JP2011124946A - 固体撮像素子およびこれを備えたカメラ - Google Patents

固体撮像素子およびこれを備えたカメラ Download PDF

Info

Publication number
JP2011124946A
JP2011124946A JP2009283321A JP2009283321A JP2011124946A JP 2011124946 A JP2011124946 A JP 2011124946A JP 2009283321 A JP2009283321 A JP 2009283321A JP 2009283321 A JP2009283321 A JP 2009283321A JP 2011124946 A JP2011124946 A JP 2011124946A
Authority
JP
Japan
Prior art keywords
layer
charge
semiconductor substrate
photoelectric conversion
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009283321A
Other languages
English (en)
Inventor
Hiroshi Totani
寛 戸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009283321A priority Critical patent/JP2011124946A/ja
Priority to PCT/JP2010/004880 priority patent/WO2011074156A1/ja
Publication of JP2011124946A publication Critical patent/JP2011124946A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • H04N25/626Reduction of noise due to residual charges remaining after image readout, e.g. to remove ghost images or afterimages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0312Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】半導体基板裏面を入射光の受光面とする裏面照射型固体撮像素子において、残像による画質劣化を抑制する。
【解決手段】半導体基板11に複数の単位セル2が行列状に配列されてなり、単位セル2はn型の光電変換層12と、n型の電荷蓄積層13と、p型の転送経路電位障壁層19と、半導体基板11表面上における電荷蓄積層13に対応する位置に絶縁層を介して設けられ、光電変換層12に蓄積された信号電荷を電荷蓄積層13に転送するための転送電圧が印加されたときに、転送電圧が印加されないときよりも半導体基板11の裏面の電位に対して電荷蓄積層13の電位井戸の深さを深くするとともに転送経路電位障壁層19の電位障壁を消滅させる転送電極25とを備える。
【選択図】図2

Description

本発明は、ビデオカメラやデジタルスチルカメラに用いられる固体撮像素子、特に裏面照射型固体撮像素子に関する。
CMOSイメージセンサやCCDイメージセンサに代表される固体撮像素子の単位セルは、光電変換層や信号電荷を読み出す読み出し回路等から構成される。現在では、半導体基板において読み出し回路等のデバイスが形成される面側、すなわち表面側に光電変換層を設ける構造の、いわゆる表面照射型固体撮像素子が主流である。
一方、近年の固体撮像素子の小型化の要求により、単位セルサイズは縮小される傾向にあり、それに伴い単位セルサイズに対する光電変換層の開口面積(開口率)が低下する弊害があった。これを回避するため、回路等のデバイスが形成される面とは反対側の面、すなわち裏面側に光電変換層を設けた、いわゆる裏面照射型固体撮像素子が活発に研究されている(例えば特許文献1、2)。
図14は特許文献2に係る固体撮像素子の単位セルの要部断面図である。半導体基板51の表面(同図上側面)上には配線層56が設けられている。また、裏面(同図下側面)から光が入射する構造としており、半導体基板51内の裏面側から表面側に向かって、p型ホール蓄積層55、n拡散層52(光電変換層に相当)、信号電荷読み出し経路となるn型拡散層54、蓄積拡散層53が設けられている。各単位セルはトレンチ素子分離層層58およびp型素子分離拡散層59によって区画分離されている。素子分離拡散層59の内部には、p型不純物濃度が高い領域であるp型の埋め込み拡散層57が形成されている。
さらに、n拡散層52に蓄積された信号電荷を蓄積拡散層53に読み出すために、埋め込み拡散層57をゲート電極として、n拡散層52、n型拡散層54および蓄積拡散層53とで、埋め込みの読み出しトランジスタを構成している。
特開2003−31785号公報 特開2005−353994号公報
しかしながら、特許文献2の固体撮像素子では、光電変換層(特許文献2ではn拡散層)から電荷蓄積層(特許文献2では蓄積拡散層)への転送経路が同極性で構成されているため、電荷転送を行うのに適切な電位勾配を形成することが困難である。このため、限られた転送期間内に、光電変換層に蓄積された信号電荷を完全に電荷蓄積層に転送できない可能性がある。光電変換層に信号電荷が残されたままでは、次フレームの信号電荷を蓄積する際に残像が生じることによる画質劣化を引き起こしてしまう。
ここで、電荷転送を行うのに適切な電位勾配を確保するために、光電変換層の不純物濃度を下げる構成をとることもできるが、この構成では光電変換層の電位井戸が浅くなることで信号電荷を蓄積する機能が低下するため、光電変換層から溢れた信号電荷が隣接する画素に漏れ込むことによるクロストークが発生しやすくなるという問題を抱えている。
本発明は上記の問題点を鑑みてなされたものであり、従来よりも残像による画質劣化を抑制することができる固体撮像素子を提供することを目的とする。
上記目的を達成するため、本発明に係る固体撮像素子は、半導体基板に複数の単位セルが行列状に配列されてなり、かつ、前記半導体基板の裏面を受光面とする裏面照射型固体撮像素子であって、前記各単位セルは、前記半導体基板内に設けられ、前記裏面から入射した光を光電変換し、当該光電変換により得られる信号電荷を蓄積する第1導電型の光電変換層と、前記半導体基板内において前記光電変換層よりも前記半導体基板の表面側に設けられ、前記光電変換層から転送される信号電荷を蓄積する第1導電型の電荷蓄積層と、前記半導体基板内において前記光電変換層から前記電荷蓄積層への信号電荷の転送経路に介在する第2導電型の転送経路電位障壁層と、前記半導体基板表面上における前記電荷蓄積層に対応する位置に絶縁層を介して設けられ、前記光電変換層に蓄積された信号電荷を前記電荷蓄積層に転送するための転送電圧が印加されたときに、前記転送電圧が印加されないときよりも前記半導体基板の裏面の電位に対して前記電荷蓄積層の電位井戸の深さを深くするとともに前記転送経路電位障壁層の電位障壁を消滅させる転送電極とを備えることを特徴とする。
課題を解決するための手段に記載の構成によれば、光電変換層から電荷蓄積層に信号電荷を転送する転送期間においては、転送電極に転送電圧が印加されることで電荷蓄積層の電位井戸の深さを深くすることができる。それに伴い転送経路電位障壁層の電位障壁が消滅することとなり、信号電荷はこの転送経路電位障壁層を経て電荷蓄積層に転送される。このとき、電荷蓄積層に形成される電位井戸の深さを深くし、信号電荷転送経路の電位勾配を急勾配にすることで転送速度を上昇させ、その結果、転送時間内に電荷蓄積層への信号電荷の転送を行わせることができる。これに対し、特許文献2の構成では、電荷蓄積層に形成される電位井戸の深さは、電荷転送を行う時、行わない時を通じ変化しない。そのため、電荷転送時の転送経路の電位勾配は緩やかなものとなり、転送時間内に電荷蓄積層への信号電荷の転送を行わせることが困難である。したがって、本発明の構成によれば、従来と比較して光電変換層に信号電荷が残存しにくくなるため、残像による画質劣化を抑制することができる。
また、前記各単位セルは、さらに、前記半導体基板内において前記光電変換層よりも前記裏面側に設けられた第2導電型の裏面側白キズ低減層と、前記半導体基板裏面上に設けられ、前記電荷蓄積層への信号電荷の転送を補助するための転送補助電圧が印加されたときに、前記転送補助電圧が印加されないときよりも前記裏面側白キズ低減層の電位障壁の高さを高くする補助電極を備えることとしてもよい。
裏面側白キズ低減層により、半導体基板の裏面側の界面付近で発生する界面準位に起因する暗電流を抑制することができる。さらに、補助電極を備えることで、光電変換層から電荷蓄積層への電荷転送時における転送経路の電位勾配をさらに急勾配にすることができ、よりスムーズな電荷転送が可能となる。
また、前記各単位セルは、さらに、前記半導体基板内において基板厚み方向に対し直交方向に前記電荷蓄積層から離間して設けられ、前記光電変換層から転送される不要な信号電荷を前記半導体基板表面に排出する第1導電型の電荷排出層と、前記半導体基板内において前記光電変換層から前記電荷排出層への信号電荷の排出経路に介在する第2導電型の排出経路電位障壁層と、前記半導体基板表面側に設けられ、前記光電変換層に蓄積された不要な信号電荷を前記電荷排出層に排出するための排出電圧が印加されたときに、前記排出電圧が印加されないときよりも前記半導体基板の裏面の電位に対して前記電荷排出層の電位井戸の深さを深くするとともに前記排出経路電位障壁層の電位障壁を消滅させる排出電極を備えることとしてもよい。
光電変換層から電荷蓄積層への転送経路とは別個に、光電変換層から電荷排出層への排出経路を設けることにより、不要な信号電荷を電荷蓄積層に転送できない期間であっても、光電変換層に蓄積された不要な信号電荷を半導体基板表面に排出することができる。この構成は、例えば以下のような場合において有効である。固体撮像素子においては、信号電荷が電荷蓄積層に転送された後、1行目の単位セルにおいて信号電荷の読み出しが開始されてから、最終行目の単位セルにおいて信号電荷の読み出しが開始されるまでの待機時間が存在する。光電変換層に形成される電位井戸の容量を超える信号電荷が、この待機時間内に発生した場合においても、別個に排出経路を備えたことにより、この不要な信号電荷を電荷蓄積層に蓄積されている読み出されるべき信号電荷に流入させることなく電荷排出層に排出できる。特に、全画素同時に電荷蓄積層から浮遊拡散層への信号電荷を読み出す、いわゆるグローバルシャッタモードのように、高速で動作する被写体の撮影や待機時間が長時間に及ぶ撮影モードにおいてこれらの構成が有効である。
また、前記補助電極は、さらに、前記排出電極に排出電圧が印加されるのに伴って、前記電荷排出層への信号電荷の排出を補助するための排出補助電圧が印加されたときに、前記排出補助電圧が印加されないときよりも、前記裏面側白キズ低減層の電位障壁の高さを高くすることとしてもよい。
光電変換層から電荷蓄積層への転送経路だけでなく、光電変換層から電荷排出層への排出経路においてもより急勾配な排出経路を構成することで、スムーズに不要な信号電荷を排出することができる。
また、前記各単位セルは、さらに、前記半導体基板内において基板厚み方向に対し直交方向に前記電荷蓄積層と前記電荷排出層との間に、かつ、前記電荷蓄積層と前記電荷排出層から離間して設けられ、前記電荷蓄積層から転送される信号電荷を蓄積する第1導電型の浮遊拡散層と、前記半導体基板表面上における前記電荷蓄積層と前記浮遊拡散層との間に対応する位置に絶縁層を介して設けられ、前記電荷蓄積層に蓄積された信号電荷を前記浮遊拡散層に転送するための読み出し電圧が印加されたときに、前記電荷蓄積層に蓄積された信号電荷を前記浮遊拡散層に転送させる読み出し電極を備えることとしてもよい。
さらに、前記補助電極は、前記半導体基板裏面上における前記光電変換層に対応する部分を除く領域に設けられることとしてもよい。
補助電極を、例えば金属のように透光性のない部材で構成した場合であっても、光電変換層への光入射を妨げることなく、補助電極としての機能を果たすことができる。
また、前記補助電極は金属膜であって遮光膜を兼ねていることとしてもよい。
この構成により、半導体基板裏面に斜め方向から入射した光が、隣接する単位セルに侵入することによる偽信号を低減することができる。
また、前記光電変換層と、前記転送経路電位障壁層と、前記電荷蓄積層とが埋め込みバイポーラトランジスタを構成していることとしてもよい。
ここで、前記転送経路電位障壁層における第2導電型の不純物濃度は、前記排出経路電位障壁層における不純物濃度より高濃度であることとしてもよい。
これにより、転送経路電位障壁層の電位障壁を排出経路電位障壁層の電位障壁よりも高くすることができ、光電変換層で信号電荷が飽和した場合であっても、信号電荷が電荷蓄積層へ流れずに電荷排出層へと流れる構成とすることができる。よって、不要な信号電荷を電荷蓄積層に蓄積されている読み出されるべき信号電荷に流入させることなく、適正に信号電荷を読み出すことができる。
また、前記光電変換層と、前記排出経路電位障壁層と、前記電荷排出層とが埋め込みバイポーラトランジスタを構成していることとしてもよい。
また、前記各単位セルは、さらに、前記半導体基板内において前記電荷蓄積層よりも前記表面側に、第2導電型の表面側白キズ低減層を備えることとしてもよい
表面側白キズ低減層により、半導体基板の表面側の界面付近で発生する界面準位に起因する暗電流を抑制することができる。
また、前記光電変換層と、当該光電変換層を含む単位セルに隣接する単位セル内の光電変換層との間に、単位セルの一部として第2導電型の光電変換層分離帯を備えることとしてもよい。
このように、隣接する光電変換層をそれとは逆極性の第2導電型の光電変換層分離帯で区画分離することにより、隣接する光電変換層間に電位障壁を形成することができ、光電変換層に蓄積された信号電荷が隣接する単位セルに漏れ込むことによるクロストークを低減することが可能である。
また、前記電荷蓄積層と、当該電荷蓄積層を含む単位セルに隣接する単位セル内の電荷蓄積層との間に、単位セルの一部として絶縁層および第2導電型の素子分離帯を備えることとしてもよい。
素子分離帯により、転送中の信号電荷および電荷蓄積層に蓄積された信号電荷が隣接画素へ漏れることによるクロストークを低減することができる。
また、前記転送経路電位障壁層と前記排出経路電位障壁層を、シリコンとゲルマニウムの両方を含む化合物層により形成することとしてもよい。
ゲルマニウムの600nm〜1000nmの波長の光に対する吸収係数は、シリコンの10倍以上である。したがって、転送経路電位障壁層および排出経路電位障壁層をシリコンとゲルマニウムを含む化合物層で形成することで、長波長の可視光(600nm〜780nm付近)が光電変換層を越えて電荷蓄積層に入射することを抑えることができる。これにより、シリコンのみで障壁層を形成した場合よりも、電荷蓄積層で光電変換が起こることによる偽信号の発生を低減することができる。
また、前記半導体基板内において前記光電変換層よりも前記表面側の領域を、シリコンとゲルマニウムの両方を含む化合物層により形成することとしてもよい。
この構成により、転送経路電位障壁層と排出経路電位障壁層のみをシリコンとゲルマニウムを含む化合物層により形成する場合よりも、半導体基板全体を薄く構成することが可能である。
また、前記半導体基板内において前記光電変換層よりも前記表面側の領域の一部を、歪みシリコンまたは歪みゲルマニウムのどちらか一方を含む化合物層により形成することとしてもよい。
これにより、転送経路における信号電荷の移動度が増大し、回路動作速度が向上する。回路動作速度が向上することにより、高速な信号電荷の読み出しが可能となる。
また、本発明に係るカメラは上記構成の固体撮像素子を備える。これにより、上記と同様の効果が得られるカメラを構成することができる。
第1の実施形態に係る固体撮像素子の全体構成図 第1の実施形態に係る固体撮像素子の単位セルの要部断面図 第1の実施形態に係る固体撮像素子の単位セルの等価回路図 第1の実施形態に係る固体撮像素子の駆動方法を示すタイミングチャート 第1の実施形態に係る固体撮像素子の電位分布図 第2の実施形態に係る固体撮像素子の駆動方法を示すタイミングチャート 第2の実施形態に係る固体撮像素子の電位分布図 第3の実施形態に係る固体撮像素子の要部断面図 半導体の吸収端付近の吸収スペクトル 第4の実施形態に係る固体撮像素子の要部断面図 第5の実施形態に係る固体撮像素子の要部断面図 第6の実施形態に係る固体撮像素子の単位セルの等価回路図 本発明に係る固体撮像素子を備えるカメラの全体構成図 従来の固体撮像素子の単位セルの要部断面図
以下、本発明を実施するための形態を、図面を参照しながら説明する。
〈第1の実施形態〉
図1は、第1の実施形態に係る固体撮像素子の一例を示す全体構成図である。
固体撮像素子100は、撮像領域1,電流源回路3,垂直走査回路4,水平走査回路5,列読み出し回路6,TG(timing generator)制御部7,出力回路8を有する。
撮像領域1は、CMOSセンサからなる複数の単位セル2が行方向(左右方向)と列方向(上下方向)に複数、行列状に配列されてなる画素アレイであり、単位セル毎に入射光を光電変換して画素信号を生成する。
電流源回路3は、垂直信号線VL1〜VLnに定電流を流す回路である。
垂直走査回路4は、水平信号線L1〜Lnを制御して、各行を順次選択し、選択した行の各単位セル2の画素信号を読み出す。読み出された各単位セル2の画素信号は、垂直信号線VL1〜VLnを介して列読み出し回路6に送られる。
列読み出し回路6は、水平走査回路5の制御に基づき、選択行の各単位セル2から送られてくる画素信号を画素単位で順次、出力回路8に出力する。
TG制御部7は、電流源回路3,垂直走査回路4,水平走査回路5,列読み出し回路6を駆動させるための信号を各回路に供給する。なお、TG制御部7は、撮像領域と同一の半導体基板に設けられていてもよいし、別の半導体基板に設けられていてもよい。
出力回路8は、列読み出し回路6から送られてくる画素信号を後段に出力する。
図2は、単位セル2の要部断面図の要部断面図である。
図2に示すように、本発明の固体撮像素子は半導体基板11の裏面側(図面下側)から光が入射する、いわゆる裏面照射型のものである。半導体基板11の表面側(図面上側)には、配線層27とその上に張り合わされた支持基板29が設けられる。配線層27内には配線28、読み出し電極24、転送電極25、リセット電極26、表面側補助電極35が設けられる(これらの各電極の詳細は後述する)。配線28の部材としては、例えばアルミニウム、銅等の金属等を用いることができる。図2に示した単位セル2の構成は、他の単位セル2についても共通のものである。
半導体基板11内の単位セル2には、厚み方向に対し裏面側から順に、p型の裏面側白キズ低減層18,n型の光電変換層12,p型の転送経路電位障壁層19,n型の電荷蓄積層13,p型の表面側白キズ低減層17が形成されている。なお、図中のn型およびp型領域に示したnおよびpの上ツキの+および−は、対応する極性の不純物濃度の濃淡を示しており、n型不純物濃度をn<n<n、p型不純物濃度をp<p<pとする。
p型の裏面側白キズ低減層18は、半導体基板11の裏面側の界面付近で発生する界面準位に起因する暗電流を抑制する。
n型の光電変換層12は、受光された入射光を光電変換し、この光電変換により得られる信号電荷を蓄積する。
p型の転送経路電位障壁層19は、光電変換層12から電荷蓄積層13へ信号電荷転送経路の一部をなすとともに、電荷蓄積層13へ信号電荷を転送するとき以外の期間においては、信号電荷に対する電位障壁を形成することにより、信号電荷を電荷蓄積層13へ転送しないようにする。一方、電荷蓄積層13へ信号電荷を転送する期間においては、電位障壁を消滅させることにより、信号電荷を電荷蓄積層13へ転送できるようにする(図5で詳述する)。
n型の電荷蓄積層13は、転送経路電位障壁層19を介して光電変換層12から転送された信号電荷を蓄積する。
p型の表面側白キズ低減層17は、半導体基板11の表面側の界面付近で発生する界面準位に起因する暗電流を抑制する。
そして、半導体基板11内には、電荷蓄積層13から基板厚み方向に対して直交方向に浮遊拡散層15(FD:Floating Diffusion)および電荷排出層14が形成されている。浮遊拡散層15は電荷蓄積層13から転送される信号電荷を蓄積する。電荷排出層14は、浮遊拡散層15および光電変換層12から転送される信号電荷を画素電源(図3、PVDD)に排出する(光電変換層12から電荷排出層14へ至る経路の詳細は後述する)。
さらに、半導体基板11内には、転送経路電位障壁層19から基板厚み方向に対して直交方向の、光電変換層12と電荷排出層14の間にp型の排出経路電位障壁層20が形成されている。排出経路電位障壁層20は、光電変換層12の不要な信号電荷を電荷排出層14に排出し光電変換層12を空乏化させる、いわゆる排出経路の一部をなすとともに、電荷排出層14へ不要な信号電荷を排出するとき以外の期間においては、信号電荷に対する電位障壁を形成することにより、信号電荷を電荷排出層14へ排出しないようにする。一方、電荷排出層14へ信号電荷を排出する期間においては、電位障壁を消滅させることにより、信号電荷を電荷排出層14へ排出できるようにする(図5で詳述する)。
以下、光電変換層12から転送経路電位障壁層19を経て電荷蓄積層13へ至る経路を転送経路、電荷蓄積層13から浮遊拡散層15へ至る経路を読み出し経路、浮遊拡散層15から電荷排出層14へ至る経路をリセット経路、光電変換層12から排出経路電位障壁層20を経て電荷排出層14へ至る経路を排出経路と称する。
ここで、転送経路電位障壁層19におけるp型不純物濃度を、排出経路電位障壁層20におけるp型不純物濃度よりも高濃度としている。これにより、転送経路電位障壁層19に形成される電位障壁を排出経路電位障壁層20よりも高くすることができ、光電変換層12で信号電荷が飽和した場合であっても、信号電荷が電荷蓄積層13へ流れずに、電荷排出層14へ流れる構成とすることができる。よって、不要な信号電荷を電荷蓄積層13に蓄積されている読み出されるべき信号電荷に流入させることなく電荷排出層14に排出できる。
各単位セルに含まれる光電変換層12はp型の光電変換層分離帯21により区画分離されている。同様に、各単位セルに含まれる埋め込み転送トランジスタQ1、埋め込み排出トランジスタQ2等の各トランジスタは絶縁層であるトレンチ素子分離層層(STI)22および素子分離帯16により区画分離されている。これにより、光電変換層12で光電変換した信号電荷が隣の画素へ漏れ込むことによるクロストークを防止することができる。
なお、素子分離帯16および光電変換層分離帯21は接地電位(グラウンド電位)とする。また、表面側白キズ低減層17および裏面側白キズ低減層18は、素子分離帯16および光電変換層分離帯21に電気的に接続されている。
半導体基板11の裏面上の、光電変換層12に対応する部分以外の領域には、裏面側補助電極23が設けられている。裏面側補助電極23は遮光膜を兼ねた金属膜であり、これを単位セル境界の領域に設けることで、半導体基板裏面に斜め方向から入射した光が、隣接する単位セルに侵入することによる偽信号を低減する。裏面側補助電極23を構成する部材は、電極および遮光膜として機能する部材であれば金属膜に限定されない。また、裏面側補助電極23は光電変換層分離帯21を介して裏面側白キズ低減層18と電気的に接続されている。
半導体基板11の表面上の素子分離帯16に対応する領域には、表面側補助電極35が設けられている。表面側補助電極35は、素子分離帯16および光電変換層分離帯21などのp型導電層の電位を固定する電極であり、裏面側補助電極23と同電位で電気的に接続されている。表面側補助電極35および裏面側補助電極23により、素子分離帯16および光電変換層分離帯21などのp型導電層の電位の固定をより確実にすることができる。
半導体基板11の裏面にはさらに、絶縁層30、パッシベーション絶縁膜31、カラーフィルタ32、マイクロレンズ33が順に設けられている。半導体基板裏面から入射した光は、マイクロレンズ33およびカラーフィルタ32を経由して光電変換層に導かれる。パッシベーション絶縁膜31としては、例えばシリコン窒化膜(SiN)等を用いることができる。
また、図2に示した単位セルの構造は、ウェハーにエピタキシャル成長を施したのち、フォトリソグラフィ及びイオン注入の組み合わせにより選択的に各導電型層を形成できる。半導体基板11をCMP(Chemical Mechanical Polishing)で研磨することにより、半導体基板の厚さを可視光の入射に対して最適な10μm以下程度の厚さに形成することが望ましい。
なお、裏面側白キズ低減層18は0.2μm以下の厚さに形成することが望ましい。このようにすることで、短波長の可視光(380nm〜460nm付近)が光電変換層12に到達するまでに、裏面側白キズ低減層18に吸収されることによる、短波長光の感度特性が低下を防止することができる。
図3は、単位セル2の等価回路の一例を示す図である。図3において、図2における光電変換層12,電荷蓄積層13,電荷排出層14,浮遊拡散層15,表面側白キズ低減層17,裏面側白キズ低減層18,裏面側補助電極23,読み出し電極24,転送電極25,リセット電極26に対応するノードには、同一の番号を付している。
n型の光電変換層12、p型の転送経路電位障壁層19、およびn型の電荷蓄積層13は、npn型の埋め込み転送トランジスタQ1を形成しており、これを動作させるための転送電極25が、半導体基板表面上における電荷蓄積層13に対応する位置に絶縁層を介して設けられている。転送電極25は転送配線ΦTRに接続されている。光電変換層12に信号電荷を蓄積している間には、転送配線ΦTRにlowの電圧が与えられ、光電変換層12から電荷蓄積層13への信号電荷の転送時には、転送配線ΦTRにhighの電圧が与えられる。
埋め込み転送トランジスタQ1のベースに相当する転送経路電位障壁層19は、固体撮像素子の動作状態において、信号電荷が通過するとき以外には空乏化により信号電荷に対する電位障壁として機能する。電位障壁の制御は、転送配線ΦTRに印加される電圧を制御することにより行われる。
また、n型の光電変換層12、p型の排出経路電位障壁層20、およびn型の電荷排出層14は、npn型の埋め込み排出トランジスタQ2を形成している。本実施形態において、この埋め込み排出トランジスタQ2を動作させる電圧は、画素電源PVDDを介して与えられる。光電変換層12に信号電荷を蓄積している間には画素電源PVDDをlowに、光電変換層12から電荷排出層14への信号電荷の排出時、いわゆる電子シャッター時には画素電源PVDDをhighにする。
そして、n型の電荷蓄積層13をソース、n型の浮遊拡散層15をドレイン、読み出し電極24をゲートとしたMOS型の読み出しトランジスタM1が構成されている。読み出しトランジスタM1は、電荷蓄積層13に蓄積された信号電荷を読み出し、これを画素信号として、増幅トランジスタM2、画素選択トランジスタM3を介して垂直信号線VL(図1)により列読み出し回路6(図1)に送る。読み出し電極24は読み出し配線ΦRDに接続されており、電荷蓄積層13から浮遊拡散層15への信号電荷読み出し期間には、読み出し配線ΦRDにhighの電圧が与えられ、それ以外の期間には読み出し配線ΦRDにlowの電圧が与えられる。
さらに、n型の浮遊拡散層15をソース、n型の電荷排出層14をドレイン、リセット電極26をゲートとしたMOS型のリセットトランジスタM4が構成されている。リセットトランジスタM4は、浮遊拡散層15の電位を画素電源PVDDにリセットする。リセット電極26はリセット配線ΦRSに接続されており、浮遊拡散層15から電荷排出層14への信号電荷の排出期間には、リセット配線ΦRSにhighの電圧が与えられ、それ以外の期間にはリセット配線ΦRSにlowの電圧が与えられる。
光電変換層12は裏面側白キズ低減層18とその周辺のp型領域とでダイオードD1を構成している。電荷蓄積層13と表面側白キズ低減層17はダイオードD2を構成している。また、埋め込み転送トランジスタQ1および埋め込み排出トランジスタQ2のベース抵抗をそれぞれR1およびR4で示し、表面側白キズ低減層17と裏面側白キズ低減層18との間をつなぐ素子分離帯16,光電変換層分離帯21は抵抗R2,R3で示した。
単位セル2には、さらに、先述したMOS型の読み出しトランジスタM1が設けられ、読み出し電極24には読み出し配線ΦRDが印加される。また、単位セル2はN型の浮遊拡散層15の電位を画素電源PVDDの電位にリセットするためのリセット配線ΦRSが印加されるMOS型のリセットトランジスタM4、浮遊拡散層15がゲートに接続された増幅トランジスタM2、および選択配線ΦSELが印加される画素選択トランジスタM3を信号読み出し回路として備えている。
読み出し配線ΦRD、リセット配線ΦRS、選択配線ΦSELには、垂直走査回路2から水平信号線Lを介して電圧が印加される。
リセットトランジスタM4のドレインと増幅トランジスタM2のドレインは、共に画素電源PVDDに接続され、増幅トランジスタM2は図1の電流源回路3とソースフォロアを構成している。増幅トランジスタM2のソースは、画素選択トランジスタM3のドレインに接続され、画素選択トランジスタM3のソースは、垂直信号線VLを介して列読み出し回路6に接続される。
また、増幅トランジスタM2や画素選択トランジスタM3については図2で図示していないが、半導体基板11の表面上の領域に、読み出しトランジスタM1およびリセットトランジスタM4と同様に形成されている。
なお、図3の単位セルは、単一の画素、読み出しトランジスタ、浮遊拡散層、リセットトランジスタ及び増幅トランジスタをそれぞれ有する構造、いわゆる1画素1セル構造としたが、単位セルが複数の画素を含む、いわゆる多画素1セル構造としても構わない。
次に、本実施形態に係る固体撮像素子の駆動方法について説明する。図4は固体撮像素子の駆動方法を示すタイミングチャートであり、転送配線ΦTR、裏面側補助電極23(AX)、画素電源PVDD、選択配線ΦSEL、リセット配線ΦRS、読み出し配線ΦRD、浮遊拡散層15(FD)それぞれの電位変動を示している。転送配線ΦTR、裏面側補助電極23、画素電源PVDDは全画素同時に行われるものであり、選択配線ΦSEL、リセット配線ΦRS、読み出し配線ΦRD、浮遊拡散層15(FD)は1行分の各単位セルについて行われるものである。図4では1行目から2行目までのタイミングのみを図示した。
時刻T1よりフレームが開始され、フレーム走査が行われる。フレーム走査ではPVDDをmidレベル、ΦRS,ΦRDをhighレベルにすることで、前フレームでの読み出しを終えた信号電荷がPVDDに排出され、現在のフレームの信号電荷が転送される電荷蓄積層13を空乏化状態とする。
時刻T2からT3の期間は、転送経路において信号電荷の転送が行われる転送期間である。ΦTRをhighレベルにすることで、前フレームの時刻T19から現フレームの時刻T1までの蓄積期間において光電変換層12に蓄積された信号電荷を電荷蓄積層13に転送する。このとき、PVDDをlowレベルにすることで、光電変換層12に蓄積された信号電荷が、電荷蓄積層13および浮遊拡散層15を飛び越えてPVDDに誘導されるのを防止することができる。
時刻T4において、読み出しが行われる行が選択される。1行目に属する単位セルのΦSELをhighレベルにすることで、1行目の読み出し期間が開始される。このとき、PVDDをmidレベルにすることによって、増幅トランジスタM2のドレイン電位が上昇し、増幅トランジスタM2が図1における電流源回路3とソースフォロアを構成する。これにより、画素信号を垂直信号線VLに出力することができる。すなわち、PVDDがmidレベルであるときは、信号を出力する通常の回路動作を行っていることとなる。
時刻T5からT6の期間はリセット期間である。ΦRSをhighレベルにすることで、浮遊拡散層15の電位が画素電源PVDDの電圧にリセットされる。
時刻T7からT8の期間は、読み出し経路において信号電荷の読み出しが行われる読み出し期間である。ΦRDをhighレベルにすることで、電荷蓄積層13に蓄積されている信号電荷が浮遊拡散層15に読み出される。時刻T5でリセットされたのちの浮遊拡散層15の電位と、時刻T8で読み出されたのちの浮遊拡散層15の電位の差分が、列読み出し回路6により画素信号として検出される。
時刻T9において、1行目に属する単位セルのΦSELをlowレベルにすることで、1行目の選択が終了する。
時刻T10からT11の期間は排出期間である。PVDDをhighレベルにすることで、光電変換層12に蓄積された不要な信号電荷を電荷排出層14に排出する、電子シャッターが行われる。前述したように、信号電荷が電荷蓄積層13に転送されてから、浮遊拡散層15への読み出しが開始されるまでの待機時間おいて、光電変換層12で発生した不要な電荷を電荷排出層14に排出する。この電子シャッターは全画素について同時に行われる。なお、1フレーム中に行う電子シャッターの回数は特に限定されない。
時刻T12からは2行目の読み出しが開始されるが、動作は1行目と同様であるので説明を省略する。
図5は固体撮像素子の1つの単位セルにおける電位分布図である。図5(a)〜(d)は図2のA−B断面に示す転送経路から読み出し経路を経てリセット経路に至る経路の電位分布を、図5(a)’〜(d)’は図2のA’−B断面に示す排出経路の電位分布を示している。図5の下部の横軸は、図2における裏面側白キズ低減層18から電荷排出層14までの各領域の位置を示している。縦軸は電位を示しており、下側にいくほど電位が高い状態である。図5(a)および(a)’は、蓄積期間(図4、時刻T1まで)の電位布を、(b)および(b)’は転送期間(図4の時刻T2からT3)の電位分布を、(c)および(c)’は読み出し期間(図4の時刻T7からT8、T15からT16)の電位分布を、(d)および(d)’は電子シャッター期間(図4の時刻T10からT11、T18からT19)の電位分布をそれぞれ示している。これらの電位分布図を参照しながら、本実施形態の固体撮像素子の動作を説明する。
図5(a)および(a)’の蓄積期間において、半導体基板11の裏面側より入射した光は光電変換層12において光電変換され、発生した信号電荷が光電変換層12に蓄積される。
図5(b)の転送期間においては、転送配線ΦTRをhighレベル(図4の時刻T2)とすることで、転送電極25にhighレベルの電圧が印加される。これにより、転送経路の電位分布が点線から実線で示すように変化し、電荷蓄積層13に形成される電位井戸の底が深くなる。これに伴って転送経路電位障壁層19の電位障壁が消滅し、光電変換層12に蓄積されている信号電荷は電荷蓄積層13に転送される。電荷蓄積層13に形成される電位井戸の底を深くすることによって、転送経路の電位勾配を急勾配とすることができるため、信号電荷を素早く転送することが可能である。このとき、図5(b)’に示すように排出経路の電位分布は変化せず、排出経路電位障壁層20の電位障壁は維持されたままである。これにより、光電変換層12で蓄積されている信号電荷は排出経路に排出されることなく電荷蓄積層13に転送される。
図5(c)に示す読み出し期間において、読み出し配線ΦRDをhighレベル(図4の時刻T7)とすることにより、読み出し電極24にhighレベルの電圧が印加される。これにより、読み出し経路の電位分布が点線から実線で示すように変化し、p型拡散層34の電位障壁が消滅する。したがって、電荷蓄積層13に蓄積された信号電荷が浮遊拡散層15に読み出される。図5(c)’に示す排出経路の電位分布は変化しない。
図5(d)’の電子シャッター期間においては、画素電源PVDDをhighレベル(図4の時刻T10)とすることにより、排出経路の電位分布が点線から実線で示すように変化し、電荷排出層14に相当する電位井戸の底が深くなる。これに伴って排出経路電位障壁層20の電位障壁が消滅し、光電変換層12に蓄積されている不要な信号電荷は電荷排出層14に排出される。この時、図5(d)に示すように、電荷蓄積層13周辺の電位障壁は維持されている。したがって、電荷蓄積層13に蓄積されている信号電荷を保持しつつ、不要な信号電荷を電荷排出層14に排出することが可能である。これは、例えば、信号電荷が電荷蓄積層に転送された後、一行目の単位セルの信号電荷の読み出しが開始されてから、最終行目の単位セルの信号電荷の読み出しが開始されるまでの待機時間において、信号電荷が光電変換層12に過剰に蓄積された場合に有効である。別個に排出経路を備えたことにより、この不要な信号電荷を電荷蓄積層13に蓄積されている読み出されるべき信号電荷に流入させることなく電荷排出層14に排出できる。
以上説明したように、本実施形態によれば、光電変換層12から電荷蓄積層13へ信号電荷を転送する際、電荷蓄積層13に形成される電位井戸の底を深くすることによって、転送経路の電位勾配を急勾配とすることができる。したがって、転送時間内に信号電荷を転送しきれないことによって光電変換層に信号電荷が残るといったことが生じにくくなり、残像による画質劣化を低減することができる。
〈第2の実施形態〉
第1の実施形態では、裏面側補助電極23を遮光膜として用いる例を示したが、本実施形態では裏面側補助電極23をさらに転送時および電子シャッター時の電荷転送および排出を補助するための電圧が印加される電極として用いる例を示す。以下、第1の実施形態と同じ内容についてはその説明を省略する。
第2の実施形態に係る固体撮像素子の単位セルの構造は、第1の実施形態と同様である。図6は第2の実施形態に係る固体撮像素子の駆動方法を示すタイミングチャートである。第1の実施形態と異なる点は、第1の実施形態では固定電位としていた裏面側補助電極23(AX)の電位を、転送時および電子シャッター時において、それぞれΦTRおよびPVDDの動作にあわせてlowレベルにする点、およびそれと同時にPVDD,ΦSEL,ΦRS,ΦRDをハイインピーダンスとする点である。
図6の時刻T2からT3の転送期間において、転送経路において信号電荷の転送が行われる転送期間である。ΦTRをhighレベルとしたのに合わせて、AXの電位をlowレベルにする。このとき、PVDD,ΦSEL,ΦRS,ΦRDはいずれもハイインピーダンス(HiZ)とする。また、本実施形態においては、AX(裏面側補助電極23)が表面側補助電極35と同電位で電気的に接続されていることにより、AXの電位をlowレベルにする速度を向上させることができる。これにより、時刻T2からT3の転送期間において、光電変換層12から電荷蓄積層13への電荷転送を高速化できる。
また、時刻T10からT11の排出期間においてAXの電位をlowレベルにする。このとき、ΦTR,ΦSEL,ΦRS,ΦRDはいずれもハイインピーダンス(HiZ)とする。このときも時刻T2からT3と同様に、表面側補助電極35が設けられていることにより、AXの電位をlowレベルにする速度を向上させることができる。よって、光電変換層12から電荷排出層14への電荷転送を高速化できる。
図6に示した電位レベルの詳細について、図7を用いて詳述する。
図7は本実施形態に係る固体撮像素子の1つの単位セルにおける電位分布図である。図7(a)〜(d)は図2のA−B断面に示す転送経路から読み出し経路を経てリセット経路に至る経路の電位分布を、図7(a)’〜(d)’は図2のA’−B断面に示す排出経路の電位分布を示している。図7の下部の横軸は、図2における裏面側白キズ低減層18から電荷排出層14までの各領域の位置を示している。縦軸は電位を示しており、下側にいくほど電位が高い状態である。図7(a)および(a)’は蓄積期間(図6、時刻T1まで)、(b)および(b)’は転送期間(図6の時刻T2からT3)、(c)および(c)’は読み出し期間(図6の時刻T7からT8、T15からT16)、(d)および(d)’は電子シャッター期間(図6の時刻T10からT11、T18からT19)の電位分布をそれぞれ示している。これらの電位分布図を参照しながら、本実施形態の固体撮像素子の動作を説明する。
図7(a)および(a)’の蓄積期間は、第1の実施形態と同様である。
図7(b)の転送期間においては、転送電極25にhighレベルの電圧が印加されたのに合わせて(図6の時刻T2)、補助電極AXにlowレベルの電圧が印加される。このとき、転送経路の電位分布が点線から実線で示すように変化し、電荷蓄積層13に形成される電位井戸の底が深くなるとともに、補助電極AXと電気的に接続されている裏面側白キズ低減層18の電位障壁の高さが高くなる。これによって、第1の実施形態と比較して、転送経路の電位勾配をより急勾配とすることができるため、信号電荷をより素早く転送することが可能となる。また、PVDD,ΦSEL,ΦRS,ΦRD,FDはいずれもハイインピーダンスであるため、補助電極AXの電位と連動し、p型拡散層34から電荷排出層14の領域における電位障壁および電位井戸の位置は高くなる。一方、図7(b)’に示す排出経路においても、補助電極AXの電位と連動して、電位分布が点線から実線で示すように変化するが、排出経路電位障壁層20の電位障壁は維持されたままであるため、光電変換層12で蓄積されている信号電荷は排出経路に排出されることなく電荷蓄積層13に転送される。
図7(c)および(c)’の読み出し期間は、第1の実施形態と同様である。
図7(d)’の電子シャッター期間においては、補助電極AXの電位をlowレベルにする。このとき、排出経路の電位分布が点線から実線で示すように変化し、電荷排出層14に形成される電位井戸の底が深くなるとともに、裏面側白キズ低減層18の電位障壁の高さが高くなる。これによって、第1の実施形態と比較して、排出経路の電位勾配をより急勾配とすることができるため、不要な信号電荷をより素早く排出することが可能となる。また、本実施形態においては、排出時に補助電極AXの動作を加えたため、第1の実施形態のようにPVDDをhighレベルとしなくても、midレベルでも電荷排出が可能となる(図6の時刻T10からT11)。よって、画素電源PVDDに与える電圧を下げることが可能となったことで、半導体基板11の表面側に設けられた転送電極25等の各電極を覆う酸化膜の破壊、およびp型/n型領域間のジャンクション破壊を起こりにくくすることができる。これにより、酸化膜圧の厚膜化やp型/n型領域間の電界緩和といった、素子の信頼性を確保するための対策を減らすことができ、素子の小型化と信頼性の両立が可能となる。
さらにこのとき、ΦTR,ΦSEL,ΦRS,ΦRD,FDはいずれもハイインピーダンスである。そのため、図7(d)の転送経路における電位障壁および電位井戸の位置は、補助電極AXの電位と連動するため高くなる。
したがって、電荷蓄積層13周辺の電位障壁は維持されているので、光電変換層12に蓄積された不要な信号電荷を、電荷蓄積層13に蓄積されている読み出されるべき信号電荷に流入させることなく電荷排出層14に排出することが可能である。
以上説明したように、本実施形態によれば、光電変換層12から電荷蓄積層13へ信号電荷を転送する際、電荷蓄積層13に形成される電位井戸の底を深くすることに加え、裏面側補助電極23にlowレベルの電圧を印加することで、裏面側補助電極23を転送補助電極および排出補助電極として動作させることができる。これにより、裏面側白キズ低減層18の電位障壁の高さを高くし、転送経路の電位勾配をより急勾配とすることができる。よって、第1の実施形態と比較して、残像の発生をより低減することが可能である。さらに、電荷排出時において、画素電源PVDDに与える電圧を下げることが可能となったことで、素子の信頼性を確保するための対策を減らすことができ、素子の小型化と信頼性の両立が可能となる。
〈第3の実施形態〉
裏面から入射した長波長の可視光は、短波長の可視光よりも半導体基板の深部に入り込みやすいという性質を有するために、従来の裏面照射型固体撮像素子においては、長波長の可視光が光電変換層を越えて電荷蓄積層に入り込むことによって、電荷蓄積層で光電変換が起こり、その結果、偽信号が発生しやすいという問題点がある。本実施形態はこの問題を解決するためになされたものであり、別途新たな構成を設けることなく、電荷蓄積層で光電変換が起こることによる偽信号が発生を低減できる裏面照射型固体撮像素子を提供するものである。
図8に本実施形態に係る固体撮像素子130の構造を示す。第1の実施形態との違いは、転送経路電位障壁層19および排出経路電位障壁層20をシリコンゲルマニウム(SiGe)の化合物層で構成した点である。転送経路電位障壁層19および排出経路電位障壁層20は、例えば、Si原料としてSiH4、Ge原料としてGeH4、p型不純物の原料としてB26を用いた化学気相成長法によって、SiGe層の成長と同時にその層内にp型不純物をドープしていくことが可能である。
ここで、図9を用いてゲルマニウム(Ge)の光学特性をシリコン(Si)と比較しながら説明する。図9は、シリコン(Si)およびゲルマニウム(Ge)の吸収端付近の吸収スペクトルを示したものである。横軸に光のエネルギー(eV)、縦軸に吸収係数(cm−1)を示す。Siは1.15eV(1000nm)〜2.7eV(460nm)の光に対し、〜10の吸収係数を示す。一方、Geは0.7eV(1800nm)〜2eV(600nm)の光に対し、〜10の吸収係数を示す。したがって同図より、600nm〜1000nmの波長の光に対するGeの吸収係数は、Siの10倍以上であることがわかる。すなわち、GeはSiよりも600nm〜1000nmの波長の光を吸収しやすいということを意味する。
よって、SiとGeを含む化合物層で転送経路電位障壁層19および排出経路電位障壁層20を構成することで、光電変換層12を越えて侵入してきた長波長(600nm〜780nm付近)の可視光を、電荷蓄積層13よりも裏面側で吸収し、電荷蓄積層13に入射する光を低減することができる。その結果、電荷蓄積層13で光電変換が起こることによる偽信号の発生を抑制することが可能である。
なお、Geの吸収係数がSiの吸収係数より10倍以上高い理由は、Siのバンドギャップが1.1eVであるのに対し、Geのバンドギャップが0.67eVと小さいことによる。
〈第4の実施形態〉
図10に本実施形態に係る固体撮像素子140の構造を示す。第3の実施形態との違いは、SiGeの化合物層で形成する領域を、転送経路電位障壁層19および排出経路電位障壁層20から半導体基板表面側端面にまで拡張した点である。
図10に示すように、転送経路電位障壁層19および排出経路電位障壁層20においては裏面側から表面側にかけてGe濃度を少しずつ増加させる。電荷蓄積層13から基板表面側にかけてはGe濃度を一定にすることで、結晶性の良い化合物層を構成する。電荷蓄積層13から基板表面側にかけての領域に対してもSiGe層を適用することで、基板全体を薄く作成しても、第3の実施形態で述べたような電荷蓄積層13に入射する光の低減効果を維持し、電荷蓄積層13で光電変換が起こることによる偽信号の発生を低減することが可能である。
また、SiGe層はSi層とは結晶の格子定数が異なることで、Si層と比較して格子欠陥による白キズが発生しやすくなる。よって、転送経路電位障壁層19および排出経路電位障壁層20の領域においては、格子欠陥が発生しないようにGe濃度を少しずつ上昇させる必要がある。さらに、信頼性を向上させるために、光電変換層12をn型で形成する場合には、p型領域のみをSiGe層で形成することが望ましい。
以上述べたように、本実施形態の構成によれば、半導体基板の薄型化と偽信号発生抑制を両立した裏面照射型固体撮像素子を提供することができる。
〈第5の実施形態〉
図11に本実施形態に係る固体撮像素子150の構造を示す。第4の実施形態との違いは、SiGeの化合物層を基板表面側端面まで形成せず、基板表面近傍の領域をSiもしくはGeのみの化合物層で形成する点である。
図11に示すように、転送経路電位障壁層19および排出経路電位障壁層20においては裏面側から表面側にかけてGe濃度を少しずつ増加させる。電荷蓄積層13から基板表面側にかけてはGe濃度を一定とすることで、第4の実施形態と同様、結晶性の良い化合物層を構成する。そして、SiGe層より表面側の領域をSi層もしくはGe層の化合物層で構成する。
このように、SiGe層上にエピタキシャル成長法等で、例えばSi層を構成する場合、Si原子はSiGe層の格子間隔を保ったまま成長する。Si層はSiGe層よりも格子定数が小さいため、Si層は引っ張り応力が加わった状態で形成されることになる。この状態のSi層においては電子の散乱が減り、正孔の有効質量が減少するため、両者の移動度が向上する。したがって、信号電荷の移動度が増大し、回路動作速度が向上することにより、高速な信号電荷の読み出しが可能となる。この構成は、例えば、高速な読出し動作が要求される次世代高精細テレビ等で有効である。
〈第6の実施形態〉
図12に第6の実施形態に係る固体撮像素子の単位セルの等価回路図を示す。第1の実施形態(図3)との違いは、画素選択トランジスタM3および選択配線ΦSELを削除した点である。なお、図12において図3と同一の構成については同一符号を付して、説明を省略する。
図12において選択トランジスタM3が無い場合の、画素の選択および非選択の動作について説明する。浮遊拡散層15の電位がhighとなるに伴って、増幅トランジスタM2がオンとなることで読み出し行が選択される。一方、浮遊拡散層15の電位がlowとなるに伴って、増幅トランジスタM2がオフとなることで読み出し行が非選択となる。
よって、他の実施形態で述べた効果はそのまま維持しながら、画素選択トランジスタM3および選択配線ΦSELを削除することで素子の小型化を図ることができる
〈第7の実施形態〉
図13に本発明に係る固体撮像素子を備えるカメラの全体構成図を示す。図13を参照しながら、上記実施形態で述べた固体撮像素子を搭載するカメラについて説明する。
カメラ700は、デジタルスチルカメラ又はデジタルビデオカメラに代表されるカメラである。カメラ700は、レンズ40,光学系41,固体撮像素子170,画像信号処理部43,タイミング制御部42を備える。
レンズ40および光学系41は、外光を集光する。
固体撮像素子170は、第1〜第6の実施形態に係る固体撮像素子である。固体撮像素子170は図1に示したTG制御部7,撮像領域1,出力回路8から構成される。固体撮像素子170は、入射した光を画像信号に変換して画像信号処理部43に出力する。図4および図6のタイミングチャートで示した電圧パルスはTG制御部7によって制御される。
画像信号処理部43は、出力回路8からの出力される画像信号を受ける相関二重サンプリング回路(CDS)44,OBC(Opticl Black Clamp)45,AGC(Auto Gain Control)46,ADC(Analog Digital Converter)47,DSP(Digital Signal Processor)48を備えている。画像信号処理部43は、固体撮像素子170から出力された画像信号を処理し、表示装置などの外部機器に処理した信号を出力する。
タイミング制御部42は固体撮像素子170内の回路動作のタイミングを制御するとともに、固体撮像素子170及び画像信号処理部43との間で信号の受け渡しを行う。
このようにすることで、第1から第6の実施形態で述べた効果と同様の効果が得られるカメラを構成することができる。
なお、固体撮像素子170、タイミング制御部42及び画像信号処理部43は、個別に1チップ化されてもよいし、2つ以上を含むように1チップ化されてもよい。例えば、固体撮像素子170と画像信号処理部43とは、同一半導体チップ上に形成され、タイミング制御部42は1つの半導体チップ上に形成されることとしてもよい。
なお、図13では、画像信号処理部43が固体撮像素子170と別個に設けられている例を示しているが、固体撮像素子170内に画像信号処理部43が設けられていてもよい。
本明細書においては、信号電荷を電子、第1導電型をn型、2導電型をp型として説明したが、これと逆極性の場合、すなわち、信号電荷をホール、第1導電型をp型、2導電型をn型としても同様の原理で説明できる。
なお、本明細書において用いた数字は、すべて本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。また、high/lowにより表される論理レベルは、本発明を具体的に説明するために例示するものであり、例示された論理レベルの異なる組み合わせにより、同等な結果を得ることも可能である。さらに、構成要素間の接続関係は、本発明を具体的に説明するために例示するものであり、本発明の機能を実現する接続関係はこれに限定されない。
なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で本実施の形態に対して当業者が思いつく範囲内の変更を施した様々な構成が取り得る。
本発明は、例えば、高画質が要求されるデジタルスチルカメラおよびデジタルビデオカメラ等の電子機器に好適に利用可能である。
2 単位セル
VL,VL1,VL2,…VLn 垂直信号線
L1,L2,…Ln 水平信号線
11 半導体基板
12 光電変換層
13 電荷蓄積層
14 電荷排出層
15 浮遊拡散層(FD)
16 素子分離帯
17 表面側白キズ低減層
18 裏面側白キズ低減層
19 転送経路電位障壁層
20 排出経路電位障壁層
21 光電変換層分離帯
22 トレンチ素子分離層(STI)
23 補助電極
24 読み出し電極
25 転送電極
26 リセット電極
M1 読み出しトランジスタ
M2 増幅トランジスタ
M3 画素選択トランジスタ
M4 リセットトランジスタ

Claims (19)

  1. 半導体基板に複数の単位セルが行列状に配列されてなり、かつ、前記半導体基板の裏面を受光面とする裏面照射型固体撮像素子であって、
    前記各単位セルは、
    前記半導体基板内に設けられ、前記裏面から入射した光を光電変換し、当該光電変換により得られる信号電荷を蓄積する第1導電型の光電変換層と、
    前記半導体基板内において前記光電変換層よりも前記半導体基板の表面側に設けられ、前記光電変換層から転送される信号電荷を蓄積する第1導電型の電荷蓄積層と、
    前記半導体基板内において前記光電変換層から前記電荷蓄積層への信号電荷の転送経路に介在する第2導電型の転送経路電位障壁層と、
    前記半導体基板表面上における前記電荷蓄積層に対応する位置に絶縁層を介して設けられ、前記光電変換層に蓄積された信号電荷を前記電荷蓄積層に転送するための転送電圧が印加されたときに、前記転送電圧が印加されないときよりも前記半導体基板の裏面の電位に対して前記電荷蓄積層の電位井戸の深さを深くするとともに前記転送経路電位障壁層の電位障壁を消滅させる転送電極と
    を備えることを特徴とする固体撮像素子。
  2. 前記各単位セルは、さらに、
    前記半導体基板内において前記光電変換層よりも前記裏面側に設けられた第2導電型の裏面側白キズ低減層と、
    前記半導体基板裏面上に設けられ、前記電荷蓄積層への信号電荷の転送を補助するための転送補助電圧が印加されたときに、前記転送補助電圧が印加されないときよりも前記裏面側白キズ低減層の電位障壁の高さを高くする補助電極を備えること
    を特徴とする請求項1に記載の固体撮像素子。
  3. 前記各単位セルは、さらに、
    前記半導体基板内において基板厚み方向に対し直交方向に前記電荷蓄積層から離間して設けられ、前記光電変換層から転送される不要な信号電荷を前記半導体基板表面に排出する第1導電型の電荷排出層と、
    前記半導体基板内において前記光電変換層から前記電荷排出層への信号電荷の排出経路に介在する第2導電型の排出経路電位障壁層と、
    前記半導体基板表面側に設けられ、前記光電変換層に蓄積された不要な信号電荷を前記電荷排出層に排出するための排出電圧が印加されたときに、前記排出電圧が印加されないときよりも前記半導体基板の裏面の電位に対して前記電荷排出層の電位井戸の深さを深くするとともに前記排出経路電位障壁層の電位障壁を消滅させる排出電極と
    を備えることを特徴とする請求項2に記載の固体撮像素子。
  4. 前記補助電極は、さらに、
    前記排出電極に排出電圧が印加されるのに伴って、前記電荷排出層への信号電荷の排出を補助するための排出補助電圧が印加されたときに、前記排出補助電圧が印加されないときよりも、前記裏面側白キズ低減層の電位障壁の高さを高くすること
    を特徴とする請求項3に記載の固体撮像素子。
  5. 前記各単位セルは、さらに、
    前記半導体基板内において基板厚み方向に対し直交方向に前記電荷蓄積層と前記電荷排出層との間に、かつ、前記電荷蓄積層と前記電荷排出層から離間して設けられ、前記電荷蓄積層から転送される信号電荷を蓄積する第1導電型の浮遊拡散層と、
    前記半導体基板表面上における前記電荷蓄積層と前記浮遊拡散層との間に対応する位置に絶縁層を介して設けられ、前記電荷蓄積層に蓄積された信号電荷を前記浮遊拡散層に転送するための読み出し電圧が印加されたときに、前記電荷蓄積層に蓄積された信号電荷を前記浮遊拡散層に転送させる読み出し電極と
    を備えることを特徴とする請求項3に記載の固体撮像素子。
  6. 前記補助電極は、
    前記半導体基板裏面上における前記光電変換層に対応する部分を除く領域に設けられることを特徴とする請求項2に記載の固体撮像素子。
  7. 前記補助電極は金属膜であって遮光膜を兼ねていることを特徴とする請求項6に記載の固体撮像素子。
  8. 前記光電変換層と、前記転送経路電位障壁層と、前記電荷蓄積層とが埋め込みバイポーラトランジスタを構成していることを特徴とする請求項1に記載の固体撮像素子。
  9. 前記各単位セルは、さらに、
    前記半導体基板内において基板厚み方向に対し直交方向に前記電荷蓄積層から離間して設けられ、前記光電変換領域から転送される不要な信号電荷を前記半導体基板表面に排出する第1導電型の電荷排出層と、
    前記半導体基板内において前記光電変換層から前記電荷排出層への信号電荷の排出経路に介在する第2導電型の排出経路電位障壁層と、
    前記光電変換層に蓄積された不要な信号電荷を前記電荷排出層に排出するための排出電圧が印加されたときに、前記排出電圧が印加されないときよりも前記半導体基板の裏面の電位に対して前記電荷排出層の電位井戸の深さを深くするとともに前記排出経路電位障壁層の電位障壁を消滅させる排出電極と
    を備えることを特徴とする請求項1に記載の固体撮像素子。
  10. 前記各単位セルにおいて、
    前記排出電極は前記半導体基板表面側に設けられており、さらに、
    前記半導体基板裏面上に設けられ、前記電荷排出層への信号電荷の排出を補助するための排出補助電圧が印加されたときに、前記排出補助電圧が印加されないときよりも前記裏面側白キズ低減層の電位障壁の高さを高くする補助電極
    を備えることを特徴とする請求項9に記載の固体撮像素子。
  11. 前記転送経路電位障壁層における第2導電型の不純物濃度は、前記排出経路電位障壁層における不純物濃度より高濃度であることを特徴とする請求項3および請求項9に記載の固体撮像素子。
  12. 前記光電変換層と、前記排出経路電位障壁層と、前記電荷排出層とが埋め込みバイポーラトランジスタを構成していることを特徴とする請求項3および請求項9に記載の固体撮像素子。
  13. 前記各単位セルは、さらに、
    前記半導体基板内において前記電荷蓄積層よりも前記表面側に、第2導電型の表面側白キズ低減層を備えることを特徴とする請求項1に記載の固体撮像素子。
  14. 前記光電変換層と、当該光電変換層を含む単位セルに隣接する単位セル内の光電変換層との間に、単位セルの一部として第2導電型の光電変換層分離帯を備えることを特徴とする請求項1に記載の固体撮像素子。
  15. 前記電荷蓄積層と、当該電荷蓄積層を含む単位セルに隣接する単位セル内の電荷蓄積層との間に、単位セルの一部として絶縁層および第2導電型の素子分離帯を備えることを特徴とする請求項1に記載の固体撮像素子。
  16. 前記転送経路電位障壁層と前記排出経路電位障壁層を、シリコンとゲルマニウムの両方を含む化合物層により形成することを特徴とする請求項3に記載の固体撮像素子。
  17. 前記半導体基板内において前記光電変換層よりも前記表面側の領域を、シリコンとゲルマニウムの両方を含む化合物層により形成することを特徴とする請求項1に記載の固体撮像素子。
  18. 前記半導体基板内において前記光電変換層よりも前記表面側の領域の一部を、歪みシリコンまたは歪みゲルマニウムのどちらか一方を含む化合物層により形成することを特徴とする請求項1に記載の固体撮像素子。
  19. 請求項1から18のいずれか一項に記載の固体撮像素子を備えることを特徴とするカメラ。
JP2009283321A 2009-12-14 2009-12-14 固体撮像素子およびこれを備えたカメラ Withdrawn JP2011124946A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009283321A JP2011124946A (ja) 2009-12-14 2009-12-14 固体撮像素子およびこれを備えたカメラ
PCT/JP2010/004880 WO2011074156A1 (ja) 2009-12-14 2010-08-03 固体撮像素子およびこれを備えたカメラ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009283321A JP2011124946A (ja) 2009-12-14 2009-12-14 固体撮像素子およびこれを備えたカメラ

Publications (1)

Publication Number Publication Date
JP2011124946A true JP2011124946A (ja) 2011-06-23

Family

ID=44166930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009283321A Withdrawn JP2011124946A (ja) 2009-12-14 2009-12-14 固体撮像素子およびこれを備えたカメラ

Country Status (2)

Country Link
JP (1) JP2011124946A (ja)
WO (1) WO2011074156A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030511A (ja) * 2011-07-26 2013-02-07 Sharp Corp 固体撮像装置およびその駆動方法、固体撮像装置の製造方法、並びに電子情報機器
CN104010141A (zh) * 2013-02-26 2014-08-27 株式会社东芝 固体摄像装置
US9006634B2 (en) 2012-08-21 2015-04-14 Kabushiki Kaisha Toshiba Solid state imaging device having a photoelectric conversion layer with plural silicon germanium layers, and method of manufacturing
JP2017120829A (ja) * 2015-12-28 2017-07-06 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN110785849A (zh) * 2017-06-19 2020-02-11 索尼半导体解决方案公司 摄像装置和电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2618385A1 (de) 2012-01-20 2013-07-24 AZUR SPACE Solar Power GmbH Halbzeug einer Mehrfachsolarzelle und Verfahren zur Herstellung einer Mehrfachsolarzelle
KR102427832B1 (ko) * 2017-04-12 2022-08-02 삼성전자주식회사 이미지 센서

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347709A (ja) * 2004-06-07 2005-12-15 Sony Corp 固体撮像素子
JP4810806B2 (ja) * 2004-07-30 2011-11-09 ソニー株式会社 固体撮像装置
JP4609497B2 (ja) * 2008-01-21 2011-01-12 ソニー株式会社 固体撮像装置とその製造方法、及びカメラ
JP2009272820A (ja) * 2008-05-02 2009-11-19 Konica Minolta Opto Inc 固体撮像装置
JP4582198B2 (ja) * 2008-05-30 2010-11-17 ソニー株式会社 固体撮像装置、撮像装置、固体撮像装置の駆動方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030511A (ja) * 2011-07-26 2013-02-07 Sharp Corp 固体撮像装置およびその駆動方法、固体撮像装置の製造方法、並びに電子情報機器
US9006634B2 (en) 2012-08-21 2015-04-14 Kabushiki Kaisha Toshiba Solid state imaging device having a photoelectric conversion layer with plural silicon germanium layers, and method of manufacturing
CN104010141A (zh) * 2013-02-26 2014-08-27 株式会社东芝 固体摄像装置
JP2014165399A (ja) * 2013-02-26 2014-09-08 Toshiba Corp 固体撮像装置
US9219096B2 (en) 2013-02-26 2015-12-22 Kabushiki Kaisha Toshiba Solid-state imaging device
JP2017120829A (ja) * 2015-12-28 2017-07-06 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN110785849A (zh) * 2017-06-19 2020-02-11 索尼半导体解决方案公司 摄像装置和电子设备
KR20200015473A (ko) * 2017-06-19 2020-02-12 소니 세미컨덕터 솔루션즈 가부시키가이샤 촬상 장치 및 전자 기기
CN110785849B (zh) * 2017-06-19 2023-11-14 索尼半导体解决方案公司 摄像装置和电子设备
KR102611545B1 (ko) * 2017-06-19 2023-12-08 소니 세미컨덕터 솔루션즈 가부시키가이샤 촬상 장치 및 전자 기기

Also Published As

Publication number Publication date
WO2011074156A1 (ja) 2011-06-23

Similar Documents

Publication Publication Date Title
US8692303B2 (en) Solid-state imaging device, electronic device, and manufacturing method for solid-state imaging device
JP6126666B2 (ja) 固体撮像装置及び電子機器
JP5258551B2 (ja) 固体撮像装置、その駆動方法及び撮像システム
US8395194B2 (en) Solid-state imaging device
JP4752926B2 (ja) 固体撮像装置、固体撮像装置の製造方法、固体撮像装置の駆動方法、電子機器
WO2011074156A1 (ja) 固体撮像素子およびこれを備えたカメラ
JP2006173351A (ja) 裏面入射型固体撮像装置及びその製造方法
JP2010098219A (ja) 裏面照射型固体撮像装置
JP2006261638A (ja) 固体撮像装置および固体撮像装置の駆動方法
JP2011114323A (ja) 固体撮像装置とその製造方法、及び電子機器
JP2009253149A (ja) 光電変換装置及びそれを用いた撮像システム
TW201143050A (en) Solid-state imaging device and method for driving the same
JP2006054263A (ja) 固体撮像装置およびその製造方法
JP2011199037A (ja) 固体撮像装置、及びその製造方法
JP5579931B2 (ja) 固体撮像装置
TW201432891A (zh) 相機模組、固體攝像裝置及同裝置的製造方法
JP2004259733A (ja) 固体撮像装置
JP2011114292A (ja) 固体撮像素子及びその製造方法、並びに撮像装置、並びに半導体素子及びその製造方法
US20140166860A1 (en) Solid-state imaging apparatus and driving method thereof, manufacturing method of solid-state imaging apparatus, and electronic information device
JP4742523B2 (ja) 固体撮像素子及びその駆動方法
US12080747B2 (en) Solid-state imaging apparatus, method of manufacturing the same, and electronic device
JP4285388B2 (ja) 固体撮像装置
WO2011018866A1 (ja) 固体撮像素子およびその駆動方法
JP2013033885A (ja) 固体撮像装置とその製造方法及び駆動方法、並びに電子機器
JP2005093555A (ja) 固体撮像素子及びその製造方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130305