KR20200015473A - 촬상 장치 및 전자 기기 - Google Patents

촬상 장치 및 전자 기기 Download PDF

Info

Publication number
KR20200015473A
KR20200015473A KR1020197032949A KR20197032949A KR20200015473A KR 20200015473 A KR20200015473 A KR 20200015473A KR 1020197032949 A KR1020197032949 A KR 1020197032949A KR 20197032949 A KR20197032949 A KR 20197032949A KR 20200015473 A KR20200015473 A KR 20200015473A
Authority
KR
South Korea
Prior art keywords
region
pixel
layer
charge
charge accumulation
Prior art date
Application number
KR1020197032949A
Other languages
English (en)
Other versions
KR102611545B1 (ko
Inventor
요시하루 쿠도오
Original Assignee
소니 세미컨덕터 솔루션즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소니 세미컨덕터 솔루션즈 가부시키가이샤 filed Critical 소니 세미컨덕터 솔루션즈 가부시키가이샤
Publication of KR20200015473A publication Critical patent/KR20200015473A/ko
Application granted granted Critical
Publication of KR102611545B1 publication Critical patent/KR102611545B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14614Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor having a special gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

본 기술의 촬상 소자는, 반도체 기판의 표면에 있는 복수의 화소 트랜지스터와, 상기 복수의 화소 트랜지스터를 서로 분리하는 소자 분리 영역과, 상기 기판 표면보다 반도체 기판에서 더 깊은 위치에 있는 전하 축적층과, 상기 전하 축적층과 동일한 도전형이며, 상기 소자 분리 영역과 상기 전하 축적층 사이에 배치되어 있는 전하 배출층을 포함한다.

Description

촬상 장치 및 전자 기기
본 기술은, 고체 촬상 장치 및 전자 기기에 관한 것으로, 특히, 소자 분리 영역의 저부에서 발생하는 암전류를 억제할 수 있도록 한 고체 촬상 장치 및 전자 기기에 관한 것이다.
CMOS 이미지 센서의 화소 구조에서는, 포토 다이오드와 판독 동작에 필요한 트랜지스터 군(group)이 같은 평면상에 있는 구조가 일반적이다. 그렇지만, 이 경우, 화소가 미세하게 될수록 포토 다이오드의 면적 비율은 내려가기 때문에, 취급 전하량의 확보가 곤란해진다.
취급 전하량을 증대시키려면, 포토 다이오드의 PN 접합의 전계를 강화하든지, 접합면적을 확대할 것이 필요하다.
접합 전계를 강화하는 것은, 동시에 결정 결함이나 금속 불순물 등에 기인하는 암흑시 리크, 즉 백점 결함의 증대로 이어진다. 백점 결함은 전계의 증대에 대해 지수함수적으로 변화하기 때문에, 전계 강화에는 한계가 있다.
접합면적을 증대시킨 경우도, 정상적인 암흑시 리크, 즉 암전류의 증대는 면적비로서 발생하는데, 전계는 억제할 수 있기 때문에, 백점 결함수를 저감하는 것은 가능하다. 근래의 이미지 센서 프로세스에서 암전류는 충분 낮게 할 수 있기 때문에, 백점 결함을 억제할 수 있는 쪽이 바람직하다.
이와 같은 상황에서, 예를 들면 특허 문헌 1에서는, 화소 경계에 깊은 트렌치를 형성하고, 그 측벽에 진한 P형층을 형성하여 전계를 걸기 쉬운 구조가 제안되어 있다. 이 구조에서는, 기판 표면에는 포토 다이오드를 형성하지 않고, 트렌치 측벽의 접합에서 전하 축적이 행하여진다. 5㎛ 이하 정도의 화소 치수라면 기판 표면에 포토 다이오드를 형성한 경우와 비교하여, 측벽의 쪽이 접합면적을 크게 할 수 있다. 이 때문에 같은 정도의 축적 전하량으로 비교하면, 접합 전계를 내리는 것도 가능하다.
특허 문헌 1 : 일본국 특허공개공보 2015-162603호 공보
접합면적의 증대에 의한 전하량 증대는, 상술한 바와 같이 암전류의 증대가 우려되지만, 특허 문헌 1에서는, 측벽은 진한 P형을 형성하는 방법이 제안되어 있기 때문에, 암전류는 충분히 억제할 수 있을 가능성이 높다.
그렇지만, 포토 다이오드의 상부에 형성된 트랜지스터의 소자 분리 영역인 STI 저부의 계면에서는, P형 농도를 그리 높게 할 수가 없기 때문에, 이 영역에서 발생하는 암전류의 증대가 우려된다.
본 기술은, 이와 같은 상황을 감안하여 이루어진 것으로, 소자 분리 영역의 저부에서 발생하는 암전류를 억제할 수 있도록 하는 것이다.
본 기술의 제1의 측면의 고체 촬상 장치는, 반도체 기판의 기판 표면에 있는 복수의 화소 트랜지스터와, 상기 복수의 화소 트랜지스터를 분리하는 소자 분리 영역과, 상기 기판 표면보다도 상기 반도체 기판에서 더 깊은 위치에 있는 전하 축적층과, 상기 전하 축적층과 동일한 도전형이며 상기 소자 분리 영역과 상기 전하 축적층 사이에 있는 전하 배출층을 구비한다.
상기 전하 배출층은, 상기 소자 분리 영역의 하부에 배치되어 있다.
상기 전하 배출층은, 상기 소자 분리 영역과 상기 전하 축적층 사이의 웰 영역 내에 배치되어 있다.
상기 전하 배출층은, 상기 전하 축적 영역과 전송 트랜지스터가 아닌 상기 복수의 화소 트랜지스터 중 적어도 하나와의 사이에 있다.
상기 전하 배출층은 개구부를 포함하고, 상기 복수의 화소 트랜지스터 내의 전송 트랜지스터의 게이트 전극은 상기 개구부를 통해 상기 전하 축적 영역으로 연장된다.
상기 전하 배출층은 상기 전하 축적 영역과 동일한 도전형을 갖으며 상기 기판 표면에 있는 불순물 영역에 결합된다.
상기 불순물 영역은 상기 복수의 화소 트랜지스터의 소스 영역 및 드레인 영역과 분리되어 있다.
상기 불순물 영역은 상기 복수의 화소 트랜지스터 중 리셋 트랜지스터의 드레인 영역이다.
상기 불순물 영역은 상기 복수의 화소 트랜지스터 중 증폭 트랜지스터의 드레인 영역이다.
상기 불순물 영역은 소정의 전압을 수신한다.
상기 불순물 영역은 상기 복수의 화소 트랜지스터의 증폭 트랜지스터와 선택 트랜지스터 사이에 있다.
상기 복수의 화소 트랜지스터의 전송 트랜지스터는, 게이트 전극이 상기 기판 표면으로부터 상기 전하 축적 영역까지 연장되는 트렌치 구조를 갖는다.
반도체 기판을 관통하도록 구성되며, 평면에서 볼 때 전하 축적 영역 외부의 화소 경계에 배치되는 화소간 분리부를 더 포함한다.
상기 화소간 분리부는 측벽막의 2층 구조 및 상기 측벽막의 2층 구조 내부의 필러를 포함한다.
PN 접합을 형성하도록 구성된 P형층 및 N형층을 더 포함하고, 상기 P형층 및 상기 N형층은 상기 전하 축적 영역과 상기 화소간 분리부 사이에 배치된다.
상기 기판 표면의 표면과 상이한 반도체 기판의 표면의 측면상에 있는 차광막 및 온칩 렌즈를 포함한다.
본 기술의 제2의 측면의 전자 기기는, 반도체 기판의 기판 표면에 있는 복수의 화소 트랜지스터와, 상기 복수의 화소 트랜지스터를 분리하는 소자 분리 영역과, 상기 기판 표면보다도 상기 반도체 기판에서 더 깊은 위치에 있는 전하 축적층과, 상기 전하 축적층과 동일한 도전형이며 상기 소자 분리 영역과 상기 전하 축적층 사이에 있는 전하 배출층을 갖는 고체 촬상 장치를 구비한다.
본 기술의 제3의 측면의 촬상 장치는, 기판과, 입사광에 의해 생성된 전하를 축적하기 위한 기판 내에 있는 전하 축적 영역과, 상기 기판의 표면에 있으며 상기 전하 축적 영역에 결합된 적어도 하나의 트랜지스터와, 상기 기판 내에 있으며 적어도 하나의 트랜지스터의 적어도 하나의 측면에 인접하여 위치하는 분리 영역과, 상기 분리 영역과 상기 전하 축적 영역 사이에 있으며 상기 분리 영역으로부터 전하를 배출하는 전하 배출층을 포함한다.
상기 기판 내에 있으며 상기 전하 배출층에 결합되어 있는 불순물 영역을 더 포함하고, 상기 분리 영역은 상기 불순물 영역과 적어도 하나의 트랜지스터와의 사이에 있다.
상기 불순물 영역, 상기 전하 축적 영역 및 상기 전하 배출층은 동일한 도전형을 가지며, 상기 불순물 영역은 상기 전하 배출층보다 높은 불순물 농도를 갖는다.
상기 고체 촬상 장치 및 상기 전자 기기는, 독립한 장치라도 좋고, 다른 장치에 조립되는 모듈이라도 좋다.
본 기술의 제1 및 제2의 측면에 의하면, 소자 분리 영역의 저부에서 발생하는 암전류를 억제할 수 있다.
또한, 여기에 기재된 효과는 반드시 한정되는 것이 아니고, 본 개시 중에 기재된 어느 하나의 효과라도 좋다.

도 1은 본 개시에 관한 기술을 적용한 고체 촬상 장치의 개략 구성을 도시하는 도면.
도 2는 화소의 회로 구성례를 도시하는 도면.
도 3은 제1의 실시의 형태의 화소의 수직방향 단면도.
도 4는 제1의 실시의 형태의 화소의 수평방향 단면도.
도 5는 제1의 실시의 형태의 화소 구조의 작용 효과를 설명하는 도면.
도 6은 제1의 실시의 형태의 화소 구조의 작용 효과를 설명하는 도면.
도 7은 화소의 평면도.
도 8은 화소의 그 밖의 평면 구성례를 도시하는 평면도.
도 9는 화소의 그 밖의 평면 구성례를 도시하는 평면도.
도 10은 화소의 그 밖의 평면 구성례를 도시하는 평면도.
도 11은 제2의 실시의 형태의 화소의 수직방향 단면도.
도 12는 제3의 실시의 형태의 화소의 수직방향 단면도.
도 13은 제4의 실시의 형태의 화소의 수직방향 단면도.
도 14는 본 개시에 관한 기술을 적용할 수 있는 적층형의 고체 촬상 장치의 구성례의 개요를 도시하는 도면.
도 15는 적층형의 고체 촬상 장치(23020)의 제1의 구성례를 도시하는 단면도.
도 16은 적층형의 고체 촬상 장치(23020)의 제2의 구성례를 도시하는 단면도.
도 17은 적층형의 고체 촬상 장치(23020)의 제3의 구성례를 도시하는 단면도.
도 18은 본 개시에 관한 기술을 적용할 수 있는 적층형의 고체 촬상 장치의 다른 구성례를 도시하는 단면도.
도 19는 본 기술을 적용한 전자 기기로서의 촬상 장치의 구성례를 도시하는 블록도.
도 20은 이미지 센서의 사용례를 설명하는 도면.
도 21은 체내 정보 취득 시스템의 개략적인 구성의 한 예를 도시하는 블록도.
도 22는 차량 제어 시스템의 개략적인 구성의 한 예를 도시하는 블록도.
도 23은 차외 정보 검출부 및 촬상부의 설치 위치의 한 예를 도시하는 설명도.
이하, 본 기술을 실시하기 위한 형태(이하, 실시의 형태라고 한다)에 관해 설명한다. 또한, 설명은 이하의 순서로 행한다.
1. 고체 촬상 장치의 개략 구성례
2. 화소의 회로 구성례
3. 제1의 실시의 형태의 화소 구조
4. N형층(97A) 및 N형층(97B)의 작용 효과
5. 화소 평면도
6. 제2의 실시의 형태의 화소 구조
7. 제3의 실시의 형태의 화소 구조
8. 제4의 실시의 형태의 화소 구조
9. 정리
10. 본 개시에 관한 기술을 적용할 수 있는 적층형의 고체 촬상 장치의 구성례
11. 전자 기기에의 적용례
12. 이미지 센서의 사용례
13. 체내 정보 취득 시스템에의 응용례
14. 이동체에의 응용례
<1. 고체 촬상 장치의 개략 구성례>
도 1은, 본 개시에 관한 기술(본 기술)을 적용한 고체 촬상 장치의
개략 구성을 도시하고 있다.
도 1의 고체 촬상 장치(1)는, 반도체로서 예를 들면 실리콘(Si)을 이용한 반도체 기판(12)에, 화소(2)가 2차원 어레이형상으로 배열된 화소 어레이부(3)와, 그 주변의 주변 회로부를 갖고서 구성된다. 주변 회로부에는, 수직 구동 회로(4), 칼럼 신호 처리 회로(5), 수평 구동 회로(6), 출력 회로(7), 제어 회로(8) 등이 포함된다.
화소(2)는, 광전변환 소자로서의 포토 다이오드(이하, PD라고 칭한다.)와, 복수의 화소 트랜지스터를 갖고서 이루어진다. 복수의 화소 트랜지스터는, 예를 들면, 전송 트랜지스터, 선택 트랜지스터, 리셋 트랜지스터, 및, 증폭 트랜지스터의 4개의 MOS 트랜지스터로 구성된다.
또한, 화소(2)는, 공유 화소 구조로 할 수도 있다. 이 공유 화소 구조는, 복수의 포토 다이오드와, 복수의 전송 트랜지스터와, 공유되는 하나의 플로팅 디퓨전(부유 확산 영역)과, 공유되는 하나씩의 다른 화소 트랜지스터로 구성된다. 즉, 공유 화소 구조에서는, 복수의 단위 화소를 구성하는 포토 다이오드 및 전송 트랜지스터가, 다른 1개씩의 화소 트랜지스터를 공유하여 구성된다.
제어 회로(8)는, 입력 클록과, 동작 모드 등을 지령하는 데이터를 수취하고, 또한 고체 촬상 장치(1)의 내부 정보 등의 데이터를 출력한다. 즉, 제어 회로(8)는, 수직 동기 신호, 수평 동기 신호 및 마스터 클록에 의거하여, 수직 구동 회로(4), 칼럼 신호 처리 회로(5) 및 수평 구동 회로(6) 등의 동작의 기준이 되는 클록 신호나 제어 신호를 생성한다. 그리고, 제어 회로(8)는, 생성한 클록 신호나 제어 신호를, 수직 구동 회로(4), 칼럼 신호 처리 회로(5) 및 수평 구동 회로(6) 등에 출력한다.
수직 구동 회로(4)는, 예를 들면 시프트 레지스터에 의해 구성되고, 소정의 화소 구동 배선(10)을 선택하고, 선택된 화소 구동 배선(10)에 화소(2)를 구동하기 위한 펄스를 공급하고, 행 단위로 화소(2)를 구동한다. 즉, 수직 구동 회로(4)는, 화소 어레이부(3)의 각 화소(2)를 행 단위로 순차적으로 수직방향으로 선택 주사하고, 각 화소(2)의 광전변환부에 있어서 수광량에 응하여 생성된 신호 전하에 의거한 화소 신호를, 수직 신호선(9)을 통하여 칼럼 신호 처리 회로(5)에 공급시킨다.
칼럼 신호 처리 회로(5)는, 화소(2)의 열마다 배치되어 있고, 1행분의 화소(2)로부터 출력되는 신호를 화소열마다 노이즈 제거 등의 신호 처리를 행한다. 예를 들면, 칼럼 신호 처리 회로(5)는, 화소 고유의 고정 패턴 노이즈를 제거하기 위한 CDS(Correlated Double Sampling : 상관 2중 샘플링) 및 AD 변환 등의 신호 처리를 행한다.
수평 구동 회로(6)는, 예를 들면 시프트 레지스터에 의해 구성되고, 수평 주사 펄스를 순차적으로 출력함에 의해, 칼럼 신호 처리 회로(5)의 각각을 순번대로 선택하고, 칼럼 신호 처리 회로(5)의 각각으로부터 화소 신호를 수평 신호선(11)에 출력시킨다.
출력 회로(7)는, 칼럼 신호 처리 회로(5)의 각각으로부터 수평 신호선(11)을 통하여 순차적으로 공급되는 신호에 대해, 신호 처리를 행하여 출력한다. 출력 회로(7)는, 예를 들면, 버퍼링만 하는 경우도 있고, 흑레벨 조정, 열 편차 보정, 각종 디지털 신호 처리 등이 행하여지는 경우도 있다. 입출력 단자(13)는, 외부와 신호의 교환을 한다.
이상과 같이 구성된 고체 촬상 장치(1)는, CDS 처리와 AD 변환 처리를 행하는 칼럼 신호 처리 회로(5)가 화소열마다 배치된 칼럼 AD 방식이라고 불리는 CMOS 이미지 센서이다.
<2. 화소의 회로 구성례>
도 2는, 화소(2)의 회로 구성례를 도시하고 있다.
화소(2)는, 광전변환 소자로서의 PD(41), 전송 트랜지스터(42), FD(플로팅 디퓨전)(43), 리셋 트랜지스터(44), 증폭 트랜지스터(45), 및 선택 트랜지스터(46)를 갖는다.
PD(41)는, 수광한 광량에 응한 전하(신호 전하)를 생성하고, 또한, 축적한다. PD(41)는, 애노드 단자가 접지되어 있음과 함께, 캐소드 단자가 전송 트랜지스터(42)를 통하여, FD(43)에 접속되어 있다.
전송 트랜지스터(42)는, 전송 신호(TRX)에 의해 온 된 때, PD(41)에서 생성된 전하를 판독하고, FD(43)에 전송한다.
FD(43)는, PD(41)로부터 판독된 전하를 유지한다. 리셋 트랜지스터(44)는, 리셋 신호(RST)에 의해 온 된 때, FD(43)에 축적되어 있는 전하가 드레인(정전압원(VDD))에 배출됨으로써, FD(43)의 전위를 리셋한다.
증폭 트랜지스터(45)는, FD(43)의 전위에 응한 화소 신호를 출력한다. 즉, 증폭 트랜지스터(45)는, 수직 신호선(9)을 통하여 접속되어 있는 정전류원으로서의 부하 MOS(부도시)와 소스 팔로워 회로를 구성하고, FD(43)에 축적되어 있는 전하에 응한 레벨을 나타내는 화소 신호가, 증폭 트랜지스터(45)로부터 선택 트랜지스터(46)를 통하여 칼럼 신호 처리 회로(5)에 출력된다.
선택 트랜지스터(46)는, 선택 신호(SEL)에 의해 화소(2)가 선택된 때 온 되고, 화소(2)의 화소 신호를, 수직 신호선(9)을 통하여 칼럼 신호 처리 회로(5)에 출력한다. 전송 신호(TRX), 선택 신호(SEL), 및 리셋 신호(RST)가 전송되는 각 신호선은, 도 1의 화소 구동 배선(10)에 대응한다.
화소(2)는, 이상과 같이 구성할 수 있지만, 이 구성으로 한정되는 것이 아니고, 그 밖의 구성을 채용할 수도 있다.
<3. 제1의 실시의 형태의 화소 구조>
도 3 및 도 4를 참조하여, 고체 촬상 장치(1)의 화소(2)의 구조에 관해 설명한다.
도 3은, 고체 촬상 장치(1)의 1화소 상당의 수직방향 단면도이다.
도 4는, 도 3의 X-X'선에서의 수평방향 단면도이다.
또한, 이하의 설명에서는, N형(제1 도전형)의 반도체 영역을 N형층, P형(제2 도전형)의 반도체 영역을 P형층이라고 기술하여 설명한다.
도 3에서 상측이 되는, 반도체 기판(12)의 표면측에는, PD(41)로부터 전하를 판독하기 위한 전송 트랜지스터(42), FD(43), 리셋 트랜지스터(44) 등이 형성되어 있다. 도 3에서는, 도시되어 있지 않지만, 반도체 기판(12)의 표면측에는, 및, 증폭 트랜지스터(45), 선택 트랜지스터(46)도 형성되어 있다.
한편, 도 3에서 하측이 되는 반도체 기판(12)의 이면측에는, 인접 화소로의 광의 누출을 억제하는 차광막(61)이나, 입사광을 PD(41)에 집광시키는 OCL(온 칩 렌즈62)가 형성되어 있다. 차광막(61)은, 예를 들면, W(텅스텐) 등의 금속재로 이루어진다. OCL(62)은, 평탄막(63)상에 형성되어 있다.
도 3에서는, 컬러 필터가 형성되어 있지 않지만, OCL(62)과 평탄막(63) 사이에, Red, Green, Blue 등의 컬러 필터가 형성되어도 좋다.
따라서, 고체 촬상 장치(1)는, 화소 트랜지스터가 형성되는 반도체 기판(12)의 표면측과 반대측의 이면측(도 3 하측)부터 광이 입사되는 이면 조사형의 MOS형 고체 촬상 장치이다.
반도체 기판(12)의 내부에는, PD(41)를 구성하는 N형층(71)이 형성되고, 그 N형층(71)을 둘러싸도록, 화소 경계에 DTI(Deep Trench Isolation)(72)가 반도체 기판(12)을 관통하여 형성되어 있다. DTI(72)는, 화소간를 분리하는 화소간 분리벽(화소간 분리부)이다. DTI(72)(의 충전재(82))의 중심이, 화소 경계가 된다.
DTI(72)는, 외측의 측벽막(81)과, 그 내측의 충전재(82)의 2층 구조로 구성된다. 측벽막(81)은, 예를 들면, SiO2막이나 SiN막으로 구성할 수 있다. 측벽막(81)의 내측에 매입되는 충전재(82)에는, 폴리실리콘, 도핑 폴리실리콘, W(텅스텐) 등의 금속재를 사용할 수 있다. 또한, 측벽막(81)에는, HfO막, TaO막, AlO막 등의 부(負)의 고정 전하를 갖는 고정 전하막을 채용하여도 좋다.
N형층(71)과 DTI(72)와의 사이에는, DTI(72)측부터 N형층(71)을 향하여, 차례로, P형층(73)과 N형층(74)이, DTI(72)에 따라 반도체 기판(12)의 이면측 계면(60)에 접할 때까지 형성되어 있다. 이에 의해, P형층(73)과 N형층(74)의 PN 접합 부분은 강한 전류계 영역을 형성하여, 발생된 전하가, N형층(71)에서 유지된다. N형층(71)은, PD(41)에서 발생한 전하(전자)를 축적하는 전하 축적층이다.
반도체 기판(12)의 이면측 계면(60)과 N형층(71)과의 사이에는, P형층(75)이 마련되어 있다.
또한, 반도체 기판(12)의 표면측에는, 전송 트랜지스터(42)가 형성되어 있다. 전송 트랜지스터(42)는, 게이트 전극(42G)이 기판 깊이 방향으로 Pwell 영역(웰 영역(91))을 관통하여 N형층(71)까지 파들어간 트렌치(세로구멍(縱穴) 구조의 화소 트랜지스터이다.
전송 트랜지스터(42)와 리셋 트랜지스터(44) 사이의 표면측 계면(90)에 배치된 N형층(92)은, FD(43)를 구성하고, 리셋 트랜지스터(44)의 FD(43)와 반대측에 형성된 N형 확산층(93)은, 리셋 트랜지스터(44)의 드레인 영역을 구성한다. N형 확산층(93)은, 고농도의 N형 층이다.
전송 트랜지스터(42)의 FD(43)측과 반대측에는, 표면측 계면(90)에 형성된 화소 트랜지스터를 분리하는 소자 분리 영역인 STI(Shallow Trench Isolation)(94)가 형성되고, 리셋 트랜지스터(44)의 드레인 영역을 구성하는 N형 확산층(93)의 외측에도, 소자 분리 영역인 STI(95)가 형성되어 있다. STI(94 및 95)는, SiO2 등의 산화막으로 이루어지는 절연물로 형성된다.
또한, 반도체 기판(12)의 표면측에서, STI(94)에 인접하는 영역에, 고농도의 N형 층인 N형 확산층(96A)이 형성되어 있다. N형 확산층(96A)에는 정의 전압이 인가되고, N형 확산층(96A)은, 그 하측(깊이 방향)에 형성된 N형층(97A)과 접속되어 있다. N형층(97A)은, N형 확산층(96A)의 하측에서, 인접하는 STI(94)의 하측부터 수평방향으로 연신하여 형성되어 있고, PD(41)를 구성하는 N형층(71)과 STI(94)와의 사이에, Pwell 영역(91)을 통하여 배치되어 있다.
마찬가지로, STI(95)에 인접하는 영역에, 고농도의 N형 층인 N형 확산층(96B)이 형성되어 있다. N형 확산층(96B)에는 정의 전압이 인가되고, N형 확산층(96B)은, 그 하측(깊이 방향)에 형성된 N형층(97B)과 접속되어 있다. N형층(97B)은, N형 확산층(96B)의 하측부터, 인접하는 STI(95) 및 리셋 트랜지스터(44)의 하측에 수평방향으로 연신하여 형성되어 있고, PD(41)를 구성하는 N형층(71)과 STI(94) 및 리셋 트랜지스터(44)와의 사이에, Pwell 영역(91)을 통하여 배치되어 있다.
도 3의 예에서는, 리셋 트랜지스터(44)와 전하 축적층인 N형층(71)의 사이에 N형층(97B)이 형성되어 있는데, 트렌치 구조를 갖는 전송 트랜지스터(42) 이외의 도시되지 않는 화소 트랜지스터(증폭 트랜지스터(45), 선택 트랜지스터(46))의 하방에도, N형층(97A) 또는 N형층(97B)의 어느 하나가 배치되어 있다.
<4. N형층(97A) 및 N형층(97B)의 작용 효과>
다음에, N형층(97A) 및 N형층(97B)의 작용 효과에 관해 설명한다.
반도체 기판(12)의 표면측 계면(90)에 형성된 화소 트랜지스터와, PD(41)에서 발생한 전하를 축적하는 전하 축적층인 N형층(71) 사이의 Pwell 영역(91)은, P형의 불순물 농도를 그리 높게할 수가 없다.
Pwell 영역(91)의 불순물 농도를 올리는 것이 곤란한 이유는, STI(94 및 95)의 트렌치 형성 직후에 P형 고농도 영역을 형성하면, 소자 분리 형성 후의 열처리에서 확산하여 버리고, 반대로, STI(94 및 95)의 열처리 후에 P형의 이온 주입을 행하면 주입 에너지가 높음에 의해 이온 주입시의 확산으로 국소적으로 농도가 높은 상태를 만드는 것이 어렵기 때문이다. STI(94 및 95)의 저부에 진한 P형층을 형성하면, 화소 트랜지스터의 소스 영역 또는 드레인 영역의 N형층과의 전계가 강하게 되어, 리크 전류가 증대한다. 따라서 Pwell 영역(91)의 불순물 농도를 올리는 것은 어렵다.
가령, 도 5에 도시되는 바와 같이, Pwell 영역(91) 내에, N형층(97A) 및 N형층(97B)을 형성하지 않은 경우, STI(94 및 95)의 저면에서 발생한 전자가, 전하 축적층인 N형층(71)에 유입하여, 암전류의 증대를 가져온다.
이에 대해, 고체 촬상 장치(1)의 화소(2)와 같이, 리셋 트랜지스터(44) 등의 화소 트랜지스터와 전하 축적층인 N형층(71) 사이의 Pwell 영역(91) 내에, N형층(97A) 및 N형층(97B)을 형성함에 의해, 도 6에 도시되는 바와 같이, STI(94 및 95)의 저부에서 발생한 전자를, N형층(97A) 및 N형층(97B)으로부터, 정의 전압이 인가된 N형 확산층(96A 및 96B)에 배출할 수 있기 때문에, 전하 축적층인 N형층(71)으로의 유입을 방지할 수 있다.
따라서 화소 트랜지스터와 전하 축적층인 N형층(71) 사이의 Pwell 영역(91) 내에, 전하 축적층과 같은 도전형(N형)의 N형층(97A) 및 N형층(97B)을 마련함에 의해, 화소 트랜지스터를 소자 분리하는 STI(94 및 95)의 저부에서 발생하는 암전류를 억제할 수 있다.
또한, 상술한 예에서는, 화소(2) 내에, STI(94 및 95)의 저부에서 발생하는 전자를 배출하기 위한 N형 확산층(96) 및 N형층(97)을, N형 확산층(96A 및 96B)과 N형층(97A 및 97B)의 각각 2개 마련한 구성으로 하였지만, 하나의 영역으로 구성하도록 하여도 좋다.
<5. 화소 평면도>
도 7은, 화소 트랜지스터가 형성되는 반도체 기판(12)의 표면측의 화소(2)의 평면도이다.
도 7에서는, 도 3과 대응하는 부분에 관해서는 동일한 부호를 붙이고 있고, 그 설명은 적절히 생략한다.
STI(94 및 95)의 저부에서 발생한 전자를 배출하는 N형 확산층(96A 및 96B)은, 도 7에 도시되는 바와 같이, 화소 트랜지스터의 소스 영역 및 드레인 영역과는 별도로 독립하여 마련되어 있다.
N형 확산층(96A)에는, 드레인 단자(98A)로부터 정의 전압이 인가된다. N형 확산층(96B)에는, 드레인 단자(98B)로부터 정의 전압이 인가된다. Pwell 영역(91)은 GND(그라운드)에 접속되어 있다.
또한, 드레인 단자(98A 및 98B)에 인가되는 전압은, Pwell 영역(91)의 전위보다도 높은 전압이면 좋고, 정전압원(VDD)이라도 좋다.
(그 밖의 평면 구성례)
도 7에 도시한 바와 같이, 암전류 성분인 전자의 배출처(排出先)로서의 N형 산층(96)(96A 및 96B)을, 화소 트랜지스터의 소스 영역 또는 드레인 영역과는 독립하여 마련하여도 좋지만, 화소 트랜지스터의 드레인 영역과 공통화하여도 좋다.
예를 들면, 도 8에 도시되는 바와 같이, 암전류 성분인 전자의 배출처로서의 N형 확산층(96)을, 리셋 트랜지스터(44)의 드레인 영역인 N형 확산층(93)과 공통화하여도 좋다. N형 확산층(96)로서의 기능을 포함하는 N형 확산층(93)에 정전압원(VDD)을 인가하는 단자가, 도 7에서의 드레인 단자(98)를 겸용한다.
또한 예를 들면, 도 9에 도시되는 바와 같이, 암전류 성분인 전자의 배출처로서의 N형 확산층(96)을, 증폭 트랜지스터(45)의 드레인 영역인 N형 확산층(101)과 공통화하여도 좋다. N형 확산층(96)로서의 기능을 포함하는 N형 확산층(101)에 정전압원(VDD)을 인가하는 단자가, 도 7에서의 드레인 단자(98)를 겸용한다.
도 8 및 도 9의 예는, N형 확산층(96)의 기능을, 고정 전위(VDD)가항상 인가되는 확산층과 공통화한 예였지만, 전위가 변화하는 반도체 영역과 공통화하여도 좋다. 예를 들면, 암전류 성분인 전자의 배출처로서의 N형 확산층(96)을, 도 10에 도시되는 바와 같이, 증폭 트랜지스터(45)와 선택 트랜지스터(46) 사이의 N형층(102)과 공통화하여도 좋다. 이 N형층(102)은, 전하 축적시는 리셋 트랜지스터(44)가항상 온으로 되어 있고, 증폭 트랜지스터(45)에 정전압원(VDD)이 인가되어 있기 때문에, 드레인 단자(98)를 마련함에 의해, 암전류 성분인 전자를 배출할 수 있다. 화소 신호 판독시(전하 판독시)에는, N형층(102)의 전위는 변화하지만, 판독 기간의 암전류는 문제가 되지 않기 때문에, N형층(102)을, 암전류 성분인 전자를 배출하는 N형층으로서 사용할 수 있다.
<6. 제2의 실시의 형태의 화소 구조>
도 11은, 화소(2)의 제2의 실시의 형태로서의 화소 구조를 도시하는 수직방향 단면도이다.
도 11은, 제1의 실시의 형태에서의 도 3의 수직방향 단면도와 대응하고, 도 3과 대응하는 부분에 관해서는 동일한 부호를 붙이고 있기 때문에, 그 설명은 생략한다.
도 11에 도시되는 제2의 실시의 형태에서는, 도 3에서 Pwell 영역(91) 내에 형성된 N형층(97B)이, N형층(97C)으로 치환되어 있다. 그 밖의 구성은, 제1의 실시의 형태와 마찬가지이다.
제1의 실시의 형태에서는, 트렌치 구조를 갖는 전송 트랜지스터(42) 이외의 화소 트랜지스터의 하방에, N형층(97)(97A 또는 97B)이 형성되어 있다. 제1의 실시의 형태와 같이, Pwell 영역(91)을 화소 내 전체에 걸쳐서 상하로 분단하는 것은, 전자 유입을 억제하는 효과는 높지만, Pwell 영역(91)의 저항을 늘려, 전위 고정을 불안정하게 하는 일이 있다. 특히 화소 트랜지스터의 웰 전위의 불안정화는 동작 노이즈가 되기 때문에 피하는 것이 바람직하다.
그러면, 도 11에 도시한 제2의 실시의 형태에서는, 전송 트랜지스터(42) 이외의 화소 트랜지스터의 게이트 전극의 하방에 관해서는, N형층(97C)이 마련되지 않도록 구성되어 있다. 이에 의해, 화소 트랜지스터 직하의 Pwell 영역(91)의 전위 고정을 강화할 수 있고, 동작의 불안정화를 회피하면서, STI(94 및 95)의 저부에서 발생하는 암전류를 억제할 수 있다.
<7. 제3의 실시의 형태의 화소 구조>
도 12는, 화소(2)의 제3의 실시의 형태로서의 화소 구조를 도시하는 수직방향 단면도이다.
도 12에서도, 상술한 제1 및 제2의 실시의 형태와 대응하는 부분에 관해서는 동일한 부호를 붙이고 있고, 그 설명은 생략한다.
도 12에 도시되는 제3의 실시의 형태에서는, 도 3에서 Pwell 영역(91) 내에 형성된 N형층(97A 및 97B)이, N형층(97D 및 97E)으로 치환되어 있다. 그 밖의 구성은, 제1의 실시의 형태와 마찬가지이다.
도 3의 제1의 실시의 형태에서는, STI(94 및 95)와, 전하 축적층인 N형층(71)과의 사이가, Pwell 영역(91), N형층(97A 또는 97B), 및, Pwell 영역(91)의 적층 구조로 되어 있기 때문에, 반도체 기판(12)의 표면측 계면(90)부터 전하 축적층인 N형층(71)까지의 거리(두께)가 커진다. 그 결과, 전하 축적층인 N형층(71)부터의 전하 판독의 경로 길이가 길어지기 때문에, 전하의 전송에 관해서는 악화가 우려된다.
이에 대해, 도 12의 제3의 실시의 형태에서는, N형층(97D 및 97E)이, 각각, STI(94 및 95)의 저면과 접속되도록, STI(94 및 95)의 직하에 배치되어 있다. 환언하면, 제1의 실시의 형태에서의 STI(94 또는 95)와 N형층(97A 또는 97B) 사이의 Pwell 영역(91)이 생략되어 있다. 이에 의해, 반도체 기판(12)의 표면측 계면(90)부터 전하 축적층인 N형층(71)까지의 거리(두께)를 단축할 수 있기 때문에, 전하의 전송의 악화를 개선할 수 있다.
STI(94 및 95)의 저부 중, 이웃의 화소 트랜지스터에 가까운 단부에 대해서는, 전기적 분리의 관계상, N형층(97D 및 97E)을 배치하는 것은 곤란하지만, 그 밖의 대부분의 저부에 대해서는 N형층으로 덮는 것이 가능하고, 이 영역에서 발생하는 암전류 성분인 전자의 PD측으로의 유입을 방지할 수 있다.
<8. 제4의 실시의 형태의 화소 구조>
도 13은, 화소(2)의 제4의 실시의 형태로서의 화소 구조를 도시하는 수직방향 단면도이다.
도 13에서도, 상술한 제1 내지 제3의 실시의 형태와 대응하는 부분에 관해서는 동일한 부호를 붙이고 있고, 그 설명은 생략한다.
도 13에 도시되는 제4의 실시의 형태에서는, STI(94 및 95)의 저부에서 발생하는 암전류를 억제하는 N형층의 구성은, 도 12에 도시한 제3의 실시의 형태와 마찬가지이다. 즉, 제4의 실시의 형태에서는, N형층(97D 및 97E)이, 각각, STI(94 및 95)의 저면과 접속되도록, STI(94 및 95)의 직하에 배치되어 있다.
한편, 도 13의 제4의 실시의 형태가, 도 12의 제3의 실시의 형태와 다른 점은, 화소(2)의 외주부분에 마련되어 있던 DTI(72)가, 표면측 계면(90)의 STI(121 및 122)와 Pwell 영역(91)로 치환되어 있다.
반도체 기판(12)의 표면측의 화소(2)의 평면도는, 도 7 내지 도 10의 어느 구성에서도 채용할 수 있다. 단, 도 7 내지 도 10에서 외주부에 마련된 DTI(72)는 생략된다.
이와 같이, STI(94 및 95)의 저부에서 발생하는 암전류를 억제한 N형층의 구성은, 화소 경계에 DTI(72)를 구비하는 화소 구조로 한정되지 않는다.
또한, 도 13의 예에서는, STI(94 및 95)의 저부에서 발생하는 암전류를 억제하는 N형층의 구성으로서, 도 12에 도시한 제3의 실시의 형태의 구성을 채용한 예에 관해 설명하였지만, 도 3에 도시한 제1의 실시의 형태, 및, 도 11에 도시한 제2의 실시의 형태의 구성의 어느 것에도 채용할 수 있다.
<9. 정리>
상술한 제1 내지 제4의 실시의 형태에 관한 화소(2)는, PD(41)를 구성하는 N형층(71), P형층(73), 및, N형층(74)이, 화소 트랜지스터가 형성되는 반도체 기판(12)의 표면측 계면(90)에는 배치되지 않고, 표면측 계면(90)보다도 깊은 위치에 배치된 화소 구조를 갖고 있다. 그리고, PD(41)의 PN 접합면인 P형층(73)과 N형층(74)의 PN 접합 부분을, 기판의 깊이 방향의 측면에 형성함에 의해, PN 접합면적을 확대할 수 있기 때문에, 취급 전하량을 증대시킬 수 있다. N형층(71)에 축적된 전하는, 트렌치 구조의 전송 트랜지스터(42)에 의해 표면측 계면(90)에 형성된 FD(43)에 전송된다.
리셋 트랜지스터(44) 등의 화소 트랜지스터가 배치되는 반도체 기판(12)의 표면측 계면(90)에 형성된 STI(94 및 95)와, 전하 축적층인 N형층(71) 사이의 Pwell 영역(91) 내에는, 전하 축적층과 같은 도전형의 N형층(97)(N형층(97A 내지 97E))이 전하 배출층으로서 마련되고, 그 N형층(97)이, 표면측 계면(90)에 형성된 N형 확산층(96)(96A, 96B)에 접속된다. 이에 의해, STI(94 및 95)의 저부에서 발생하는 암전류를 N형 확산층(96)에 배출할 수 있기 때문에, STI(94 및 95)의 저부에서 발생하는 암전류를 억제할 수 있다.
따라서 제1 내지 제4의 실시의 형태에 관한 화소(2)에 의하면, PD(41)의 취급 전하량을 증대하면서, STI(94 및 95)의 저부에서 발생하는 암전류 성분인 전자가, PD(41)의 전하 축적층인 N형층(71)에 유입하는 것을 억제할 수 있다. 즉, 암흑시 특성이 우수하고, 취급 전하량이 많은 화소를 구비하는 고체 촬상 장치를 제공할 수 있다.
<10. 본 개시에 관한 기술을 적용할 수 있는 적층형의 고체 촬상 장치의 구성례>
상술한 각 실시의 형태에 관한 화소 구조는, 예를 들면 이하와 같이 복수의 기판을 적층하여 구성하는 고체 촬상 장치에도 적용할 수 있다.
도 14는, 본 개시에 관한 기술을 적용할 수 있는 적층형의 고체 촬상 장치의 구성례의 개요를 도시하는 도면이다.
도 14의 A는, 비적층형의 고체 촬상 장치의 개략 구성례를 도시하고 있다. 고체 촬상 장치(23010)는, 도 14의 A에 도시하는 바와 같이, 1장의 다이(반도체 기판)(23011)를 갖는다. 이 다이(23011)에는, 화소가 어레이형상으로 배치된 화소 영역(23012)과, 화소의 구동 그 밖의 각종의 제어를 행하는 제어 회로(23013)와, 신호 처리하기 위한 로직 회로(23014)가 탑재되어 있다.
도 14의 B 및 C는, 적층형의 고체 촬상 장치의 개략 구성례를 도시하고 있다. 고체 촬상 장치(23020)는, 도 14의 B 및 C에 도시하는 바와 같이, 센서 다이(23021)와 로직 다이(23024)의 2장의 다이가 적층되고, 전기적으로 접속되어, 하나의 반도체 칩으로서 구성되어 있다.
도 14의 B에서는, 센서 다이(23021)에는, 화소 영역(23012)과 제어 회로(23013)가 탑재되고, 로직 다이(23024)에는, 신호 처리를 행하는 신호 처리 회로를 포함하는 로직 회로(23014)가 탑재되어 있다.
도 14의 C에서는, 센서 다이(23021)에는, 화소 영역(23012)이 탑재되고, 로직 다이(23024)에는, 제어 회로(23013) 및 로직 회로(23014)가 탑재되어 있다.
도 15는, 적층형의 고체 촬상 장치(23020)의 제1의 구성례를 도시하는 단면도이다.
센서 다이(23021)에는, 화소 영역(23012)이 되는 화소를 구성하는 PD(포토 다이오드)나, FD(플로팅 디퓨전), Tr(MOS FET), 및, 제어 회로(23013)가 되는 Tr 등이 형성된다. 또한, 센서 다이(23021)에는, 복수층, 본 예에서는 3층의 배선(23110)을 갖는 배선층(23101)이 형성된다. 또한, 제어 회로(23013)(가 되는 Tr)는, 센서 다이(23021)가 아니라, 로직 다이(23024)에 구성할 수 있다.
로직 다이(23024)에는, 로직 회로(23014)를 구성하는 Tr이 형성된다. 또한, 로직 다이(23024)에는, 복수층, 본 예에서는 3층의 배선(23170)을 갖는 배선층(23161)이 형성된다. 또한, 로직 다이(23024)에는, 내벽면에 절연막(23172)이 형성된 접속구멍(23171)이 형성되고, 접속구멍(23171) 내에는, 배선(23170) 등과 접속되는 접속 도체(23173)가 매입된다.
센서 다이(23021)와 로직 다이(23024)는, 서로의 배선층(23101 및 23161)이 마주 보도록 첩합(貼合)되고, 이에 의해, 센서 다이(23021)와 로직 다이(23024)가 적층된 적층형의 고체 촬상 장치(23020)가 구성되어 있다. 센서 다이(23021)와 로직 다이(23024)가 첩합되는 면에는, 보호막 등의 막(23191)이 형성되어 있다.
센서 다이(23021)에는, 센서 다이(23021)의 이면측(PD에 광이 입사하는 측)(상측)부터 센서 다이(23021)를 관통하여 로직 다이(23024)의 최상층의 배선(23170)에 달하는 접속구멍(23111)이 형성된다. 또한, 센서 다이(23021)에는, 접속구멍(23111)에 근접하여, 센서 다이(23021)의 이면측부터 1층째의 배선(23110)에 달하는 접속구멍(23121)이 형성된다. 접속구멍(23111)의 내벽면에는, 절연막(23112)이 형성되고, 접속구멍(23121)의 내벽면에는, 절연막(23122)이 형성된다. 그리고, 접속구멍(23111 및 23121) 내에는, 접속 도체(23113 및 23123)가 각각 매입된다. 접속 도체(23113)와 접속 도체(23123)는, 센서 다이(23021)의 이면측에서 전기적으로 접속되고, 이에 의해, 센서 다이(23021)와 로직 다이(23024)가, 배선층(23101), 접속구멍(23121), 접속구멍(23111), 및, 배선층(23161)을 통하여, 전기적으로 접속된다.
도 16은, 적층형의 고체 촬상 장치(23020)의 제2의 구성례를 도시하는 단면도이다.
고체 촬상 장치(23020)의 제2의 구성례에서는, 센서 다이(23021)에 형성하는 하나의 접속구멍(23211)에 의해, 센서 다이(23021)(의 배선층(23101)(의 배선(23110)))와, 로직 다이(23024)(의 배선층(23161)(의 배선(23170)))가 전기적으로 접속된다.
즉, 도 16에서는, 접속구멍(23211)이, 센서 다이(23021)의 이면측부터서 센서 다이(23021)를 관통하여 로직 다이(23024)의 최상층의 배선(23170)에 달하고, 또한, 센서 다이(23021)의 최상층의 배선(23110)에 달하도록 형성된다. 접속구멍(23211)의 내벽면에는, 절연막(23212)이 형성되고, 접속구멍(23211) 내에는, 접속 도체(23213)가 매입된다. 상술한 도 15에서는, 2개의 접속구멍(23111 및 23121)에 의해, 센서 다이(23021)와 로직 다이(23024)가 전기적으로 접속되지만, 도 16에서는, 하나의 접속구멍(23211)에 의해, 센서 다이(23021)와 로직 다이(23024)가 전기적으로 접속된다.
도 17은, 적층형의 고체 촬상 장치(23020)의 제3의 구성례를 도시하는 단면도이다.
도 17의 고체 촬상 장치(23020)는, 센서 다이(23021)와 로직 다이(23024)가 첩합되는 면에, 보호막 등의 막(23191)이 형성되지 않는 점에서, 센서 다이(23021)와 로직 다이(23024)가 첩합되는 면에, 보호막 등의 막(23191)이 형성되어 있는 도 15의 경우와 다르다.
도 17의 고체 촬상 장치(23020)는, 배선(23110 및 23170)이 직접 접촉하도록, 센서 다이(23021)와 로직 다이(23024)를 겹치고, 필요한 가중(加重)을 걸으면서 가열하여, 배선(23110 및 23170)을 직접 접합함으로써 구성된다.
도 18은, 본 개시에 관한 기술을 적용할 수 있는 적층형의 고체 촬상 장치의 다른 구성례를 도시하는 단면도이다.
도 18에서는, 고체 촬상 장치(23401)는, 센서 다이(23411)와, 로직 다이(23412)와, 메모리 다이(23413)의 3장의 다이가 적층된 3층의 적층 구조로 되어 있다.
메모리 다이(23413)는, 예를 들면, 로직 다이(23412)에서 행하여지는 신호 처리에서 일시적으로 필요해지는 데이터의 기억을 행하는 메모리 회로를 갖는다.
도 18에서는, 센서 다이(23411)의 아래에, 로직 다이(23412) 및 메모리 다이(23413)가, 그 순번으로 적층되어 있지만, 로직 다이(23412) 및 메모리 다이(23413)는, 역순, 즉, 메모리 다이(23413) 및 로직 다이(23412)의 순번으로, 센서 다이(23411)의 아래에 적층할 수 있다.
또한, 도 18에서는, 센서 다이(23411)에는, 화소의 광전변환부가 되는 PD나, 화소 Tr의 소스/드레인 영역이 형성되어 있다.
PD의 주위에는 게이트 절연막을 통하여 게이트 전극이 형성되고, 게이트 전극과 대의 소스/드레인 영역에 의해 화소 Tr(23421), 화소 Tr(23422)가 형성되어 있다.
PD에 인접하는 화소 Tr(23421)이 전송 Tr이고, 그 화소 Tr(23421)을 구성하는 쌍(對)의 소스/드레인 영역의 일방이 FD로 되어 있다.
또한, 센서 다이(23411)에는, 층간 절연막이 형성되고, 층간 절연막에는, 접속구멍이 형성된다. 접속구멍에는, 화소 Tr(23421), 및, 화소 Tr(23422)에 접속하는 접속 도체(23431)가 형성되어 있다.
또한, 센서 다이(23411)에는, 각 접속 도체(23431)에 접속하는 복수층의 배선(23432)을 갖는 배선층(23433)이 형성되어 있다.
또한, 센서 다이(23411)의 배선층(23433)의 최하층에는, 외부 접속용의 전극이 되는 알루미늄 패드(23434)가 형성되어 있다. 즉, 센서 다이(23411)에서는, 배선(23432)보다도 로직 다이(23412)와의 접착면(23440)에 가까운 위치에 알루미늄 패드(23434)가 형성되어 있다. 알루미늄 패드(23434)는, 외부와의 신호의 입출력에 관한 배선의 일단으로서 이용된다.
또한, 센서 다이(23411)에는, 로직 다이(23412)와의 전기적 접속에 이용되는 콘택트(23441)가 형성되어 있다. 콘택트(23441)는, 로직 다이(23412)의 콘택트(23451)에 접속됨과 함께, 센서 다이(23411)의 알루미늄 패드(23442)에도 접속되어 있다.
그리고, 센서 다이(23411)에는, 센서 다이(23411)의 이면측(상측)부터 알루미늄 패드(23442)에 달하도록 패드 구멍(23443)이 형성되어 있다.
본 개시에 관한 기술은, 이상과 같은 고체 촬상 장치에도 적용할 수 있다.
<11. 전자 기기에의 적용례>
본 개시에 관한 기술은, 고체 촬상 장치에의 적용으로 한정되는 것이 아니다. 즉, 본 개시에 관한 기술은, 디지털 스틸 카메라나 비디오 카메라 등의 촬상 장치나, 촬상 기능을 갖는 휴대 단말 장치나, 화상 판독부에 고체 촬상 장치를 이용하는 복사기 등, 화상 취입부(광전변환부)에 고체 촬상 장치를 이용하는 전자 기기 전반에 대해 적용 가능하다. 고체 촬상 장치는, 원칩으로서 형성된 형태라도 좋고, 촬상부와 신호 처리부 또는 광학계가 통합하여 팩키징된 촬상 기능을 갖는 모듈형상의 형태라도 좋다.
도 19는, 본 개시에 관한 기술을 적용한 전자 기기로서의, 촬상 장치의 구성례를 도시하는 블록도이다.
도 19의 촬상 장치(300)는, 렌즈군 등으로 이루어지는 광학부(301), 도 1의 고체 촬상 장치(1)의 구성이 채용되는 고체 촬상 장치(촬상 디바이스)(302), 및 카메라 신호 처리 회로인 DSP(Digital Signal Processor) 회로(303)를 구비한다. 또한, 촬상 장치(300)는, 프레임 메모리(304), 표시부(305), 기록부(306), 조작부(307), 및 급전부(308)도 구비한다. DSP 회로(303), 프레임 메모리(304), 표시부(305), 기록부(306), 조작부(307) 및 급전부(308)는, 버스 라인(309)을 통하여 상호 접속되어 있다.
광학부(301)는, 피사체로부터의 입사광(상광)을 취입하여 고체 촬상 장치(302)의 촬상면상에 결상한다. 고체 촬상 장치(302)는, 광학부(301)에 의해 촬상면상에 결상된 입사광의 광량을 화소 단위로 전기 신호로 변환하여 화소 신호로서 출력한다. 이 고체 촬상 장치(302)로서, 도 1의 고체 촬상 장치(1), 즉, 각 화소에 형성된 STI 저부에서 발생하는 암전류 성분인 전자가 포토 다이오드에 유입하는 것을 억제하는 화소 구조를 구비하는 고체 촬상 장치를 이용할 수 있다.
표시부(305)는, 예를 들면, LCD(Liquid Crystal Display)나 유기 EL(Electro L㎛inescence) 디스플레이 등의 박형 디스플레이로 구성되고, 고체 촬상 장치(302)에서 촬상된 동화 또는 정지화를 표시한다. 기록부(306)는, 고체 촬상 장치(302)에서 촬상된 동화 또는 정지화를, 하드 디스크나 반도체 메모리 등의 기록 매체에 기록한다.
조작부(307)는, 유저에 의한 조작하에, 촬상 장치(300)가 갖는 다양한 기능에 관해 조작 지령을 발한다. 급전부(308)는, DSP 회로(303), 프레임 메모리(304), 표시부(305), 기록부(306) 및 조작부(307)의 동작 전원이 되는 각종의 전원을, 이들 공급 대상에 대해 적절히 공급한다.
상술한 바와 같이, 고체 촬상 장치(302)로서, 상술한 각 실시의 형태의 어느 하나에 관한 화소(2)를 갖는 고체 촬상 장치(1)를 이용함으로써, 포토 다이오드의 취급 전하량을 증대하면서, 화소 트랜지스터 아래의 암전류 성분인 전자가, 포토 다이오드에 유입하는 것을 억제할 수 있다. 따라서, 비디오 카메라나 디지털 스틸 카메라, 나아가서는 휴대 전화기 등의 모바일 기기용 카메라 모듈 등의 촬상 장치(300)에서도, 암흑시 특성이 좋고, 또한, 취급 전하량이 많은 화소를 구비하기 때문에, 촬상 화상의 고화질화를 도모할 수 있다.
<12. 이미지 센서의 사용례>
도 20은, 상술한 고체 촬상 장치(1)를 이용한 이미지 센서의 사용례를 도시하는 도면이다.
상술한 고체 촬상 장치(1)를 이용한 이미지 센서는, 예를 들면, 이하와 같이, 가시광이나, 적외광, 자외광, X선 등의 광을 센싱하는 다양한 케이스에 사용할 수 있다.
·디지털 카메라나, 카메라 기능 부착의 휴대 기기 등의, 감상용으로 제공되는 화상을 촬영하는 장치
·자동 정지 등의 안전운전이나, 운전자의 상태의 인식 등을 위해, 자동차의 전방이나 후방, 주위, 차내 등을 촬영하는 차량탑재용 센서, 주행 차량이나 도로를 감시하는 감시 카메라, 차량 사이 등의 거리측정을 행하는 거리측정 센서 등의, 교통용으로 제공되는 장치
·유저의 제스처를 촬영하여, 그 제스처에 응한 기기 조작을 행하기 위해, TV나, 냉장고, 에어 컨디셔너 등의 가전에 제공되는 장치
·내시경이나, 적외광의 수광에 의한 혈관 촬영을 행하는 장치 등의, 의료나 헬스케어용으로 제공되는 장치
·방범 용도의 감시 카메라나, 인물 인증 용도의 카메라 등의, 시큐리티용으로 제공되는 장치
·피부를 촬영한 피부 측정기나, 두피를 촬영하는 마이크로스코프 등의, 미용용으로 제공되는 장치
·스포츠 용도 등 용의 액션 카메라나 웨어러블 카메라 등의, 스포츠용으로 제공되는 장치
·밭이나 작물의 상태를 감시하기 위한 카메라 등의, 농업용으로 제공되는 장치
<13. 체내 정보 취득 시스템에의 응용례>
본 개시에 관한 기술(본 기술)은, 다양한 제품에 응용할 수 있다. 예를 들면, 본 개시에 관한 기술은, 캡슐형 내시경을 이용한 환자의 체내 정보 취득 시스템에 적용되어도 좋다.
도 21은, 본 개시에 관한 기술이 적용될 수 있는, 캡슐형 내시경을 이용한 환자의 체내 정보 취득 시스템의 개략적인 구성의 한 예를 도시하는 블록도이다.
체내 정보 취득 시스템(10001)은, 캡슐형 내시경(10100)과, 외부 제어 장치(10200)로 구성된다.
캡슐형 내시경(10100)은, 검사시에, 환자에 의해 삼켜진다. 캡슐형 내시경(10100)은, 촬상 기능 및 무선 통신 기능을 가지며, 환자로부터 자연 배출될 때까지의 사이, 위나 장 등의 장기의 내부를 연동 운동 등에 의해 이동하면서, 당해 장기의 내부의 화상(이하, 체내 화상이라고도 한다)을 소정의 간격으로 순차적으로 촬상하고, 그 체내 화상에 관한 정보를 체외의 외부 제어 장치(10200)에 순차적으로 무선 송신한다.
외부 제어 장치(10200)는, 체내 정보 취득 시스템(10001)의 동작을 통괄적으로 제어한다. 또한, 외부 제어 장치(10200)는, 캡슐형 내시경(10100)으로부터 송신되어 오는 체내 화상에 관한 정보를 수신하고, 수신한 체내 화상에 관한 정보에 의거하여, 표시 장치(도시 생략)에 당해 체내 화상을 표시하기 위한 화상 데이터를 생성한다.
체내 정보 취득 시스템(10001)에서는, 이와 같이 하여, 캡슐형 내시경(10100)이 삼켜지고나서 배출될 때까지의 사이, 환자의 체내의 양상을 촬상한 체내 화상을 수시로 얻을 수 있다.
캡슐형 내시경(10100)과 외부 제어 장치(10200)의 구성 및 기능에 관해보다 상세히 설명한다.
캡슐형 내시경(10100)은, 캡슐형의 몸체(10101)를 가지며, 그 몸체(10101) 내에는, 광원부(10111), 촬상부(10112), 화상 처리부(10113), 무선 통신부(10114), 급전부(10115), 전원부(10116), 및 제어부(10117)가 수납되어 있다.
광원부(10111)는, 예를 들면 LED(Light Emitting Diode) 등의 광원으로 구성되고, 촬상부(10112)의 촬상 시야에 대해 광을 조사한다.
촬상부(10112)는, 촬상 소자, 및 당해 촬상 소자의 전단에 마련된 복수의 렌즈로 이루어지는 광학계로 구성된다. 관찰 대상인 체조직에 조사된 광의 반사광(이하, 관찰광이라고 한다)는, 당해 광학계에 의해 집광되고, 당해 촬상 소자에 입사한다. 촬상부(10112)에서는, 촬상 소자에서, 그곳에 입사한 관찰광이 광전변환되고, 그 관찰광에 대응하는 화상 신호가 생성된다. 촬상부(10112)에 의해 생성된 화상 신호는, 화상 처리부(10113)에 제공된다.
화상 처리부(10113)는, CPU(Central Processing Unit)나 GPU(Graphics Processing Unit) 등의 프로세서에 의해 구성되고, 촬상부(10112)에 의해 생성된 화상 신호에 대해 각종의 신호 처리를 행한다. 화상 처리부(10113)는, 신호 처리를 시행한 화상 신호를, RAW 데이터로서 무선 통신부(10114)에 제공한다.
무선 통신부(10114)는, 화상 처리부(10113)에 의해 신호 처리가 시행된 화상 신호에 대해 변조 처리 등의 소정의 처리를 행하여, 그 화상 신호를, 안테나(10114A)를 통하여 외부 제어 장치(10200)에 송신한다. 또한, 무선 통신부(10114)는, 외부 제어 장치(10200)로부터, 캡슐형 내시경(10100)의 구동 제어에 관한 제어 신호를, 안테나(10114A)를 통하여 수신한다. 무선 통신부(10114)는, 외부 제어 장치(10200)로부터 수신한 제어 신호를 제어부(10117)에 제공한다.
급전부(10115)는, 수전용의 안테나 코일, 당해 안테나 코일에 발생한 전류로부터 전력을 재생하는 전력 재생 회로, 및 승압 회로 등으로 구성된다. 급전부(10115)에서는, 이른바 비접촉 충전의 원리를 이용하여 전력이 생성된다.
전원부(10116)는, 2차 전지에 의해 구성되고, 급전부(10115)에 의해 생성된 전력을 축전한다. 도 21에서는, 도면이 복잡해지는 것을 피하기 위해, 전원부(10116)로부터의 전력의 공급처를 나타내는 화살표 등의 도시를 생략하고 있지만, 전원부(10116)에 축전된 전력은, 광원부(10111), 촬상부(10112), 화상 처리부(10113), 무선 통신부(10114), 및 제어부(10117)에 공급되어, 이들의 구동에 사용될 수 있다.
제어부(10117)는, CPU 등의 프로세서에 의해 구성되고, 광원부(10111), 촬상부(10112), 화상 처리부(10113), 무선 통신부(10114), 및, 급전부(10115)의 구동을, 외부 제어 장치(10200)로부터 송신된 제어 신호에 따라 적절히 제어한다.
외부 제어 장치(10200)는, CPU, GPU 등의 프로세서, 또는 프로세서와 메모리 등의 기억 소자가 혼재된 마이크로 컴퓨터 또는 제어 기판 등으로 구성된다. 외부 제어 장치(10200)는, 캡슐형 내시경(10100)의 제어부(10117)에 대해 제어 신호를, 안테나(10200A)를 통하여 송신함에 의해, 캡슐형 내시경(10100)의 동작을 제어한다. 캡슐형 내시경(10100)에서는, 예를 들면, 외부 제어 장치(10200)로부터의 제어 신호에 의해, 광원부(10111)에서의 관찰 대상에 대한 광의 조사 조건이 변경될 수 있다. 또한, 외부 제어 장치(10200)로부터의 제어 신호에 의해, 촬상 조건(예를 들면, 촬상부(10112)에서의 프레임 레이트, 노출치 등)이 변경될 수 있다. 또한, 외부 제어 장치(10200)로부터의 제어 신호에 의해, 화상 처리부(10113)에서의 처리의 내용이나, 무선 통신부(10114)가 화상 신호를 송신하는 조건(예를 들면, 송신 간격, 송신 화상 수 등)이 변경되어도 좋다.
또한, 외부 제어 장치(10200)는, 캡슐형 내시경(10100)으로부터 송신된 화상 신호에 대해, 각종의 화상 처리를 시행하여, 촬상된 체내 화상을 표시 장치에 표시하기 위한 화상 데이터를 생성한다. 당해 화상 처리로서는, 예를 들면 현상 처리(디모자이크 처리), 고화질화 처리(대역 강조 처리, 초해상 처리, NR(Noise reduction) 처리 및/또는 손떨림 보정 처리 등), 및/또는 확대 처리(전자 줌 처리) 등, 각종의 신호 처리를 행할 수가 있다. 외부 제어 장치(10200)는, 표시 장치의 구동을 제어하여, 생성한 화상 데이터에 의거하여 촬상된 체내 화상을 표시시킨다. 또는, 외부 제어 장치(10200)는, 생성한 화상 데이터를 기록 장치(도시 생략)에 기록시키거나, 인쇄 장치(도시 생략)에 인쇄 출력시켜도 좋다.
이상, 본 개시에 관한 기술이 적용될 수 있는 체내 정보 취득 시스템의 한 예에 관해 설명하였다. 본 개시에 관한 기술은, 이상 설명한 구성 중, 촬상부(10112)에 적용될 수 있다. 촬상부(10112)에 본 개시에 관한 기술을 적용함에 의해, 취급 전하량을 증대하면서, 암전류를 억제한 촬상이 가능해지기 때문에, 보다 선명한 시술부 화상을 얻을 수 있고, 검사의 정밀도를 향상시킬 수 있다.
또한, 여기서는, 한 예로서 캡슐형 내시경을 이용한 환자의 체내 정보 취득 시스템에 관해 설명하였지만, 본 개시에 관한 기술은, 그 밖에, 예를 들면, 내시경 수술 시스템이나 현미경 수술 시스템 등에 적용되어도 좋다.
<14. 이동체에의 응용례>
본 개시에 관한 기술은, 예를 들면, 자동차, 전기 자동차, 하이브리드 전기 자동차, 자동 이륜차, 자전거, 퍼스널모빌리티, 비행기, 드론, 선박, 로봇 등의 어느 한 종류의 이동체에 탑재되는 장치로서 실현되어도 좋다.
도 22는, 본 개시에 관한 기술이 적용될 수 있는 이동체 제어 시스템의 한 예인 차량 제어 시스템의 개략적인 구성례를 도시하는 블록도이다.
차량 제어 시스템(12000)은, 통신 네트워크(12001)를 통하여 접속된 복수의 전자 제어 유닛을 구비한다. 도 22에 도시한 예에서는, 차량 제어 시스템(12000)은, 구동계 제어 유닛(12010), 바디계 제어 유닛(12020), 차외 정보 검출 유닛(12030), 차내 정보 검출 유닛(12040), 및 통합 제어 유닛(12050)을 구비한다. 또한, 통합 제어 유닛(12050)의 기능 구성으로서, 마이크로 컴퓨터(12051), 음성/화상 출력부(12052), 및 차량탑재 네트워크 I/F(interface)(12053)가 도시되어 있다.
구동계 제어 유닛(12010)은, 각종 프로그램에 따라 차량의 구동계에 관련되는 장치의 동작을 제어한다. 예를 들면, 구동계 제어 유닛(12010)은, 내연 기관 또는 구동용 모터 등의 차량의 구동력을 발생시키기 위한 구동력 발생 장치, 구동력을 차륜에 전달하기 위한 구동력 전달 기구, 차량의 타각을 조절하는 스티어링 기구, 및, 차량의 제동력을 발생시키는 제동 장치 등의 제어 장치로서 기능한다.
바디계 제어 유닛(12020)은, 각종 프로그램에 따라 차체에 장비된 각종 장치의 동작을 제어한다. 예를 들면, 바디계 제어 유닛(12020)은, 키레스 엔트리 시스템, 스마트 키 시스템, 파워 윈도우 장치, 또는, 헤드 램프, 백 램프, 브레이크 램프, 윙커 또는 포그램프 등의 각종 램프의 제어 장치로서 기능한다. 이 경우, 바디계 제어 유닛(12020)에는, 키를 대체하는 휴대기로부터 발신되는 전파 또는 각종 스위치의 신호가 입력될 수 있다. 바디계 제어 유닛(12020)은, 이들의 전파 또는 신호의 입력을 접수하여, 차량의 도어 로크 장치, 파워 윈도우 장치, 램프 등을 제어한다.
차외 정보 검출 유닛(12030)은, 차량 제어 시스템(12000)을 탑재한 차량의 외부의 정보를 검출한다. 예를 들면, 차외 정보 검출 유닛(12030)에는, 촬상부(12031)가 접속된다. 차외 정보 검출 유닛(12030)은, 촬상부(12031)에 차외의 화상을 촬상시킴과 함께, 촬상된 화상을 수신한다. 차외 정보 검출 유닛(12030)은, 수신한 화상에 의거하여, 사람, 차, 장애물, 표지 또는 노면상의 문자 등의 물체 검출 처리 또는 거리 검출 처리를 행하여도 좋다.
촬상부(12031)는, 광을 수광하고, 그 광의 수광량에 응한 전기 신호를 출력하는 광센서이다. 촬상부(12031)는, 전기 신호를 화상으로서 출력할 수도 있고, 거리측정의 정보로서 출력할 수도 있다. 또한, 촬상부(12031)가 수광하는 광은, 가시광이라도 좋고, 적외선 등의 비가시광이라도 좋다.
차내 정보 검출 유닛(12040)은, 차내의 정보를 검출한다. 차내 정보 검출 유닛(12040)에는, 예를 들면, 운전자의 상태를 검출하는 운전자 상태 검출부(12041)가 접속된다. 운전자 상태 검출부(12041)는, 예를 들면 운전자를 촬상하는 카메라를 포함하고, 차내 정보 검출 유닛(12040)은, 운전자 상태 검출부(12041)로부터 입력된 검출 정보에 의거하여, 운전자의 피로 정도 또는 집중 정도를 산출하여도 좋고, 운전자가 앉아서 졸고 있지 않는지를 판별하여도 좋다.
마이크로 컴퓨터(12051)는, 차외 정보 검출 유닛(12030) 또는 차내 정보 검출 유닛(12040)에서 취득되는 차내외의 정보에 의거하여, 구동력 발생 장치, 스티어링 기구 또는 제동 장치의 제어 목표치를 연산하고, 구동계 제어 유닛(12010)에 대해 제어 지령을 출력할 수 있다. 예를 들면, 마이크로 컴퓨터(12051)는, 차량의 충돌 회피 또는 충격 완화, 차간 거리에 의거한 추종 주행, 차속 유지 주행, 차량의 충돌 경고, 또는 차량의 레인 일탈 경고 등을 포함하는 ADAS(Advanced Driver Assistance System)의 기능 실현을 목적으로 한 협조 제어를 행할 수가 있다.
또한, 마이크로 컴퓨터(12051)는, 차외 정보 검출 유닛(12030) 또는 차내 정보 검출 유닛(12040)에서 취득되는 차량의 주위의 정보에 의거하여 구동력 발생 장치, 스티어링 기구 또는 제동 장치 등을 제어함에 의해, 운전자의 조작에 근거하지 않고 자율적으로 주행하는 자동 운전 등을 목적으로 한 협조 제어를 행할 수가 있다.
또한, 마이크로 컴퓨터(12051)는, 차외 정보 검출 유닛(12030)에서 취득된 차외의 정보에 의거하여, 바디계 제어 유닛(12020)에 대해 제어 지령을 출력할 수 있다. 예를 들면, 마이크로 컴퓨터(12051)는, 차외 정보 검출 유닛(12030)에서 검지한 선행차 또는 대향차의 위치에 응하여 헤드 램프를 제어하여, 하이 빔을 로우 빔으로 전환하는 등의 방현(防眩)을 도모하는 것을 목적으로 한 협조 제어를 행할 수가 있다.
음성/화상 출력부(12052)는, 차량의 탑승자 또는 차외에 대해, 시각적 또는 청각적으로 정보를 통지하는 것이 가능한 출력 장치에 음성 및 화상 중의 적어도 일방의 출력 신호를 송신한다. 도 22의 예에서는, 출력 장치로서, 오디오 스피커(12061), 표시부(12062) 및 인스트루먼트 패널(12063)이 예시되어 있다. 표시부(12062)는, 예를 들면, 온 보드 디스플레이 및 헤드 업 디스플레이의 적어도 하나를 포함하고 있어도 좋다.
도 23은, 촬상부(12031)의 설치 위치의 예를 도시하는 도면이다.
도 23에서는, 차량(12100)은, 촬상부(12031)로서, 촬상부(12101, 12102, 12103, 12104, 12105)를 갖는다.
촬상부(12101, 12102, 12103, 12104, 12105)는, 예를 들면, 차량(12100)의 프런트 노우즈, 사이드 미러, 리어 범퍼, 백 도어 및 차실내의 프론트유리의 상부 등의 위치에 마련된다. 프런트 노우즈에 구비되는 촬상부(12101) 및 차실내의 프론트유리의 상부에 구비되는 촬상부(12105)는, 주로 차량(12100)의 전방의 화상을 취득한다. 사이드 미러에 구비되는 촬상부(12102, 12103)는, 주로 차량(12100)의 측방의 화상을 취득한다. 리어 범퍼 또는 백 도어에 구비되는 촬상부(12104)는, 주로 차량(12100)의 후방의 화상을 취득한다.
촬상부(12101 및 12105)에서 취득된 전방의 화상은, 주로 선행 차량 또는, 보행자, 장애물, 신호기, 교통 표지 또는 차선 등의 검출에 사용된다.
또한, 도 23에는, 촬상부(12101 내지 12104)의 촬영 범위의 한 예가 도시되어 있다. 촬상 범위(12111)는, 프런트 노우즈에 마련된 촬상부(12101)의 촬상 범위를 나타내고, 촬상 범위(12112, 12113)는, 각각 사이드 미러에 마련된 촬상부(12102, 12103)의 촬상 범위를 나타내고, 촬상 범위(12114)는, 리어 범퍼 또는 백 도어에 마련된 촬상부(12104)의 촬상 범위를 나타낸다. 예를 들면, 촬상부(12101 내지 12104)로 촬상된 화상 데이터가 중합됨에 의해, 차량(12100)을 상방에서 본 부감(俯瞰) 화상을 얻을 수 있다.
촬상부(12101 내지 12104)의 적어도 하나는, 거리 정보를 취득하는 기능을 갖고 있어도 좋다. 예를 들면, 촬상부(12101 내지 12104)의 적어도 하나는, 복수의 촬상 소자로 이루어지는 스테레오 카메라라도 좋고, 위상차 검출용의 화소를 갖는 촬상 소자라도 좋다.
예를 들면, 마이크로 컴퓨터(12051)는, 촬상부(12101 내지 12104)로부터 얻어진 거리 정보를 기초로, 촬상 범위(12111 내지 12114) 내에서의 각 입체물까지의 거리와, 이 거리의 시간적 변화(차량(12100)에 대한 상대 속도)를 구함에 의해, 특히 차량(12100)의 진행로상에 있는 가장 가까운 입체물로, 차량(12100)과 개략 같은 방향으로 소정의 속도(예를 들면, 0㎞/h 이상)로 주행하는 입체물을 선행차로서 추출할 수 있다. 또한, 마이크로 컴퓨터(12051)는, 선행차와 내차와의 사이에 미리 확보하여야 할 차간 거리를 설정하고, 자동 브레이크 제어(추종 정지 제어도 포함한다)나 자동 가속 제어(추종 발진 제어도 포함한다) 등을 행할 수가 있다. 이와 같이 운전자의 조작에 근거하지 않고 자율적으로 주행하는 자동 운전 등을 목적으로 한 협조 제어를 행할 수가 있다.
예를 들면, 마이크로 컴퓨터(12051)는, 촬상부(12101 내지 12104)로부터 얻어진 거리 정보를 기초로, 입체물에 관한 입체물 데이터를, 2륜차, 보통 차량, 대형 차량, 보행자, 전신주 등 그 밖의 입체물로 분류하여 추출하고, 장애물의 자동 회피에 이용할 수 있다. 예를 들면, 마이크로 컴퓨터(12051)는, 차량(12100)의 주변의 장애물을, 차량(12100)의 드라이버가 시인 가능한 장애물과 시인 곤란한 장애물로 식별한다. 그리고, 마이크로 컴퓨터(12051)는, 각 장애물과의 충돌의 위험도를 나타내는 충돌 리스크를 판단하고, 충돌 리스크가 설정치 이상으로 충돌 가능성이 있는 상황인 때에는, 오디오 스피커(12061)나 표시부(12062)를 통하여 드라이버에게 경보를 출력하는 것이나, 구동계 제어 유닛(12010)을 통하여 강제감속이나 회피 조타를 행함으로써, 충돌 회피를 위한 운전 지원을 행할 수가 있다.
촬상부(12101 내지 12104)의 적어도 하나는, 적외선을 검출하는 적외선 카메라라도 좋다. 예를 들면, 마이크로 컴퓨터(12051)는, 촬상부(12101 내지 12104)의 촬상 화상중에 보행자가 존재하는지의 여부를 판정함으로써 보행자를 인식할 수 있다. 이러한 보행자의 인식은, 예를 들면 적외선 카메라로서의 촬상부(12101 내지 12104)의 촬상 화상에서의 특징점을 추출하는 순서와, 물체의 윤곽을 나타내는 일련의 특징점에 패턴 매칭 처리를 행하여 보행자인지의 여부를 판별하는 순서에 의해 행하여진다.
마이크로 컴퓨터(12051)가, 촬상부(12101 내지 12104)의 촬상 화상 중에 보행자가 존재한다고 판정하고, 보행자를 인식하면, 음성/화상 출력부(12052)는, 당해 인식된 보행자에게 강조를 위한 사각형 윤곽선을 중첩 표시하도록, 표시부(12062)을 제어한다. 또한, 음성/화상 출력부(12052)는, 보행자를 나타내는 아이콘 등을 소망하는 위치에 표시하도록 표시부(12062)를 제어하여도 좋다.
이상, 본 개시에 관한 기술이 적용될 수 있는 차량 제어 시스템의 한 예에 관해 설명하였다. 본 개시에 관한 기술은, 이상 설명한 구성 중, 촬상부(12031)에 적용될 수 있다. 촬상부(12031)에 본 개시에 관한 기술을 적용함에 의해, 소형화하면서 도, 보다 보기 쉬운 촬영 화상을 얻을 수 있거나, 거리 정보를 취득할 수 있다. 또한, 얻어진 촬영 화상이나 거리 정보를 이용하여, 드라이버의 피로를 경감하거나, 드라이버나 차량의 안전도를 높이는 것이 가능해진다.
본 기술의 실시의 형태는, 상술한 실시의 형태로 한정되는 것이 아니고, 본 기술의 요지를 일탈하지 않는 범위에서 여러가지의 변경이 가능하다.
예를 들면, 상술한 복수의 실시의 형태의 전부 또는 일부를 조합시킨 형태를 채용할 수 있다.
상술한 예에서는, 제1 도전형을 N형, 제2 도전형을 P형으로 하여, 전자를 신호 전하로 한 고체 촬상 장치에 관해 설명하였지만, 본 기술은 정공을 신호 전하로 한 고체 촬상 장치에도 적용할 수 있다. 즉, 제1 도전형을 P형으로 하고, 제2 도전형을 N형으로 하여, 전술한 각 반도체 영역을 반대의 도전형의 반도체 영역으로 구성할 수 있다.
또한, 본 기술은, 고체 촬상 장치로 한하지 않고, 다른 반도체 집적 회로를 갖는 반도체 장치 전반에 대해 적용 가능하다.
또한, 본 명세서에 기재된 효과는 어디까지나 예시이고 한정되는 것이 아니고, 본 명세서에 기재된 것 이외의 효과가 있어도 좋다.
또한, 본 기술은 이하와 같은 구성도 취할 수 있다.
(1)
반도체 기판의 기판 인터페이스 내에 형성된 화소 트랜지스터들을 서로 분리하도록 구성된 소자 분리 영역과,
기판 인터페이스보다 깊은 위치에 형성된 전하 축적 영역과,
전하 축적 영역과 동일한 전도성 타입의 전하 배출층을 포함하고,
전하 배출층은 소자 분리 영역과 전하 축적 영역 사이에 배치되는 고체 촬상 장치.
(2)
전하 배출층은 소자 분리 영역 바로 아래에 배치되는 (1)에 따른 고체 촬상 장치.
(3)
전하 배출층은 소자 분리 영역과 전하 축적 영역 사이의 웰 영역을 통해 배치되는 (1)에 따른 고체 촬상 장치.
(4)
전하 배출층은 전송 트랜지스터 이외의 화소 트랜지스터 아래에 또한 배치되는 (1) 또는 (3)에 따른 고체 촬상 장치.
(5)
전하 배출층은 전송 트랜지스터 이외의 화소 트랜지스터의 게이트 전극 아래에 배치되지 않는 (1) 또는 (2)에 따른 고체 촬상 장치.
(6)
전하 배출층은 기판 계면에 형성된 전하 축적 영역과 동일한 도전형의 반도체 영역에 연결되도록 구성되는 (1) 내지 (5) 중 어느 하나에 따른 고체 촬상 장치.
(7)
반도체 영역은 화소 트랜지스터의 소스 영역 및 드레인 영역과 별도로 제공되는 (6)에 따른 고체 촬상 장치.
(8)
반도체 영역은 화소 트랜지스터 중 하나인 리셋 트랜지스터의 드레인 영역인 (6)에 따른 고체 촬상 장치,
(9)
반도체 영역은 화소 트랜지스터 중 하나인 증폭 트랜지스터의 드레인 영역인 (6)에 따른 고체 촬상 장치.
(10)
소정의 전압이 반도체 영역에 일정하게 인가되는 (6) 내지 (9) 중 어느 하나에 따른 고체 촬상 장치.
(11)
반도체 영역은 증폭 트랜지스터와 화소 트랜지스터인 선택 트랜지스터 사이의 반도체 영역인 (6)에 따른 고체 촬상 장치.
(12)
화소 트랜지스터 중 하나인 전송 트랜지스터는 게이트 전극이 기판 인터페이스로부터 전하 축적 영역까지 연장되는 트렌치 구조를 갖는 트랜지스터인 (1) 내지 (11) 중 어느 하나에 따른 고체 촬상 장치.
(13)
반도체 기판을 관통하도록 구성되는 화소간 분리부로서, 화소간 분리부는 평면에서 볼 때 전하 축적 영역 외부의 화소 경계에 배치되는 (1) 내지 (12) 중 어느 하나에 따른 고체 촬상 장치.
(14)
화소간 분리부는 측벽막의 이중층 구조 및 측벽막 내부의 필러를 포함하는 (13)에 따른 고체 촬상 장치.
(15)
PN 접합면을 형성하도록 구성된 P형층 및 N형층을 포함하고, P형층 및 N형층은 전하 축적 영역과 화소간 분리부 사이에 배치되는 (13) 또는 (14)에 따른 고체 촬상 장치.
(16)
화소 트랜지스터가 형성된 반도체 기판의 제1 표면과 다른 제2 표면의 측면상의 차광막 및 온칩 렌즈를 포함하는 (1) 내지 (15) 중 어느 하나에 따른 고체 촬상 장치.
(17)
고체 촬상 장치를 포함하고,
고체 촬상 장치는,
반도체 기판의 기판 인터페이스 내에 형성된 화소 트랜지스터들을 서로 분리하도록 구성된 소자 분리 영역과,
기판 인터페이스보다 깊은 위치에 형성된 전하 축적 영역과,
전하 축적 영역과 동일한 전도성 타입의 전하 배출층을 포함하고,
전하 배출층은 소자 분리 영역과 전하 축적 영역 사이에 배치되는 전자 기기.
(18)
반도체 기판의 기판 계면에 있는 복수의 화소 트랜지스터와,
상기 복수의 화소 트랜지스터를 서로 분리하는 소자 분리 영역과,
상기 기판 계면보다 반도체 기판에서 더 깊은 위치에 있는 전하 축적층과,
상기 전하 축적층과 동일한 도전형이며, 상기 소자 분리 영역과 상기 전하 축적층 사이에 배치되어 있는 전하 배출층을 포함하는 촬상 장치.
(19)
상기 전하 배출층은, 상기 소자 분리 영역의 하부에 배치되어 있는 (18)에 따른 촬상 장치.
(20)
상기 전하 배출층은, 상기 소자 분리 영역과 상기 전하 축적층 사이의 웰 영역 내에 배치되어 있는 (18)에 따른 촬상 장치.
(21)
상기 전하 배출층은, 상기 전하 축적 영역과 전송 트랜지스터 이외의 상기 복수의 화소 트랜지스터 중 적어도 하나와의 사이에 있는 (18)에 따른 촬상 장치.
(22)
상기 전하 배출층은 개구부를 포함하고, 상기 복수의 화소 트랜지스터 내의 전송 트랜지스터의 게이트 전극은 상기 개구부를 통해 상기 전하 축적 영역으로 연장되는 (18)에 따른 촬상 장치.
(23)
상기 전하 배출층은 상기 전하 축적 영역과 동일한 도전형을 갖으며 상기 기판 표면에 있는 불순물 영역에 결합되는 (18)에 따른 촬상 장치.
(24)
상기 불순물 영역은 상기 복수의 화소 트랜지스터의 소스 영역 및 드레인 영역과 분리되어 있는 (23)에 따른 촬상 장치.
(25)
상기 불순물 영역은 상기 복수의 화소 트랜지스터 중 리셋 트랜지스터의 드레인 영역인 (23)에 따른 촬상 장치.
(26)
상기 불순물 영역은 상기 복수의 화소 트랜지스터 중 증폭 트랜지스터의 드레인 영역인 (23)에 따른 촬상 장치.
(27)
상기 불순물 영역은 소정의 전압(VDD)을 수신하는 (23)에 따른 촬상 장치.
(28)
상기 불순물 영역은 상기 복수의 화소 트랜지스터의 증폭 트랜지스터와 선택 트랜지스터 사이에 있는 (23)에 따른 촬상 장치.
(29)
상기 복수의 화소 트랜지스터의 전송 트랜지스터는, 게이트 전극이 상기 기판 표면으로부터 상기 전하 축적 영역까지 연장되는 트렌치 구조를 갖는 (18)에 따른 촬상 장치.
(30)
반도체 기판을 관통하도록 구성되며, 평면에서 볼 때 전하 축적 영역 외부의 화소 경계에 배치되는 화소간 분리부를 더 포함하는 (18)에 따른 촬상 장치.
(31)
상기 화소간 분리부는 측벽막의 2층 구조 및 상기 측벽막의 2층 구조 내부의 필러를 포함하는 (30)에 따른 촬상 장치.
(32)
PN 접합을 형성하도록 구성된 P형층 및 N형층을 더 포함하고, 상기 P형층 및 상기 N형층은 상기 전하 축적 영역과 상기 화소간 분리부 사이에 배치되는 (30)에 따른 촬상 장치.
(33)
상기 기판 표면의 표면과 상이한 반도체 기판의 표면의 측면상에 있는 차광막 및 온칩 렌즈를 포함하는 (18)에 따른 촬상 장치.
(34)
촬상 소자를 포함하고,
상기 촬상 소자는,
반도체 기판의 기판 계면에 있는 복수의 화소 트랜지스터와,
상기 복수의 화소 트랜지스터를 서로 분리하는 소자 분리 영역과,
상기 기판 계면보다 반도체 기판에서 더 깊은 위치에 있는 전하 축적층과,
상기 전하 축적층과 동일한 도전형이며, 상기 소자 분리 영역과 상기 전하 축적층 사이에 배치되어 있는 전하 배출층을 포함하는 촬상 장치.
(35)
기판과,
입사광에 의해 생성된 전하를 축적하기 위한 기판 내에 있는 전하 축적 영역과,
상기 기판의 표면에 있으며 상기 전하 축적 영역에 결합된 적어도 하나의 트랜지스터와,
상기 기판 내에 있으며 적어도 하나의 트랜지스터의 적어도 하나의 측면에 인접하여 위치하는 분리 영역과,
상기 분리 영역과 상기 전하 축적 영역 사이에 있으며 상기 분리 영역으로부터 전하를 배출하는 전하 배출층을 포함하는 촬상 장치.
(36)
기판 내에 있으며 상기 전하 배출층에 결합되어 있는 불순물 영역을 더 포함하고, 상기 분리 영역은 상기 불순물 영역과 적어도 하나의 트랜지스터와의 사이에 있는 (35)에 따른 촬상 장치.
(37)
상기 불순물 영역, 상기 전하 축적 영역 및 상기 전하 배출층은 동일한 도전형을 가지며, 상기 불순물 영역은 상기 전하 배출층보다 높은 불순물 농도를 갖는 (36)에 따른 촬상 장치.
1 : 고체 촬상 장치
2 : 화소
12 : 반도체 기판
42 : 전송 트랜지스터
44 : 리셋 트랜지스터
60 : 이면측 계면
61 : 차광막
62 : 온 칩 렌즈
71 : N형층
72 : DTI(Deep Trench Isolation)
73 : P형층
74 : N형층
75 : P형층
81 : 측벽막
82 : 충전재
90 : 표면측 계면
91 : Pwell 영역(웰 영역)
92 : N형층
93 : N형 확산층
94, 95 : STI
96(96A, 96B) : N형 확산층
97(97A 내지 97E) : N형층
98(98A, 98B) : 드레인 단자
121, 122 : STI,
300 : 촬상 장치
302 : 고체 촬상 장치

Claims (20)

  1. 반도체 기판의 표면에 있는 복수의 화소 트랜지스터와,
    상기 복수의 화소 트랜지스터를 서로 분리하는 소자 분리 영역과,
    상기 기판 표면보다 반도체 기판에서 더 깊은 위치에 있는 전하 축적 영역과,
    상기 전하 축적 영역과 동일한 도전형이며, 상기 소자 분리 영역과 상기 전하 축적 영역의 사이에 배치되어 있는 전하 배출층을 포함하는 것을 특징으로 하는 촬상 장치.
  2. 제1항에 있어서,
    상기 전하 배출층은, 상기 소자 분리 영역의 하부에 배치되어 있는 것을 특징으로 하는 촬상 장치.
  3. 제1항 또는 제2항에 있어서,
    상기 전하 배출층은, 상기 소자 분리 영역과 상기 전하 축적 영역의 사이의 웰 영역 내에 배치되어 있는 것을 특징으로 하는 촬상 장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 전하 배출층은, 상기 전하 축적 영역과 전송 트랜지스터가 아닌 상기 복수의 화소 트랜지스터 중 적어도 하나의 사이에 있는 것을 특징으로 하는 촬상 장치.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 전하 배출층은 개구부를 포함하고, 상기 복수의 화소 트랜지스터 내의 전송 트랜지스터의 게이트 전극은 상기 개구부를 통해 상기 전하 축적 영역으로 연장되는 것을 특징으로 하는 촬상 장치.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 전하 배출층은 상기 전하 축적 영역과 동일한 도전형을 갖으며 상기 기판 표면에 있는 불순물 영역에 결합되는 것을 특징으로 하는 촬상 장치.
  7. 제6항에 있어서,
    상기 불순물 영역은 상기 복수의 화소 트랜지스터의 소스 영역 및 드레인 영역과 분리되어 있는 것을 특징으로 하는 촬상 장치.
  8. 제6항에 있어서,
    상기 불순물 영역은 상기 복수의 화소 트랜지스터 중 리셋 트랜지스터의 드레인 영역인 것을 특징으로 하는 촬상 장치.
  9. 제6항에 있어서,
    상기 불순물 영역은 상기 복수의 화소 트랜지스터 중 증폭 트랜지스터의 드레인 영역인 것을 특징으로 하는 촬상 장치.
  10. 제6항 내지 제9항 중 어느 한 항에 있어서,
    상기 불순물 영역은 소정의 전압(VDD)을 수신하는 것을 특징으로 하는 촬상 장치.
  11. 제6항에 있어서,
    상기 불순물 영역은 상기 복수의 화소 트랜지스터의 증폭 트랜지스터와 선택 트랜지스터의 사이에 있는 것을 특징으로 하는 촬상 장치.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서,
    상기 복수의 화소 트랜지스터의 전송 트랜지스터는, 게이트 전극이 상기 기판 표면으로부터 상기 전하 축적 영역까지 연장되는 트렌치 구조를 갖는 것을 특징으로 하는 촬상 장치.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서,
    반도체 기판을 관통하도록 구성되며, 평면에서 볼 때 전하 축적 영역 외부의 화소 경계에 배치되는 화소간 분리부를 더 포함하는 것을 특징으로 하는 촬상 장치.
  14. 제13항에 있어서,
    상기 화소간 분리부는 측벽막의 2층 구조 및 상기 측벽막의 2층 구조 내부의 필러를 포함하는 것을 특징으로 하는 촬상 장치.
  15. 제13항 또는 제14항에 있어서,
    PN 접합을 형성하도록 구성된 P형층 및 N형층을 더 포함하고, 상기 P형층 및 상기 N형층은 상기 전하 축적 영역과 상기 화소간 분리부의 사이에 배치되는 것을 특징으로 하는 촬상 장치.
  16. 제1항 내지 제15항 중 어느 한 항에 있어서,
    상기 기판 표면의 표면과 상이한 반도체 기판의 표면의 측면상에 있는 차광막 및 온칩 렌즈를 포함하는 것을 특징으로 하는 촬상 장치.
  17. 이전의 청구항들 중 어느 한 항에 기재된 촬상 장치를 포함하는 것을 특징으로 하는 전자 기기.
  18. 기판과,
    입사광에 의해 생성된 전하를 축적하기 위한 기판 내에 있는 전하 축적 영역과,
    상기 기판의 표면에 있으며 상기 전하 축적 영역에 결합된 적어도 하나의 트랜지스터와,
    상기 기판 내에 있으며 적어도 하나의 트랜지스터의 적어도 하나의 측면에 인접하여 위치하는 분리 영역과,
    상기 분리 영역과 상기 전하 축적 영역 사이에 있으며 상기 분리 영역으로부터 전하를 배출하는 전하 배출층을 포함하는 것을 특징으로 하는 촬상 장치.
  19. 제18항에 있어서,
    상기 기판 내에 있으며 상기 전하 배출층에 결합되어 있는 불순물 영역을 더 포함하고, 상기 분리 영역은 상기 불순물 영역과 적어도 하나의 트랜지스터와의 사이에 있는 것을 특징으로 하는 촬상 장치.
  20. 제19항에 있어서,
    상기 불순물 영역, 상기 전하 축적 영역 및 상기 전하 배출층은 동일한 도전형을 가지며, 상기 불순물 영역은 상기 전하 배출층보다 높은 불순물 농도를 갖는 것을 특징으로 하는 촬상 장치.
KR1020197032949A 2017-06-19 2018-06-05 촬상 장치 및 전자 기기 KR102611545B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017119251A JP6884647B2 (ja) 2017-06-19 2017-06-19 固体撮像装置および電子機器
JPJP-P-2017-119251 2017-06-19
PCT/JP2018/021440 WO2018235584A1 (en) 2017-06-19 2018-06-05 IMAGING DEVICE AND ELECTRONIC APPARATUS

Publications (2)

Publication Number Publication Date
KR20200015473A true KR20200015473A (ko) 2020-02-12
KR102611545B1 KR102611545B1 (ko) 2023-12-08

Family

ID=62751496

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197032949A KR102611545B1 (ko) 2017-06-19 2018-06-05 촬상 장치 및 전자 기기

Country Status (5)

Country Link
US (1) US11211412B2 (ko)
JP (1) JP6884647B2 (ko)
KR (1) KR102611545B1 (ko)
CN (1) CN110785849B (ko)
WO (1) WO2018235584A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019165136A (ja) * 2018-03-20 2019-09-26 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置およびその製造方法、並びに電子機器
JP2019212900A (ja) 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 撮像装置
JP2021005675A (ja) * 2019-06-27 2021-01-14 ソニーセミコンダクタソリューションズ株式会社 半導体装置、電子機器及び半導体装置の製造方法
CN115053348A (zh) * 2020-03-16 2022-09-13 索尼半导体解决方案公司 固态摄像元件和电子装置
JP2021153161A (ja) * 2020-03-25 2021-09-30 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、及び、固体撮像装置の製造方法
JP7459739B2 (ja) 2020-09-17 2024-04-02 株式会社デンソー 固体撮像素子
WO2024096095A1 (ja) * 2022-11-02 2024-05-10 ソニーセミコンダクタソリューションズ株式会社 撮像素子、電子機器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100038630A (ko) * 2008-10-06 2010-04-15 주식회사 동부하이텍 씨모스 이미지 센서의 제조방법
JP2010114274A (ja) * 2008-11-06 2010-05-20 Sony Corp 固体撮像装置とその製造方法、及び電子機器
JP2011124946A (ja) * 2009-12-14 2011-06-23 Panasonic Corp 固体撮像素子およびこれを備えたカメラ
JP2015076569A (ja) * 2013-10-11 2015-04-20 ソニー株式会社 撮像装置およびその製造方法ならびに電子機器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479887B (zh) * 2007-05-24 2015-04-01 Sony Corp 背向照明固態成像裝置及照相機
EP2133918B1 (en) * 2008-06-09 2015-01-28 Sony Corporation Solid-state imaging device, drive method thereof and electronic apparatus
US8338248B2 (en) 2008-12-25 2012-12-25 National University Corporation Shizuoka University Semiconductor element and solid-state imaging device
JP5682150B2 (ja) * 2010-06-14 2015-03-11 ソニー株式会社 固体撮像素子及びその製造方法、撮像装置
US9153490B2 (en) * 2011-07-19 2015-10-06 Sony Corporation Solid-state imaging device, manufacturing method of solid-state imaging device, manufacturing method of semiconductor device, semiconductor device, and electronic device
JP6303803B2 (ja) * 2013-07-03 2018-04-04 ソニー株式会社 固体撮像装置およびその製造方法
JP2015162603A (ja) 2014-02-27 2015-09-07 株式会社東芝 半導体装置
JP6595750B2 (ja) * 2014-03-14 2019-10-23 キヤノン株式会社 固体撮像装置及び撮像システム
KR102383649B1 (ko) 2014-08-19 2022-04-08 삼성전자주식회사 Cmos 이미지 센서
GB2537421A (en) 2015-04-17 2016-10-19 Stmicroelectronics (Research & Development) Ltd A pixel having a plurality of photodiodes
JP6926450B2 (ja) * 2016-11-22 2021-08-25 ソニーグループ株式会社 撮像素子、積層型撮像素子及び固体撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100038630A (ko) * 2008-10-06 2010-04-15 주식회사 동부하이텍 씨모스 이미지 센서의 제조방법
JP2010114274A (ja) * 2008-11-06 2010-05-20 Sony Corp 固体撮像装置とその製造方法、及び電子機器
JP2011124946A (ja) * 2009-12-14 2011-06-23 Panasonic Corp 固体撮像素子およびこれを備えたカメラ
JP2015076569A (ja) * 2013-10-11 2015-04-20 ソニー株式会社 撮像装置およびその製造方法ならびに電子機器

Also Published As

Publication number Publication date
WO2018235584A1 (en) 2018-12-27
CN110785849B (zh) 2023-11-14
CN110785849A (zh) 2020-02-11
JP2019004090A (ja) 2019-01-10
US11211412B2 (en) 2021-12-28
JP6884647B2 (ja) 2021-06-09
US20200168648A1 (en) 2020-05-28
KR102611545B1 (ko) 2023-12-08

Similar Documents

Publication Publication Date Title
US11888008B2 (en) Solid-state imaging apparatus and electronic apparatus
US11456325B2 (en) Imaging device, method for manufacturing imaging device, and electronic device
US11652115B2 (en) Solid-state imaging device and electronic apparatus
KR102611545B1 (ko) 촬상 장치 및 전자 기기
US11798968B2 (en) Image pickup device and electronic apparatus
US11336860B2 (en) Solid-state image capturing device, method of driving solid-state image capturing device, and electronic apparatus
US10880506B2 (en) Solid-state imaging device, electronic apparatus, and driving method
CN110662986A (zh) 光接收元件和电子设备
KR102498387B1 (ko) 반도체 장치 및 제조 방법, 고체 촬상 소자 및 전자 기기
WO2019093149A1 (ja) 固体撮像装置、および電子機器
US20240014230A1 (en) Solid-state imaging element, method of manufacturing the same, and electronic device
US10985202B2 (en) Solid-state imaging apparatus, electronic device, and driving method
CN118156280A (zh) 成像装置和电子设备

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant