JP2014165284A - 露光装置、露光方法及びデバイスの製造方法 - Google Patents

露光装置、露光方法及びデバイスの製造方法 Download PDF

Info

Publication number
JP2014165284A
JP2014165284A JP2013033869A JP2013033869A JP2014165284A JP 2014165284 A JP2014165284 A JP 2014165284A JP 2013033869 A JP2013033869 A JP 2013033869A JP 2013033869 A JP2013033869 A JP 2013033869A JP 2014165284 A JP2014165284 A JP 2014165284A
Authority
JP
Japan
Prior art keywords
substrate
measurement
stage
exposure
correction value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013033869A
Other languages
English (en)
Other versions
JP6071628B2 (ja
Inventor
Takanori Sato
隆紀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013033869A priority Critical patent/JP6071628B2/ja
Priority to US14/178,391 priority patent/US9268240B2/en
Publication of JP2014165284A publication Critical patent/JP2014165284A/ja
Application granted granted Critical
Publication of JP6071628B2 publication Critical patent/JP6071628B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70641Focus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】生産性の向上に有利な露光装置を提供する。
【解決手段】基板を保持して移動するステージと、前記ステージに保持された基板のショット領域の計測対象箇所の高さを第1計測点及び第2計測点において計測する計測部と、前記基板を露光領域において露光する露光処理を制御する制御部と、を有し、前記基板の1つのショット領域を露光するために前記ステージを移動させる期間は、前記ステージを加速移動させる加速期間と、前記ステージを等速移動させる等速期間と、を含み、前記制御部は、前記計測部が前記加速期間に前記第1計測点において計測した前記計測対象箇所の高さを設定された補正値で補正した補正結果PL6に基づいて、前記ステージを前記基板の高さ方向に移動させ、前記計測部が前記等速期間に前記第2計測点において計測した前記計測対象箇所の高さが許容範囲を外れた場合に、前記設定された補正値に代わる新たな補正値を取得する。
【選択図】図5

Description

本発明は、露光装置、露光方法及びデバイスの製造方法に関する。
フォトリソグラフィ技術を用いて半導体デバイスなどを製造する際に、マスク(レチクル)と基板とを走査(スキャン)しながらマスクのパターンを基板に転写するステップ・アンド・スキャン方式の露光装置が使用されている。かかる露光装置においては、生産性を向上させるために、基板ステージに保持された基板の面位置(高さ)を、基板ステージが加速(又は減速)している間に計測する技術が提案されている(特許文献1参照)。
但し、基板ステージの加速中に基板の面位置を計測すると、基板ステージの加速によって装置本体の構造体や基板ステージが変形しているため、計測結果に誤差(計測誤差)が含まれてしまう。そこで、計測誤差を補正するための補正値(オフセット)を予め求めておき、基板ステージの加速中に計測された計測結果を補正値で補正しながら基板を露光している。
特開2011−238707号公報
しかしながら、計測誤差は、基板のショット領域のサイズ及び配置やショット領域の露光順序などのレイアウト条件、及び、基板ステージの速度や加速度などの駆動条件によって異なる。従って、レイアウト条件や駆動条件を変更するたびに、計測誤差を補正するための補正値を求めることが必要となる。
また、構造体や基板ステージの変形(変形量)は、温度変化に起因して経時的に変化する。構造体や基板ステージの変形量の経時的な変化は、計測結果に含まれる計測誤差の変化を引き起こすため、計測誤差を補正するための補正値を再度求めることが必要となる。
このような場合、例えば、ショット領域ごとに補正値を求めている場合には、かかる補正値を求めるために、1枚の基板に対する露光処理と同等な時間が必要となるため、生産性が著しく低下してしまう。
本発明は、このような従来技術の課題に鑑みてなされ、生産性の向上に有利な露光装置を提供することを例示的目的とする。
上記目的を達成するために、本発明の一側面としての露光装置は、マスクと基板とを走査しながら前記マスクのパターンを前記基板に転写する露光装置であって、前記基板を保持して移動するステージと、前記ステージに保持された基板のショット領域の計測対象箇所の高さを第1計測点及び第2計測点において計測する計測部と、前記基板を露光領域において露光する露光処理を制御する制御部と、を有し、前記基板の1つのショット領域を露光するために前記ステージを移動させる期間は、前記1つのショット領域を前記露光領域に近づけながら前記ステージを加速移動させる加速期間と、前記加速期間に続いて前記ステージを等速移動させる等速期間と、を含み、前記制御部は、前記計測部が前記加速期間に前記第1計測点において計測した前記計測対象箇所の高さを設定された補正値で補正した補正結果に基づいて、前記ステージを前記基板の高さ方向に移動させ、前記計測部が前記等速期間に前記第2計測点において計測した前記計測対象箇所の高さが許容範囲を外れた場合に、前記設定された補正値に代わる新たな補正値を取得することを特徴とする。
本発明の更なる目的又はその他の側面は、以下、添付図面を参照して説明される好ましい実施形態によって明らかにされるであろう。
本発明によれば、例えば、生産性の向上に有利な露光装置を提供することができる。
本発明の一側面としての露光装置の構成を示す概略図である。 図1に示す露光装置の計測部が基板のショット領域に形成する計測点と、露光スリット(露光領域)との関係を示す図である。 図1に示す露光装置の計測部によるショット領域の計測対象箇所の高さの計測を説明するための図である。 図1に示す露光装置において、基板を露光する露光処理におけるショット領域の計測対象箇所の高さの計測を具体的に説明するための図である。 図1に示す露光装置において、計測部の計測結果に基づく基板ステージの制御を説明するための図である。 図1に示す露光装置における露光処理を説明するためのフローチャートである。 基板の複数のショット領域の配列の一例を示す図である。
以下、添付図面を参照して、本発明の好適な実施の形態について説明する。なお、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。
図1は、本発明の一側面としての露光装置100の構成を示す概略図である。露光装置100は、マスク(レチクル)と基板とを走査しながらマスクのパターンを基板に転写する。具体的には、露光装置100は、露光領域を矩形又は円弧のスリット形状とし、マスクと基板とを相対的に高速走査して大画角を高精度に露光する走査型露光装置(スキャナー)である。露光装置100は、図1に示すように、投影光学系101と、マスクステージ103と、基板ステージ105と、照明光学系106と、主制御部127と、計測部MUとを有する。
図1において、投影光学系101の光軸はAXで示され、投影光学系101の像面はZ軸方向と垂直な関係にある。マスク102は、マスクステージ103に保持される。マスク102のパターンは、投影光学系101の倍率(例えば、1/4、1/2、1/5)で投影され、その像面(パターンの結像面)に像を形成する。
基板104は、例えば、その表面にレジスト(感光剤)が塗布されたウエハである。基板104には、先の露光処理で形成された同一のパターン構造を有する複数のショット領域が配列されている。基板ステージ105は、基板104を保持して移動するステージであって、基板104を吸着(固定)するチャックを有する。また、基板ステージ105は、X軸方向及びY軸方向のそれぞれに水平移動可能なXYステージを含み、投影光学系101の光軸AXと平行なZ軸方向(基板104の高さ方向)に移動することができる。更に、基板ステージ105は、X軸及びY軸の回りに回転可能なレベリングステージやZ軸の回りに回転可能な回転ステージも含む。従って、基板ステージ105は、マスク102のパターンの像を基板104のショット領域に一致させるための6軸駆動系を構成している。基板ステージ105のX軸方向、Y軸方向及びZ軸方向の位置は、基板ステージ105に配置されたバーミラー123と、干渉計124とによって常に計測されている。
計測部MUは、基板104の表面位置(高さ)及び傾きを計測する機能を有し、本実施形態では、基板ステージ105に保持された基板104のショット領域の計測対象箇所の高さを複数の計測点において計測する。計測部MUは、光源110と、コリメータレンズ111と、スリット部材112と、投光側光学系113と、投光側ミラー114と、受光側ミラー115と、受光側光学系116と、ストッパ絞り117と、補正光学系118と、光電変換素子119とを含む。
光源110は、ランプ又は発光ダイオードなどを含む。コリメータレンズ111は、光源110からの光を、断面の強度分布がほぼ均一な平行光に変換する。スリット部材112は、一対のプリズム(プリズム形状の部材)を互いの斜面が相対するように貼り合わせて構成され、かかる貼り合わせ面には、複数の開口(本実施形態では、15個のピンホール)がクロムなどの遮光膜を用いて形成されている。投光側光学系113は、両側テレセントリック系であって、スリット部材112の15個のピンホールを通過した光のそれぞれを、投光側ミラー114を介して、基板104(詳細には、ショット領域の15個の計測対象箇所)に導光する。
投光側光学系113に対して、ピンホールが形成された平面(貼り合わせ面)と基板104の表面を含む平面とは、シャインプルーフの条件を満たすように設定されている。本実施形態において、投光側光学系113からの光の基板104への入射角(光軸AXとなす角)Φは、70度以上である。投光側光学系113を通過した15個の光は、基板上の互いに独立した各計測対象箇所に入射して結像する。また、投光側光学系113からの光は、基板上の15個の計測対象箇所が互いに独立して観察可能なように、X軸方向からXY平面内でθ度(例えば、22.5度)回転した方向から入射する。
受光側光学系116は、両側テレセントリック系である。基板104(各計測対象箇所)で反射された15個の光(反射光)は、受光側ミラー115を介して、受光側光学系116に入射する。ストッパ絞り117は、受光側光学系116の内部に配置され、15個の各計測対象箇所に対して共通に設けられている。ストッパ絞り117は、基板104に形成されたパターンによって発生する高次の回折光(ノイズ光)を遮断する。
受光側光学系116を通過した光は、光軸が互いに平行となっている。補正光学系118は、15個の補正レンズを含み、受光側光学系116を通過した15個の光を、光電変換素子119の光電変換面(受光面)に対して、互いに同一の大きさを有するスポット光として再結像する。また、受光側光学系116、ストッパ絞り117及び補正光学系118は、本実施形態では、基板上の各計測対象箇所と光電変換素子119の光電変換面とが互いに共役となるように倒れ補正を行っている。従って、基板上の各計測対象箇所の局所的な傾きに起因する光電変換面でのピンホール像の位置の変化はなく、各計測対象位置の光軸AXと平行な方向での高さの変化に応じて、光電変換面でピンホール像が変化する。ここで、光電変換素子119は、例えば、15個の1次元CCDラインセンサで構成されるが、2次元センサを複数個配置して構成してもよい。
上述したように、マスク102は、マスクステージ103に保持される。マスクステージ103は、投影光学系101の光軸AXに垂直な面内で、X軸方向(矢印AR1の方向)に一定速度で走査される。この際、マスクステージ103は、マスクステージ103のY軸方向の位置が常に目標位置を維持するように走査(補正駆動)される。マスクステージ103のX軸方向及びY軸方向の位置は、マスクステージ103に配置されたバーミラー120と、干渉計121とによって常に計測されている。
照明光学系106は、エキシマレーザーなどのパルス光を発生する光源からの光を用いて、マスク102を照明する。照明光学系106は、ビーム整形光学系、オプティカルインテグレータ、コリメータレンズ、ミラー及びマスキングブレードなどを含み、遠紫外領域のパルス光を効率的に透過又は反射する。ビーム整形光学系は、入射光の断面形状(寸法)を予め定められた形状に整形する。オプティカルインテグレータは、光の配光特性を均一にしてマスク102を均一な照度で照明する。マスキングブレードは、チップサイズに対応する矩形の照明領域を規定する。かかる照明領域で部分照明されたマスク102のパターンは、投影光学系101を介して、基板104に投影される。
主制御部127は、CPUやメモリなどを含み、露光装置100の全体(基板104を露光する露光処理)を制御する。ここで、基板104の1つのショット領域を露光するために基板ステージ105を移動させる期間は、加速期間と、等速期間と、を含む。加速期間とは、1つのショット領域を露光領域に近づけながら基板ステージ105を加速移動させる期間であり、等速期間とは、加速期間に続いて基板ステージ105を等速移動させる期間である。また、基板ステージ105の加速とは、基板ステージ105の減速(即ち、マイナスの加速度)も含むものとする。
主制御部127は、マスク102のパターンを反映する光を基板104の所定領域に結像させるために、マスク102を保持するマスクステージ103や基板104を保持する基板ステージ105を制御する。例えば、主制御部127は、マスクステージ103や基板ステージ105を介して、マスク102や基板104のXY面内の位置(X軸方向及びY軸方向の位置、及び、Z軸に対する回転)やZ軸方向の位置(X軸及びY軸のそれぞれに対する回転)を調整する。また、主制御部127は、マスクステージ103と基板ステージ105とを、投影光学系101に対して同期させて走査する。
マスクステージ103を矢印AR1の方向に走査する場合、基板ステージ105は、矢印AR2の方向に、投影光学系101の倍率(縮小倍率)だけ補正した速度で走査する。マスクステージ103の走査速度は、照明光学系106におけるマスキングブレードの走査方向の幅、及び、基板104の表面に塗布されたレジストの感度に基づいて、生産性が有利となるように決定される。
マスク102のパターンのXY面内での位置合わせは、マスクステージ103の位置、基板ステージ105の位置、及び、基板104の位置に基づいて行われる。マスクステージ103の位置及び基板ステージ105の位置のそれぞれは、上述したように、干渉計121及び124によって計測され、基板104の位置は、アライメント光学系(不図示)から得られる。
マスク102のパターンのZ軸方向の位置合わせ、即ち、投影光学系101の像面への位置合わせは、計測部MUの計測結果に基づいて、基板ステージ105(に含まれるレベリングステージ)を制御することで実現される。
また、主制御部127は、後述するように、計測部MUが基板ステージ105の加速期間に第1計測点において計測した基板104のショット領域の計測対象箇所の高さを設定された補正値で補正した補正結果に基づいて、基板ステージ105を制御する。具体的には、主制御部127は、かかる補正結果に基づいて、基板ステージ105を基板104の高さ方向に移動させる。この際、加速期間が終了するまでに基板ステージ105を移動させることが好ましい。そして、主制御部127は、計測部MUが基板ステージ105の等速期間に第2計測点において計測した計測対象箇所の高さが許容範囲を外れた場合に、設定された補正値に代わる新たな補正値を取得する。
図2は、計測部MUが基板104のショット領域SRに形成する計測点MP3乃至MP15と、露光スリット(露光領域)ESとの関係を示す図である。露光スリットESは、図2に破線で示す矩形領域である。計測点MP3、MP4及びMP5は、露光スリットESに形成された計測点である。計測点MP6、MP7及びMP8、及び、計測点MP12、MP13及びMP14は、露光スリットESから距離Lp1だけ離れた位置に形成された計測点である。計測点MP9、MP10及びMP11、及び、計測点MP15、MP16及びMP17は、露光スリットESから距離Lp2だけ離れた位置に形成された計測点である。ここで、距離Lp1と距離Lp2との関係は、Lp1<Lp2である。
主制御部127は、露光スリットESと各計測点MP3乃至MP17との距離、及び、基板ステージ105の走査方向及び走査速度に基づいて、計測部MPによる各計測点MP3乃至MP17の計測タイミングを制御することができる。計測点MP3、MP6、MP9、MP12及びMP15は、同一のX座標位置に形成されている。また、計測点MP4、MP7、MP10、MP13及びMP16は、同一のX座標位置に形成されている。更に、計測点MP5、MP8、MP11、MP14及びMP17は、同一のX座標位置に形成されている。従って、例えば、基板ステージ105をY軸方向に走査する場合には、各計測点MP3乃至MP17の計測タイミングを調整することで、ショット領域SRの同一の座標位置を、異なる計測点において計測することができる。
図3(a)乃至図3(d)を参照して、計測部MUによるショット領域SRの計測対象箇所の高さの計測について説明する。図3(a)において、TP2、TP3及びTP4は、ショット領域SRの計測対象箇所である。ショット領域SRの計測対象箇所は、ショット領域SRの全体の高さを計測するために、Y軸方向に対して複数箇所存在する。但し、図3(a)では、簡略化のために、計測対象箇所TP2、TP3及びTP4のみを示している。
例えば、図3(a)に示すように、基板ステージ105を矢印Fに示す方向に走査し、ショット領域SRの計測対象箇所TP2の高さを計測する場合を考える。図3(b)に示す状態において、主制御部127は、計測部MUが計測点MP9において計測対象箇所TP2の高さを計測するように、計測タイミングを制御する。一定時間が経過し、図3(c)に示す状態において、主制御部127は、計測部MUが計測点MP6において計測対象箇所TP2を計測するように、計測タイミングを制御する。更に、一定時間が経過し、図3(d)に示す状態において、主制御部127は、計測部MUが計測点MP3において計測対象箇所TP2を計測するように、計測タイミングを制御する。
同様に、基板ステージ105を矢印Fに示す方向に走査し、ショット領域SRの計測対象箇所TP3の高さを計測する場合を考える。図3(b)に示す状態において、主制御部127は、計測部MUが計測点MP10において計測対象箇所TP3の高さを計測するように、計測タイミングを制御する。一定時間が経過し、図3(c)に示す状態において、主制御部127は、計測部MUが計測点MP7において計測対象箇所TP3を計測するように、計測タイミングを制御する。更に、一定時間が経過し、図3(d)に示す状態において、主制御部127は、計測部MUが計測点MP4において計測対象箇所TP3を計測するように、計測タイミングを制御する。
同様に、基板ステージ105を矢印Fに示す方向に走査し、ショット領域SRの計測対象箇所TP4の高さを計測する場合を考える。図3(b)に示す状態において、主制御部127は、計測部MUが計測点MP11において計測対象箇所TP4の高さを計測するように、計測タイミングを制御する。一定時間が経過し、図3(c)に示す状態において、主制御部127は、計測部MUが計測点MP8において計測対象箇所TP4を計測するように、計測タイミングを制御する。更に、一定時間が経過し、図3(d)に示す状態において、主制御部127は、計測部MUが計測点MP5において計測対象箇所TP4を計測するように、計測タイミングを制御する。
主制御部127は、基板ステージ105を走査する方向(移動方向)に応じて、ショット領域SRの計測対象箇所の高さの計測に用いる計測点を切り替える。例えば、図2を参照するに、基板ステージ105を矢印Fに示す方向に走査する場合、計測点MP6乃至MP11においてショット領域SRの計測対象箇所の高さを計測する。一方、基板ステージ105を矢印Rに示す方向に走査する場合、計測点MP12乃至MP17においてショット領域SRの計測対象箇所の高さを計測する。主制御部127は、これらの計測結果に基づいて、ショット領域SRの計測対象箇所を含む露光対象領域の高さ(Z軸方向の位置)を算出する。そして、主制御部127は、露光対象領域が露光スリットESに到達するまでに、露光対象領域が最適露光位置(マスク102のパターンの結像面)に位置するように、基板ステージ105をZ軸方向(基板104の高さ方向)に移動させる。
図4(a)乃至図4(d)を参照して、基板104を露光する露光処理におけるショット領域の計測対象箇所の高さの計測について具体的に説明する。図4(a)、図4(c)及び図4(d)は、露光スリットES、計測点MP3乃至MP11、ショット領域SR1、SR2及びSR3、計測対象箇所TP4’、TP5’及びTP6’、及び、基板ステージ105の移動軌跡を示す図である。ショット領域SR2の計測対象箇所は、ショット領域SR2の全体の高さを計測するために、Y軸方向に対して複数箇所存在する。但し、図4(a)、図4(c)及び図4(d)では、簡略化のために、計測対象箇所TP4’、TP5’及びTP6’のみを示している。図4(a)、図4(c)及び図4(d)において、ショット領域SR1は、露光処理が行われたショット領域である。ショット領域SR2は、ショット領域SR1の次に露光処理を行うショット領域であり、ショット領域SR3は、ショット領域SR2の次に露光処理を行うショット領域である。また、図4(a)、図4(c)及び図4(d)において、破線で示す矢印は、基板ステージ105の移動軌跡である。図4(b)は、基板ステージ105を図4(a)、図4(c)及び図4(d)に示す移動軌跡で移動させた場合において、基板ステージ105の速度(走査速度)と時間との関係を示す図である。
ショット領域SR1の露光処理が終了すると、基板ステージ105は、Y軸方向に減速しながらX軸方向に移動し、次に露光処理を行うショット領域SR2に移動する。かかる期間(減速期間)は、図4(b)に示す時刻t1から時刻t2までの期間に相当する。
基板ステージ105がY軸方向への加速開始点に到達する(即ち、X軸方向への移動が終了する)と、基板ステージ105を矢印Fに示す方向に加速移動させる。かかる期間(加速期間)は、図4(b)に示す時刻t2から時刻t3までの期間に相当する。
図4(c)に示すように、計測点MP9乃至MP11がショット領域SR2の計測対象箇所TP4’乃至TP6’に到達すると、計測点MP9乃至MP11において計測対象箇所TP4’乃至TP6’の高さをそれぞれ計測する。この際、基板ステージ105の加速期間に計測対象箇所TP4’乃至TP6’の高さを計測することになるため、上述したように、計測結果に計測誤差が含まれてしまう。そこで、主制御部127は、特許文献1に開示された技術などによって、計測誤差を補正するための補正値を予め取得(設定)し、かかる補正値で計測結果を補正する(即ち、計測結果に含まれる計測誤差を除去する)。そして、主制御部127は、計測結果を補正値で補正した結果(補正結果)に基づいて、露光対象領域が最適露光位置に位置するように、基板ステージ105(に含まれるレベリングステージ)の制御を開始する。具体的には、露光スリットESが計測対象箇所TP4’乃至TP6’を含む露光対象領域に到達したときに、基板ステージ105のZ軸方向の位置が最適露光位置となるように、基板ステージ105の制御を開始する。
基板ステージ105の速度(走査速度)が目標速度となると、露光スリットESがショット領域SR2を通過するまで等速での移動を続ける。かかる期間(等速期間)は、図4(b)に示す時刻t3から時刻t4までの期間に相当する。
図4(d)に示すように、計測点MP6乃至MP8がショット領域SR2の計測対象箇所TP4’乃至TP6’に到達すると、計測点MP6乃至MP8において計測対象箇所TP4’乃至TP6’の高さをそれぞれ計測する。この際、基板ステージ105の等速期間に計測対象箇所TP4’乃至TP6’の高さを計測することになるため、計測結果に計測誤差が含まれることはない。従って、ショット領域SR2の計測対象箇所(不図示)の高さを順次計測しながら、主制御部127は、かかる計測結果に基づいて、露光対象領域が最適露光位置に位置するように、基板ステージ105を制御する。そして、露光スリットESがショット領域SR2に到達したときに、主制御部127は、露光を開始し、計測対象箇所の高さの計測と基板ステージ105の制御とを繰り返しながらショット領域SR2の露光処理を行う。
露光スリットESがショット領域SR2を通過すると(即ち、ショット領域SR2の露光処理が終了すると)、主制御部127は、ショット領域SR3を露光するための処理を開始する。具体的には、主制御部127は、基板ステージ105を、Y軸方向に減速しながらX軸方向に移動させ、次に露光処理を行うショット領域SR3に移動させてY軸方向に加速させる。かかる期間は、図4(b)に示す時刻t4以降の期間に相当する。
図5(a)乃至図5(c)を参照して、計測部MUの計測結果に基づく基板ステージ105の制御について説明する。ここでは、図4に示すショット領域SR2の計測対象箇所TP4’乃至TP6’を含む領域が最適露光位置に位置するように基板ステージ105を制御する場合を例に説明する。図5(a)乃至図5(c)では、基板ステージ105のZ軸方向の位置を縦軸に採用し、時間を横軸に採用している。また、BFは、最適露光位置を示している。
図5(a)乃至図5(c)において、時刻t5は、図4(c)に示す状態となる時刻を示している。換言すれば、時刻t5は、基板ステージ105の加速期間において、計測点MP9乃至MP11においてショット領域SR2の計測対象箇所TP4’乃至TP6’の高さをそれぞれ計測する状態となる時刻である。また、時刻t6は、図4(d)に示す状態となる時刻を示している。換言すれば、時刻t6は、基板ステージ105の等速期間において、計測点MP6乃至MP8においてショット領域SR2の計測対象箇所TP4’乃至TP6’の高さをそれぞれ計測する状態となる時刻である。また、時刻t7は、露光スリットESがショット領域SR2に到達する時刻を示している。
図5(a)を参照するに、PL1は、時刻t5において、計測点MP9乃至MP11においてショット領域SR2の計測対象箇所TP4’乃至TP6’の高さをそれぞれ計測した結果を、計測誤差を補正するための補正値で補正した補正結果を示している。補正結果PL1と最適露光位置BFとの差分DF2は、ショット領域SR2の計測対象箇所TP4’乃至TP6’を含む領域が最適露光位置に位置させるために必要となる基板ステージ105のZ軸方向への移動量に相当する。MT3は、補正結果PL1と最適露光位置BFとの差分DF2に基づいて、主制御部127が生成する基板ステージ105の移動軌跡を示している。主制御部127は、基板ステージ105が時刻t7において最適露光位置BFに位置するように、基板ステージ105の移動軌跡MT3を生成する。
一方、図5(b)を参照するに、PL6は、時刻t5において、計測点MP9乃至MP11においてショット領域SR2の計測対象箇所TP4’乃至TP6’の高さをそれぞれ計測した結果を、計測誤差を補正するための補正値で補正した補正結果を示している。但し、補正結果PL6は、補正結果PL1と異なり、補正値が不適切である場合を示している。補正値が不適切となる場合は、例えば、基板ステージ105の速度(走査速度)が、かかる補正値を取得したときと時刻t5とで異なる場合などが考えられる。図5(b)では、補正結果PL6と最適露光位置BFとの差分はDF7となり、基板ステージ105の移動軌跡はMT8となる。従って、補正値が不適切である場合(図5(b))の差分DF7と補正値が適切である場合(図5(a))の差分DF2との差DF9だけデフォーカスが発生し、マスク102のパターンの解像不良を引き起こす原因となる。
上述したように、時刻t6では、基板ステージ105の等速期間に計測対象箇所TP4’乃至TP6’の高さを計測することができるため、計測結果PL4に計測誤差が含まれていない。従って、時刻t6では、計測誤差に影響されることなく、計測対象箇所TP4’乃至TP6’の高さの計測結果PL4と最適露光位置BFとの差分DF10を求めることができる。
本実施形態では、基板ステージ105の等速期間に計測された計測結果PL4と最適露光位置BFとの差分DF10を用いて、時刻t5における補正値の妥当性(補正値が適切であるのか、或いは、不適切であるのか)を判定する。換言すれば、基板ステージ105の等速期間に計測された計測結果PL4が許容範囲を外れていないかどうかを判定する。具体的には、主制御部127は、時刻t6における計測対象箇所TP4’乃至TP6’の高さの計測結果PL4と最適露光位置BFとの差分DF10を算出する。そして、主制御部127は、計測結果PL4と最適露光位置BFとの差分DF10が予め定められた閾値を超えていない場合に、時刻t5における補正値が適切であると判定する。一方、主制御部127は、計測結果PL4と最適露光位置BFとの差分DF10が予め定められた閾値を超えた場合には、時刻t5における補正値が不適切であると判定する。そして、主制御部127は、計測結果PL4と最適露光位置BFとの差分DF10が予め定められた閾値を超えたショット領域の露光を中止し、特許文献1に開示された技術などによって、不適切と判定された補正値に代わる新たな補正値を取得する。
本実施形態によれば、ショット領域の露光対象領域が露光スリットESに到達する前に、補正値の妥当性を判定することができるため、デフォーカスによるマスク102のパターンの解像不良を未然に防止することができる。また、露光処理の間に補正値の妥当性を判定することができるため、定期的な補正値の取得が不要となり、露光装置100の生産性を向上させることができる。更に、基板104のショット領域ごとに補正値の妥当性を判定することができるため、補正値が不適切であるショット領域のみについて、新たな補正値を取得すればよく、露光装置100の生産性を向上させることができる。
ここで、ショット領域SR2の計測対象箇所TP4’乃至TP6’に異物が存在する場合を考える。この場合、時刻t5における補正値が適切であっても、補正結果PL1に基づいて基板ステージ105を制御する際の基板ステージ105のZ軸方向への移動量が大きくなる。基板ステージ105のZ軸方向への移動量が大きくなると、時刻t6における計測結果PL4と最適露光位置BFとの差分が大きくなってしまう。その結果、計測対象箇所TP4’乃至TP6’に存在する異物の影響によって、時刻t5における補正値が不適切であると誤判定する可能性がある。従って、計測対象箇所TP4’乃至TP6’の高さの計測結果から、異物などの影響による異常値(異常な計測結果)を除去するとよい。例えば、計測対象箇所TP4’乃至TP6’の高さの計測結果から近似曲線を求め、かかる近似曲線からの乖離が著しい場合には異常値と判断して除去する方法が考えられる。具体的には、まず、計測点MP9乃至MP11において計測された計測対象箇所TP4’乃至TP6’の高さの計測結果から、最小二乗法によって近似曲線を算出する。そして、算出した近似曲線と計測点MP9乃至MP11のそれぞれにおける計測結果との差を求め、かかる差が予め定められた閾値を超えた場合に、その計測結果を異常値と判断して除去する。
また、ショット領域SR2の平坦度が他のショット領域よりも悪い場合を考える。この場合、時刻t5における補正値が適切であっても、補正結果PL1に基づいて基板ステージ105を制御する際の基板ステージ105のZ軸方向への移動量が大きくなる。基板ステージ105のZ軸方向への移動量が大きくなると、図5(c)に示すように、主制御部127によって生成された基板ステージ105の移動軌跡と、基板ステージ105の実際の移動軌跡MT11との間に差が生じる。図5(c)を参照するに、DF5は、基板ステージ105が移動軌跡MT3で移動する場合において、時刻t6での計測結果PL4と最適露光位置BFとの差分を示している。また、DF13は、基板ステージ105が実際の移動軌跡MT11で移動した場合において、時刻t6での計測結果PL12と最適露光位置BFとの差分を示している。図5(c)に示す差分DF5と差分DF13との差は、基板ステージ105の制御偏差(移動偏差)に相当する。このような基板ステージ105の制御偏差の影響によって、時刻t5における補正値が不適切であると誤判定する可能性がある。従って、計測対象箇所TP4’乃至TP6’の高さの計測結果から、基板ステージ105の制御偏差を除去する必要がある。なお、基板ステージ105の制御偏差は、主制御部127によって生成される基板ステージ105の移動軌跡MT3に基づく基板ステージ105のZ軸方向の位置、及び、干渉計124によって計測される基板ステージ105の位置から算出することができる。
基板ステージ105の制御精度を向上させるために、主制御部127は、基板ステージ105の移動軌跡の生成方法をショット領域ごとに変更する場合がある。例えば、基板ステージ105の移動軌跡を余弦波などの非線形にすることや、基板ステージ105の移動軌跡にローパスフィルタなどのフィルタを適用することがある。従って、基板ステージ105の移動軌跡の生成方法によって、時刻t6での計測対象箇所TP4’乃至TP6’の高さの計測結果が変化することになる。このような場合には、基板ステージ105の移動軌跡の生成方法の違いによる計測結果の変化を除去するとよい。例えば、基板104の露光処理を行う前に、基板ステージ105の移動軌跡の生成方法ごとに、時刻t6での計測対象箇所TP4’乃至TP6’の高さの計測結果を取得する。具体的には、露光処理において最も高い頻度で用いられる生成方法を基準として、計測対象箇所TP4’乃至TP6’の高さの計測結果のそれぞれの差をオフセットとして求める。そして、露光処理において実際に用いる生成方法に応じて、オフセットに基づいて計測対象箇所TP4’乃至TP6’の高さの計測結果を補正する。
また、補正値の妥当性を判定するための閾値は、例えば、等速期間における基板ステージ105の速度(走査速度)及び基板ステージ105に保持された基板104の焦点深度の少なくとも一方に基づいて決定する。具体的には、時刻t6における計測結果PL4と最適露光位置BFとの差分と、露光結果のデフォーカス量との関係を予め取得する。そして、基板104の焦点深度から許容可能なデフォーカス量を決定し、かかるデフォーカス量に基づいて閾値を決定する。
また、図5(a)乃至図5(c)に示す時刻t6から時刻t7までの期間における基板ステージ105のZ軸方向への移動可能量は、時刻t6から時刻t7に至るまでの時間によって変化する。時刻t6から時刻t7に至るまでの時間は、計測点MP6乃至MP8と露光スリットESとの距離、及び、基板ステージ105の速度に依存する。計測点MP6乃至MP8と露光スリットESとの距離は、計測点MP6乃至MP8と露光スリットESとの位置関係が一定であるため、固定値である。一方、基板ステージ105の速度は、基板104の表面に塗布されたレジストの感度などによって異なる。換言すれば、基板ステージ105の速度によって、時刻t6から時刻t7までの期間における基板ステージ105のZ軸方向への移動可能量が変化する。例えば、基板ステージ105の速度が速い場合と比較して、基板ステージ105の速度が遅い場合には、時刻t6から時刻t7までの期間における基板ステージ105のZ軸方向への移動可能量は増加する。換言すれば、時刻t6における計測結果PL4と最適露光位置BFとの差分が大きい場合であっても基板ステージ105の速度が遅ければ、時刻t7において、基板ステージ105を最適露光位置BFに移動させることが可能となる。従って、基板ステージ105の速度に基づいて、補正値の妥当性を判定するための閾値を決定してもよい。
図6を参照して、露光装置100における動作、即ち、露光処理について説明する。かかる露光処理は、上述したように、主制御部127が露光装置100の各部を統括的に制御することで行われる。
S602において、露光装置100に基板104を搬入する。具体的には、搬送ハンド(不図示)によって基板104を搬送し、かかる基板を基板ステージ105に保持させる。
S604において、グローバルアライメントのためのプリアライメント(事前計測及び補正)を行う。具体的には、グローバルアライメントで用いる高倍視野アライメント顕微鏡(不図示)の計測範囲に基板104の上のアライメントマークが収まるように、低倍視野アライメント顕微鏡(不図示)を用いて基板104の回転誤差などのずれ量を計測して補正する。
S606において、グローバルチルトを行う。具体的には、図7に示すように、基板104の複数のショット領域のうちサンプルショット領域SSRの高さ(面位置)を計測部MUによって計測する。そして、計測部MUによって計測されたサンプルショット領域SSRの高さに基づいて、基板104の全体的な傾きを算出して補正する。
S608において、露光中(マスクステージ103や基板ステージ105の走査中)における基板104の高さ計測のための事前調整を行う。事前調整は、例えば、計測部MUの光源110の光量の調整や基板104のショット領域におけるパターン段差の記憶などを含む。また、特許文献1に開示された技術などによって、基板ステージ105の加速期間に基板104のショット領域の対象計測箇所を計測する際に生じる計測誤差を補正するための補正値を求める。
S610において、投影光学系101の調整を行う。具体的には、基板ステージ105に配置された光量センサ及び基準マーク(不図示)やマスクステージ103に配置された基準プレート(不図示)を用いて、投影光学系101の傾きや像面湾曲などを求める。例えば、基板ステージ105をX軸方向、Y軸方向及びZ軸方向に走査したときの露光光の光量の変化を、基板ステージ105に配置された光量センサで計測する。そして、露光光の光量の変化に基づいて、基準プレートに対する基準マークのずれ量を求めて投影光学系101を調整する。
S612において、グローバルアライメントを行う。具体的には、高倍視野アライメント顕微鏡を用いて基板104のアライメントマークを計測し、基板104の全体のずれ量及び各ショット領域で共通なずれ量を求める。アライメントマークを高精度に計測するためには、アライメントマークのコントラストがベストコントラストとなる位置(ベストコントラスト位置)にアライメントマークがなければならない。ベストコントラスト位置の計測には、計測部MU及びアライメント顕微鏡を用いればよい。例えば、予め定められた高さ(Z軸方向の位置)に基板ステージ105を移動させ、アライメント顕微鏡でコントラストを計測するとともに、計測部MUで基板104の高さを計測することを繰り返す。この際、基板ステージ105のZ軸方向の各位置に応じたコントラストの計測結果と基板104の高さの計測結果とを対応づけて保存する。そして、複数のコントラストの計測結果に基づいて、コントラストが最も高くなる基板ステージ105のZ軸方向の位置を求めてベストコントラスト位置とする。
S614において、基板104の露光対象ショット領域の露光を行う。具体的には、計測部MUによって露光対象ショット領域の計測対象箇所の高さを計測し、かかる計測結果に基づいて、基板ステージ105を最適露光位置に移動させながら露光対象ショット領域を露光する。上述したように、基板ステージ105の加速期間に計測対象箇所の高さを計測した場合には、S608で求めた補正値で計測結果を補正する。そして、基板ステージ105の等速期間に計測可能な計測点で、基板ステージ105の加速期間に計測した計測対象箇所(即ち、同一の計測対象箇所)を計測する。基板ステージ105の等速期間に計測した計測対象箇所の高さと最適露光位置との差分が閾値を超えた場合には、補正値が不適切であると判断し、露光対象ショット領域の露光を中止する。また、かかるショット領域に対して、特許文献1に開示された技術などによって、S608で求めた補正値に代わる新たな補正値を取得する。新たな補正値を取得した後、露光対象ショット領域の露光を再度実施する。
S616において、露光装置100から基板104を搬出する。具体的には、露光された基板104を、搬送ハンド(不図示)によって基板ステージ105から受け取って露光装置100の外部に搬送する。
本実施形態では、基板ステージ105の等速期間に計測した計測対象箇所の高さと最適露光位置との差分が閾値を超えた場合には、露光対象ショット領域の露光を中止して、新たな補正値を取得している。但し、差分が閾値を超えるショット領域が数多く存在する場合には、差分が閾値を超えるたびに新たな補正値を取得すると、露光装置100の生産性が低下することがある。そこで、差分が閾値を超えたショット領域を記憶して、全てのショット領域の露光が終了した後で、記憶したショット領域に対して、新たな補正値を取得してもよい。
また、差分が閾値を超えたショット領域と基板とを関連づけて記憶し、複数の基板間において同一のショット領域で差分が閾値を超えた場合に、記憶したショット領域に対して、新たな補正値を取得してもよい。換言すれば、差分が閾値を超えた回数をショット領域ごとに記憶し、かかる回数が予め定められた回数を超えた場合に、新たな補正値を取得してもよい。
また、基板ステージ105の加速期間に基板104のショット領域の対象計測箇所を計測する際に生じる計測誤差を補正するための補正値は、例えば、主制御部127のメモリなどの記憶部に記憶される。そして、主制御部127は、新たな補正値を取得するたびに、記憶部に記憶された補正値を新たな補正値に更新する。
本実施形態では、基板ステージ105の等速期間に計測した計測対象箇所の高さと最適露光位置との差分が閾値を超えた場合には、露光対象ショット領域の露光を中止している。但し、露光対象ショット領域の露光を完全に中止するのではなく、基板ステージ105の移動及び計測部MUによる計測は継続し、かかる計測結果に基づいて新たな補正値を取得してもよい。この場合、基板ステージ105の移動及び計測部MUによる計測は、かかるショット領域を露光するときと同一条件で行い、基板104への露光光の照射は行わない。また、新たな補正値は、以下の式(1)で求めることができる。
Comp=(Foc2−Foc1)−(Stg2−Stg1) ・・・(1)
式(1)において、Compは、新たな補正値であり、Foc1及びFoc2は、基板ステージ105の等速期間に計測可能な計測点で計測した計測対象箇所の高さの計測結果である。また、Stg1及びStg2は、計測対象箇所の高さを計測したときの基板ステージ105のZ軸方向の位置である。なお、Foc1及びFoc2の計測対象箇所は、同一である。
式(1)を図5(a)に示す状態にあてはめると、Foc1は、時刻t5での計測結果PL1から補正値を除去したものに相当する。Foc2は、時刻t6での計測結果PL4に相当する。Stg1は、時刻t5での基板ステージ105のZ軸方向の位置に相当する。Stg2は、時刻t6での基板ステージ105のZ軸方向の位置に相当する。
このように、露光中に計測された計測対象箇所の高さ、及び、基板ステージ105のZ軸方向(基板104の高さ方向)の位置に基づいて、新たな補正値を求めることができる。従って、新たな補正値を取得するために基板ステージ105を別途移動させることが不要となり、露光装置100の生産性を向上させることができる。
また、基板ステージ105の等速期間に計測した計測対象箇所の高さと最適露光位置との差分が閾値を超えた場合に、露光対象ショット領域の露光を中止せずに継続し、上述した式(1)によって新たな補正値を求めてもよい。ショット領域ごとに補正値を取得している場合には、次に露光される基板に対して、適切な補正値が反映されることになる。従って、現在露光されている基板の露光対象ショット領域は、デフォーカスして露光されることになる。そのため、閾値は、デフォーカスによる解像不良が発生しない値に設定しておくとよい。
本実施形態の露光装置100によれば、基板ステージ105の加速期間に基板104のショット領域の対象計測箇所を計測する際に生じる計測誤差を補正するための補正値の取得に要する時間を低減し、生産性を向上させることができる。従って、露光装置100は、高いスループットで経済性よく高品位なデバイス(半導体デバイス、液晶表示デバイス、フラットパネルディスプレイ(FPD)など)を提供することができる。かかるデバイスは、露光装置100を用いてフォトレジスト(感光剤)が塗布された基板(ウエハ、ガラスプレート等)を露光する工程と、露光された基板を現像する工程と、その他の周知の工程と、を経ることによって製造される。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。

Claims (9)

  1. マスクと基板とを走査しながら前記マスクのパターンを前記基板に転写する露光装置であって、
    前記基板を保持して移動するステージと、
    前記ステージに保持された基板のショット領域の計測対象箇所の高さを第1計測点及び第2計測点において計測する計測部と、
    前記基板を露光領域において露光する露光処理を制御する制御部と、を有し、
    前記基板の1つのショット領域を露光するために前記ステージを移動させる期間は、前記1つのショット領域を前記露光領域に近づけながら前記ステージを加速移動させる加速期間と、前記加速期間に続いて前記ステージを等速移動させる等速期間と、を含み、
    前記制御部は、前記計測部が前記加速期間に前記第1計測点において計測した前記計測対象箇所の高さを設定された補正値で補正した補正結果に基づいて、前記ステージを前記基板の高さ方向に移動させ、前記計測部が前記等速期間に前記第2計測点において計測した前記計測対象箇所の高さが許容範囲を外れた場合に、前記設定された補正値に代わる新たな補正値を取得することを特徴とする露光装置。
  2. 前記制御部は、前記計測部が前記等速期間に前記第2計測点において計測した前記計測対象箇所の高さと前記マスクのパターンの結像面との高さとの差分が閾値を超えた場合に、前記新たな補正値を取得することを特徴とする請求項1に記載の露光装置。
  3. 前記閾値は、前記等速期間における前記ステージの速度及び前記ステージに保持された基板の焦点深度の少なくとも一方に基づいて決定されていることを特徴とする請求項2に記載の露光装置。
  4. 前記制御部は、前記計測部が前記等速期間に前記第2計測点において計測した前記計測対象箇所の高さ、及び、前記第2計測点において前記計測対象箇所の高さを計測したときの前記ステージの前記基板の高さ方向の位置に基づいて、前記新たな補正値を求めることを特徴とする請求項1乃至3のうちいずれか1項に記載の露光装置。
  5. 前記制御部は、前記差分が前記閾値を超えた回数が予め定められた回数を超えた場合に、前記新たな補正値を取得することを特徴とする請求項2に記載の露光装置。
  6. 前記制御部は、前記基板のショット領域のうち前記差分が前記閾値を超えたショット領域への前記マスクのパターンの転写を中止することを特徴とする請求項2に記載の露光装置。
  7. 前記補正値を記憶する記憶部を更に有し、
    前記制御部は、前記新たな補正値を取得するたびに、前記記憶部に記憶された補正値を前記新たな補正値に更新することを特徴とする請求項2に記載の露光装置。
  8. マスクと基板とを走査しながら前記マスクのパターンを前記基板に転写する露光方法であって、
    前記基板を露光領域において露光する露光処理を制御するステップを有し、
    前記基板の1つのショット領域を露光するために前記基板を保持するステージを移動させる期間は、前記1つのショット領域を前記露光領域に近づけながら前記ステージを加速移動させる加速期間と、前記加速期間に続いて前記ステージを等速移動させる等速期間と、を含み、
    前記ステップでは、前記加速期間に計測した前記基板のショット領域の計測対象箇所の高さを設定された補正値で補正した補正結果に基づいて、前記ステージを前記基板の高さ方向に移動させ、前記等速期間に計測した前記計測対象箇所の高さが許容範囲を外れた場合に、前記設定された補正値に代わる新たな補正値を取得することを特徴とする露光方法。
  9. 請求項1乃至7のうちいずれか1項に記載の露光装置を用いて基板を露光するステップと、
    露光した前記基板を現像するステップと、
    を有することを特徴とするデバイスの製造方法。
JP2013033869A 2013-02-22 2013-02-22 露光装置、露光方法及びデバイスの製造方法 Active JP6071628B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013033869A JP6071628B2 (ja) 2013-02-22 2013-02-22 露光装置、露光方法及びデバイスの製造方法
US14/178,391 US9268240B2 (en) 2013-02-22 2014-02-12 Exposure apparatus, exposure method, and device fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013033869A JP6071628B2 (ja) 2013-02-22 2013-02-22 露光装置、露光方法及びデバイスの製造方法

Publications (2)

Publication Number Publication Date
JP2014165284A true JP2014165284A (ja) 2014-09-08
JP6071628B2 JP6071628B2 (ja) 2017-02-01

Family

ID=51387808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013033869A Active JP6071628B2 (ja) 2013-02-22 2013-02-22 露光装置、露光方法及びデバイスの製造方法

Country Status (2)

Country Link
US (1) US9268240B2 (ja)
JP (1) JP6071628B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018045147A (ja) * 2016-09-15 2018-03-22 キヤノン株式会社 露光装置及び物品の製造方法
JP2019008029A (ja) * 2017-06-21 2019-01-17 キヤノン株式会社 露光装置及び物品の製造方法
JP2019101187A (ja) * 2017-11-30 2019-06-24 キヤノン株式会社 露光装置、露光方法、および物品の製造方法
KR20200001501A (ko) * 2018-06-27 2020-01-06 캐논 가부시끼가이샤 노광 장치, 노광 방법, 및 물품의 제조 방법
JP2022531800A (ja) * 2019-05-09 2022-07-11 カール・ツァイス・エスエムティー・ゲーエムベーハー 結像デバイス向けの自動焦点方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5734344B2 (ja) * 2013-05-16 2015-06-17 キヤノン株式会社 露光装置および物品の製造方法
JP6688330B2 (ja) * 2018-02-28 2020-04-28 キヤノン株式会社 露光方法、露光装置、決定方法および物品製造方法
JP2023088697A (ja) * 2021-12-15 2023-06-27 キヤノン株式会社 露光装置、露光方法及び物品の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186129A (ja) * 1997-12-19 1999-07-09 Nikon Corp 走査型露光方法及び装置
JP2000003869A (ja) * 1999-06-14 2000-01-07 Nikon Corp 走査露光方法、走査型露光装置、及び前記方法を用いるデバイス製造方法
JP2000114162A (ja) * 1998-10-09 2000-04-21 Canon Inc 露光装置およびデバイス製造方法
JP2001332471A (ja) * 2000-05-19 2001-11-30 Canon Inc 露光装置
JP2003100627A (ja) * 2002-08-28 2003-04-04 Nikon Corp 走査型露光装置及びデバイス製造方法
US20030193655A1 (en) * 2002-03-26 2003-10-16 Hideki Ina Exposure apparatus and method
US20040135981A1 (en) * 2003-01-06 2004-07-15 Hideki Ina Exposure apparatus and method
JP2005203649A (ja) * 2004-01-19 2005-07-28 Nikon Corp 露光方法及び露光装置
JP2008016828A (ja) * 2006-06-09 2008-01-24 Canon Inc 露光装置およびデバイス製造方法
JP2011238707A (ja) * 2010-05-07 2011-11-24 Canon Inc 露光装置、露光方法及びデバイス製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186129A (ja) * 1997-12-19 1999-07-09 Nikon Corp 走査型露光方法及び装置
JP2000114162A (ja) * 1998-10-09 2000-04-21 Canon Inc 露光装置およびデバイス製造方法
JP2000003869A (ja) * 1999-06-14 2000-01-07 Nikon Corp 走査露光方法、走査型露光装置、及び前記方法を用いるデバイス製造方法
JP2001332471A (ja) * 2000-05-19 2001-11-30 Canon Inc 露光装置
US20030193655A1 (en) * 2002-03-26 2003-10-16 Hideki Ina Exposure apparatus and method
JP2003100627A (ja) * 2002-08-28 2003-04-04 Nikon Corp 走査型露光装置及びデバイス製造方法
US20040135981A1 (en) * 2003-01-06 2004-07-15 Hideki Ina Exposure apparatus and method
JP2005203649A (ja) * 2004-01-19 2005-07-28 Nikon Corp 露光方法及び露光装置
JP2008016828A (ja) * 2006-06-09 2008-01-24 Canon Inc 露光装置およびデバイス製造方法
JP2011238707A (ja) * 2010-05-07 2011-11-24 Canon Inc 露光装置、露光方法及びデバイス製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018045147A (ja) * 2016-09-15 2018-03-22 キヤノン株式会社 露光装置及び物品の製造方法
KR20180030431A (ko) * 2016-09-15 2018-03-23 캐논 가부시끼가이샤 노광 장치 및 물품 제조 방법
US10209631B2 (en) 2016-09-15 2019-02-19 Canon Kabushiki Kaisha Exposure apparatus and method of manufacturing article
US10481508B2 (en) 2016-09-15 2019-11-19 Canon Kabushiki Kaisha Exposure apparatus and method of manufacturing article
KR102222673B1 (ko) * 2016-09-15 2021-03-05 캐논 가부시끼가이샤 노광 장치 및 물품 제조 방법
JP2019008029A (ja) * 2017-06-21 2019-01-17 キヤノン株式会社 露光装置及び物品の製造方法
JP2019101187A (ja) * 2017-11-30 2019-06-24 キヤノン株式会社 露光装置、露光方法、および物品の製造方法
KR20200001501A (ko) * 2018-06-27 2020-01-06 캐논 가부시끼가이샤 노광 장치, 노광 방법, 및 물품의 제조 방법
KR102520864B1 (ko) 2018-06-27 2023-04-13 캐논 가부시끼가이샤 노광 장치, 노광 방법, 및 물품의 제조 방법
JP2022531800A (ja) * 2019-05-09 2022-07-11 カール・ツァイス・エスエムティー・ゲーエムベーハー 結像デバイス向けの自動焦点方法
JP7397096B2 (ja) 2019-05-09 2023-12-12 カール・ツァイス・エスエムティー・ゲーエムベーハー 結像デバイス向けの自動焦点方法
US11947185B2 (en) 2019-05-09 2024-04-02 Carl Zeiss Smt Gmbh Autofocusing method for an imaging device

Also Published As

Publication number Publication date
US9268240B2 (en) 2016-02-23
JP6071628B2 (ja) 2017-02-01
US20140240687A1 (en) 2014-08-28

Similar Documents

Publication Publication Date Title
JP6071628B2 (ja) 露光装置、露光方法及びデバイスの製造方法
KR101444981B1 (ko) 노광 장치, 노광 방법 및 디바이스 제조 방법
US10678152B2 (en) Layout method, mark detection method, exposure method, measurement device, exposure apparatus, and device manufacturing method
US9639008B2 (en) Lithography apparatus, and article manufacturing method
JP7147738B2 (ja) 計測装置及び計測方法、並びに露光装置
JP3880155B2 (ja) 位置決め方法及び位置決め装置
JP6267530B2 (ja) 露光装置、および物品の製造方法
CN109100920B (zh) 曝光装置以及物品的制造方法
JP6327861B2 (ja) リソグラフィ装置、リソグラフィ方法、および物品の製造方法
JP2017215556A (ja) マーク検出装置、露光装置、デバイス製造方法、及びマーク検出方法
JP6806509B2 (ja) 露光装置及び物品の製造方法
JP5692949B2 (ja) 露光装置
JP2014116406A (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2010258085A (ja) 面位置検出方法
JP2011155040A (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2014143429A (ja) 露光装置、露光方法及びデバイス製造方法
JP2009194247A (ja) 露光装置
JP5445905B2 (ja) 位置合わせ方法及び装置、並びに露光方法及び装置
JP6053316B2 (ja) リソグラフィー装置、および、物品製造方法
KR20220117808A (ko) 노광 장치, 및 물품의 제조 방법
JP2021056416A (ja) 露光装置、露光方法、および物品の製造方法
JP2018077288A (ja) 露光装置及び物品の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161227

R151 Written notification of patent or utility model registration

Ref document number: 6071628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151