KR20200001501A - 노광 장치, 노광 방법, 및 물품의 제조 방법 - Google Patents

노광 장치, 노광 방법, 및 물품의 제조 방법 Download PDF

Info

Publication number
KR20200001501A
KR20200001501A KR1020190072771A KR20190072771A KR20200001501A KR 20200001501 A KR20200001501 A KR 20200001501A KR 1020190072771 A KR1020190072771 A KR 1020190072771A KR 20190072771 A KR20190072771 A KR 20190072771A KR 20200001501 A KR20200001501 A KR 20200001501A
Authority
KR
South Korea
Prior art keywords
measurement
substrate
wafer
board
measuring
Prior art date
Application number
KR1020190072771A
Other languages
English (en)
Other versions
KR102520864B1 (ko
Inventor
유지 고스기
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20200001501A publication Critical patent/KR20200001501A/ko
Application granted granted Critical
Publication of KR102520864B1 publication Critical patent/KR102520864B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

기판의 주사 노광에 있어서 기판의 자세를 고정밀도로 제어하기 위하여 유리한 기술을 제공한다.
기판을 주사하면서 광 조사 영역을 해당 기판 위에서 이동시킴으로써 해당 기판의 노광을 행하는 노광 장치는, 상기 기판의 주사 중에, 주사 방향을 따라서 상기 기판 위에 배열된 복수의 계측 대상 개소의 각각의 높이를, 각 계측 대상 개소가 상기 광 조사 영역에 들어가기 전에 순차 계측하는 제1 계측부와, 상기 기판의 주사 중에, 상기 복수의 계측 대상 개소의 각각의 높이를, 상기 제1 계측부에서의 계측이 행하여지기 전에 순차 계측하는 제2 계측부와, 상기 제1 계측부에서의 계측 결과에 기초하여, 상기 기판의 주사 중에 있어서의 상기 기판의 자세를 제어하는 제어부를 포함하고, 상기 제어부는, 상기 제2 계측부에 의한 각 계측 대상 개소의 계측 결과에 기초하여, 상기 복수의 계측 대상 개소 중에서 이상 개소를 특정하고, 상기 이상 개소에 있어서의 상기 제1 계측부에서의 계측 결과를 사용하지 않고 상기 기판의 자세를 제어한다.

Description

노광 장치, 노광 방법, 및 물품의 제조 방법{EXPOSURE APPARATUS, EXPOSURE METHOD, AND METHOD OF MANUFACTURING ARTICLE}
본 발명은 노광 장치, 노광 방법, 및 물품의 제조 방법에 관한 것이다.
반도체 디바이스 등의 제조 공정(리소그래피 공정)에서 사용되는 장치의 하나로서, 기판을 주사함으로써, 투영 광학계로부터의 광이 조사되는 광 조사 영역을 기판의 샷 영역상에서 이동시켜, 해당 샷 영역의 주사 노광을 행하는 노광 장치가 있다. 이와 같은 노광 장치에서는, 샷 영역의 주사 노광 중, 광 조사 영역의 배치에 앞서 기판면의 높이가 계측되고, 그 계측 결과에 기초하여, 광 조사 영역 내의 기판면이 투영 광학계의 포커스 허용 범위에 들어가도록 기판의 자세가 제어된다(특허문헌 1 참조).
또한, 노광 장치에서는, 예를 들어 이물 등의 부착에 의해 기판 위에 단차가 생기는 경우가 있다. 이 경우, 그 단차의 계측 결과에 기초하여 기판의 자세가 제어되면, 기판의 일부에 있어서 디포커스를 일으켜, 기판 위에 패턴을 고정밀도로 형성하기가 곤란해질 수 있다. 특허문헌 2에는, 예측 계측으로 얻어진 계측 데이터 중 소정의 허용값을 초과한 계측 데이터가 있을 때는, 그 계측 데이터를 제외하여 기판의 높이 조정을 행하는 것이 개시되어 있다.
일본 특허 공개 평9-45608호 공보 일본 특허 공개 제2003-115454호 공보
노광 장치에서는, 스루풋을 향상시키기 위하여, 기판의 주사 속도를 크게 할 것이 요망되고 있고, 예측 계측이 행해지고 나서 광 조사 영역이 배치될 때까지의 기간이 짧아지는 경향이 있다. 그 때문에, 특허문헌 2에 기재된 바와 같이, 예측 계측으로서 얻어진 계측 데이터에 기초하여, 그 계측 데이터 자신을 기판의 높이 조정에 사용 가능한지 여부를 판단하는 방법으로는, 판단 기간이 짧고, 기판의 높이 조정을 기판의 주사에 추종시키기 곤란해질 수 있다.
그래서, 본 발명은 기판의 주사 노광에 있어서 기판의 자세를 고정밀도로 제어하기 위하여 유리한 기술을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해서, 본 발명의 일측면으로서의 노광 장치는, 기판을 주사하면서 광 조사 영역을 해당 기판 위에서 이동시킴으로써 해당 기판의 노광을 행하는 노광 장치이며, 상기 기판의 주사 중에, 주사 방향을 따라서 상기 기판 위에 배열된 복수의 계측 대상 개소의 각각의 높이를, 각 계측 대상 개소가 상기 광 조사 영역에 들어가기 전에 순차 계측하는 제1 계측부와, 상기 기판의 주사 중에, 상기 복수의 계측 대상 개소의 각각의 높이를, 상기 제1 계측부에서의 계측이 행하여지기 전에 순차 계측하는 제2 계측부와, 상기 제1 계측부에서의 계측 결과에 기초하여, 상기 기판의 주사 중에 있어서의 상기 기판의 자세를 제어하는 제어부를 포함하고, 상기 제어부는, 상기 제2 계측부에 의한 각 계측 대상 개소의 계측 결과에 기초하여, 상기 복수의 계측 대상 개소 중으로부터 이상 개소를 특정하고, 상기 이상 개소에 있어서의 상기 제1 계측부에서의 계측 결과를 사용하지 않고 상기 기판의 자세를 제어하는 것을 특징으로 한다.
본 발명의 또 다른 목적 또는 그 밖의 측면은, 이하, 첨부 도면을 참조하여 설명되는 바람직한 실시 형태에 의해 밝혀질 것이다.
본 발명에 따르면, 예를 들어 기판의 주사 노광에 있어서 기판의 자세를 고정밀도로 제어하기 위하여 유리한 기술을 제공할 수 있다.
도 1은 제1 실시 형태의 노광 장치의 전체 구성을 나타내는 도면이다.
도 2는 샷 영역, 포커스 틸트 계측부에 의한 복수의 계측점, 및 광 조사 영역의 위치 관계를 나타내는 도면이다.
도 3은 제1 실시 형태의 노광 처리의 흐름도를 나타내는 도면이다.
도 4는 샷 영역, 포커스 틸트 계측부에 의한 복수의 계측점, 및 광 조사 영역의 위치 관계를 경시적으로 나타내는 도면이다.
도 5는 이상 개소를 특정하기 위한 처리를 설명하기 위한 도면이다.
도 6은 제2 실시 형태의 노광 장치의 전체 구성을 나타내는 도면이다.
이하, 첨부 도면을 참조하여, 본 발명의 적합한 실시 형태에 대해 설명한다. 또한, 각 도면에 있어서, 동일한 부재 내지 요소에 대해서는 동일한 참조 번호를 부여하고, 중복되는 설명은 생략한다. 또한, 이하의 실시 형태에서 사용되는 「계측점」이란, 특히 계측 개소에 있어서의 복수의 계측 마크의 하나 하나의 엘리먼트라 정의한다.
<제1 실시 형태>
[노광 장치의 구성]
본 발명에 따른 제1 실시 형태에 대해 설명한다. 도 1은, 본 실시 형태의 노광 장치(1)의 전체 구성을 나타내는 도면이다. 도 1에 있어서, 노광 장치(1)는 기판을 주사함으로써, 투영 광학계로부터의 광이 조사되는 광 조사 영역을 기판의 샷 영역 위에서 이동시켜, 해당 샷 영역의 주사 노광을 행하는 스텝 앤드 스캔 방식의 노광 장치이다. 이와 같은 노광 장치(1)는 주사 노광 장치나 스캐너라고도 불리며, 샷 영역의 주사 노광을 행함으로써, 원판에 형성된 회로 패턴을 기판 위에 전사할 수 있다. 본 실시 형태에서는, 원판은, 예를 들어 석영제의 레티클 R이며, 기판의 각 샷 영역에 전사되어야 할 회로 패턴이 형성되어 있다. 또한, 기판은, 포토레지스트가 도포된 웨이퍼 W이며, 예를 들어 단결정 실리콘 기판 등이 사용될 수 있다.
노광 장치(1)는 조명 장치(10)와, 레티클 R을 보유 지지하여 이동 가능한 레티클 스테이지(25)와, 투영 광학계(30)와, 웨이퍼 W를 보유 지지하여 이동 가능한 웨이퍼 스테이지(45)와, 포커스 틸트 계측부(50)와, 얼라인먼트 검출부(70)와, 제어부(60)를 포함할 수 있다. 제어부(60)는 예를 들어 CPU나 메모리를 갖는 컴퓨터에 의해 구성됨과 함께, 장치 내의 각 부에 전기적으로 접속되어, 장치 전체의 동작을 통괄하여 제어한다.
조명 장치(10)는 광원부(12)와 조명 광학계(14)를 포함하고, 웨이퍼 W에 전사해야 할 회로 패턴이 형성된 레티클 R의 일부를 조명한다.
광원부(12)는 예를 들어 파장 약 248㎚의 레이저광을 사출하는 KrF 엑시머 레이저나, 파장 약 193㎚의 레이저광을 사출하는 ArF 엑시머 레이저 등을 포함할 수 있다. 또한, 광원부(12)는 그들의 엑시머 레이저에 한정되는 것은 아니고, 파장 약 157㎚의 레이저광을 사출하는 F2 레이저나, 파장 20㎚ 이하의 광을 사출하는 EUV(Extreme Ultra Violet) 광원 등을 포함해도 된다.
조명 광학계(14)는 광원부(12)로부터 사출된 광속을 사용하여 레티클 R을 조명하는 광학계이며, 해당 광속을 노광에 최적인 소정의 슬릿 광으로 정형하여 레티클 R의 일부를 조명한다. 조명 광학계(14)는 렌즈, 미러, 옵티컬 인터그레이터, 조리개 등을 포함하고, 예를 들어 콘덴서 렌즈, 플라이아이 렌즈, 개구 조리개, 콘덴서 렌즈, 슬릿, 결상 광학계의 순서로 배치된다. 조명 광학계(14)는 축 상광, 축 외광을 막론하고 사용할 수 있다. 옵티컬 인터그레이터는, 플라이아이 렌즈나 2조의 실린드리컬 렌즈 어레이(또는 렌티큘러 렌즈)판을 겹침으로써 구성되는 인터그레이터를 포함하지만, 광학 로드나 회절 소자로 치환되는 경우도 있다.
레티클 스테이지(25)는 레티클 R을 보유 지지하는 레티클 척과, 레티클 척과 함께 레티클 R을 구동하는 구동 기구를 포함할 수 있다. 이 구동 기구는, 예를 들어 리니어 모터 등으로 구성되어, X축 방향, Y축 방향, Z축 방향 및 각 축의 회전 방향으로 레티클 R을 구동할 수 있다. 따라서, 레티클 스테이지(25)는 웨이퍼 W의 주사 노광 중에 있어서, 주사 방향인 Y 방향으로 레티클 R을 구동할 수 있다. 또한, 레티클 스테이지(25)의 위치는, 예를 들어 레이저 간섭계에 의해 감시될 수 있다.
웨이퍼 스테이지(45)는 웨이퍼 W를 보유 지지하는 웨이퍼 척(46)과, 웨이퍼척과 함께 웨이퍼 W를 구동하는 구동 기구를 포함할 수 있다. 이 구동 기구는, 예를 들어 리니어 모터 등으로 구성되어, X축 방향, Y축 방향, Z축 방향 및 각 축의 회전 방향으로 웨이퍼 W를 구동할 수 있다. 따라서, 웨이퍼 스테이지(45)는 웨이퍼 W의 주사 노광 중에 있어서, 주사 방향인 Y 방향으로 웨이퍼 W를 구동할 수 있다. 또한, 웨이퍼 스테이지(45)의 위치는, 예를 들어 레이저 간섭계에 의해 감시될 수 있다.
투영 광학계(30)는 물체면으로부터의 광속을 상 면에 결상하는 기능을 갖고, 조명 광학계(14)에 의해 조명된 레티클 R의 일부의 패턴을, 소정의 투영 배율로 웨이퍼 W 위에 결상(투영)할 수 있다. 투영 광학계(30)로부터의 광이 조사되는 웨이퍼 W 위의 영역을, 이하에서는 「광 조사 영역」이라고 칭하는 경우가 있다. 또한, 얼라인먼트 검출부(70)는 웨이퍼 W 위의 마크를 검출하고, 웨이퍼 W 위에 있어서의 각 샷 영역의 배치(위치)를 구한다. 도 1에 나타내는 예에서는, 투영 광학계(30)를 통하지 않고 웨이퍼 W 위의 마크를 검출하는 오프 액시스 방식으로 구성되어 있지만, 투영 광학계(30)를 통하여 웨이퍼 W 위의 마크를 검출하는 TTL(Through The Lens) 방식으로 구성되어도 된다.
이와 같이 구성된 노광 장치(1)에 있어서, 레티클 R 및 웨이퍼 W는 투영 광학계(30)를 통하여 광학적으로 거의 공액인 위치(투영 광학계(30)의 물체면 및 상면)에 각각 배치된다. 제어부(60)는 레티클 스테이지(25) 및 웨이퍼 스테이지(45)에 의해, 레티클 R과 웨이퍼 W를 투영 광학계(30)의 투영 배율에 따른 속도비로 상대적으로 동기 주사함으로써, 레티클 R의 패턴을 웨이퍼 W 위에 전사할 수 있다. 그리고, 이와 같은 주사 노광을, 웨이퍼 스테이지(45)을 스텝 이동시키면서, 웨이퍼 W에 있어서의 복수의 샷 영역의 각각에 대해 순차 반복함으로써, 1매의 웨이퍼 W에 있어서의 노광 처리를 완료시킬 수 있다.
[포커스 틸트 계측부의 구성]
다음에, 포커스 틸트 계측부(50)의 구성에 대해 설명한다. 포커스 틸트 계측부(50)는 계측광을 웨이퍼 W 위에 투광하는 투광기(52)와, 웨이퍼 W에서 반사된 계측광을 수광하는 수광기(54)를 포함하고, 웨이퍼 W의 주사 중에, 웨이퍼 W의 표면 높이(Z축 방향의 표면 위치)를 순차 계측한다. 투광기(52)는 도트형 또는 슬릿형의 계측광(계측 마크)을 웨이퍼 W 위에 고입사 각도로 투광한다. 본 실시 형태에서는, 도트형의 계측광을 웨이퍼 W 위에 투광하는 예에 대해 설명한다. 또한, 투광기(52)는 예를 들어 CMOS 센서 등의 광전 변환 소자를 갖고, 웨이퍼 W에서 반사된 계측광을 광전 변환 소자에 결상함과 함께, 광전 변환 소자로부터의 신호에 기초하여, 계측광이 투광된 개소의 표면 높이를 구한다.
도 2는, 웨이퍼 W의 샷 영역 SR, 포커스 틸트 계측부(50)에 의한 복수의 계측점 MP 및 광 조사 영역 ES의 위치 관계를 나타내는 도면이다. 계측점 MP는, 투광기(52)에 의해 도트형의 계측광이 투광되어 웨이퍼 W의 표면 높이가 계측되는 웨이퍼 W 위의 위치이며, 웨이퍼 W의 주사에 따라, 광 조사 영역 ES와 함께 웨이퍼 W위를 이동할 수 있다. 또한, 도면 중의 화살표 F 및 화살표 R은 웨이퍼 W의 주사 방향을 나타내고 있고, 샷 영역 SR별로 전환될 수 있다.
본 실시 형태의 포커스 틸트 계측부(50)는 광 조사 영역 ES 내에서 표면 높이를 계측하는 영역 계측부와, 광 조사 영역 ES의 배치에 앞서 표면 높이를 계측하는 제1 계측부와, 제1 계측부에 의한 계측에 앞서 표면 높이를 계측하는 제2 계측부를 포함할 수 있다. 도 2에 나타내는 예에서는, 영역 계측부는, 광 조사 영역 ES 내의 계측점 MP3 내지 MP5에 있어서 웨이퍼 W의 표면 높이를 계측한다. 제1 계측부는, 소위 예측 계측부라고도 불리고, 광 조사 영역 ES로부터 거리 Lp1만큼 이격된 계측점 MP6 내지 MP8 또는 계측점 MP12 내지 MP14에 있어서 웨이퍼 W의 표면 높이를 계측한다. 또한, 제2 계측부는, 소위 예측 계측부라고도 불리고, 광 조사 영역 ES로부터 거리 Lp2만큼 이격된 계측점 MP9 내지 MP11 또는 계측점 MP15 내지 MP17에 있어서 웨이퍼 W의 표면 높이를 계측한다. 거리 Lp1과 거리 Lp2의 관계는, Lp1<Lp2이다.
여기서, 계측점 MP3 내지 MP5는, 웨이퍼 W의 주사 방향과 상이한 방향(예를 들어, 해당 주사 방향과 수직인 방향(X 방향))으로 서로 이격하여 배열될 수 있다. 계측점 MP6 내지 MP8, 계측점 MP9 내지 MP11, 계측점 MP12 내지 MP14, 계측점 MP15 내지 MP17의 각 조에 대해서도 마찬가지이며, 웨이퍼 W의 주사 방향과 교차하는 방향으로 계측점이 서로 이격하여 배치된다. 또한, MP3, MP6, MP9, MP12 및 MP15는, 거의 동일한 X 좌표 위치에 배치될 수 있다. 마찬가지로, MP4, MP7, MP10, MP13 및 MP16은, 거의 동일한 X 좌표 위치에 배치되고, MP5, MP8, MP11, MP14 및 MP17은, 거의 동일한 X 좌표 위치에 배치될 수 있다. 또한, 도 2에서는, 웨이퍼 W의 주사 방향과 상이한 방향(X 방향)으로 3개의 계측점이 배열된 예를 나타냈지만, 해당 상이한 방향으로 배열되는 계측점의 수는 3개로 한정되는 것은 아니고, 2개 또는 4개 이상이어도 된다.
이와 같이 구성된 포커스 틸트 계측부(50)에서는, 각 계측점 MP3 내지 MP17에서의 계측 타이밍이 제어부(60)에 의해 제어될 수 있다. 예를 들어, 제어부(60)는 광 조사 영역 ES와 각 계측점 MP3 내지 MP17의 거리 및 웨이퍼 스테이지(45)의 주사 방향, 주사 속도에 기초하여, 포커스 틸트 계측부(50)에 의한 각 계측점 MP3 내지 MP17의 계측 타이밍을 제어한다. 이에 의해, 거의 동일한 X 좌표에 배치된 복수의 계측점 MP의 각각에 의해, 웨이퍼 W를 Y 방향으로 주사하면서, 웨이퍼 W 위에 있어서의 동일한 계측 대상 개소(동일한 XY 좌표 위치)의 높이를 계측할 수 있다.
[주사 노광에 대해서]
상기한 바와 같이 구성된 노광 장치(1)에서는, 샷 영역 SR의 주사 노광 중, 웨이퍼 W를 주사하면서, 광 조사 영역 ES의 배치에 앞서 웨이퍼 W의 표면 높이가 포커스 틸트 계측부(50)에 의해 계측된다(예측 계측이 행하여진다). 그리고, 그 계측 결과에 기초하여, 광 조사 영역 ES 내에 있어서의 웨이퍼 W의 표면이 투영 광학계(30)의 포커스 허용 범위에 들어가도록 웨이퍼 W의 자세가 제어(조정)된다. 이와 같은 샷 영역 SR의 주사 노광에서는, 예측 계측이 행해지고 나서 광 조사 영역 ER이 배치될 때까지의 기간을 짧게 한 쪽이, 주사 노광 중에 있어서의 기압 변동이나 온도 변동 등의 환경 경시 변화의 영향을 받기 어려워진다. 따라서, 본 실시 형태의 노광 장치(1)에서는, 샷 영역 SR의 주사 노광 시에 있어서, 포커스 틸트 계측부(50)의 제1 계측부(계측점 MP6 내지 MP8 또는 계측점(12 내지 14))에서의 계측 결과에 기초하여 웨이퍼 W의 자세가 제어된다.
그런데, 노광 장치에서는, 예를 들어 웨이퍼 W 위에 이물(파티클) 등이 부착됨으로써 웨이퍼 W에 단차가 생기는 경우가 있다. 이 경우, 포커스 틸트 계측부(50)에 의해 당해 단차를 계측한 결과에 기초하여 웨이퍼 W의 자세를 제어하면, 웨이퍼 W의 일부에 있어서 디포커스를 일으켜, 웨이퍼 W 위에 레티클 R의 패턴을 고정밀도로 전사하기가 곤란해질 수 있다. 따라서, 노광 장치에서는, 포커스 틸트 계측부(50)의 제1 계측부에서의 계측 결과가 웨이퍼 W의 자세 제어에 사용 가능한지 여부를 판단하여, 사용 불가라고 판단된 계측 결과를 사용하지 않고 웨이퍼 W의 자세 제어를 행하는 것이 바람직하다.
그러나, 노광 장치에는, 웨이퍼 W의 주사 속도를 크게 하여 스루풋을 향상시킬 것이 요망되고 있어, 포커스 틸트 계측부(50)의 제1 계측부에 의해 예측 계측이 행해지고 나서 광 조사 영역 ES가 배치될 때까지의 기간이 짧아지는 경향이 있다. 이와 같은 상황 하에 있어서, 제1 계측부에서의 계측 결과를 웨이퍼 W의 자세 제어에 사용 가능한지 여부의 판단을, 해당 제1 계측부에서의 계측 결과에 기초하여 행해 버리면, 판단 기간이 짧고, 웨이퍼 W의 자세 제어를 웨이퍼 W의 주사에 추종시키기 곤란해질 수 있다.
그래서, 본 실시 형태의 노광 장치(1)에서는, 포커스 틸트 계측부(50)의 제2 계측부에서의 계측 결과에 기초하여, 웨이퍼 W 위에 설정된 복수의 계측 대상 개소 중에서 이상을 갖는 이상 개소를 특정한다. 그리고, 광 조사 영역 ES가 배치될 때의 웨이퍼 W의 자세를, 포커스 틸트 계측부(50)의 제1 계측부에 의한 이상 개소에서의 계측 결과를 사용하지 않고 제어한다. 여기서, 「웨이퍼 W의 자세」는, 웨이퍼 W의 기울기, 및 웨이퍼 W의 높이(Z 방향의 위치)의 양쪽을 포함하는 것으로서 정의될 수 있다. 또한, 「이상」은, 예를 들어 이물의 부착 등에 의해, 포커스 틸트 계측부(50)에서 계측된 표면 높이가, 다른 계측 대상 개소에 대해 국소적으로 특이한 값을 나타내는 것으로서 정의될 수 있다.
다음으로, 본 실시 형태의 노광 장치(1)에 있어서의 노광 처리에 대해, 도 3 및 도 4를 참조하면서 설명한다. 노광 처리란, 웨이퍼 W를 주사하면서, 샷 영역 SR의 계측 대상 개소의 표면 높이를 계측하여 웨이퍼 W를 노광하는 처리이다. 도 3은, 본 실시 형태 노광 처리의 흐름도를 나타내는 도면이다. 또한, 도 4는, 웨이퍼 W의 샷 영역 SR, 포커스 틸트 계측부(50)에 의한 복수의 계측점 MP, 및 광 조사 영역 ES의 위치 관계를 경시적으로 나타내는 도면이다.
샷 영역 SR에는, 도 4의 (a)에 나타내는 바와 같이, 포커스 틸트 계측부(50)에 의해 표면 높이가 계측되어야 할 복수의 계측 대상 개소 TP가 설정(배치)되어 있다. 계측 대상 개소 TP11 내지 TP13은, 도면 중의 화살표 F의 방향으로 웨이퍼 W를 주사한 경우에, 포커스 틸트 계측부(50)에 의해 최초로 표면 높이가 계측되는 계측 대상 개소이다. 계측 대상 개소 TP11 내지 TP13은, 주사 방향과 상이한 방향(X축 방향)을 따라 배열된 복수(3개)의 계측점 MP의 위치에 대응하도록, 주사 방향과 상이한 방향을 따라서 서로 이격하여 배열될 수 있다. 또한, 계측 대상 개소 TP21 내지 TP23은, 계측 대상 개소 TP11 내지 TP13의 다음에 계측되도록, 계측 대상 개소 TP31 내지 TP33은, 계측 대상 개소 TP21 내지 TP23의 다음에 계측되도록 각각 설정될 수 있다.
여기서, 본 실시 형태에서는, 웨이퍼 W의 주사 방향 F에 있어서, 제1 계측부(계측점 MP6 내지 MP8)와 제2 계측부(계측점 MP9 내지 MP11)의 간격이, 계측 대상 개소 TP11 내지 TP13과 계측 대상 개소 TP31 내지 TP33의 간격보다 큰 것으로 한다. 또한, 본 실시 형태에서는, 설명을 이해하기 쉽게 하기 위해서, 계측 대상 개소 TP11 내지 TP33에서 표면 높이를 계측하는 예에 대해 설명하고, 도 4에서는, 계측 대상 개소 TP11 내지 TP33 이외의 계측 대상 개소의 도시를 생략하였다. 그러나, 실제로는, 주사 방향으로 소정의 간격을 두고 배치된 복수행의 계측 대상 개소가, 샷 영역 SR의 전체 범위에 걸쳐 설정되어, 계측 대상 개소 TP11 내지 TP33에서의 처리와 마찬가지의 처리가 반복될 수 있다.
S11에서는, 제어부(60)는 샷 영역 SR의 주사 노광을 행하기 위하여 웨이퍼 W의 주사 구동을 개시한다. S12에서는, 제어부(60)는 제2 계측부(계측점 MP9 내지 MP11)에 의한 계측 대상 개소의 표면 높이의 계측을 개시한다. 예를 들어, 제어부(60)는 웨이퍼 W를 주사하면서, 제2 계측부가 계측 대상 개소 TP11 내지 TP13에 배치된 타이밍에, 제2 계측부에 계측 대상 개소 TP11 내지 TP13의 표면 높이를 계측시킨다(도 4의 (b)). 또한, 제어부(60)는 계속하여 웨이퍼 W를 주사하면서, 제2 계측부가 계측 대상 개소 TP21 내지 TP23에 배치된 타이밍에, 제2 계측부에 계측 대상 개소 TP21 내지 TP23의 표면 높이를 계측시킨다(도 4의 (c)). 마찬가지로, 제어부(60)는 계속하여 웨이퍼 W를 주사하면서, 제2 계측부가 계측 대상 개소 TP31 내지 TP33에 배치된 타이밍에, 제2 계측부에 계측 대상 개소 TP31 내지 TP33의 표면 높이를 계측시킨다.
S13에서는, 제어부(60)는 제2 계측부(계측점 MP9 내지 MP11)에서의 계측 결과에 기초하여, 이상을 갖는 이상 개소를 특정한다. 도 4에 나타내는 예에서는, 제어부(60)는 계측 대상 개소 TP11 내지 TP33 중에서 이상 개소를 특정한다. 예를 들어, 제어부(60)는 주사 방향을 따라서 배열된 복수의 계측 대상 개소(예를 들어 TP11, TP21, TP31)에 있어서의 계측 결과의 상관성을 각각 구함으로써, 그 상관성이 허용 범위를 초과하고 있는 계측 대상 개소를 이상 개소로서 특정할 수 있다. 제어부(60)는 상관성으로서, 주사 방향을 따라서 배열된 복수의 계측 대상 개소간에서의 계측 결과의 차분을 구해도 되고, 해당 복수의 계측 대상 개소간에서의 계측 결과의 비율을 구해도 된다. 또한, 허용 범위는, 초점 심도(DOF), 패턴 선폭, 노광 조명 모드 등에 기초하여 설정되고, 예를 들어 유저 인터페이스를 통하여 유저에 의해 설정되어도 된다.
도 5는, 복수의 계측 대상 개소 중에서 이상 개소를 특정하기 위한 구체적인 처리를 설명하기 위한 도면이다. 여기에서는, 주사 방향을 따라서 배열한 계측 대상 개소 TP11, TP21, TP31 사이에서의 계측 결과의 차분을 상관성으로서 구하고, 당해 차분으로부터 이상 개소를 특정하는 예에 대해 설명한다. 도 5의 상면도는, 계측 대상 개소 TP11, TP21, TP31에서 각각 계측된 표면 높이를 나타내고 있고, 도 5의 하면도는, 계측 대상 개소 TP11, TP21, TP31 사이에서의 차분을 나타내고 있다. 도면 중에 있어서, ΔZ12는, 계측 대상 개소 TP11과 TP21에서의 표면 높이의 차분을, ΔZ23은, 계측 대상 개소 TP21과 TP31에서의 표면 높이의 차분을, ΔZ31은, 계측 대상 개소 TP31과 TP11에서의 표면 높이의 차분을 각각 나타낸다.
도 5의 (a)에 나타내는 바와 같이, 계측 대상 개소 TP11, TP21, TP31에서의 표면 높이의 계측 결과가 거의 동일하고, ΔZ12, ΔZ23, ΔZ31이 각각 허용 범위 ZA를 초과하지 않는 경우에는, 제어부(60)는 이상 개소가 존재하지 않는다고 판정할 수 있다. 한편, 도 5의 (b)에 나타내는 바와 같이, ΔZ23은 허용 범위 ZA를 초과하지 않지만, ΔZ12, Δ31이 허용 범위 ZA를 초과하는 경우에는, 제어부(60)는 계측 대상 개소 TP11이 이상 개소라고 판정(특정)할 수 있다. 또한, 도 5의 (c)에 나타내는 바와 같이, ΔZ31은 허용 범위 ZA를 초과하고 있지 않지만, ΔZ12, ΔZ23이 허용 범위 ZA를 초과하는 경우에는, 제어부(60)는 계측 대상 개소 TP21이 이상 개소라고 판정(특정)할 수 있다. 마찬가지의 처리는, 계측 대상 개소 TP12, TP22, TP32의 조, 및 계측 대상 개소 TP13, TP23, TP33의 조에 대해서도 행하여져, 각 조에 대해 이상 개소가 특정될 수 있다. 여기서, 도 4에 나타내는 예에서는, 상술한 처리를 행함으로써, ▲표시로 나타내는 계측 대상 개소 TP11이 이상 개소로서 특정된 것으로 한다.
S14에서는, 제어부(60)는 제1 계측부(계측점 MP6 내지 MP8)에 의한 계측 대상 개소의 표면 높이의 계측을 개시한다. 예를 들어, 제어부(60)는 웨이퍼 W를 주사하면서, 제1 계측부가 계측 대상 개소 TP11 내지 TP13에 배치된 타이밍에, 제1 계측부에 계측 대상 개소 TP11 내지 TP13의 표면 높이를 계측시킨다(도 4의 (d)). 마찬가지로, 제어부(60)는 계속하여 웨이퍼 W를 주사하면서, 제1 계측부가 계측 대상 개소 TP21 내지 TP23에 배치된 타이밍에, 제1 계측부에 계측 대상 개소 TP21 내지 TP23의 표면 높이를 계측시킨다(도 4의 (e)).
S15에서는, 제어부(60)는 제1 계측부(MP6 내지 MP8)에 의한 계측 대상 개소의 표면 높이의 계측 결과에 기초하여, 각 계측 대상 개소가 광 조사 영역 ES에 들어갈(배치될) 때의 웨이퍼 W의 목표 자세를 결정(산출)한다. 이 때, 제어부(60)는 광 조사 영역 ES 내에 있어서의 웨이퍼 W의 표면이 투영 광학계(30)의 포커스 허용 범위에 들어가도록 웨이퍼 W의 목표 자세를 결정할 수 있다. 또한, 제어부(60)는 S13에서 특정된 이상 개소가 계측 대상 개소에 포함되는 경우에는, 제어부(60)는 제1 계측부에 의한 이상 개소의 계측 결과를 사용하지 않고 웨이퍼 W의 목표 자세를 구한다.
예를 들어, 계측 대상 개소 TP11 내지 TP13이 광 조사 영역 ES에 들어갈 때의 웨이퍼 W 목표 자세를 구하는 경우를 상정한다. 이 경우, S13에 있어서, 계측 대상 개소 TP11이 이상 개소라고 특정되어 있다. 그 때문에, 제어부(60)는 제1 계측부에 의한 계측 대상 개소 TP11의 계측 결과를 사용하지 않고, 제1 계측부에 의한 계측 대상 개소 TP12 내지 TP13의 계측 결과에 기초하여 웨이퍼 W의 목표 자세를 구한다. 이 때, 제어부(60)는 계측 대상 개소 TP12 내지 TP13의 각각에 관한 제1 계측부에서의 계측 결과와 제2 계측부에서의 계측 결과의 평균값에 기초하여, 웨이퍼 W의 목표 자세를 구해도 된다. 이 경우, 평균화 효과에 의해, 더 고정밀도로 웨이퍼 W의 목표 자세를 구할 수 있다.
여기서, 제어부(60)는 S15에 있어서 웨이퍼 W의 목표 자세를 구할 때에, 이상 개소와는 다른 계측 대상 개소로부터 추정된 이상 개소의 표면 높이를 사용해도 된다. 예를 들어, 제어부(60)는 주사 방향을 따라서 배열된 복수의 계측 대상 개소(TP11, TP21, TP31) 중, 이상 개소 이외의 계측 대상 개소(TP21, TP31)에 기초하여 해당 이상 개소(TP11)의 표면 높이를 추정한다. 구체적으로는, 계측 대상 개소 TP21, TP31에 대해 제2 계측부에서 계측된 표면 높이의 평균값을, 이상 개소 TP11의 표면 높이로서 추정할 수 있다. 이에 의해, 제어부(60)는 이상 개소 TP11의 표면 높이의 추정값과, 제1 계측부에 의한 계측 대상 개소 TP12 내지 TP13의 표면 높이의 실측값에 기초하여, 웨이퍼 W의 목표 자세를 구할 수 있다.
또한, 제어부(60)는 S15에 있어서 웨이퍼 W의 목표 자세를 구할 때에, 이미 노광이 행하여진 다른 웨이퍼(제2 기판)로부터 추정된 이상 개소의 표면 높이를 사용해도 된다. 예를 들어, 제어부는, 해당 다른 기판 중, 이상 개소(TP11)와 동일한 기판 위치를 갖는 계측 개소에 있어서의 제1 계측부에서의 계측 결과에 기초하여 해당 이상 개소의 표면 높이를 추정한다. 이 때, 이상 개소와 동일한 기판 위치를 갖는 해당 다른 웨이퍼의 계측 대상 개소에 대해 제1 계측부에서 계측된 표면 높이를, 이상 개소 TP11의 표면 높이로서 추정해도 된다. 이에 의해, 제어부(60)는 이상 개소 TP11의 표면 높이의 추정값과, 제1 계측부에 의한 계측 대상 개소 TP12 내지 TP13의 표면 높이의 실측값에 기초하여, 웨이퍼 W의 목표 자세를 구할 수 있다.
S16에서는, 제어부(60)는 광 조사 영역 ES로의 광의 조사를 개시하고, 샷 영역 SR의 주사 노광을 개시한다. 이 때, 제어부(60)는 S15에서 결정된 목표 자세에 기초하여 웨이퍼 W의 자세를 제어하면서, 샷 영역 SR의 주사 노광을 행한다. 예를 들어, 제어부(60)는 계측 대상 개소 TP11 내지 TP13이 광 조사 영역 ES에 들어가는 타이밍에 있어서, S15에서 결정한 목표 자세가 되도록 웨이퍼 W의 자세를 제어한다. 또한, 이 때, 제어부(60)는 영역 계측부(MP3 내지 MP5)에 계측 대상 개소 TP11 내지 TP13의 표면 높이를 계측시켜도 된다. 이 영역 계측부에 의한 표면 높이의 계측은, 광 조사 영역 ES 내에 있어서의 웨이퍼 W의 표면이 투영 광학계(30)의 포커스 허용 범위에 들어가는지 여부를 확인할 목적으로 행해지고, 웨이퍼 W의 자세 제어에는 사용되지 않는다.
S17에서는, 제어부(60)는 샷 영역 SR의 주사 노광을 종료할지 판단한다. 제어부(60)는 웨이퍼 W의 주사 방향을 따라서 배열된 복수의 계측 대상 개소의 각각에 대해, 상술한 제2 계측부에서의 계측, 제1 계측부에서의 계측 및 광 조사 영역에서의 노광을 반복하여 행한다. 그리고, 광 조사 영역 ES가 샷 영역 SR을 빠져 나갔을 때 샷 영역 SR의 주사 노광을 종료할 것으로 판단한다.
상술한 바와 같이, 본 실시 형태의 노광 장치(1)는 제2 계측부에서의 계측 결과에 기초하여 이상 개소를 특정하고, 광 조사 영역 ES가 배치될 때의 웨이퍼 W의 자세를, 제1 계측부에 의한 이상 개소에서의 계측 결과를 사용하지 않고 제어한다. 이에 의해, 웨이퍼 W의 주사 속도를 크게 하는 경향이 있어도, 제1 계측부에서의 계측 결과를 웨이퍼 W의 자세 제어에 사용 가능한지 여부의 판단을 광 조사 영역 ES가 배치될 때까지 행할 수 있어, 웨이퍼 W의 자세 제어를 고정밀도로 행할 수 있다.
여기서, 본 실시 형태에서는, 포커스 틸트 계측부(50)의 제1 계측부 및 제2 계측부에 의해, 웨이퍼 W를 주사하면서, 웨이퍼 W 위에 있어서의 동일한 계측 대상 개소를 2회에 걸쳐 계측하는 예에 대해 설명하였다. 그러나, 그것에 한정되는 것은 아니고, 예를 들어 제1 계측부(또는 제2 계측부)에 의해, 웨이퍼 W 위에 있어서의 동일한 계측 대상 개소를 2회(복수회)에 걸쳐 계측해도 된다. 이 경우, 먼저, 웨이퍼 W 위에 있어서의 복수의 계측 대상 개소의 각각에 대해, 웨이퍼 W를 주사하면서 제1 계측부에 의한 1회째의 높이 계측을 행하고, 그 계측 결과에 기초하여 이상 개소를 특정한다. 그 후, 웨이퍼 W 위에 있어서의 복수의 계측 대상 개소의 각각에 대해, 웨이퍼 W를 주사하면서 제1 계측부에 의한 2회째의 높이 계측을 행하고, 그 계측 결과에 기초하여 웨이퍼 W의 자세를 제어하면서 웨이퍼 W의 주사 노광을 행한다. 이 주사 노광에서는, 제1 계측부에 의한 2회째의 계측 결과 중 이상 개소의 계측 결과를 사용하지 않고 웨이퍼 W의 자세를 제어한다.
<제2 실시 형태>
본 발명에 따른 제2 실시 형태에 대해 설명한다. 도 6은, 본 실시 형태의 노광 장치(1')의 전체 구성을 나타내는 도면이다. 본 실시 형태의 노광 장치(1')은, 도 1에 나타내는 노광 장치(1)에 비하여, 복수의 샷 영역 SR의 각각에 대해 주사 노광을 행했을 때의 정보(이하, 「웨이퍼 정보」라고 칭하는 경우가 있음)를 웨이퍼 W별로 기억하는 기억부(80)(메모리 등의 기억 매체)가 추가로 마련되어 있다. 웨이퍼 정보란, 예를 들어 포커스 틸트 계측부(50)(제1 계측부, 제2 계측부)에서의 계측 결과, 이상 개소로서 특정한 계측 대상 개소의 위치, 이상 개소에 적용된 표면 높이의 추정값 등의 정보를 포함할 수 있다. 도 6에 나타내는 예에서는, 웨이퍼 W1, 웨이퍼 W2, 웨이퍼 W3, 웨이퍼 W4···와 같이 웨이퍼 W별로 순차 취득된 웨이퍼 정보가 개별로 기억될 수 있다. 또한, 본 실시 형태의 노광 장치(1')에 있어서의 기억부(80) 이외의 구성은, 도 1에 나타내는 노광 장치(1)와 마찬가지이기 때문에, 여기서는 해당 구성에 관한 설명을 생략한다.
동일한 로트로 관리되는 복수의 웨이퍼 W에서는, 샷 영역의 배열이나 반도체 프로세스, 노광 제어 등을 동일 조건으로서 노광 처리가 행하여진다. 그 때문에, 전회까지 노광 처리가 행하여진 웨이퍼 W와, 앞으로 노광 처리가 행해지는 웨이퍼 W는, 동일한 웨이퍼 내의 위치(기판 위치)를 갖는 계측 대상 개소의 높이 정보가 동일한 경향이 된다. 예를 들어, 웨이퍼 W3에서는, 그 앞에 노광 처리가 행하여진 웨이퍼 W2에 있어서 이상 개소와 특정된 계측 대상 개소와 동일한 기판 위치를 갖는 계측 대상 개소에서, 「이상」이 발생되는 경향이 있다. 그 때문에, 본 실시 형태에서는, 노광 처리를 행하고 있는 웨이퍼 W3에 있어서의 이상 개소를, 해당 웨이퍼 W3에 있어서의 제2 계측부에서의 계측 결과와, 이미 노광 처리가 행하여진 웨이퍼 W에 있어서의 제2 계측부에서의 계측 결과를 비교함으로써 특정한다. 비교 대상이 되는 웨이퍼 W는 동일 로트 내의 것이 바람직하다.
다음으로, 본 실시 형태의 노광 장치(1')에 있어서의 노광 처리에 대해 설명한다. 본 실시 형태의 노광 처리는, 제1 실시 형태에 있어서 도 3 및 도 4를 사용하여 설명한 내용을 기본적으로 이어가는 것이지만, 도 3에 나타내는 흐름도의 S13에 있어서 이상 개소를 특정하는 공정이 제1 실시 형태의 노광 처리와 상이하다. 또한, 여기서는, 웨이퍼 W1 및 웨이퍼 W2에 대해서는 노광 처리가 이미 종료되어 있고(즉, 웨이퍼 W1 및 웨이퍼 W2의 웨이퍼 정보가 기억부(80)에 기억되어 있고), 웨이퍼 W3의 샷 영역 SR의 노광 처리를 행하는 예에 대해 설명한다.
본 실시 형태의 S13에서는, 제어부(60)는 웨이퍼 W3의 샷 영역 SR에 있어서 제2 계측부에 의해 계측된 각 계측 대상 개소 TP의 표면 높이와, 웨이퍼 W2의 웨이퍼 정보에 있어서의 각 계측 대상 개소 TP의 표면 높이를 비교한다. 해당 비교는, 현재 노광 처리가 행해지고 있는 웨이퍼 W3와, 이미 노광 처리가 행하여진 웨이퍼 W2에서 동일한 기판 위치를 갖는 계측 대상 개소 TP끼리 행하여질 수 있다. 이에 의해, 제어부(60)는 비교 결과에 기초하여, 이상 개소로서 특정된 웨이퍼 W2 위의 계측 대상 개소 TP에 대응하고, 또한 웨이퍼 W3와 웨이퍼 W2에서의 표면 높이의 차가 임계값 이하가 되는 웨이퍼 W3 위의 계측 대상 개소 TP를 이상 개소로서 특정할 수 있다. 임계값은, 예를 들어 유저 인터페이스를 통하여 유저에 의해 설정될 수 있다.
또한, 제어부(60)는 주사 방향을 따라서 배열된 복수의 계측 대상 개소(예를 들어, TP11, TP21, TP31)에 있어서의 제2 계측부에서의 계측 결과의 상관성을, 웨이퍼 W3와 웨이퍼 W2로 비교해도 된다. 제어부(60)는 상관성으로서, 주사 방향을 따라서 배열된 복수의 계측 대상 개소간에서의 계측 결과의 차분을 사용해도 되고, 해당 복수의 계측 대상 개소간에서의 계측 결과의 비율을 사용해도 된다. 이 경우에도, 제어부(60)는 비교 결과에 기초하여, 이상 개소로서 특정된 웨이퍼 W2 위의 계측 대상 개소 TP에 대응하고, 또한 웨이퍼 W3와 웨이퍼 W2에서의 상관성의 차가 임계값 이하가 되는 웨이퍼 W3 위의 계측 대상 개소 TP를 이상 개소로서 특정할 수 있다.
여기서, 상기 예에서는, 웨이퍼 W2의 웨이퍼 정보를 사용하여 웨이퍼 W3의 이상 개소를 특정했지만, 거기에 한정되지 않고, 웨이퍼 W1의 웨이퍼 정보를 사용하여 웨이퍼 W3의 이상 개소를 특정해도 된다. 즉, 이미 노광 처리가 행하여진 웨이퍼의 웨이퍼 정보를 사용하여 웨이퍼 W3의 이상 개소를 특정하면 된다. 또한, 웨이퍼 W3의 이상 개소를 특정할 때에 웨이퍼 W1과 웨이퍼 W2에서의 웨이퍼 정보(예를 들어, 각 계측 대상 개소의 표면 높이)의 평균값을 사용해도 된다. 이 경우, 웨이퍼의 개체차의 영향을 작게 하여, 이상 개소의 특정 정밀도를 높일 수 있다.
상술한 바와 같이, 본 실시 형태에서는, 현재 노광 처리를 행하고 있는 웨이퍼 위의 이상 개소를, 이미 노광 처리가 행하여진 웨이퍼 W에 대해 취득된 웨이퍼 정보와 비교함으로써 특정한다. 이와 같은 처리에 의해서도, 제1 실시 형태와 마찬가지로, 웨이퍼 W의 자세 제어를 고정밀도로 행할 수 있다.
<물품의 제조 방법의 실시 형태>
본 발명의 실시 형태에 따른 물품의 제조 방법은, 예를 들어 반도체 디바이스 등의 마이크로 디바이스나 미세 구조를 갖는 소자 등의 물품을 제조하기에 적합하다. 본 실시 형태의 물품의 제조 방법은, 기판에 도포된 감광제에 상기 노광 장치를 사용하여 잠상 패턴을 형성하는 공정(기판을 노광하는 공정)과, 이와 같은 공정에서 잠상 패턴이 형성된 기판을 현상(가공)하는 공정을 포함한다. 또한, 이와 같은 제조 방법은, 다른 주지의 공정(산화, 성막, 증착, 도핑, 평탄화, 에칭, 레지스트 박리, 다이싱, 본딩, 패키징 등)을 포함한다. 본 실시 형태의 물품의 제조 방법은, 종래의 방법에 비하여, 물품의 성능·품질·생산성·생산 비용 중 적어도 하나에 있어서 유리하다.
이상, 본 발명의 바람직한 실시 형태에 대해 설명했지만, 본 발명은 이들 실시 형태에 한정되지 않음은 물론, 그 요지의 범위 내에서 다양한 변형 및 변경이 가능하다.
1: 노광 장치
10: 조명 장치
25: 레티클 스테이지
30: 투영 광학계
45: 웨이퍼 스테이지
50: 포커스 틸트 계측부
60: 제어부

Claims (11)

  1. 기판을 주사하면서 광 조사 영역을 해당 기판 위에서 이동시킴으로써 해당 기판의 노광을 행하는 노광 장치이며,
    상기 기판의 주사 중에, 주사 방향을 따라서 상기 기판 위에 배열된 복수의 계측 대상 개소의 각각의 높이를, 각 계측 대상 개소가 상기 광 조사 영역에 들어가기 전에 순차 계측하는 제1 계측부와,
    상기 기판의 주사 중에, 상기 복수의 계측 대상 개소의 각각의 높이를, 상기 제1 계측부에서의 계측이 행하여지기 전에 순차 계측하는 제2 계측부와,
    상기 제1 계측부에서의 계측 결과에 기초하여, 상기 기판의 주사 중에 있어서의 상기 기판의 자세를 제어하는 제어부를 포함하고,
    상기 제어부는, 상기 제2 계측부에 의한 각 계측 대상 개소의 계측 결과에 기초하여, 상기 복수의 계측 대상 개소 중에서 이상 개소를 특정하고, 상기 이상 개소에 있어서의 상기 제1 계측부에서의 계측 결과를 사용하지 않고 상기 기판의 자세를 제어하는 것을 특징으로 하는, 노광 장치.
  2. 제1항에 있어서,
    상기 제어부는, 상기 복수의 계측 대상 개소에 있어서의 상기 제2 계측부에서의 계측 결과의 상관성에 기초하여 상기 이상 개소를 특정하는 것을 특징으로 하는, 노광 장치.
  3. 제2항에 있어서,
    상기 제어부는, 상기 복수의 계측 대상 개소에 있어서의 상기 제2 계측부에서의 계측 결과의 차분을 상기 상관성으로서 구하는 것을 특징으로 하는, 노광 장치.
  4. 제2항에 있어서,
    상기 제어부는, 상기 복수의 계측 대상 개소에 있어서의 상기 제2 계측부에서의 계측 결과의 비율을 상기 상관성으로서 구하는 것을 특징으로 하는, 노광 장치.
  5. 제1항에 있어서,
    상기 제어부는, 상기 기판에 있어서의 상기 제2 계측부에서의 계측 결과와, 이미 노광이 행하여진 기판에 있어서의 상기 제2 계측부에서의 계측 결과의 비교에 기초하여, 상기 이상 개소를 특정하는 것을 특징으로 하는, 노광 장치.
  6. 제1항에 있어서,
    상기 제어부는, 상기 복수의 계측 대상 개소 중 상기 이상 개소와는 상이한 개소에 관한 상기 제2 계측부에서의 계측 결과에 기초하여 상기 이상 개소의 높이를 추정하고, 추정된 상기 이상 개소의 높이에 기초하여 상기 기판의 자세를 제어하는 것을 특징으로 하는, 노광 장치.
  7. 제6항에 있어서,
    상기 제어부는, 상기 복수의 계측 대상 개소 중 상기 이상 개소와는 상이한 개소에 관한 상기 제2 계측부에서의 계측 결과의 평균값을, 상기 이상 개소의 높이로서 추정하는 것을 특징으로 하는, 노광 장치.
  8. 제1항에 있어서,
    상기 제어부는, 이미 노광이 행하여진 기판 중 상기 이상 개소와 동일한 기판 위치를 갖는 개소에 관한 상기 제1 계측부에서의 계측 결과에 기초하여 상기 이상 개소의 높이를 추정하고, 추정된 상기 이상 개소의 높이에 기초하여 상기 기판의 자세를 제어하는 것을 특징으로 하는, 노광 장치.
  9. 기판의 주사 노광을 행하는 노광 장치이며,
    상기 기판 위에 배열된 복수의 계측 대상 개소의 각각의 높이를 2회에 걸쳐 계측하는 계측부와,
    상기 계측부에 의한 2회째의 계측 결과에 기초하여, 상기 기판의 자세를 제어하는 제어부를 포함하고,
    상기 계측부는, 상기 계측부에 의한 1회째의 계측 결과에 기초하여, 상기 복수의 계측 대상 개소 중에서 이상 개소를 특정하고, 상기 계측부에 의한 2회째의 계측 결과 중 상기 이상 개소의 계측 결과를 사용하지 않고 상기 기판의 자세를 제어하는 것을 특징으로 하는, 노광 장치.
  10. 제1항 내지 제9항 중 어느 한 항에 기재된 노광 장치를 사용하여 기판을 노광하는 공정과,
    상기 공정에서 노광이 행하여진 상기 기판을 현상하는 공정을 포함하고,
    현상된 상기 기판으로부터 물품을 제조하는 것을 특징으로 하는, 물품의 제조 방법.
  11. 기판을 주사하면서 광 조사 영역을 해당 기판 위에서 이동시킴으로써 해당 기판의 노광을 행하는 노광 방법이며,
    상기 기판의 주사 중에, 주사 방향을 따라서 상기 기판 위에 배열된 복수의 계측 대상 개소의 각각의 높이를 순차 계측하는 제1 공정과,
    상기 기판의 주사 중에, 상기 복수의 계측 대상 개소의 각각의 높이를 상기 제1 공정에서의 계측의 후에 순차 계측하는 제2 공정과,
    상기 제2 공정에서의 계측 결과에 기초하여, 상기 광 조사 영역 내에서의 상기 기판의 자세를 제어하는 제3 공정을 포함하고,
    상기 제3 공정에서는, 상기 제1 공정에서의 각 계측 대상 개소의 계측 결과에 기초하여, 상기 복수의 계측 대상 개소 중에서 이상 개소를 특정하고, 상기 이상 개소에 있어서의 상기 제2 공정에서의 계측 결과를 사용하지 않고 상기 기판의 자세를 제어하는 것을 특징으로 하는, 노광 방법.
KR1020190072771A 2018-06-27 2019-06-19 노광 장치, 노광 방법, 및 물품의 제조 방법 KR102520864B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018122353A JP7071230B2 (ja) 2018-06-27 2018-06-27 露光装置、露光方法、および物品の製造方法
JPJP-P-2018-122353 2018-06-27

Publications (2)

Publication Number Publication Date
KR20200001501A true KR20200001501A (ko) 2020-01-06
KR102520864B1 KR102520864B1 (ko) 2023-04-13

Family

ID=69099888

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190072771A KR102520864B1 (ko) 2018-06-27 2019-06-19 노광 장치, 노광 방법, 및 물품의 제조 방법

Country Status (2)

Country Link
JP (1) JP7071230B2 (ko)
KR (1) KR102520864B1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945608A (ja) 1995-08-03 1997-02-14 Canon Inc 面位置検出方法
JP2003115454A (ja) 1994-05-18 2003-04-18 Nikon Corp 走査露光方法及び走査露光装置
JP2008288347A (ja) * 2007-05-16 2008-11-27 Canon Inc 露光装置及びデバイス製造方法
US20090296057A1 (en) * 2008-05-27 2009-12-03 The Research Foundation Of State University Of New York Automated determination of height and tilt of a substrate surface within a lithography system
JP2014099562A (ja) * 2012-11-15 2014-05-29 Canon Inc 露光装置、露光方法及びデバイスの製造方法
JP2014165284A (ja) * 2013-02-22 2014-09-08 Canon Inc 露光装置、露光方法及びデバイスの製造方法
JP2018045147A (ja) * 2016-09-15 2018-03-22 キヤノン株式会社 露光装置及び物品の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555105A (ja) * 1991-08-26 1993-03-05 Canon Inc 半導体焼付露光装置
JPH09293655A (ja) * 1996-04-25 1997-11-11 Nikon Corp 投影露光装置
JP4261689B2 (ja) * 1999-07-01 2009-04-30 キヤノン株式会社 露光装置、当該露光装置に対して用いられる方法、及び当該露光装置を用いたデバイスの製造方法
JP2002008963A (ja) * 2000-06-20 2002-01-11 Nikon Corp 露光装置
JP2003173960A (ja) * 2001-12-06 2003-06-20 Nikon Corp 露光装置
CN102566295A (zh) * 2010-12-31 2012-07-11 上海微电子装备有限公司 光刻设备及测量多光斑零位偏差的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115454A (ja) 1994-05-18 2003-04-18 Nikon Corp 走査露光方法及び走査露光装置
JPH0945608A (ja) 1995-08-03 1997-02-14 Canon Inc 面位置検出方法
JP2008288347A (ja) * 2007-05-16 2008-11-27 Canon Inc 露光装置及びデバイス製造方法
US20090296057A1 (en) * 2008-05-27 2009-12-03 The Research Foundation Of State University Of New York Automated determination of height and tilt of a substrate surface within a lithography system
JP2014099562A (ja) * 2012-11-15 2014-05-29 Canon Inc 露光装置、露光方法及びデバイスの製造方法
JP2014165284A (ja) * 2013-02-22 2014-09-08 Canon Inc 露光装置、露光方法及びデバイスの製造方法
JP2018045147A (ja) * 2016-09-15 2018-03-22 キヤノン株式会社 露光装置及び物品の製造方法

Also Published As

Publication number Publication date
JP2020003617A (ja) 2020-01-09
KR102520864B1 (ko) 2023-04-13
JP7071230B2 (ja) 2022-05-18

Similar Documents

Publication Publication Date Title
KR101444981B1 (ko) 노광 장치, 노광 방법 및 디바이스 제조 방법
US6081614A (en) Surface position detecting method and scanning exposure method using the same
JPH09180989A (ja) 露光装置および露光方法
JPH1145846A (ja) 走査型露光方法及び装置
JP2015032800A (ja) リソグラフィ装置、および物品製造方法
JP2007049165A (ja) リソグラフィ装置及びメトロロジ・システムを使用するデバイス製造方法
KR102078079B1 (ko) 노광 장치, 노광 방법, 및 물품의 제조 방법
JP6882091B2 (ja) 露光装置及び物品の製造方法
JP2015149316A (ja) 露光装置、および物品の製造方法
JP6327861B2 (ja) リソグラフィ装置、リソグラフィ方法、および物品の製造方法
JP6806509B2 (ja) 露光装置及び物品の製造方法
KR102520864B1 (ko) 노광 장치, 노광 방법, 및 물품의 제조 방법
JP2009164355A (ja) 走査露光装置およびデバイス製造方法
KR20200002621A (ko) 노광 장치 및 물품의 제조 방법
JP2009194247A (ja) 露光装置
JPH10261567A (ja) 投影露光装置及び投影光学系の光学特性測定方法
US10455160B2 (en) Detecting apparatus, detecting method, computer-readable medium storing a program, lithography apparatus, and article manufacturing method that control imaging device to perform imaging at particular time period
JP2019109311A (ja) 計測装置、リソグラフィ装置、物品の製造方法、および計測方法
JP2014143429A (ja) 露光装置、露光方法及びデバイス製造方法
JP2019138957A (ja) 露光装置の制御方法、露光装置、及び物品製造方法
US20230176489A1 (en) Detecting apparatus, substrate processing apparatus, and article manufacturing method
TW202244461A (zh) 測量設備、曝光設備及物品製造方法
JP2022160187A (ja) 露光装置、露光方法及び物品の製造方法
JP2023077924A (ja) 露光装置、露光方法、および物品製造方法
JP2023178172A (ja) 走査露光装置、走査露光方法、物品の製造方法、情報処理装置、情報処理方法、およびプログラム

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right