종 이상 조합하여 사용할 수도 있다. 상기 (1)단계의 반응 온도는 -10 ~ 60℃이다.
상기의 (2)단계에서 나타내는 2종 이상의 내부전자공여체 중 제1내부전자공여체는 다음과 같은 일반식(II) 로 표시되는 비방향족 알콕시 에스테르계 화합물이다.
Figure pat00005
………… (Ⅱ)
상기 일반식 (II)의 B는 탄소수가 1~20개의 지방족 포화탄화수소 및 탄소수 1~20개의 환형 포화탄화수소로 구성된 모노 에스테르 구조의 화합물이거나, 아미노기, 직쇄형 또는 환형 아미노기로 이루어진 카바메이트 구조의 화합물을 나타낸다. R1은 탄소수 1∼12의 직쇄상 알킬기이며, R2, R3, R4, R5는 각각 독립적으로 수소를 포함한 각각 독립적으로 탄소수 1∼12의 직쇄상 알킬기, 탄소수 3∼12의 분기 알킬기, 비닐기, 탄소수3∼12의 직쇄상 알케닐기 또는 분기 알케닐기, 탄소수 1∼12의 직쇄상 할로겐 치환 알킬기, 탄소수 3∼12의 분기 할로겐 치환 알킬기, 탄소수 3∼12의 직쇄상 할로겐 치환 알케닐기 또는 분기 할로겐 치환 알케닐기, 탄소수3∼12의 시클로알킬기, 탄소수 3∼12의 시클로알케닐기, 탄소수 3∼12의 할로겐 치환 시클로알킬기, 탄소수 3∼12의 할로겐 치환 시클로알케닐기, 또는 탄소수 6∼12의 방향족 탄화수소기이며, 더욱 바람직한 기는, 탄소수 1∼12의 직쇄상 알킬기, 탄소수 3∼12의 분기 알킬기, 비닐기, 탄소수 3∼12의 직쇄상 알케닐기 또는 분기 알케닐기, 탄소수 1∼12의 직쇄상 할로겐 치환 알킬기, 탄소수 3∼12의 분기 할로겐 치환 알킬기, 탄소수 3∼12의 시클로알킬기, 탄소수 3∼12의 시클로알케닐기, 또는 탄소수 6∼12의 방향족 탄화수소기이며, 특히 바람직한 기는, 탄소수 1∼12의 직쇄상 알킬기, 탄소수 3∼12의 분기 알킬기, 및 탄소수 6∼12의 환형 탄화수소기이다.
그 구체적인 예로는, 2-메톡시에틸 아세테이트,2-메톡시에틸프로피오네이트, 2-메톡시에틸 이소부틸레이트, 2-메톡시에틸 피발레이트, 2-메톡시에틸 펜타노에이트, 2-메톡시에틸 3-메틸부타노에이트, 2-메톡시에틸 2,3-디메틸부타노에이트, 2-메톡시에틸 3,3-디메틸부타노에이트, 2-메톡시에틸 2,3,3-트리메틸부타노에이트, 2-메톡시에틸 2,2,3,3,-테트라메틸부타노에이트, 2-메톡시에틸3-에틸부타노에이트, 2-메톡시에틸 2,3-디에틸부타노에이트, 2-메톡시에틸 3,3-디에틸부타노에이트, 2-메톡시에틸 2,3,3-트리에틸부타노에이트, 2-메톡시에틸 2,2,3,3,-테트라에틸부타노에이트, 2-메톡시에틸 2-에틸-3-메틸부타노에이트, 2-메톡시에틸 3-에틸-3-메틸부타노에이트, 2-메톡시에틸 2-에틸-3,3-디메틸부타노에이트, 2-메톡시에틸 2,2,3,3,-테트라메틸부타노에이트, 2-메톡시에틸 2-메틸펜타노에이트, 2-메톡시에틸 3-메틸펜타노에이트, 2-메톡시에틸 4-메틸펜타노에이트, 2-메톡시에틸 2,3-디메틸펜타노에이트, 2-메톡시에틸 2,2-디메틸펜타노에이트, 2-메톡시에틸 3,3-디메틸펜타노에이트, 2-메톡시에틸 4,4-디메틸펜타노에이트, 2-메톡시에틸 2,4-디메틸펜타노에이트, 2-메톡시에틸 3,4-디메틸펜타노에이트, 2-메톡시에틸 3,3,4-트리메틸펜타노에이트, 2-메톡시에틸 2,3,3-트리메틸펜타노에이트, 2-메톡시에틸 2,2,3-트리메틸펜타노에이트, 2-메톡시에틸 2,3,4-트리메틸펜타노에이트, 2-메톡시에틸 2,3,3-트리메틸펜타노에이트, 2-메톡시에틸 2,2,3,3,-테트라메틸페나노에이트, 2-메톡시에틸 3-에틸펜타노에이트, 2-메톡시에틸 2,3-디에틸펜타노에이트, 2-메톡시에틸 3,3-디에틸펜타노에이트, 2-메톡시에틸 2,3,3-트리에틸펜타노에이트, 2-메톡시에틸 2,2,3,3,-테트라에틸펜타노에이트, 2-메톡시에틸 2-에틸-3-메틸펜타노에이트, 2-메톡시에틸 3-에틸-3-메틸펜타노에이트, 2-메톡시에틸 2-에틸-3,3-디메틸펜타노에이트, 2-메톡시에틸 2,2,3,3,-테트라메틸펜타노에이트,2-메톡시에틸 시클로헥산카르복실레이트, 2-메톡시에틸 2-메틸시클로헥산카르복실레이트, 2-메톡시에틸 3-메틸시클로헥산카르복실레이트, 2-메톡시에틸 시클로헥-2-센카르복실레이트, 2-메톡시에틸 시클로헥-2-센카르복실레이트, 2-메톡시에틸 카바메이트, 2-메톡시에틸 메틸카바메이트, 2-메톡시에틸 에틸카바메이트, 2-메톡시에틸 디메틸카바메이트, 2-메톡시에틸 디에틸카바메이트, 2-메톡시에틸 피페리딘-1-카르복실레이트, 2-메톡시에틸 2-메틸피페리딘-1-카르복실레이트, 2-메톡시에틸 3-메틸피페리딘-1-카르복실레이트, 2-메톡시에틸 2,3-디메틸피페리딘-1-카르복실레이트, 2-메톡시에틸 2,4-디메틸피페리딘-1-카르복실레이트, 2-메톡시에틸 2,5-디메틸피페리딘-1-카르복실레이트, 2-메톡시에틸 2,6-디메틸피페리딘-1-카르복실레이트, 2-에톡시에틸 아세테이트, 2-에톡시에틸프로피오네이트, 2-에톡시에틸 부틸레이트, 2-에톡시에틸 이소부틸레이트, 2-에톡시에틸 피발레이트, 2-에톡시에틸 펜타노에이트, 2-에톡시에틸 3-메틸부타노에이트, 2-에톡시에틸 2,3-디메틸부타노에이트, 2-에톡시에틸 3,3-디메틸부타노에이트, 2-에톡시에틸 2,3,3-트리메틸부타노에이트, 2-에톡시에틸 2,2,3,3,-테트라메틸부타노에이트, 2-에톡시에틸 3-에틸부타노에이트, 2-에톡시에틸 2,3-디에틸부타노에이트, 2-메톡시에틸 3,3-디에틸부타노에이트, 2-에톡시에틸 2,3,3-트리에틸부타노에이트, 2-에톡시에틸 2,2,3,3,-테트라에틸부타노에이트, 2-에톡시에틸 2-에틸-3-메틸부타노에이트, 2-에톡시에틸 3-에틸-3-메틸부타노에이트, 2-에톡시에틸 2-에틸-3,3-디메틸부타노에이트, 2-에톡시에틸 2,2,3,3,-테트라메틸부타노에이트, 2-에톡시에틸 2-메틸펜타노에이트, 2-에톡시에틸 3-메틸펜타노에이트, 2-에톡시에틸 4-메틸펜타노에이트, 2-에톡시에틸 2,3-디메틸펜타노에이트, 2-에톡시에틸 2,2-디메틸펜타노에이트, 2-에톡시에틸 3,3-디메틸펜타노에이트, 2-에톡시에틸 4,4-디메틸펜타노에이트, 2-에톡시에틸 2,4-디메틸펜타노에이트, 2-에톡시에틸 3,4-디메틸펜타노에이트, 2-에톡시에틸 3,3,4-트리메틸펜타노에이트, 2-에톡시에틸 2,3,3-트리메틸펜타노에이트, 2-에톡시에틸 2,2,3-트리메틸펜타노에이트, 2-에톡시에틸 2,3,4-트리메틸펜타노에이트, 2-에톡시에틸 2,3,3-트리메틸펜타노에이트, 2-에톡시에틸 2,2,3,3,-테트라메틸페나노에이트, 2-에톡시에틸 3-에틸펜타노에이트, 2-에톡시에틸 2,3-디에틸펜타노에이트, 2-에톡시에틸 3,3-디에틸펜타노에이트, 2-에톡시에틸 2,3,3-트리에틸펜타노에이트, 2-에톡시에틸 2,2,3,3,-테트라에틸펜타노에이트, 2-에톡시에틸 2-에틸-3-메틸펜타노에이트, 2-에톡시에틸 3-에틸 -3-메틸펜타노에이트, 2-에톡시에틸 2-에틸-3,3-디메틸펜타노에이트, 2-에톡시에틸 2,2,3,3,-테트라메틸펜타노에이트,2-에톡시에틸 시클로헥산카르복실레이트, 2-에톡시에틸 2-메틸시클로헥산카르복실레이트, 2-에톡시에틸 3-메틸시클로헥산카르복실레이트, 2-에톡시에틸 시클로헥-2-센카르복실레이트, 2-에톡시에틸 시클로헥-2-센카르복실레이트, 2-에톡시에틸 카바메이트, 2-에톡시에틸 메틸카바메이트, 2-에톡시에틸 에틸카바메이트, 2-에톡시에틸 디메틸카바메이트, 2-에톡시에틸 디에틸카바메이트, 2-에톡시에틸 피페리딘-1-카르복실레이트, 2-에톡시에틸 2-에틸피페리딘- 1-카르복실레이트, 2-에톡시에틸 3-에틸피페리딘-1-카르복실레이트, 2-에톡시에틸 2,3-디메틸피페리딘-1-카르복실레이트, 2-에톡시에틸 2,4-디메틸피페리딘-1-카르복실레이트, 2-에톡시에틸 2,5-디메틸피페리딘-1-카르복실레이트, 2-에톡시에틸 2,6-디메틸피페리딘-1-카르복실레이트 등이다.
한편 제2내부전자공여체는 특별한 제한은 없으며, 따라서 알코올류, 에테르류, 케톤류, 카르복실산류 등과 같이 올레핀 중합용 지글러계 촉매의 제조에 내부전자공여체로서 사용가능한 화합물이라면 제한없이 사용가능하지만, 그 중에서도 카르복실산 화합물을 사용하는 것이 바람직하고, 벤젠-1,2-디카르복실산 에스테르 형태의 화합물로부터 선택된 하나 또는 그 이상을 혼합하여 제2내부전자공여체로서 사용하는 것이 더욱 바람직하다. 상기 벤젠-1,2-디카르복실산에스테르 화합물의 구체적인 예로는, 디메틸프탈레이트, 디에틸프탈레이트, 디노말프로필프탈레이트, 디이소프로필프탈레이트, 디노말부틸프탈레이트, 디이소부틸프탈레이트 디노말펜틸프탈레이트, 디(2-메틸부틸)프탈레이트, 디(3-메틸부틸)프탈레이트, 디(3-메틸펜틸)크탈레이트, 디이소헥실프탈레이트, 디네오헥실프탈레이트, 디(2,3-디메틸부틸)프탈레이트, 디이소헥실프탈레이트, 디네오헥실프탈레이트, 디(2,3-디메틸부틸)프탈레이트, 디노말헵틸프탈레이트, 디(2-메틸헥실)프탈레이트, 디(2-에틸펜틸)프탈레이트, 디이소헵틸프탈레이트, 디네오헵틸프탈레이트, 디노말옥틸프탈레이트, 디(2-메틸헵틸)프탈레이트, 디이소옥틸프탈레이트, 디(3-에틸헥실)프탈레이트, 디네오옥틸프탈레이트, 디노말노닐프탈레이트, 디이소노닐프탈레이트, 디노말데실프탈레이트, 디이소데실프탈레이트 등을 들 수 있다.
한편 제2내부전자공여체로는 프탈산 에스테르 또는 1,3-디에테르류의 사용도 매우 바람직하며, 하기 일반식 (III)와 같은 구조로 표현되는 화합물이 매우 바람직하다.
R6R7C(CH2OR8)(CH2OR9)‥‥‥ (III)
상기 일반식 (III) 중, R6 및 R7는 동일하거나 상이하고, C1-C18 알킬, C3-C18 시클로알킬 또는 C7-C18 아릴 라디칼이고; R8 및 R9는 동일하거나 상이하고, C1-C4 알킬 라디칼이거나; 위치 2의 탄소 원자가, 2 또는 3 개의 불포화를 함유하고 탄소수 5, 6 또는 7 로 이루어진 시클릭 또는 폴리시클릭에 속하는 1,3-디에테르류이다.
상기 단계 (2)는, 상기 단계 (1)로부터 생성된 결과물의 온도를 60~150℃, 바람직하게는 80~130℃까지 서서히 승온시키면서, 승온 과정 중에 내부전자공여체를 투입하여 1~3시간 동안 반응시킴으로써 수행되는 것이 바람직한데, 상기 온도가 60℃ 미만이거나 반응시간이 1시간 미만이면 반응이 완결되기 어렵고, 상기 온도가 150℃를 초과하거나 반응시간이 3시간을 초과하면 부반응에 의해 결과물인 촉매의 중합활성 또는 중합체의 입체규칙성이 낮아질 수 있다.
상기 제1, 2 내부전자공여체는, 상기 승온과정 중에 투입되는 한, 그 투입 온도 및 투입 횟수는 크게 제한되지 않으며, 서로 다른 두 가지 이상의 내부전자공여체를 동시에 혹은 다른 온도에서 주입하여도 무관하다. 상기 두 내부전자공여체의 전체 사용량에선 제한이 없으나 사용하는 두 내부전자공여체 전체의 몰수는 사용된 디알콕시마그네슘 1몰에 대하여 제1내부전자공여체는 0.001~2.0몰을, 제2내부전자공여체는 0.001~2.0몰을 사용하는 것이 바람직한데, 상기 범위를 벗어나면, 결과물인 촉매의 중합활성 또는 중합체의 입체규칙성이 낮아질 수 있으며, 에틸렌과의 공중합시 활성 저하로 인하여 높은 고무함량의 블록공중합체를 제조하는데에도 바람직하지 않다.
상기 고체촉매의 제조공정 중 단계 (3)는, 60~150℃, 바람직하게는 80~130℃의 온도에서 단계 (2)의 결과물과 티타늄할라이드를 2회 이상 반응시키는 공정이다. 이때 사용되는 티타늄할라이드의 예로는 상기의 일반식(I)의 티타늄할라이드를 들 수 있다.
고체촉매의 제조공정에 있어서, 각 단계에서의 반응은, 질소 기체 분위기에서, 수분 등을 충분히 제거시킨 교반기가 장착된 반응기 중에서 실시하는 것이 바람직하다.
상기와 같은 방법으로 제조되는 본 발명의 고체촉매는, 마그네슘, 티타늄, 할로겐화합물 및 2종이상의 내부전자공여체는 알콕시 에스테르와 프탈산 에스테르 또는 1,3-디에스테르 형태를 포함하여 이루어지며, 촉매 활성의 측면을 고려해 볼 때, 금속 마그네슘 5~40중량%, 티타늄 0.5~10중량%, 할로겐 50~85중량%, 및 제1 내부전자공여체 0.01~20중량%, 제2 내부전자공유체 0.1 ~20중량%를 포함하여 이루어지는 것이 바람직하다.
한편 본 발명의 상기 고체촉매의 특징은 상기 고체촉매 입자의 세공 용적이 작은 것으로서, 직경 100Å 이상의 비교적 큰 세공이 적게 분포하는 반면, 직경 100Å 이하의 미세한 세공이 미분산하고 있는 것이고, 상기 고체촉매의 입자는 미세한 1차 입자가 응집하여 2차 입자를 형성하고 있는 것이고, 상기 1차 입자의 평균 직경은 O.O1∼O.1㎛이다. 세공의 직경이 100 Å이상인 경우 입자 형성이 어렵거나 입자의 강도저하로 인한 미분함량이 증가하게 되며, 1차입자의 직경이 0.01㎛ 이하인 경우 공중합성의 저하되거나 공중합체 표면이 끈적거림이 증가하여 중합공정의 불안정성을 초래하게 된다. 또한 0.1㎛ 이상의 경우 입자의 크기 조절 및 형상조절이 어렵고 미분함량의 증가가 발생하게 된다.
본 발명의 촉매 제조방법에 의하여 제조되는 고체촉매는 프로필렌 중합 또는 공중합 방법은 상기 고체촉매를 조촉매 및 외부전자공여체의 존재하에 프로필렌을 중합 또는 프로필렌 단독중합 후, 프로필렌과 에틸렌 또는 프로필렌과 다른 알파올레핀을 공중합시켜 프로필렌 중합체 또는 공중합체를 제조하는 것을 포함한다.본 발명에 있어서 공중합에 사용하는 알파 올레핀으로는 탄소수 2-20의 알파올레핀(탄소수 3의 프로필렌은 제외)으로부터 선택되는 적어도 1종의 올레핀으로 구체적으로는 에틸렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 비닐시클로헥산 등이 가능하며, 알파올레핀류는 1종 또는 2종이상 사용할 수 있으며, 그 중에서도 에틸렌 및 1-부텐이 적합하며, 특히 에틸렌이 바람직하다.
상기 고체촉매는 중합 반응의 성분으로서 사용되기 전에 에틸렌 또는 알파올레핀으로 전중합하여 사용할 수 있다.
전중합 반응은 탄화수소 용매(예를 들어, 헥산), 상기 촉매 성분 및 유기알루미늄 화합물(예를 들어, 트리에틸알루미늄)의 존재 하에서, 충분히 낮은 온도와 에틸렌 또는 알파올레핀 압력 조건에서 수행될 수 있다. 전중합은 촉매 입자를 중합체로 둘러싸서 촉매 형상을 유지시켜 중합 후에 중합체의 형상을 좋게 하는데 도움을 준다. 전중합 후의 중합체/촉매의 중량비는 약 0.1:1~20:1인 것이 바람직하다.
상기 프로필렌 중합 또는 공중합 방법에서 조촉매 성분으로는 주기율표 제II족 또는 제III족의 유기금속 화합물이 사용될 수 있으며, 그 예로서, 바람직하게는 알킬알루미늄 화합물이 사용된다. 상기 알킬알루미늄 화합물은 일반식 (IV)로 표시된다:
AlR3 ‥‥‥ (IV)
여기에서, R은 탄소수 1~6개의 알킬기이다.
상기 알킬알루미늄 화합물의 구체예로는, 트리메틸알루미늄, 트리에틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 트리이소부틸알루미늄 및 트리옥틸알루미늄 등을 들 수 있다.
상기 고체촉매 성분에 대한 상기 조촉매 성분의 비율은, 중합 방법에 따라서 다소 차이는 있으나, 고체 촉매 성분 중의 티타늄 원자에 대한 조촉매 성분 중의 금속 원자의 몰비가 1~1000의 범위인 것이 바람직하며, 보다 바람직하게는 10~300의 범위인 것이 좋다. 만약, 고체촉매 성분 중의 티타늄 원자에 대한 조촉매 성분 중의 금속 원자, 예를 들어 알루미늄 원자의 몰비가 상기 1~1000의 범위를 벗어나게 되면, 중합 활성이 크게 저하되는 문제가 있다.
상기 프로필렌 중합 또는 공중합 방법에서, 상기 외부전자공여체로는 다음의 일반식 (V)로 표시되는 알콕시실란 화합물 중 1종 또는 2종이상 혼합물을 사용할 수 있다:
R1 mR2 nSi(OR3)(4-m-n) ‥‥‥ (V)
여기에서, R1, R2은 동일하거나 다를 수 있으며, 탄소수 1~12개의 선형 또는 분지형 또는 시클릭 알킬기, 또는 아릴기이고, R3는 탄소수 1~6개의 선형 또는 분지형 알킬기이고, m, n은 각각 0 또는 1이고, m+n은 1 또는 2이다.
상기 외부전자공여체의 구체예로는, 노르말프로필트리메톡시실란, 디노르말프로필디메톡시실란,이소프로필트리메톡시실란,디이소프로필디메톡시실란,노르말부틸트리메톡시실란,디노르말부틸디메톡시실란,이소부틸트리메톡시실란, 디이소부틸디메톡시실란,터셔리부틸트리메톡시실란,디터셔리부틸디메톡시실란,노르말펜틸트리메톡시실란,디노르말펜틸디메톡시실란,시클로펜틸트리메톡시실란,디시클로펜틸디메톡시실란,시클로펜틸메틸디메톡시실란,시클로펜틸에틸디메톡시실란,시클로펜틸프로필디메톡시실란,시클로헥실트리메톡시실란,디시클로헥실디메톡시실란, 시클로헥실메틸디메톡시실란, 시클로헥실에틸디메톡시실란, 시클로헥실프로필디메톡시실란,시클로헵틸트리메톡시실란,디시클로헵틸디메톡시실란, 시클로헵틸메틸디메톡시실란, 시클로헵틸에틸디메톡시실란, 시클로헵틸프로필디메톡시실란, 페닐트리메톡시실란, 디페닐디메톡시실란, 페닐메틸디메톡시실란, 페닐에틸디메톡시실란, 페닐프로필디메톡시실란, 노르말프로필트리에톡시실란,디노르말프로필디에톡시실란,이소프로필트리에톡시실란, 디이소프로필디에톡시실란, 노르말부틸트리에톡시실란, 디노르말부틸디에톡시실란, 이소부틸트리에톡시실란, 디이소부틸디에톡시실란, 터셔리부틸트리에톡시실란,디터셔리부틸디에톡시실란, 노르말펜틸트리에톡시실란, 디노르말펜틸디에톡시실란,시클로펜틸트리에톡시실란, 디시클로펜틸디에톡시실란, 시클로펜틸메틸디에톡시실란,시클로펜틸에틸디에톡시실란,시클로펜틸프로필디에톡시실란,시클로헥실트리에톡시실란,디시클로헥실디에톡시실란,시클로헥실메틸디에톡시실란, 시클로헥실에틸디에톡시실란, 시클로헥실프로필디에톡시실란, 시클로헵틸트리에톡시실란,디시클로헵틸디에톡시실란,시클로헵틸메틸디에톡시실란, 시클로헵틸에틸디에톡시실란, 시클로헵틸프로필디에톡시실란, 페닐트리에톡시실란, 디페닐디에톡시실란, 페닐메틸디에톡시실란, 페닐에틸디에톡시실란 및 페닐프로필디에톡시실란 등이며, 이 중에서 1종 이상을 단독 또는 혼합하여 사용할 수 있다.
상기 고체촉매에 대한 상기 외부전자공여체의 사용량은 중합 방법에 따라서 다소 차이는 있으나, 촉매 성분 중의 티타늄 원자에 대한 외부전자공여체 중의 실리콘 원자의 몰비가 0.1~500의 범위인 것이 바람직하며, 1~100의 범위인 것이 보다 바람직하다. 만일, 상기 고체촉매 성분 중의 티타늄 원자에 대한 외부전자공여체 중의 실리콘 원자의 몰비가 0.1 미만이면 생성되는 프로필렌 중합체의 입체규칙성이 현저히 낮아져 바람직하지 않고, 500을 초과하면 촉매의 중합 활성이 현저히 떨어지는 문제점이 있다.
상기 프로필렌 중합 또는 공중합 방법에 있어서, 중합 반응의 온도는 20~120℃인 것이 바람직한데, 중합 반응의 온도가 20℃ 미만이면 반응이 충분하게 진행되지 못하여 바람직하지 않고, 120℃를 초과하면 활성의 저하가 심하고, 중합체 물성에도 좋지 않은 영향을 주므로 바람직하지 않다.
본 발명은 폴리프로필렌 제조용 고체촉매의 제조방법에 대한 것으로서, 본 발명에 따라 금속 마그네슘, 알코올 및 반응개시제의 주입량, 주입횟수, 반응온도, 벌크비중 및 세공 용적 등이 조절된 디알콕시마그네슘을 금속할라이드로서의 티타늄할라이드 및 제1 및 제2 내부전자공여체의 조합 등으로 이루어진 고체촉매 제조방법 및 이를 이용한 폴리프로필렌 제조방법을 제공하는 것으로써, 특히 본 발명에 사용하는 디알콕시마그네슘 담체를 사용하여 제조된 고체 촉매는 슬러리 중합법, 벌크중합법 또는 기상중합법 등의 다양한 형태의 프로필렌 중합공정에 적용이 가능하며, 높은 활성과 입체규칙성이 우수하며, 수소반응성이 우수한 폴리프로필렌을 제조할 수 있을 뿐만 아니라, 알파올레핀과의 공중합을 통하여 높은 고무함량 및 우수한 입자성상의 블록공중합체를 고수율로 제조할 수 있다.
이하 실시예 및 비교예에 의해 본 발명을 상세히 설명하나, 이에 의해 본 발명이 한정되는 것은 아니다.
실시예 1
[구형 담체의 제조]
교반기와 오일히터, 냉각환류기가 장착된 5L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, N-브로모숙신이미드 4g, 금속 마그네슘(평균입경 100㎛인 분말제품) 40g, 무수 에탄올 500ml를 투입하고, 교반속도를 250rpm으로 작동하면서 반응기의 온도를 60℃로 유지하였다. 약 10분이 경과하면 반응이 시작되면서 수소가 발생하므로, 발생되는 수소가 빠져 나가도록 반응기의 출구를 열린 상태로 두어 반응기의 압력을 대기압으로 유지하였다. 수소 발생이 끝나면 반응기 온도를 60℃에서 1시간 동안 유지하였다. 1시간 경과 후 금속마그네슘 (평균입경이 100㎛인 분말형 제품) 20g을 무수 에탄올 300ml와 함께 반응개시제를 2g 반응기에 주입하고 1시간동안 유지시킨 다음, 마지막으로 금속마그네슘(평균입경이 100㎛인 분말형 제품) 10g 과 무수에탄올 200ml, 반응개시제 1g을 주입후, 반응이 완결되는 시점까지 3시간 동안 숙성시켰다. 숙성처리가 끝난 후, 50℃에서 1회당 노말헥산 2,000ml를 사용하여 결과물을 3회 세정하였다. 세정된 결과물을 흐르는 질소 하에서 24시간 동안 건조시켜 디에톡시마그네슘 담체를 흐름성이 좋은 백색 분말상의 고체 생성물로서 263g(수율 93.2%) 얻었다.
건조된 생성물의 입자크기는 광투과법에 의해 레이저 입자분석기 (Mastersizer X : Malvern Instruments사 제조) 로 측정결과, 평균 입자크기는 25.2㎛ 이었다.
입도분포지수(P) (P = (D90-D10)/D50, 여기에서 D90은 누적중량 90%에 해당되는 입자의 크기이고, D50은 누적중량 50%에 해당되는 입자의 크기이고, D10은 누적중량 10%에 해당되는 입자의 크기이다)는 0.71이었으며, ASTM D1895에 의해 측정한 겉보기밀도는 0.24g/cc이었다.
[고체촉매 성분의 제조]
질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 112ml와 디에톡시마그네슘(평균입경 20㎛인 구형이고, 입도분포지수가 0.86이고, 겉보기밀도가 0.35g/cc인 것) 15g을 투입하고 10℃로 유지하면서, 사염화티타늄 20ml를 톨루엔 30ml에 희석하여 1시간에 걸쳐 투입한 후, 반응기의 온도를 100℃까지 올려 주면서 2-에톡시에틸 부타노에이트 2.8g, 2-이소부틸-2-이소프로필-1,3-디메톡시프로판 1.5g, 디이소부틸프탈레이트 1.0g, 을 순차적으로 주입하였다. 100℃에서 2시간 동안 유지한 다음, 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 1회 세척하였다. 여기에 톨루엔 120ml와 사염화티타늄 20ml를 투입하여 온도를 100℃까지 올려 2시간 동안 유지하였으며, 이 과정을 1회 반복 수행하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 노말헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 2.0중량%였다.
[폴리프로필렌 중합]
4리터 크기의 고압용 스테인레스제 반응기내에 상기의 고체촉매 10mg과 트리에틸알루미늄 10mmol, 디시클로펜틸메틸디메톡시실란 1mmol을 투입하였다. 이어서 수소 7000ml와 액체상태의 프로필렌 2.4L를 차례로 투입한 후, 온도를 70℃까지 올려서 중합을 실시하였다. 중합 개시 후 2시간이 경과하면 반응기의 온도를 상온까지 떨어뜨리면서 밸브를 열어 반응기 내부의 프로필렌을 완전히 탈기시켰다.
그 결과 얻어진 중합체를 분석하여, 표 1에 나타내었다.
여기서, 촉매활성, 입체규칙성, 용융흐름성, 분자량분포는 다음과 같은 방법으로 결정하였다.
① 촉매활성(kg-PP/g-cat) = 중합체의 생성량(kg)÷촉매의 양(g)
② 입체규칙성(X.I.): 혼합크실렌 중에서 결정화되어 석출된 불용성분의 중량%
③ 용융흐름성(MI, g/10 min): ASTM1238에 의해, 230℃, 2.16k g 하중에서 측정한 값
④ 분자량분포(P.I.): 200℃의 온도에서 파라렐 플레이트 레오미터를 이용하여 얻어진 모듈러스 세퍼레이션 값으로부터 다음의 계산식을 이용하여 산출한 값
P.I. = 54.6*(모듈러스 세퍼레이션)-1.76
[프로필렌계 블록공중합]
질소로 충진된 2.0리터의 교반기가 달린 스테인레스제 반응기내에 상기의 고체촉매 5mg을 넣고 트리에틸알루미늄 3밀리몰, 디시클로펜틸디메톡시실란(DCPDMS) 0.3밀리몰을 주입한 다음, 액화프로필렌 1.2 리터와 수소 5000밀리리터를 주입후 20℃에서 5분간 예비중합을 실시한 후 70℃에서 40분간 호모프로필렌 중합을 실시하였다. 호모단 중합이 종료된 다음, 반응기의 온도를 실온으로 낮추면서 모노머를 퍼지하고 난 후, 에틸렌/(에틸렌+프로필렌) 의 몰비를 0.4가 되도록 한 혼합가스를 반응기 내에 주입한 다음, 70℃로 승온시켜서 60분동안 중합시켜 프로필렌계 블록 공중합체를 얻을 수 있었다. 그 결과 얻어진 프로필렌계 블록 공중합체를 분석하여, 표 2에 나타내었다.
① 블록공중합체 활성(ICP 활성, kg-PP/g-cat) = 중합체의 생성량(kg)÷촉매의 양(g)
② 에틸렌 프로필렌 고무함량(EPR, wt%): 공중합체를 크실렌으로 추출하여 크실렌을 제거한 후 석출된 성분의 중량%
③ 공중합체 내의 에틸렌의 함량(B-C2, wt%): 공중합체를 샘플링하여 적외선 분광기(FT-IR)에 의해 측정된 에틸렌의 함량(표준샘플에 의해 작성된 검량선을 기초로 산출됨)
④ EPR 중의 에틸렌 함량(PER-C2, wt%): (공중합체 내의 에틸렌함량)/(에틸렌 프로필렌 고무함량) * 100
실시예 2
[구형 담체의 제조]
교반기와 오일히터, 냉각환류기가 장착된 5L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, N-브로모숙신이미드 3g, 금속마그네슘(평균입경 120㎛인 분말제품) 10g, 무수 에탄올 300ml를 투입하고, 교반속도를 250rpm으로 작동하면서 반응기의 온도를 에탄올 환류 상태인 70℃로 유지하였다. 약 5분이 경과하면 반응이 시작되면서 수소가 발생하므로, 발생되는 수소가 빠져나가도록 반응기의 출구를 열린 상태로 두어 반응기의 압력을 대기압으로 유지하였다. 수소 발생이 끝난 후, N-브로모숙신이미드 1g, 금속 마그네슘(평균입경이 120㎛인 분말형 제품) 20g과 에탄올 250ml를 추가로 투입하였다. 상기 2차의 추가 투입에 의한 금속 마그네슘과 에탄올의 반응에 의한 수소 발생이 끝나면, N-브로모숙신이미드 3g, 금속 마그네슘(평균입경이 120㎛인 분말형 제품) 450g과 에탄올 560ml를 3차로 추가 투입하고, 반응기 온도 및 교반속도를 환류상태로 2시간 동안 유지하여 숙성시켰다. 숙성처리가 끝난 후, 50℃에서 세정 1회당 노말헥산 2,000ml를 사용하여 결과물을 3회 세정하였다. 세정된 결과물을 흐르는 질소 하에서 24시간 동안 건조시켜 디에톡시마그네슘 담체를 흐름성이 좋은 백색 분말상의 고체 생성물로서 336g(수율 95.2%) 얻었다.
실시예 1과 동일한 방법으로 측정한 결과, 노말헥산에 현탁시킨 상기 건조 담체의 평균 입자크기는 32.1㎛이었고, 입도분포지수는 0.89였으며, 겉보기밀도는 0.27g/cc이었다.
[고체촉매성분의 제조]
실시예 1의 고체촉매의 제조에 있어서, 2-에톡시에틸 부틸레이트 대신 2-메톡시에틸 피발레이트 3g와 2-이소펜틸-2-이소프로필-1,3-디메톡시프로판 1.0g 을 혼합한 용액과 디이소부틸프탈레이트 2.0g을 순차적으로 주입한 후, 승온하면서 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 2.1중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하여, 그 결과를 표 1에 나타내고, 실시예 1과 동일한 방법으로 프로필렌계 블록 공중합체를 제조하여, 그 결과를 표 2에 나타내었다.
실시예 3
[구형 담체의 제조]
교반기와 오일히터, 냉각환류기가 장착된 5L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, N-브로모숙신이미드 2g, 금속마그네슘(평균입경 120㎛인 분말제품) 10g, 무수 에탄올 250ml를 투입하고, 교반속도를 200rpm으로 작동하면서 반응기의 온도를 에탄올 환류 상태인 80℃로 유지하였다. 약 5분이 경과하면 반응이 시작되면서 수소가 발생하므로, 발생되는 수소가 빠져나가도록 반응기의 출구를 열린 상태로 두어 반응기의 압력을 대기압으로 유지하였다. 수소 발생이 끝난 후, N-브로모숙신이미드 3g, 금속 마그네슘(평균입경이 120㎛인 분말형 제품) 30g과 에탄올 450ml를 추가로 투입하였다. 상기 2차의 추가 투입에 의한 금속 마그네슘과 에탄올의 반응에 의한 수소 발생이 끝나면, N-브로모숙신이미드 2g, 금속 마그네슘(평균입경이 120㎛인 분말형 제품) 20g과 에탄올 300ml를 3차로 추가 투입하고, 반응기 온도 및 교반속도를 환류상태로 2시간 동안 유지하여 숙성시켰다. 숙성처리가 끝난 후, 50℃에서 세정 1회당 노말헥산 2,000ml를 사용하여 결과물을 3회 세정하였다. 세정된 결과물을 흐르는 질소 하에서 24시간 동안 건조시켜 디에톡시마그네슘 담체를 흐름성이 좋은 백색 분말상의 고체 생성물로서 271g(수율 95.8%) 얻었다.
실시예 1과 동일한 방법으로 측정한 결과, 노말헥산에 현탁시킨 상기 건조 담체의 평균 입자크기는 42.2㎛이었고, 입도분포지수는 0.62였으며, 겉보기밀도는 0.27g/cc이었다.
[고체촉매성분의 제조]
상기와 같이 제조된 구형의 담체를 이용하여, 실시예 1과 동일한 방법으로 고체촉매를 제조하고, 동일한 방식으로 측정한 결과, 결과의 고체촉매 내의 티타늄 함량은 2.33중량%이었으며, 평균 입자크기는 45.2㎛이었고, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하여, 그 결과를 표 1에 나타내고, 실시예 1과 동일한 방법으로 프로필렌계 블록 공중합체를 제조하여, 그 결과를 표 2에 나타내었다.
실시예 4
[구형 담체의 제조]
교반기와 오일히터, 냉각환류기가 장착된 5L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, N-클로로숙신이미드 3.5g, 금속마그네슘(평균입경 150㎛인 분말제품) 15g, 무수 에탄올 450ml를 투입하고, 교반속도를 150rpm으로 작동하면서 반응기 온도를 85℃로 올려 에탄올이 환류되는 상태를 유지하였다. 약 5분이 경과하면 반응이 시작되면서 수소가 발생하므로, 발생되는 수소가 빠져나가도록 반응기의 출구를 열린 상태로 두어 반응기의 압력을 대기압으로 유지하였다. 수소 발생이 끝난 후, N-클로로숙신이미드 2.0g, 금속 마그네슘(평균입경이 150㎛인 분말형 제품) 20g, 무수 에탄올 300ml를 추가로 투입하였다. 상기 2차의 추가 투입에 의한 금속 마그네슘과 에탄올의 반응에 의한 수소 발생이 끝나면, N-클로로숙신이미드 0.5g, 금속마그네슘(평균입경 150㎛인 분말제품) 27g과 무수 에탄올 375ml를 3차로 추가 투입하고, 반응기 온도 및 교반속도를 환류상태로 2시간 동안 유지하여 숙성시켰다. 숙성처리가 끝난 후, 50℃에서 세정 1회당 노말헥산 2,000ml를 사용하여 결과물을 3회 세정하였다. 세정된 결과물을 흐르는 질소 하에서 24시간 동안 건조시켜 디에톡시마그네슘 담체를 흐름성이 좋은 백색 분말상의 고체 생성물로서 285g(수율 97.6%) 얻었다.
실시예 1과 동일한 방법으로 측정한 결과, 노말헥산에 현탁시킨 상기 건조 담체의 평균 입자크기는 61.4㎛이었고, 입도분포지수는 0.83이었으며, 겉보기밀도는 0.26g/cc이었다.
[고체촉매성분의 제조]
실시예 1의 고체촉매의 제조에 있어서, 2-에톡시에틸 부틸레이트 대신 2-에톡시에틸 디메틸카바메이트 2.8g 에 디이소부틸프탈레이트 1.8g 과 2-이소펜틸-2-이소프로필-1,3-디메톡시프로판 1.5g를 각각 순차적으로 주입하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 2.1중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.
실시예 5
[고체촉매성분의 제조]
상기 실시예 3과 동일한 방법으로 제조된 구형의 담체를 이용하여, 고체촉매를 제조하되, 내부전자공여체로 2-메톡시에틸 부틸레이트 2.8g 에 디이소부틸프탈레이트 3.2g 를 각각 순차적으로 주입하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 2.0중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었고, 실시예 1과 동일한 방법으로 프로필렌계 블록 공중합체를 제조하여, 그 결과를 표 2에 나타내었다. 평균 입자크기는 45.2㎛이었다.
실시예 6
[고체촉매성분의 제조]
상기 실시예 3과 동일한 방법으로 제조된 구형의 담체를 이용하여, 고체촉매를 제조하되, 내부전자공여체로 2-메톡시에틸 부틸레이트 3.8g 에 2-이소펜틸-2-이소프로필-1,3-디메톡시프로판 2.5g 를 각각 순차적으로 주입하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 2.2중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었고, 실시예 1과 동일한 방법으로 프로필렌계 블록 공중합체를 제조하여, 그 결과를 표 2에 나타내었다. 평균 입자크기는 45.2㎛이었다.
비교예 1
[구형 담체의 제조]
교반기와 오일히터, 냉각환류기가 장착된 5L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, N-브로모숙신이미드 7g, 금속마그네슘(평균입경 120㎛인 분말제품) 60g, 무수 에탄올 900ml를 투입하고, 교반속도를 250rpm으로 작동하면서 반응기의 온도를 에탄올 환류 상태인 70℃로 유지하였다. 약 5분이 경과하면 반응이 시작되면서 수소가 발생하므로, 발생되는 수소가 빠져나가도록 반응기의 출구를 열린 상태로 두어 반응기의 압력을 대기압으로 유지하였다. 수소 발생이 끝난 후, 반응기 온도 및 교반속도를 환류상태로 2시간 동안 유지하여 숙성시켰다. 숙성처리가 끝난 후, 50℃에서 세정 1회당 노말헥산 2,000ml를 사용하여 결과물을 3회 세정하였다. 세정된 결과물을 흐르는 질소 하에서 24시간 동안 건조시켜 디에톡시마그네슘 담체를 흐름성이 좋은 백색 분말상의 고체 생성물로서 328g(수율 92.8%) 얻었다.
실시예 1과 동일한 방법으로 측정한 결과, 노말헥산에 현탁시킨 상기 건조 담체의 평균 입자크기는 20.6㎛이었고, 입도분포지수는 1.37였으며, 겉보기밀도는 0.33g/cc이었다.
[고체촉매성분의 제조]
실시예 1의 고체촉매의 제조에 있어서, 내부전자공여체로써 디이소부틸프탈레이트 4.7g을 사용하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 2.2중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.
비교예 2
[구형담체 및 고체촉매성분의 제조]
질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 150ml, 테트라하이드로퓨란 12ml, 부탄올 20ml, 마그네슘클로라이드 21g을 투입하고 110℃로 승온 후, 1시간을 유지시켜 균일 용액을 얻었다. 용액의 온도를 15℃로 냉각하고, 사염화티타늄 25ml를 투입한 후 반응기의 온도를 60℃에서 1시간에 걸쳐 승온하고, 10분 동안 숙성 후 15분간 정치시켜 담체를 가라앉히고, 상부의 용액을 제거하였다. 반응기 내에 남은 슬러리는 200ml의 톨루엔을 투입하고, 교반, 정치, 상등액 제거 과정을 2회 반복하여 세척하였다.
이렇게 얻어진 슬러리에 톨루엔 150ml를 주입한 후 15℃에서 사염화티타늄 25ml를 톨루엔 50ml에 희석하여 1시간에 걸쳐 투입한 후, 반응기의 온도를 30℃까지 분당 0.5℃의 속도로 올려 주었다. 반응 혼합물을 30℃에서 1시간 동안 유지한 다음, 디이소부틸프탈레이트4.5mL와 2-이소펜틸-2-이소프로필-1,3-디메톡시프로판 3ml를 주입하고, 다시 분당 0.5℃의 속도로 110℃까지 승온시켰다. 
110℃에서 1시간 동안 유지한 다음, 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 동일한 방법으로 1회 세척하였다. 여기에 톨루엔 150ml와 사염화티타늄 50ml를 투입하여 온도를 110℃까지 올려 1시간 동안 유지하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 3.3중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었고, 실시예 1과 동일한 방법으로 프로필렌계 블록 공중합체를 제조하여, 그 결과를 표 2에 나타내었다.
비교예 3
[고체촉매성분의 제조]
비교예 1에서 제조된 담체를 이용하여, 실시예 1의 1. 고체촉매의 제조에 있어서, 내부전자공여체로써 2-이소프로필-2-(3-메틸부틸)-1,3-디메톡시프로판 6.5g을 사용하여 촉매를 제조하였다. 티타늄 함량은 3.0중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었고, 실시예 1과 동일한 방법으로 프로필렌계 블록 공중합체를 제조하여, 그 결과를 표 2에 나타내었다.
비교예 4
[고체촉매성분의 제조]
비교예 1에서 제조된 담체를 이용하여, 실시예 1의 1. 고체촉매의 제조에 있어서, 내부전자공여체로써 2-메톡시에틸 아세테이트 4.8g을 사용하여 촉매를 제조하였다. 티타늄 함량은 3.1중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었고, 실시예 1과 동일한 방법으로 프로필렌계 블록 공중합체를 제조하여, 그 결과를 표 2에 나타내었다.
촉매활성
(g-PP/g cat 2h)
X.I. (wt%) MI
(g/10min)
P.I.
실시예 1 73,000 98.9 65 4.1
실시예 2 76,000 98.8 63 4.2
실시예 3 81,000 98.8 71 4.1
실시예 4 82,000 98.9 73 4.1
실시예 5 78,000 98.8 660 4.3
실시예 6 72,000 99.0 110 3.9
비교예 1 65,000 98.7 13 4.2
비교예 2 56,000 98.0 25 4.0
비교예 3 53,000 98.5 125 3.5
비교예 4 34,000 96.4 100 4.3
프로필렌계 공중합
ICP 활성
(g-PP/g cat)
EPR
(wt%)
B-C2
(wt%)
PER-C2
(wt%)
실시예 1 56,000 38 20 56
실시예 2 58,000 37 21 57
실시예 3 53,000 39 21 55
실시예 4 55,000 38 21 55
실시예 5 58,000 37 20 54
실시예 6 50,500 35 19 54
비교예 1 48,000 23 12 52
비교예 2 41,000 29 14 48
비교예 3 47,000 25 13 52
비교예 4 27,000 27 14 52

Claims (11)

  1. 마그네슘, 티타늄, 할로겐, 및 제1내부전자공여체로서 하기 일반식(II)로 표시되는 비방향족 알콕시에스테르계 화합물과 제2내부전자공여체로서 프탈산에스테르 또는 1,3-디에테르류로 이루어진 내부전자공여체를 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매:
    Figure pat00006
    ………… (Ⅱ)
    여기에서, B는 탄소수가 1~20개까지의 지방족 포화탄화수소 및 환형의 포화탄화수로 구성된 모노 에스테르 구조를 갖는 화합물이거나, B가 아미노기, 또는 직쇄형 또는 환형아미노기로 이루어진 카바메이트 구조를 갖는 화합물이며, R1은 탄소수 1∼12의 직쇄상 알킬기이며, R2, R3, R4, R5는 각각 독립적으로 수소를 포함한 탄소수 1∼12의 직쇄상 알킬기, 탄소수 3∼12의 분기 알킬기, 비닐기, 탄소수3∼12의 직쇄상 알케닐기 또는 분기 알케닐기, 탄소수 1∼12의 직쇄상 할로겐 치환 알킬기, 탄소수 3∼12의 분기 할로겐 치환 알킬기, 탄소수 3∼12의 직쇄상 할로겐 치환 알케닐기 또는 분기 할로겐 치환 알케닐기, 탄소수3∼12의 시클로알킬기, 탄소수 3∼12의 시클로알케닐기, 탄소수 3∼12의 할로겐 치환 시클로알킬기, 탄소수 3∼12의 할로겐 치환 시클로알케닐기, 또는 탄소수 6∼12의 방향족 탄화수소기이다.
  2. 제 1항에 있어서, 상기 고체촉매는 금속 마그네슘 5~40중량%, 티타늄 0.5~10중량%, 할로겐 50~85중량%, 제1 내부전자공여체 0.01~20중량%, 및 제2 내부전자공유체 0.1~20중량% 를 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매.
  3. 제 1항에 있어서, 상기 고체촉매에 사용되는 상기 내부전자공여체는 2종 이상의 내부전자공여체로서 제1내부전자공여체인 알콕시 에스테르와 제2내부전자공여체인 프탈산 에스테르 또는 1,3-디에스테르 형태를 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매.
  4. 디알콕시마그네슘을 유기용매 존재하에서 금속할라이드 화합물과 반응온도 -10~60℃ 에서 반응시키는 (1)단계; 상기 (1)단계 반응 생성물에 온도를 승온하면서 2종 이상의 내부전자공여체와 반응시키는 (2)단계; 및 상기 (2)단계 반응 생성물과 티타늄할라이드를 반응온도 60~150℃에서 반응시키는 (3)단계를 포함하는 프로필렌 중합용 고체촉매의 제조방법.
  5. 제4항에 있어서, 상기 디알콕시마그네슘은 금속 마그네슘과 알코올 및 반응개시제를 반응시켜 얻어지는 것으로, 금속 마그네슘에 알코올을 3 ~ 6 회로 분할하여 첨가하고, 상기 반응 개시제는 반응계 내부로 최초 반응개시시 주입한 후 추가반응 중에 2 ~ 5회 분할하여 첨가하여 얻어지는 것을 특징으로 하는 프로필렌 중합용 고체촉매의 제조방법.
  6. 제 5항에 있어서, 상기 금속 마그네슘 및 알코올의 비율은 금속마그네슘 중량(g):알코올 부피(ml)로 1:5~1:100 이고, 상기 금속 마그네슘 및 알코올을 첨가할 시의 반응온도는 25~110℃ 인 것을 특징으로 하는 프로필렌 중합용 고체촉매의 제조방법.
  7. 제5항에 있어서, 상기 반응개시제는 질소 할로겐 화합물, 할로겐화합물, 또는 마그네슘 할라이드를 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매의 제조방법.
  8. 제7항에 있어서, 상기 질소 할로겐 화합물은 하기 일반식 (1)~(4)로 이루어지는 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 프로필렌 중합용 고체촉매의 제조방법:
     
    Figure pat00007
    ……(1)
    상기 일반식(1)은 N-할라이드 숙신이미드계 화합물로서, X는 할로겐이고, R1, R2, R3 및 R4는 수소, C1~C12의 알킬 또는 C6~C20의 아릴이다.
     
    Figure pat00008
    ……(2)
    상기 일반식 (2)는 트리할로이소시아눌산계 화합물로서, X는 할로겐이다.

     
    Figure pat00009
    ……(3)
    상기 일반식 (3)은 N-할로프탈이미드계 화합물로서, X는 할로겐이고, R1, R2, R3 및 R4는 수소, C1~C12의 알킬 또는 C6~C20의 아릴이다.
     
    Figure pat00010
    ……(4)
    상기 일반식 (4)는 히단토인계 화합물로서, X는 할로겐이고, R1 및 R2는 수소, C1~C12의 알킬 또는 C6~C20의 아릴이다.
  9. 제 7항에 있어서, 상기 할로겐화합물은 Br2 또는 I2를 포함하고, 상기마그네슘 할라이드는 염화마그네슘(MgCl2), 브롬화마그네슘(MgBr2) 또는 요오드화마그네슘(MgI2)인 것을 특징으로 하는 프로필렌 중합용 고체촉매의 제조방법.
  10. 제 1항 내지 제 3항 중 어느 한 항에 따른 고체촉매와, 조촉매로서 AlR3(여기에서, R은 탄소수 1~6개의 알킬기이다) 및 외부전자공여체로서 R1 mR2 nSi(OR3)(4-m-n)(여기에서, R1과 R2는 동일하거나 다를 수 있으며, 탄소수 1~12개의 선형 또는 분지형 또는 시클릭 알킬기, 또는 아릴기이고, R3는 탄소수 1~6개의 선형 또는 분지형 알킬기이고, m, n은 각각 0 또는 1이고, m+n은 1 또는 2이다)의 존재하에 프로필렌을 중합 또는 프로필렌과 다른 알파올레핀을 공중합시키는 것을 특징으로 하는 프로필렌 중합체 또는 공중합체의 제조방법.
  11. 제 10항에 있어서, 상기 프로필렌 중합체 또는 공중합체의 제조방법은, 프로필렌 단독 중합 또는 프로필렌 단독중합 후, 프로필렌과 에틸렌, 또는 프로필렌과 알파올레핀의 공중합을 실시하는 것을 특징으로 하는 프로필렌 중합체 또는 공중합체의 제조방법.


KR1020180166543A 2018-12-20 2018-12-20 프로필렌 중합용 고체 촉매 및 이를 이용한 블록 공중합체의 제조방법 KR102178630B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020180166543A KR102178630B1 (ko) 2018-12-20 2018-12-20 프로필렌 중합용 고체 촉매 및 이를 이용한 블록 공중합체의 제조방법
EP19215811.1A EP3670546A1 (en) 2018-12-20 2019-12-12 Solid catalyst for propylene polymerization and method of producing block copolymer using the same
US16/721,068 US11427657B2 (en) 2018-12-20 2019-12-19 Solid catalyst for propylene polymerization and method of producing block copolymer using the same
CN201911324587.0A CN111349185B (zh) 2018-12-20 2019-12-20 用于丙烯聚合的固体催化剂和使用它生产嵌段共聚物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180166543A KR102178630B1 (ko) 2018-12-20 2018-12-20 프로필렌 중합용 고체 촉매 및 이를 이용한 블록 공중합체의 제조방법

Publications (2)

Publication Number Publication Date
KR20200077232A true KR20200077232A (ko) 2020-06-30
KR102178630B1 KR102178630B1 (ko) 2020-11-13

Family

ID=68916260

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180166543A KR102178630B1 (ko) 2018-12-20 2018-12-20 프로필렌 중합용 고체 촉매 및 이를 이용한 블록 공중합체의 제조방법

Country Status (4)

Country Link
US (1) US11427657B2 (ko)
EP (1) EP3670546A1 (ko)
KR (1) KR102178630B1 (ko)
CN (1) CN111349185B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220042807A (ko) * 2020-09-28 2022-04-05 한화토탈 주식회사 프로필렌계 블록공중합용 고체촉매 및 블록 공중합체 제조방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875723A (zh) * 2020-07-16 2020-11-03 国家能源集团宁夏煤业有限责任公司 乙氧基镁载体及其制备方法和Ziegler-Natta催化剂及其制备方法及应用
CN116041586B (zh) * 2021-10-28 2024-02-13 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分及其制备方法和催化剂及烯烃聚合方法
CN116041581B (zh) * 2021-10-28 2024-07-02 中国石油化工股份有限公司 烯烃聚合催化剂组分及其制备方法和应用
KR20240056988A (ko) * 2022-10-24 2024-05-02 한화토탈에너지스 주식회사 프로필렌계 중합용 고체 촉매 및 이를 이용한 프로필렌계 중합체의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050093862A (ko) * 2001-03-30 2005-09-23 도호 캐털리스트 가부시키가이샤 올레핀 중합용 고체 촉매 성분 및 촉매, 및 프로필렌 블록공중합체
KR100572616B1 (ko) * 2004-10-15 2006-04-24 삼성토탈 주식회사 올레핀 중합용 고체촉매 및 그 제조방법
KR20120006719A (ko) * 2010-07-13 2012-01-19 삼성토탈 주식회사 올레핀 중합 촉매용 구형 담체의 제조방법 및 이를 이용한 고체 촉매 및 프로필렌 중합체
KR20130009435A (ko) * 2011-07-15 2013-01-23 삼성토탈 주식회사 올레핀 중합 촉매용 구형 담체의 제조방법 및 이를 이용한 고체 촉매 및 프로필렌 중합체의 제조방법
KR101795317B1 (ko) * 2016-12-01 2017-11-07 한화토탈 주식회사 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조 방법
KR101930165B1 (ko) * 2017-07-03 2018-12-17 한화토탈 주식회사 프로필렌 중합용 고체 촉매 및 이를 이용한 프로필렌 중합체 또는 공중합체의 제조방법
JP7017704B2 (ja) * 2018-09-10 2022-02-09 株式会社島津製作所 生体膜ホスホイノシタイドの分離方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155104A (ja) 1984-08-24 1986-03-19 Toho Titanium Co Ltd オレフィン類重合用触媒成分
DE3866906D1 (de) 1987-03-23 1992-01-30 Idemitsu Petrochemical Co Verfahren zur herstellung von polyolefinen.
IT1282691B1 (it) 1996-02-27 1998-03-31 Montell North America Inc Processo per la preparazione di copolimeri random del propilene e prodotti cosi' ottenuti
KR20100007076A (ko) * 2008-07-11 2010-01-22 삼성토탈 주식회사 올레핀 중합 촉매용 구형 담체의 크기를 조절하는 방법
KR101140112B1 (ko) * 2009-05-22 2012-04-30 삼성토탈 주식회사 올레핀 중합 촉매용 디알콕시마그네슘 담체의 제조 방법, 이를 이용한 올레핀 중합 촉매의 제조 방법 및 이를 이용한 올레핀 중합 방법
US8541333B2 (en) 2009-08-13 2013-09-24 China Petroleum & Chemical Corporation Catalyst component for olefin polymerization and a catalyst comprising the same
KR101247761B1 (ko) * 2011-07-15 2013-04-01 삼성중공업 주식회사 로봇의 선체면 주행 가능 영역 확인 방법, 로봇 및 기록 매체
EA025272B1 (ru) * 2013-01-31 2016-12-30 Сауди Бейсик Индастриз Корпорейшн Способ получения компонента катализатора полимеризации олефинов
US9546294B2 (en) * 2013-04-19 2017-01-17 Incubation Alliance, Inc. Carbon fiber and method for producing same
US9919972B2 (en) * 2013-05-02 2018-03-20 Melior Innovations, Inc. Pressed and self sintered polymer derived SiC materials, applications and devices
KR101836008B1 (ko) * 2016-12-05 2018-03-07 한화토탈 주식회사 프로필렌 중합용 촉매 및 이를 이용한 프로필렌 중합체 또는 공중합체의 제조방법
CN108727524B (zh) * 2018-05-21 2020-08-07 中国石油天然气股份有限公司 一种内给电子体化合物及催化丙烯聚合的催化剂

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050093862A (ko) * 2001-03-30 2005-09-23 도호 캐털리스트 가부시키가이샤 올레핀 중합용 고체 촉매 성분 및 촉매, 및 프로필렌 블록공중합체
KR100572616B1 (ko) * 2004-10-15 2006-04-24 삼성토탈 주식회사 올레핀 중합용 고체촉매 및 그 제조방법
KR20120006719A (ko) * 2010-07-13 2012-01-19 삼성토탈 주식회사 올레핀 중합 촉매용 구형 담체의 제조방법 및 이를 이용한 고체 촉매 및 프로필렌 중합체
KR20130009435A (ko) * 2011-07-15 2013-01-23 삼성토탈 주식회사 올레핀 중합 촉매용 구형 담체의 제조방법 및 이를 이용한 고체 촉매 및 프로필렌 중합체의 제조방법
KR101795317B1 (ko) * 2016-12-01 2017-11-07 한화토탈 주식회사 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조 방법
KR101930165B1 (ko) * 2017-07-03 2018-12-17 한화토탈 주식회사 프로필렌 중합용 고체 촉매 및 이를 이용한 프로필렌 중합체 또는 공중합체의 제조방법
JP7017704B2 (ja) * 2018-09-10 2022-02-09 株式会社島津製作所 生体膜ホスホイノシタイドの分離方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220042807A (ko) * 2020-09-28 2022-04-05 한화토탈 주식회사 프로필렌계 블록공중합용 고체촉매 및 블록 공중합체 제조방법

Also Published As

Publication number Publication date
US11427657B2 (en) 2022-08-30
KR102178630B1 (ko) 2020-11-13
EP3670546A1 (en) 2020-06-24
CN111349185A (zh) 2020-06-30
US20200199266A1 (en) 2020-06-25
CN111349185B (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
KR102178630B1 (ko) 프로필렌 중합용 고체 촉매 및 이를 이용한 블록 공중합체의 제조방법
KR101930165B1 (ko) 프로필렌 중합용 고체 촉매 및 이를 이용한 프로필렌 중합체 또는 공중합체의 제조방법
KR101114073B1 (ko) 프로필렌 중합용 고체촉매의 제조 방법
KR100723367B1 (ko) 올레핀 중합 및 공중합 방법
JP4137736B2 (ja) オレフィン類重合用触媒
KR101235445B1 (ko) 프로필렌 중합용 고체촉매의 제조 방법
KR20110080616A (ko) 프로필렌 중합용 고체촉매의 제조 방법
CN108148153B (zh) 固体催化剂以及使用其制备丙烯聚合物或共聚物的方法
KR101795317B1 (ko) 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조 방법
KR101395471B1 (ko) 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법
KR100723365B1 (ko) 분자 구조 중에 트리알킬실릴기를 포함하는 알콕시실란화합물을 사용하는 프로필렌 중합체 제조방법
KR101965982B1 (ko) 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법
KR101908866B1 (ko) 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법
KR101255913B1 (ko) 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조 방법
KR101123523B1 (ko) 프로필렌 중합용 고체촉매의 제조 방법
KR102453530B1 (ko) 프로필렌계 블록공중합용 고체촉매 및 블록 공중합체 제조방법
KR101207672B1 (ko) 프로필렌 중합용 고체촉매의 제조방법
KR20100058126A (ko) 프로필렌 중합체의 제조방법
KR101454516B1 (ko) 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조 방법
KR102121126B1 (ko) 고입체규칙성 폴리프로필렌 제조용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법
KR100723369B1 (ko) 올레핀 중합 및 공중합 방법
KR20240056988A (ko) 프로필렌계 중합용 고체 촉매 및 이를 이용한 프로필렌계 중합체의 제조방법
KR100723368B1 (ko) 올레핀 중합 및 공중합 방법
KR101624036B1 (ko) 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조 방법
KR101150579B1 (ko) 프로필렌 중합 및 공중합 방법

Legal Events

Date Code Title Description
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant