KR20190125948A - 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법 - Google Patents

4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법 Download PDF

Info

Publication number
KR20190125948A
KR20190125948A KR1020190049887A KR20190049887A KR20190125948A KR 20190125948 A KR20190125948 A KR 20190125948A KR 1020190049887 A KR1020190049887 A KR 1020190049887A KR 20190049887 A KR20190049887 A KR 20190049887A KR 20190125948 A KR20190125948 A KR 20190125948A
Authority
KR
South Korea
Prior art keywords
dobpdc
formula
reaction
solvent
synthesis
Prior art date
Application number
KR1020190049887A
Other languages
English (en)
Other versions
KR102276691B1 (ko
Inventor
홍창섭
최종혁
김정은
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to US17/050,925 priority Critical patent/US11465959B2/en
Priority to PCT/KR2019/005212 priority patent/WO2019212233A1/ko
Publication of KR20190125948A publication Critical patent/KR20190125948A/ko
Application granted granted Critical
Publication of KR102276691B1 publication Critical patent/KR102276691B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/15Preparation of carboxylic acids or their salts, halides or anhydrides by reaction of organic compounds with carbon dioxide, e.g. Kolbe-Schmitt synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/50Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/01Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups
    • C07C65/105Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups polycyclic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 하기 [반응식 1]에 따라 하기 [화학식 2]로 표시되는 화합물을 염기와 반응시켜 하기 [화학식 1]로 표시되는 화합물을 제조하는 단계;를 포함하는 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법에 관한 것이다:
[반응식 1]
Figure pat00031
.
[화학식 2] [화학식 1]
본 발명에 따르면, 반응과정 중에 이산화탄소를 추가적으로 사용할 필요가 없어 반응시 내부압력이 낮아지며, 보다 낮은 온도에서 반응을 진행시킬 수 있을 뿐만 아니라, 생성물이 단단하게 굳는 현상이 없어 합성 수율이 현저히 향상되며, 순수 리간드를 얻기 위한 추가적인 과정도 필요하지 않아 H4dobpdc를 대량으로 합성할 수 있다.

Description

4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법{Method of preparing 4,4′-dihydroxy-[1,1′-biphenyl-3,3′-dicarboxylic acid]}
본 발명은 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법에 관한 것이다.
산업혁명 이후 화력발전소의 배가스에서 배출되는 이산화탄소로 인해 야기된 지구 온난화가 범지구적인 환경문제로 대두됨에 따라 이산화탄소를 선택적으로 흡착할 수 있는 흡착제의 개발에 관심이 모아지고 있다. 그 중, 다이아민으로 기능화된 금속-유기 골격체 (Metal-Organic Frameworks; MOF)인 diamine-M2(dobpdc)는 발생하는 이산화탄소를 포집하는데 있어서 매우 효과적인 물질로 알려져 있는바, 급증하고 있는 이산화탄소의 포집을 위한 diamine-M2(dobpdc)의 대량 생산이 요구되고 있다. 또한, M2(dobpdc)의 대량 생산을 위해서는 골격체로 사용되는 유기 화합물인 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산](이하, H4(dobpdc)로 표시)의 대량 생산이 필수적이다.
관련하여, 종래기술로서 TCB(Trichlorobenzene)를 용매로 하고, KHCO3 염기가 첨가된 조건하에서 4,4'-Biphenol([1,1'-Biphenyl]-4,4'-diol)로부터 H4(dobpdc)를 합성하는 방법이 보고된바 있으나(비특허문헌 1 및 도 1 참조), 상기 방법은 대량 생산을 위한 300 mL 이상의 대용량 반응기에 적용시 생성물이 단단하게 굳는 현상이 발생하여 반응 간 교반을 방해하여 반응을 완벽하게 진행시키지 못하기 때문에 수율이 매우 낮을 뿐만 아니라, 반응 시 이산화탄소 가스를 추가로 공급해야 하기 때문에 내부 압력이 높아지며, 반응에 필요한 온도 또한 높아 반응 안정성이 떨어진다는 점, 순수 리간드를 얻기 위해 복잡한 분리 과정이 요구된다는 점 등의 단점이 있어 대량 생산에 적합하지 않다.
따라서, 전술한 문제를 해결함으로써 H4dobpdc를 대량으로 합성할 수 있는 새로운 방법이 요구되고 있다.
McDonald, T. M.; Lee, W. R.; Mason, J. A.; Weirs, B. M.; Hong, C. S.; Long, J. R. "Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg2(dobpdc)", J. Am. Chem. Soc. 2012, 134, 7056)
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 본 발명에서는 H4dobpdc를 대량으로 합성할 수 있는 새로운 제조방법을 제공하고자 한다.
본 발명은 상기 과제를 해결하기 위하여,
하기 [반응식 1]에 따라 하기 [화학식 2]로 표시되는 화합물을 염기와 반응시켜 하기 [화학식 1]로 표시되는 화합물을 제조하는 단계;를 포함하는 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법을 제공한다:
[반응식 1]
Figure pat00001
[화학식 2] [화학식 1]
상기 [반응식 1]은, 하기 [화학식 3]으로 표시되는 용매하에서 수행된다:
[화학식 3]
Figure pat00002
상기 [화학식 3]에서,
R1은 H 또는 -(CH2)n-CH3이고, R2는 -(CH2)m-CH3이며, R3는 -(CH2)p-CH3이고, n, m, p는 각각 0 내지 20의 정수이다.
본 발명에 따르면, 상기 염기는 K2CO3, Na2CO3, Li2CO3, KHCO3, NaHCO3, LiHCO3 및 KOH로 이루어진 군에서 선택될 수 있다.
본 발명에 따르면, 상기 [화학식 3]으로 표시되는 용매는 하기 [화학식 4] 내지 [화학식 7]로 표시되는 화합물 중에서 선택될 수 있다:
[화학식 4] [화학식 5]
Figure pat00003
Figure pat00004
[화학식 6] [화학식 7]
Figure pat00005
Figure pat00006
.
본 발명에 따르면, 상기 염기는 상기 [화학식 2]로 표시되는 화합물 기준 2 내지 4 당량으로 사용될 수 있다.
본 발명에 따르면, 상기 [화학식 3]으로 표시되는 용매는 상기 [화학식 2]로 표시되는 화합물 기준 1 내지 30 당량으로 사용될 수 있다.
본 발명에 따르면, 상기 [반응식 1]은 170 내지 230 ℃의 온도하에서 수행될 수 있다.
본 발명에 따르면, 상기 [반응식 1]은 12시간 이상 수행될 수 있다.
본 발명에 따르면 반응과정 중에 이산화탄소를 추가적으로 사용할 필요가 없어 반응시 내부압력이 낮아지며, 보다 낮은 온도에서 반응을 진행시킬 수 있을 뿐만 아니라, 생성물이 단단하게 굳는 현상이 없어 합성 수율이 현저히 향상되며, 순수 리간드를 얻기 위한 추가적인 과정도 필요하지 않아 H4dobpdc를 대량으로 합성할 수 있다.
도 1은 종래 H4dobpdc의 제조 및 분리 과정을 도식화한 것이다.
도 2는 본 발명에 따른 H4dobpdc의 제조 및 분리 과정을 도식화한 것이다.
도 3은 본 발명에 따라 제조된 H4dobpdc의 핵자기 공명 분광(nuclear magnetic resonance spectroscopy) 분석 결과를 나타낸 것이다.
도 4는 종래 H4dobpdc 합성법과 본 발명에 따른 H4dobpdc의 합성법에 따라 제조된 리간드의 이미지를 나타낸 것이다.
도 5는 종래 H4dobpdc 합성법과 본 발명에 따른 H4dobpdc의 합성법의 반응시 반응기의 온도-압력 그래프를 나타낸 것이다.
도 6은 본 발명에 따라 H4dobpdc 합성시 염기의 종류에 따른 합성 수율을 측정한 결과를 나타낸 것이다.
도 7은 본 발명에 따라 H4dobpdc 합성시 염기의 당량에 따른 합성 수율을 측정한 결과를 나타낸 것이다.
도 8은 본 발명에 따라 H4dobpdc 합성시 반응 온도에 따른 합성 수율을 측정한 결과를 나타낸 것이다.
도 9는 본 발명에 따라 H4dobpdc 합성시 반응 시간에 따른 합성 수율을 측정한 결과를 나타낸 것이다.
도 10은 본 발명에 따라 H4dobpdc 합성시 사용된 용매의 당량에 따른 합성 수율을 측정한 결과를 나타낸 것이다.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명은 하기 [반응식 1]에 따라 하기 [화학식 2]로 표시되는 화합물을 염기와 반응시켜 하기 [화학식 1]로 표시되는 화합물을 제조하는 단계;를 포함하는 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법을 제공한다:
[반응식 1]
Figure pat00007
[화학식 2] [화학식 1]
상기 [반응식 1]은, 하기 [화학식 3]으로 표시되는 용매하에서 수행된다:
[화학식 3]
Figure pat00008
상기 [화학식 3]에서,
R1은 H 또는 -(CH2)n-CH3이고, R2는 -(CH2)m-CH3이며, R3는 -(CH2)p-CH3이고, n, m, p는 각각 0 내지 20의 정수이다.
상기 [반응식 1]에서와 같이, 본 발명은 출발물질인 4,4'-Biphenol([1,1'-Biphenyl]-4,4'-diol)로부터 H4(dobpdc)를 합성함에 있어서, 상기 [화학식 3]으로 표시되는 아마이드 계열의 용매를 사용한다. 이와 같이 아마이드 계열의 용매를 사용할 경우, 반응물인 4,4'-Biphenol의 용해도가 향상되기 때문에 생성물의 슬러지화로 인한 굳는 현상을 해결할 수 있을 뿐만 아니라, 용매 내에 반응이 진행되지 않은 4,4'-Biphenol이 녹아 있기 때문에, ether를 이용한 생성물 분리과정이 필요하지 않을 뿐만 아니라 여과 후 바로 산성화가 가능하다는 장점이 있다.
이때, 상기 아마이드 계열의 용매는 상기 [화학식 3]으로 표시되는 화합물로서, 반응물인 4,4'-Biphenol을 용해시킬 수 있는 것이라면 모두 가능하며, 바람직하게는 상기 [화학식 3]으로 표시되는 용매는 하기 [화학식 4]로 표시되는 N,N-Dimethylformamide(DMF), 하기 [화학식 5]로 표시되는 N,N-Dimethylacetamide(DMAc), 하기 [화학식 6]으로 표시되는 N,N-Diethylformamide(DEF), 하기 [화학식 7]로 표시되는 N,N-Dibutylformamide 중에서 선택될 수 있으며, 더욱 바람직하게는 Dimethylformamide(DMF)일 수 있다:
[화학식 4] [화학식 5]
Figure pat00009
Figure pat00010
[화학식 6] [화학식 7]
Figure pat00011
Figure pat00012
.
이때, 상기 용매는 반응물인 4,4'-Biphenol 기준 1 내지 30 당량으로 사용하는 것이 바람직하며, 6 내지 20 당량으로 사용하는 것이 더욱 바람직하다.
또한, 본 발명은 염기가 첨가된 조건하에서, 상기 [반응식 1]을 수행하는데, 이때, 상기 염기로는 K2CO3, Na2CO3, Li2CO3, KHCO3, NaHCO3, LiHCO3 및 KOH로 이루어진 군에서 선택되는 카르보네이트 계열의 화합물을 사용하는 것이 바람직하다. 특히, 하기 실시예로부터 알 수 있는 바와 같이, 반응에 사용되는 염기로서 K2CO3, Na2CO3, 또는 Li2CO3를 사용할 경우에는 이산화탄소 가스의 주입이 요구되지 않는바, 반응기의 내부 압력이 높아지는 단점을 해결할 수 있으며, 이에 의해 낮은 온도에서 반응이 수행될 수 있는바, 반응 간 안정성을 향상시킬 수 있다는 장점이 있다.
이때, 상기 염기는 반응물인 4,4'-Biphenol 기준 2 내지 4 당량으로 사용하는 것이 바람직하며, 3 내지 4 당량으로 사용하는 것이 더욱 바람직하다.
또한, 상기 [반응식 1]에 따른 H4(dobpdc) 합성 반응은 170 내지 230 ℃의 온도하에서 12시간 이상 수행하는 것이 바람직하다.
본 발명에서는 전술한 바와 같이, [반응식 1]에 따른 H4(dobpdc) 합성 반응을 수행함에 있어, 아마이드 계열의 용매 및 카르보네이트 계열의 염기를 사용함으로써 반응 안정성 및 합성 수율을 현저하게 향상시킬 수 있으며, 특히, 본 발명에서는 H4(dobpdc) 대량 합성을 위한 최적 공정 조건을 수립하였는바, 하기 실시예로부터 알 수 있는 바와 같이, 아마이드 계열의 용매로서 반응물인 4,4'-Biphenol 기준 16.1 내지 18.4 당량의 DMF를 사용하고, 카르보네이트 계열의 염기로서 반응물인 4,4'-Biphenol 기준 3 당량의 K2CO3를 사용하여 200 ℃의 온도하에서 72시간 이상 반응을 수행할 경우, 90% 이상의 수율로 H4dobpdc를 대량으로 합성할 수 있다.
[실시예]
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
비교예 1. 종래 방법을 이용한 H 4 dobpdc 합성( 23 mL 반응기 사용)
종래 문헌(McDonald, T. M.; Lee, W. R.; Mason, J. A.; Weirs, B. M.; Hong, C. S.; Long, J. R. "Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg2(dobpdc)", J. Am. Chem. Soc . 2012, 134, 7056)에 기재된 방법(도 1 참고)에 따라 23 mL 반응기를 사용하여 H4dobpdc를 합성하였다. 구체적으로, 반응물질로 4,4'-Biphenol과 3 당량의 KHCO3를 사용하며 반응용매로 1,2,4-Trichlorobenzene을 사용하였다. 사용되는 반응물을 강철로 된 23 mL 용기에 넣은 후 드라이아이스를 추가로 넣어주었고, 255 ℃에서 17 h간 용매열합성법으로 반응시켰다. 반응이 끝난 후 생성된 고체를 여과하여 용매와 분리시킨 후 ether로 세척하고, 세척이 완료된 고체를 증류수에 용해시켯다. 이후 염산을 이용하여 산성화시킨 후 생성된 리간드를 여과하고, 아세톤과 증류수를 이용하여 재결정화시켰다. 생성된 리간드의 수율은 40%로 나타났다.
비교예 2. 종래 방법을 이용한 H 4 dobpdc 합성( 300 mL 반응기 사용)
반응물질로 4,4'-Biphenol과 3 당량의 KHCO3를 사용하며 반응용매로 1,2,4-Trichlorobenzene을 사용하였다. 반응이 시작하기 전 이산화탄소가스를 20 bar 이상 강철로 된 300 mL 용기에 넣어주었고, 250 ℃에서 72 h간 교반하며 용매열합성법으로 반응시켰다. 반응이 끝난 고체 생성물을 남아있는 용매와 분리하기 위해서 여과하였고, 여과 후 불순물을 제거하기 위하여 ether에 용해시켰다. 남은 용매와 불순물을 ether로 모두 제거한 후 다시 여과하여 고체생성물을 얻었고, 상기 고체 생성물을 증류수에 녹여 교반시켰다. 교반이 완료된 용액을 여과하여 여과된 용매를 염산을 이용하여 산성화시켰다. 산성화된 생성물을 증류수로 중성이 되기까지 여러 번 세척하였고, 세척된 물질을 오븐에 12 h 이상 건조시켜 흰색의 리간드를 얻었다. 생성된 리간드의 수율은 10%로 나타났다.
실시예 1. 본 발명에 따른 H 4 dobpdc 합성( 300 mL 반응기 사용)
도 2에 기재된 방법에 따라 H4dobpdc를 합성하였다. 구체적으로, 300 mL 강철로 된 반응기에 4,4'-Biphenol([1,1'-Biphenyl]-4,4'-diol) 11.20 g 과 3 당량의 K2CO3 24.93 g, DMF(N,N-Dimethylformamide) 68 mL를 넣었다. 반응기를 200 ℃에서 70 h 조건에서 교반하며 용매열합성법으로 반응시켰다. 이렇게 얻어진 생성물은 연분홍색으로 나타나며 슬러지 형태를 나타낸다. 용매로 사용되었던 DMF 역시 붉은색으로 나타났다. 슬러지 상태의 연분홍색 생성물을 여과기를 이용하여 DMF 와 분리하였고, 분리 후에 연분홍색의 슬러지 상태의 생성물을 염산을 이용하여 산성화시켰다. 산성화 반응이 끝난 생성물은 흰색을 띄게됨을 확인하였다. 이후 산성화된 생성물을 증류수로 중성이 되기까지 여러 번 세척하고, 세척된 물질을 오븐에 12 h 이상 건조시켰다. 건조가 완료된 물질을 핵자기 공명 분광법을 이용하여 확인하였으며(도 3), 수율은 약 95%로 나타났다.
시험예 1. 생성된 H 4 dobpdc의 슬러지화 여부 확인
상기 비교예 1, 2에 따라 반응에 사용하는 용매를 Trichlorobenzene (이하 TCB)를 사용 시 반응 후 생성물이 단단하게 굳는다는 것을 확인하였다(도 4의 좌측 이미지). 이러한 생성물이 굳는 현상은 반응의 크기가 클수록 큰 영향을 미치게 되었는데 생성물의 굳음으로 인하여 반응 간 교반을 방해하게 되어 반응이 원활하게 진행되지 않았으며, 이는 10-40%의 낮은 수율로 나타났다. 또한 TCB를 제거하기 위해서 ether로 분리해야 하는 과정도 수반되었다.
반면, 본 발명의 상기 실시예 1에 따라 DMF를 용매로 사용할 경우 반응물인 4,4'-Biphenol이 DMF에 잘 용해되기 때문에 더 많은 양의 합성을 시도할 수 있었고, 생성물의 슬러지화로 인하여 굳는 현상이 나타나지 않음을 확인하였다(도 5의 우측 이미지). 이러한 슬러지화로 인해, 대형반응기에서도 반응이 완벽하게 진행될 수 있었고, 이는 95% 이상의 수율로 나타났다. 또한 용매 안에 반응이 진행되지 않은 4,4'-Biphenol이 녹아 있기 때문에 ether를 이용한 분리과정이 필요하지 않을 뿐만 아니라 여과 후 바로 산성화가 가능하다는 것을 확인하였다.
시험예 2. H 4 dobpdc 합성 반응의 내부 압력 및 반응 온도 확인
본 발명의 상기 실시예 1에 따른 반응은 염기로 K2CO3를 사용하였다. 본 발명과 같이 염기로 K2CO3를 사용할 경우 염기로 KHCO3를 사용하는 경우와 달리 추가적인 이산화탄소 가스의 주입이 요구되지 않았다. 구체적으로, 염기로 KHCO3를 사용할 경우에는 추가 주입되는 이산화탄소가 4,4'-Biphenol의 카르복시화를 진행하기 때문에 반응기 내부압력이 높아지는 것으로 확인되었다(최대 압력 50 bar 이상, 안전을 위해 반응기의 압력이 50 bar가 되면 자동으로 배출되는 장치를 부착). 염기로 K2CO3를 사용할 경우에는 카르복시화시에 필요한 이산화탄소 공급원이 CO3 -, HCO3 -, H2CO3 형태로 용매 내에서 존재할 수 있으며, 염기로 KHCO3를 사용할 경우에는 카르복시화시에 필요한 이산화탄소 공급원이 HCO3 -, H2CO3 형태로 존재할 수 있다. H2CO3가 분해될 때 이산화탄소가 발생되며 카르복시화에 사용되는데, KHCO3를 염기로 사용할 경우에는 모든 H2CO3가 급진적으로 이산화탄소로 분해되며, 용매 내에 녹아있는 이산화탄소보다 기체 상태의 이산화탄소로 존재하게 되므로, 추가적인 이산화탄소를 용매에 녹여주어 반응을 진행시켜야 하는 반면, K2CO3를 염기로 사용할 경우에는 HCO3 -에서 H2CO3로 점진적으로 반응이 진행되기 때문에 H2CO3가 분해되어 발생되는 이산화탄소 역시 점진적으로 발생된다. 따라서, 용매 내에 적정량의 이산화탄소가 녹아 있을 수 있으며, 추가적인 이산화탄소 공급없이 반응이 진행될 수 있다.
이러한 이유로, 본 발명의 상기 실시예 1과 같이 염기로 K2CO3를 사용할 경우에는 이산화탄소의 주입이 요구되지 않았는바, 최대 압력이 43 bar로 내부 압력이 낮아지게 되었으며, 이로 인해 반응 안정성이 확보됨을 확인하였다. 또한, 이러한 염기의 변화로 인해 종래 250 ℃의 반응온도를 200 ℃로 낮출 수 있음을 확인하였다(도 5).
시험예 3. H 4 dobpdc 합성의 최적 조건 도출
아래의 순서에 따라, H4dobpdc 합성의 최적 조건을 도출하기 위하여, 종래 보고된 방법의 문제점을 확인하고, 이로부터 수율 향상에 영향을 미치는 요소를 도출 및 그 최적 조건을 확인하기 위한 실험을 진행하였다.
(1) 비교예 1에 따른 합성법의 반응 시간에 따른 합성 수율 측정
비교예 1에 따라 H4dobpdc를 합성하되, 하기 표 1에 기재된 바와 같이, 반응 시간을 변화시켜가면서 H4dobpdc의 합성 수율을 측정하였다.
Figure pat00013
측정 결과, 종래 문헌에 보고된 바와 같이 반응 시간을 17 시간으로 할 경우, 40%의 낮은 수율을 나타내었는바, 대량 합성에 적합하지 않다는 것을 확인하였다. 또한, 반응 시간이 증가될 수록 수율이 상승하며, 특히 반응 시간이 72시간일 경우 합성 수율이 96%로 향상됨을 확인하였으며, 이하에서는 반응 시간을 72 시간으로 설정하여 비교예 2에 따른 합성을 수행하였다.
(2) 비교예 2에 따른 합성법의 합성 수율 측정
비교예 2에 따라 H4dobpdc를 합성하되, 하기 표 2에 기재된 바와 같이, 상기 (1)에서 도출된 최적 반응시간을 적용하여 H4dobpdc의 합성 수율을 측정하였다.
Figure pat00014
측정 결과, 상기 (1)에서 도출된 최적 반응 시간을 300 mL의 반응기에 적용시 TCB 사용으로 인해 생성물이 단단하게 굳는 현상으로 인해 반응이 원활하게 진행되지 않아 합성 수율이 10-20%로 현저하게 감소함을 확인하였다. 따라서, 이하에서는 반응에 사용되는 용매를 변경하면서, H4dobpdc의 합성 수율을 측정하였다.
(3) 용매의 종류에 따른 H 4 dobpdc의 합성 수율 측정
하기 표 3에 기재된 바와 같이, 반응 용매로 각각 TCB, MeOH, H2O+MeOH, DMF를 사용하여 H4dobpdc의 합성 반응을 수행하였다.
Figure pat00015
측정 결과, 사용되는 용매의 끓는점에 따라 반응온도가 변화함을 확인하였으며(TCB 끓는점: 210 ℃, DMF 끓는점: 150 ℃), DMF를 용매로 사용시 H4dobpdc 합성이 가능할 뿐만 아니라, 생성물이 슬러지 상태로 만들어지는 것을 확인하였다. 따라서, 이하에서는 반응에 사용되는 염기를 변경하면서, H4dobpdc의 합성 수율을 측정하였다.
(4) 염기의 종류에 따른 H 4 dobpdc의 합성 수율 측정
하기 표 4에 기재된 바와 같이, 염기로 각각 KHCO3, NaHCO3, NaOME, KOH, K2CO3를 사용하여 H4dobpdc의 합성 반응을 수행하였다.
Figure pat00016
측정 결과, K2CO3를 염기로 사용할 경우 95% 이상의 높은 수율로 H4dobpdc가 합성됨을 확인하였다. 따라서, 이하에서는 용매로 DMF를 사용하고, 염기로 K2CO3를 사용하되, 반응기의 용량을 300 mL로 변경한 후, H4dobpdc의 합성 수율을 측정하였다.
(5) 반응기의 용량에 따른 H 4 dobpdc의 합성 수율 측정
하기 표 5에 기재된 바와 같이, 300 mL의 반응기에서 반응을 진행하되, 용매로 각각 TCB와 DMF를 사용하고, 염기로 각각 KHCO3와 K2CO3를 사용하여 H4dobpdc의 합성 수율을 측정하였다.
Figure pat00017
측정 결과, 용매로 DMF를 사용하고, 염기로 K2CO3를 사용할 경우 대용량 반응기에서도 생성물이 슬러지화되어 굳는 현상이 발생하지 않아 반응이 원활하게 진행되어 96% 이상의 높은 수율로 H4dobpdc가 합성될 뿐만 아니라, 반응 온도가 낮아짐을 확인하였다. 따라서, 이하에서는 카복실레이션 소스인 이산화탄소 가스의 주입 여부에 따른 H4dobpdc의 합성 수율을 측정하였다.
(6) 이산화탄소 가스 주입 여부에 따른 H 4 dobpdc의 합성 수율 측정
하기 표 6에 기재된 바와 같이, 300 mL의 반응기에서 반응을 진행시 용매로 DMF를 사용하고, 염기로 K2CO3를 사용하되, 카복실레이션 소스인 이산화탄소 가스의 주입 여부에 따른 H4dobpdc의 합성 수율을 측정하였다.
Figure pat00018
측정 결과, 용매로 DMF를 사용하고, 염기로 K2CO3를 사용할 경우 K2CO3에서 발생하는 CO2가 4,4’-biphenol의 carboxylation를 가능하게 하여, 이산화탄소 가스의 주입 여부에 상관없이 95% 이상의 높은 수율로 H4dobpdc가 합성됨을 확인하였다. 또한, 이산화탄소 가스 주입이 없을 경우 반응기의 내부 압력이 최대 43 bar로 낮아진다는 것을 확인하였다. 이하에서는 H4dobpdc의 합성의 최적 조건을 도출하기 위하여, 300 mL의 반응기에서 반응을 진행하되, 염기의 종류, 염기의 당량, 반응 온도, 반응 시간, 용매의 종류, 용매의 당량에 따른 H4dobpdc의 합성 수율을 측정하였다.
(7) 염기의 종류에 따른 H 4 dobpdc의 합성 수율 측정
하기 표 7에 기재된 바와 같이, 300 mL의 반응기에서 반응을 진행시 용매로 DMF를 사용하되, 염기로 각각 3 당량의 KOH, KHCO3, K2CO3를 사용하여 H4dobpdc의 합성 반응을 수행하였다.
Figure pat00019
측정 결과, 용매로 DMF를 사용할 경우에는, 염기로 KOH, KHCO3, K2CO3를 사용한 모든 경우에서 60% 이상의 합성 수율이 나타났으며, 특히 염기로 K2CO3를 사용한 경우에는 이산화탄소 가스의 주입이 요구되지 않으며, 43 bar 이하의 낮은 내부 압력하에서 91% 이상의 높은 수율로 H4dobpdc가 합성됨을 확인하였다.
(8) 염기의 당량에 따른 H 4 dobpdc의 합성 수율 측정
하기 표 8에 기재된 바와 같이, 300 mL의 반응기에서 반응을 진행시 용매로 DMF를 사용하고, 염기로 K2CO3를 사용하되, 염기의 당량을 1 내지 4 당량으로 변경시켜가면서 H4dobpdc의 합성 반응을 수행하였다.
Figure pat00020
측정 결과, 2 내지 4 당량의 K2CO3를 사용할 경우 75% 이상의 합성 수율이 나타났으며, 특히 3 당량의 K2CO3를 사용할 경우 43 bar 이하의 낮은 내부 압력하에서 91% 이상의 높은 수율로 H4dobpdc가 합성됨을 확인하였다.
(9) 반응 온도에 따른 H 4 dobpdc의 합성 수율 측정
하기 표 9에 기재된 바와 같이, 300 mL의 반응기에서 반응을 진행시 용매로 DMF를 사용하고, 염기로 3 당량의 K2CO3를 사용하되, 반응 온도를 100 내지 200 ℃로 변경시켜가면서 H4dobpdc의 합성 반응을 수행하였다.
Figure pat00021
측정 결과, 100-150 ℃의 매우 낮은 온도 조건에서는 반응기의 내부 압력은 낮아지지만 H4dobpdc가 합성되지 않거나 합성 수율이 매우 낮게 측정된 반면, 200 ℃의 온도 조건에서는 43 bar 이하의 낮은 내부 압력하에서 91% 이상의 높은 수율로 H4dobpdc가 합성됨을 확인하였다.
(10) 반응 시간에 따른 H 4 dobpdc의 합성 수율 측정
하기 표 10에 기재된 바와 같이, 300 mL의 반응기에서 반응을 진행시 용매로 DMF를 사용하고, 염기로 3 당량의 K2CO3를 사용하되, 반응 시간을 12 내지 96시간으로 변경시켜가면서 H4dobpdc의 합성 반응을 수행하였다.
Figure pat00022
측정 결과, 반응 시간이 12시간 이상일 경우 66% 이상의 합성 수율이 나타났으며, 특히 반응 시간이 48시간 이상일 경우 87% 이상의 높은 수율로 H4dobpdc가 합성되며, 반응 시간이 72시간 이상일 경우 43 bar 이하의 낮은 내부 압력하에서 91% 이상의 높은 수율로 H4dobpdc가 합성됨을 확인하였다.
(11) 용매의 종류에 따른 H 4 dobpdc의 합성 수율 측정
하기 표 11에 기재된 바와 같이, 300 mL의 반응기에서 반응을 진행시 염기로 3 당량의 K2CO3를 사용하되, 용매의 종류를 변경시켜가면서 H4dobpdc의 합성 반응을 수행하였다.
Figure pat00023
측정 결과, 용매로 N,N-Dimethylformamide(DMF), N,N-Dimethylacetamide(DMAc), N,N-Diethylformamide(DEF), N,N-Dibutylformamide를 사용할 경우 생성물이 슬러지화 되어 굳는 현상이 나타나지 않음을 확인하였으며, 약 90% 이상의 높은 수율로 H4dobpdc가 합성됨을 확인하였다.
(12) 용매의 당량에 따른 H 4 dobpdc의 합성 수율 측정
하기 표 12에 기재된 바와 같이, 300 mL의 반응기에서 반응을 진행시 염기로 3 당량의 K2CO3를 사용하고, 용매로 DMF를 사용하되, 용매의 당량을 2.3 내지 18.4 당량으로 변경시켜가면서 H4dobpdc의 합성 반응을 수행하였다.
Figure pat00024
측정 결과, 2.3 내지 18.4 당량의 DMF를 사용할 경우 76% 이상의 합성 수율이 나타났으며, 특히 DMF의 당량이 6.9 이상일 경우 85% 이상의 높은 수율로 H4dobpdc가 합성되며, DMF의 당량이 16.1 이상일 경우 43 bar 이하의 낮은 내부 압력하에서 91% 이상의 높은 수율로 H4dobpdc가 합성됨을 확인하였다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (7)

  1. 하기 [반응식 1]에 따라 하기 [화학식 2]로 표시되는 화합물을 염기와 반응시켜 하기 [화학식 1]로 표시되는 화합물을 제조하는 단계;를 포함하는 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법:
    [반응식 1]
    Figure pat00025

    [화학식 2] [화학식 1]
    상기 [반응식 1]은, 하기 [화학식 3]으로 표시되는 용매하에서 수행된다:
    [화학식 3]
    Figure pat00026

    상기 [화학식 3]에서,
    R1은 H 또는 -(CH2)n-CH3이고, R2는 -(CH2)m-CH3이며, R3는 -(CH2)p-CH3이고, n, m, p는 각각 0 내지 20의 정수이다.
  2. 제1항에 있어서,
    상기 염기는 K2CO3, Na2CO3, Li2CO3, KHCO3, NaHCO3, LiHCO3 및 KOH로 이루어진 군에서 선택되는 것을 특징으로 하는 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법.
  3. 제1항에 있어서,
    상기 [화학식 3]으로 표시되는 용매는 하기 [화학식 4] 내지 [화학식 7]로 표시되는 화합물 중에서 선택되는 것을 특징으로 하는 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법:
    [화학식 4] [화학식 5]
    Figure pat00027
    Figure pat00028

    [화학식 6] [화학식 7]
    Figure pat00029
    Figure pat00030
    .
  4. 제1항에 있어서,
    상기 염기는 상기 [화학식 2]로 표시되는 화합물 기준 2 내지 4 당량으로 사용되는 것을 특징으로 하는 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법.
  5. 제1항에 있어서,
    상기 [화학식 3]으로 표시되는 용매는 상기 [화학식 2]로 표시되는 화합물 기준 1 내지 30 당량으로 사용되는 것을 특징으로 하는 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법.
  6. 제1항에 있어서,
    상기 [반응식 1]은 170 내지 230 ℃의 온도하에서 수행되는 것을 특징으로 하는 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법.
  7. 제1항에 있어서,
    상기 [반응식 1]은 12시간 이상 수행되는 것을 특징으로 하는 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법.
KR1020190049887A 2018-04-30 2019-04-29 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법 KR102276691B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/050,925 US11465959B2 (en) 2018-04-30 2019-04-30 Method for preparing 4,4′-dihydroxy-[1,1′-biphenyl-3,3′-dicarboxylic acid]
PCT/KR2019/005212 WO2019212233A1 (ko) 2018-04-30 2019-04-30 4,4'-디하이드록시-[1,1'-바이페닐-3,3'-디카르복실산]의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180049962 2018-04-30
KR20180049962 2018-04-30

Publications (2)

Publication Number Publication Date
KR20190125948A true KR20190125948A (ko) 2019-11-07
KR102276691B1 KR102276691B1 (ko) 2021-07-13

Family

ID=68579219

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190049887A KR102276691B1 (ko) 2018-04-30 2019-04-29 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법

Country Status (2)

Country Link
US (1) US11465959B2 (ko)
KR (1) KR102276691B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023147354A1 (en) 2022-01-28 2023-08-03 ExxonMobil Technology and Engineering Company Synthesis of multi-ring disalicylate linkers
WO2023189499A1 (ja) * 2022-03-30 2023-10-05 上野製薬株式会社 4,4'-ジヒドロキシビフェニル-3,3'-ジカルボン酸の製造方法
WO2023189498A1 (ja) * 2022-03-30 2023-10-05 上野製薬株式会社 4,4'-ジヒドロキシビフェニル-3,3'-ジカルボン酸の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070018942A (ko) * 2004-04-09 2007-02-14 지티씨 테크놀러지 인코포레이티드 선택적 용매를 사용하는 착화에 의한 카복실산의 정제
JP2015504000A (ja) * 2011-10-18 2015-02-05 ザ レジェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア 混合ガス分離用アルキルアミン官能化金属有機骨格

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011545A2 (en) 2007-07-16 2009-01-22 Insilicotech Co., Ltd. Compound or solvate thereof with mesoporous metal-organic framework
US9675923B2 (en) 2011-08-25 2017-06-13 The Regents Of The University Of California Gas separations with redox-active metal-organic frameworks
KR101807266B1 (ko) 2015-10-14 2018-01-10 한국에너지기술연구원 금속-유기 골격체 및 이의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070018942A (ko) * 2004-04-09 2007-02-14 지티씨 테크놀러지 인코포레이티드 선택적 용매를 사용하는 착화에 의한 카복실산의 정제
JP2015504000A (ja) * 2011-10-18 2015-02-05 ザ レジェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア 混合ガス分離用アルキルアミン官能化金属有機骨格

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
McDonald, T. M.; Lee, W. R.; Mason, J. A.; Weirs, B. M.; Hong, C. S.; Long, J. R. "Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg2(dobpdc)", J. Am. Chem. Soc. 2012, 134, 7056)

Also Published As

Publication number Publication date
KR102276691B1 (ko) 2021-07-13
US11465959B2 (en) 2022-10-11
US20210230092A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
KR102276691B1 (ko) 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법
Mulford et al. A new form of uranium hydride1
TW201446717A (zh) 新穎烯丙化合物及其製造方法
Islam et al. Polymer supported Pd catalyzed thioester synthesis via carbonylation of aryl halides under phosphine free conditions
CN109908965A (zh) CuBr2@Zr-MOF催化剂及其制备方法与应用
US20130129608A1 (en) Porous coordination polymer, process for producing same, gas storage method, and gas separation method
CN104177388B (zh) 一种桥联双酰胺基稀土胺化物及其制备方法和应用
CN113636533A (zh) 一种二氟磷酸锂的制备方法
CN107501143A (zh) 一种抗氧剂2,4‑二(正辛基硫亚甲基)‑6‑甲基苯酚的制备方法
CN113582874B (zh) 一种溴乙腈的合成方法
CN108586399A (zh) 一种非罗考昔的合成方法
CN110526886B (zh) 一种合成1-氧代-1,3-二氢-3-羟基苯并呋喃-5-甲酸的方法
CN112409187A (zh) 6-氨基-1-(4-氨基苯基)-1,3,3-三甲基茚满的合成方法
CN104910113B (zh) 一种羟基苯酐的制备方法
CN106699504A (zh) 一种2,2-双(3,4-二甲苯基)六氟丙烷的制备方法
CN103408542B (zh) 一种高纯度的达沙替尼无水物的制备方法
CN109503639B (zh) 反式-2-取代环烷基三氟硼酸钾的合成方法
Wang et al. Synthesis and biological evaluation of curcumin analogues having a piperidone core as potential antioxidant agents
CN103086933B (zh) 一种苯基异硫氰酸酯的制备方法
JP2010235453A (ja) 白金錯体の製造方法
CN114702417B (zh) 一种偕二氟丙二烯类化合物β位进行亲核取代制备二氟乙烯类硫化物的合成方法
CN109734646A (zh) 一种二醚二酞酰亚胺的制备方法
Nakahanada et al. Syntheses and x-ray structures of novel phenoxo-bridged binuclear complexes: bis (. mu.-phenoxo) bis [bis (acetylacetonato) chromium (III)] complex and its para-substituted phenoxo analogs
CN114437142B (zh) 巴豆基氯化钯二聚体的制备方法
JP2007297359A (ja) フルオロアルキルスルホン酸無水物の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant