WO2019212233A1 - 4,4'-디하이드록시-[1,1'-바이페닐-3,3'-디카르복실산]의 제조방법 - Google Patents

4,4'-디하이드록시-[1,1'-바이페닐-3,3'-디카르복실산]의 제조방법 Download PDF

Info

Publication number
WO2019212233A1
WO2019212233A1 PCT/KR2019/005212 KR2019005212W WO2019212233A1 WO 2019212233 A1 WO2019212233 A1 WO 2019212233A1 KR 2019005212 W KR2019005212 W KR 2019005212W WO 2019212233 A1 WO2019212233 A1 WO 2019212233A1
Authority
WO
WIPO (PCT)
Prior art keywords
dobpdc
formula
reaction
synthesis
solvent
Prior art date
Application number
PCT/KR2019/005212
Other languages
English (en)
French (fr)
Inventor
홍창섭
최종혁
김정은
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190049887A external-priority patent/KR102276691B1/ko
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to US17/050,925 priority Critical patent/US11465959B2/en
Publication of WO2019212233A1 publication Critical patent/WO2019212233A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/15Preparation of carboxylic acids or their salts, halides or anhydrides by reaction of organic compounds with carbon dioxide, e.g. Kolbe-Schmitt synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/50Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/01Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups
    • C07C65/105Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups polycyclic

Definitions

  • the present invention relates to a process for the preparation of 4,4'-dihydroxy- [1,1'-biphenyl-3,3'-dicarboxylic acid].
  • diamine-M 2 (dobpdc), a metal-organic framework (MOF) functionalized with diamine, is known to be very effective in capturing carbon dioxide generated. Mass production of diamine-M 2 (dobpdc) for capture is required.
  • TC 4 Terichlorobenzene
  • H 4 from 4,4'-Biphenol ([1,1'-Biphenyl] -4,4'-diol) is added under conditions in which KHCO 3 base is added.
  • dobpdc has been reported (see Non-Patent Documents 1 and 1), but the method hardens the product when applied to a large-capacity reactor of 300 mL or more for mass production, causing agitation between reactions.
  • the yield is not very low because it does not allow the reaction to proceed completely, and the internal pressure increases due to the additional supply of carbon dioxide gas during the reaction.
  • Non-Patent Document 1 McDonald, TM; Lee, WR; Mason, JA; Weirs, BM; Hong, CS; Long, JR "Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg 2 (dobpdc)", J. Am. Chem. Soc. 2012 , 134 , 7056)
  • the present invention has been made to solve the above-mentioned problems, the present invention is to provide a new method for producing a large amount of H 4 dobpdc synthesis.
  • the present invention to solve the above problems,
  • R 1 is H or-(CH 2 ) n -CH 3
  • R 2 is-(CH 2 ) m -CH 3
  • R 3 is-(CH 2 ) p -CH 3
  • n, m, p are Each is an integer of 0 to 20.
  • the base may be selected from the group consisting of K 2 CO 3 , Na 2 CO 3 , Li 2 CO 3 , KHCO 3 , NaHCO 3 , LiHCO 3 and KOH.
  • the solvent represented by [Formula 3] may be selected from the compounds represented by the following [Formula 4] to [Formula 7]:
  • the base may be used in 2 to 4 equivalents based on the compound represented by the above [Formula 2].
  • the solvent represented by [Formula 3] may be used in an amount of 1 to 30 equivalents based on the compound represented by [Formula 2].
  • [Scheme 1] may be performed at a temperature of 170 to 230 °C.
  • [Scheme 1] may be performed for 12 hours or more.
  • Figure 1 is a schematic of the preparation and separation of the conventional H 4 dobpdc.
  • Figure 2 is a schematic of the preparation and separation process of H 4 dobpdc according to the present invention.
  • Figure 3 shows the results of nuclear magnetic resonance spectroscopy (nuclear magnetic resonance spectroscopy) analysis of the H 4 dobpdc prepared according to the present invention.
  • Figure 4 shows an image of a ligand prepared according to the conventional H 4 dobpdc synthesis method and the synthesis method of H 4 dobpdc according to the present invention.
  • Figure 5 shows the temperature-pressure graph of the reactor during the reaction of the conventional H 4 dobpdc synthesis method and the synthesis method of H 4 dobpdc according to the present invention.
  • Figure 6 shows the results of measuring the synthesis yield according to the type of base when H 4 dobpdc synthesis in accordance with the present invention.
  • Figure 7 shows the results of measuring the synthesis yield according to the equivalent of the base in the synthesis of H 4 dobpdc in accordance with the present invention.
  • Figure 8 shows the results of measuring the synthesis yield according to the reaction temperature when H 4 dobpdc synthesis in accordance with the present invention.
  • Figure 9 shows the results of measuring the synthesis yield according to the reaction time in the synthesis of H 4 dobpdc in accordance with the present invention.
  • Figure 10 shows the results of measuring the synthesis yield according to the equivalent of the solvent used in the synthesis of H 4 dobpdc in accordance with the present invention.
  • the present invention comprises the steps of preparing a compound represented by the following [Formula 1] by reacting the compound represented by the following [Formula 2] with a base according to the following [Scheme 1]; 4,4′-dihydroxy- Provided are methods of preparing [1,1'-biphenyl-3,3'-dicarboxylic acid]:
  • R 1 is H or-(CH 2 ) n -CH 3
  • R 2 is-(CH 2 ) m -CH 3
  • R 3 is-(CH 2 ) p -CH 3
  • n, m, p are Each is an integer of 0 to 20.
  • the present invention synthesizes H 4 (dobpdc) from the starting material 4,4'-Biphenol ([1,1'-Biphenyl] -4,4'-diol), Amide-based solvents represented by [Formula 3] are used.
  • the solubility of the reactant 4,4'-Biphenol is improved, which not only solves the solidification caused by sludge of the product, but also does not proceed with the reaction in the solvent. Because biphenol is dissolved, there is no need to separate the product using ether and acidification is possible immediately after filtration.
  • the amide-based solvent is a compound represented by the above [Formula 3], any one that can dissolve the reactant 4,4'-Biphenol is possible, preferably the solvent represented by the above [Formula 3] N, N-Dimethylformamide (DMF) represented by the following [Formula 4], N, N-Dimethylacetamide (DMAc) represented by the following [Formula 5], N, N-Diethylformamide (DEF) represented by the following [Formula 6] It may be selected from N, N-Dibutylformamide represented by the following [Formula 7], more preferably Dimethylformamide (DMF):
  • the solvent is preferably used in 1 to 30 equivalents based on 4,4'-Biphenol as a reactant, and more preferably 6 to 20 equivalents.
  • the present invention is carried out under the conditions in which the base is added, the scheme 1, wherein, as the base, K 2 CO 3 , Na 2 CO 3 , Li 2 CO 3 , KHCO 3 , NaHCO 3 , LiHCO 3 And carbonate-based compounds selected from the group consisting of KOH.
  • K 2 CO 3 , Na 2 CO 3 , or Li 2 CO 3 is used as the base used in the reaction, injection of carbon dioxide gas is not required.
  • the disadvantage of increasing the pressure can be solved, whereby the reaction can be carried out at a low temperature, there is an advantage that can improve the stability between the reactions.
  • the base is preferably used in 2 to 4 equivalents based on 4,4'-Biphenol as a reactant, and more preferably in 3 to 4 equivalents.
  • H 4 (dobpdc) synthesis reaction according to [Scheme 1] is preferably carried out for at least 12 hours at a temperature of 170 to 230 °C.
  • the reactants used were placed in a steel 23 mL vessel, followed by additional dry ice, and reacted by solvent thermal synthesis at 255 ° C. for 17 h. After the reaction was completed, the resulting solid was filtered and separated from the solvent and washed with ether, and the washed solid was dissolved in distilled water. After acidification with hydrochloric acid, the resulting ligand was filtered and recrystallized with acetone and distilled water. Yield of the resulting ligand was 40%.
  • Example 1 H 4 dobpdc synthesis according to the invention (using 300 mL reactor)
  • H 4 dobpdc was synthesized according to the method described in FIG. 2. Specifically, 11.20 g of 4,4'-Biphenol ([1,1'-Biphenyl] -4,4'-diol) and 3 equivalents of K 2 CO 3 24.93 g, DMF (N, 68 mL of N-Dimethylformamide) was added thereto. The reactor was stirred at 200 ° C. under 70 h conditions and reacted by solvent thermal synthesis. The product thus obtained is light pink and shows a sludge form. The DMF used as a solvent also appeared red.
  • the sludge pale pink product was separated from the DMF using a filter, and after separation, the pale pink sludge product was acidified with hydrochloric acid. After the acidification reaction was confirmed that the product becomes white. The acidified product was then washed several times with distilled water until neutral and the washed material was dried in an oven for at least 12 h. The dried material was confirmed by nuclear magnetic resonance spectroscopy (FIG. 3), and the yield was about 95%.
  • the reaction according to Example 1 of the present invention used K 2 CO 3 as a base.
  • K 2 CO 3 is used as the base as in the present invention, an additional injection of carbon dioxide gas is not required, unlike when KHCO 3 is used as the base.
  • KHCO 3 is used as the base, it is confirmed that the internal pressure of the reactor increases because carbon dioxide additionally proceeds with the carboxylation of 4,4'-Biphenol (maximum pressure 50 bar or higher, and the pressure of the reactor for safety. 50 bar is automatically attached to the device).
  • the carbon dioxide source When using K 2 CO 3 as a base, the carbon dioxide source will need a carboxy Chemistry CO 3 -, HCO 3 -, H 2 may be present in the solvent at a CO 3 form, when using the KHCO 3 in the base include carboxy screen when carbon source required for the HCO 3 -, H 2 CO 3 May exist in the form.
  • H 2 CO 3 When H 2 CO 3 is decomposed, carbon dioxide is generated and used for carboxylation.
  • KHCO 3 When KHCO 3 is used as a base, all H 2 CO 3 is radically decomposed into carbon dioxide, and gaseous carbon dioxide rather than carbon dioxide dissolved in a solvent.
  • H 4 dobpdc was performed using KHCO 3 , NaHCO 3 , NaOME, KOH, and K 2 CO 3 as bases, respectively.
  • H 4 dobpdc was synthesized in a high yield of 95% or more when using K 2 CO 3 as a base. Therefore, hereinafter, DMF was used as a solvent, K 2 CO 3 was used as a base, and after changing the reactor capacity to 300 mL, the synthesis yield of H 4 dobpdc was measured.
  • N, N-Dimethylformamide (DMF), N, N-Dimethylacetamide (DMAc), N, N-Diethylformamide (DEF), and N, N-Dibutylformamide were not sludged when the solvent was used. It was confirmed that the H 4 dobpdc was synthesized in a high yield of about 90% or more.
  • the present invention can significantly improve the synthesis yield of H 4 dobpdc through a relatively simple process, it can be usefully used in the field of the development of metal-organic framework-based carbon dioxide adsorbent that requires the mass production of H 4 dobpdc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 하기 [반응식 1]에 따라 하기 [화학식 2]로 표시되는 화합물을 염기와 반응시켜 하기 [화학식 1]로 표시되는 화합물을 제조하는 단계;를 포함하는 4,4'-디하이드록시-[1,1'-바이페닐-3,3'-디카르복실산]의 제조방법에 관한 것이다: [반응식 1] [화학식 2] [화학식 1] 본 발명에 따르면, 반응과정 중에 이산화탄소를 추가적으로 사용할 필요가 없어 반응시 내부압력이 낮아지며, 보다 낮은 온도에서 반응을 진행시킬 수 있을 뿐만 아니라, 생성물이 단단하게 굳는 현상이 없어 합성 수율이 현저히 향상되며, 순수 리간드를 얻기 위한 추가적인 과정도 필요하지 않아 H4dobpdc를 대량으로 합성할 수 있다.

Description

4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법
본 발명은 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법에 관한 것이다.
산업혁명 이후 화력발전소의 배가스에서 배출되는 이산화탄소로 인해 야기된 지구 온난화가 범지구적인 환경문제로 대두됨에 따라 이산화탄소를 선택적으로 흡착할 수 있는 흡착제의 개발에 관심이 모아지고 있다. 그 중, 다이아민으로 기능화된 금속-유기 골격체 (Metal-Organic Frameworks; MOF)인 diamine-M 2(dobpdc)는 발생하는 이산화탄소를 포집하는데 있어서 매우 효과적인 물질로 알려져 있는바, 급증하고 있는 이산화탄소의 포집을 위한 diamine-M 2(dobpdc)의 대량 생산이 요구되고 있다. 또한, M 2(dobpdc)의 대량 생산을 위해서는 골격체로 사용되는 유기 화합물인 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산](이하, H 4(dobpdc)로 표시)의 대량 생산이 필수적이다.
관련하여, 종래기술로서 TCB(Trichlorobenzene)를 용매로 하고, KHCO 3 염기가 첨가된 조건하에서 4,4'-Biphenol([1,1'-Biphenyl]-4,4'-diol)로부터 H 4(dobpdc)를 합성하는 방법이 보고된바 있으나(비특허문헌 1 및 도 1 참조), 상기 방법은 대량 생산을 위한 300 mL 이상의 대용량 반응기에 적용시 생성물이 단단하게 굳는 현상이 발생하여 반응 간 교반을 방해하여 반응을 완벽하게 진행시키지 못하기 때문에 수율이 매우 낮을 뿐만 아니라, 반응 시 이산화탄소 가스를 추가로 공급해야 하기 때문에 내부 압력이 높아지며, 반응에 필요한 온도 또한 높아 반응 안정성이 떨어진다는 점, 순수 리간드를 얻기 위해 복잡한 분리 과정이 요구된다는 점 등의 단점이 있어 대량 생산에 적합하지 않다.
따라서, 전술한 문제를 해결함으로써 H 4dobpdc를 대량으로 합성할 수 있는 새로운 방법이 요구되고 있다.
(비특허문헌 1) McDonald, T. M.; Lee, W. R.; Mason, J. A.; Weirs, B. M.; Hong, C. S.; Long, J. R. "Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg 2(dobpdc)", J. Am. Chem. Soc. 2012, 134, 7056)
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 본 발명에서는 H 4dobpdc를 대량으로 합성할 수 있는 새로운 제조방법을 제공하고자 한다.
본 발명은 상기 과제를 해결하기 위하여,
하기 [반응식 1]에 따라 하기 [화학식 2]로 표시되는 화합물을 염기와 반응시켜 하기 [화학식 1]로 표시되는 화합물을 제조하는 단계;를 포함하는 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법을 제공한다:
[반응식 1]
Figure PCTKR2019005212-appb-img-000001
[화학식 2] [화학식 1]
상기 [반응식 1]은, 하기 [화학식 3]으로 표시되는 용매하에서 수행된다:
[화학식 3]
Figure PCTKR2019005212-appb-img-000002
상기 [화학식 3]에서,
R 1은 H 또는 -(CH 2) n-CH 3이고, R 2는 -(CH 2) m-CH 3이며, R 3는 -(CH 2) p-CH 3이고, n, m, p는 각각 0 내지 20의 정수이다.
본 발명에 따르면, 상기 염기는 K 2CO 3, Na 2CO 3, Li 2CO 3, KHCO 3, NaHCO 3, LiHCO 3 및 KOH로 이루어진 군에서 선택될 수 있다.
본 발명에 따르면, 상기 [화학식 3]으로 표시되는 용매는 하기 [화학식 4] 내지 [화학식 7]로 표시되는 화합물 중에서 선택될 수 있다:
[화학식 4] [화학식 5]
Figure PCTKR2019005212-appb-img-000003
Figure PCTKR2019005212-appb-img-000004
[화학식 6] [화학식 7]
Figure PCTKR2019005212-appb-img-000005
Figure PCTKR2019005212-appb-img-000006
본 발명에 따르면, 상기 염기는 상기 [화학식 2]로 표시되는 화합물 기준 2 내지 4 당량으로 사용될 수 있다.
본 발명에 따르면, 상기 [화학식 3]으로 표시되는 용매는 상기 [화학식 2]로 표시되는 화합물 기준 1 내지 30 당량으로 사용될 수 있다.
본 발명에 따르면, 상기 [반응식 1]은 170 내지 230 ℃의 온도하에서 수행될 수 있다.
본 발명에 따르면, 상기 [반응식 1]은 12시간 이상 수행될 수 있다.
본 발명에 따르면 반응과정 중에 이산화탄소를 추가적으로 사용할 필요가 없어 반응시 내부압력이 낮아지며, 보다 낮은 온도에서 반응을 진행시킬 수 있을 뿐만 아니라, 생성물이 단단하게 굳는 현상이 없어 합성 수율이 현저히 향상되며, 순수 리간드를 얻기 위한 추가적인 과정도 필요하지 않아 H 4dobpdc를 대량으로 합성할 수 있다.
도 1은 종래 H 4dobpdc의 제조 및 분리 과정을 도식화한 것이다.
도 2는 본 발명에 따른 H 4dobpdc의 제조 및 분리 과정을 도식화한 것이다.
도 3은 본 발명에 따라 제조된 H 4dobpdc의 핵자기 공명 분광(nuclear magnetic resonance spectroscopy) 분석 결과를 나타낸 것이다.
도 4는 종래 H 4dobpdc 합성법과 본 발명에 따른 H 4dobpdc의 합성법에 따라 제조된 리간드의 이미지를 나타낸 것이다.
도 5는 종래 H 4dobpdc 합성법과 본 발명에 따른 H 4dobpdc의 합성법의 반응시 반응기의 온도-압력 그래프를 나타낸 것이다.
도 6은 본 발명에 따라 H 4dobpdc 합성시 염기의 종류에 따른 합성 수율을 측정한 결과를 나타낸 것이다.
도 7은 본 발명에 따라 H 4dobpdc 합성시 염기의 당량에 따른 합성 수율을 측정한 결과를 나타낸 것이다.
도 8은 본 발명에 따라 H 4dobpdc 합성시 반응 온도에 따른 합성 수율을 측정한 결과를 나타낸 것이다.
도 9는 본 발명에 따라 H 4dobpdc 합성시 반응 시간에 따른 합성 수율을 측정한 결과를 나타낸 것이다.
도 10은 본 발명에 따라 H 4dobpdc 합성시 사용된 용매의 당량에 따른 합성 수율을 측정한 결과를 나타낸 것이다.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명은 하기 [반응식 1]에 따라 하기 [화학식 2]로 표시되는 화합물을 염기와 반응시켜 하기 [화학식 1]로 표시되는 화합물을 제조하는 단계;를 포함하는 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법을 제공한다:
[반응식 1]
Figure PCTKR2019005212-appb-img-000007
[화학식 2] [화학식 1]
상기 [반응식 1]은, 하기 [화학식 3]으로 표시되는 용매하에서 수행된다:
[화학식 3]
Figure PCTKR2019005212-appb-img-000008
상기 [화학식 3]에서,
R 1은 H 또는 -(CH 2) n-CH 3이고, R 2는 -(CH 2) m-CH 3이며, R 3는 -(CH 2) p-CH 3이고, n, m, p는 각각 0 내지 20의 정수이다.
상기 [반응식 1]에서와 같이, 본 발명은 출발물질인 4,4'-Biphenol([1,1'-Biphenyl]-4,4'-diol)로부터 H 4(dobpdc)를 합성함에 있어서, 상기 [화학식 3]으로 표시되는 아마이드 계열의 용매를 사용한다. 이와 같이 아마이드 계열의 용매를 사용할 경우, 반응물인 4,4'-Biphenol의 용해도가 향상되기 때문에 생성물의 슬러지화로 인한 굳는 현상을 해결할 수 있을 뿐만 아니라, 용매 내에 반응이 진행되지 않은 4,4'-Biphenol이 녹아 있기 때문에, ether를 이용한 생성물 분리과정이 필요하지 않을 뿐만 아니라 여과 후 바로 산성화가 가능하다는 장점이 있다.
이때, 상기 아마이드 계열의 용매는 상기 [화학식 3]으로 표시되는 화합물로서, 반응물인 4,4'-Biphenol을 용해시킬 수 있는 것이라면 모두 가능하며, 바람직하게는 상기 [화학식 3]으로 표시되는 용매는 하기 [화학식 4]로 표시되는 N,N-Dimethylformamide(DMF), 하기 [화학식 5]로 표시되는 N,N-Dimethylacetamide(DMAc), 하기 [화학식 6]으로 표시되는 N,N-Diethylformamide(DEF), 하기 [화학식 7]로 표시되는 N,N-Dibutylformamide 중에서 선택될 수 있으며, 더욱 바람직하게는 Dimethylformamide(DMF)일 수 있다:
[화학식 4] [화학식 5]
Figure PCTKR2019005212-appb-img-000009
Figure PCTKR2019005212-appb-img-000010
[화학식 6] [화학식 7]
Figure PCTKR2019005212-appb-img-000011
Figure PCTKR2019005212-appb-img-000012
이때, 상기 용매는 반응물인 4,4'-Biphenol 기준 1 내지 30 당량으로 사용하는 것이 바람직하며, 6 내지 20 당량으로 사용하는 것이 더욱 바람직하다.
또한, 본 발명은 염기가 첨가된 조건하에서, 상기 [반응식 1]을 수행하는데, 이때, 상기 염기로는 K 2CO 3, Na 2CO 3, Li 2CO 3, KHCO 3, NaHCO 3, LiHCO 3 및 KOH로 이루어진 군에서 선택되는 카르보네이트 계열의 화합물을 사용하는 것이 바람직하다. 특히, 하기 실시예로부터 알 수 있는 바와 같이, 반응에 사용되는 염기로서 K 2CO 3, Na 2CO 3, 또는 Li 2CO 3를 사용할 경우에는 이산화탄소 가스의 주입이 요구되지 않는바, 반응기의 내부 압력이 높아지는 단점을 해결할 수 있으며, 이에 의해 낮은 온도에서 반응이 수행될 수 있는바, 반응 간 안정성을 향상시킬 수 있다는 장점이 있다.
이때, 상기 염기는 반응물인 4,4'-Biphenol 기준 2 내지 4 당량으로 사용하는 것이 바람직하며, 3 내지 4 당량으로 사용하는 것이 더욱 바람직하다.
또한, 상기 [반응식 1]에 따른 H 4(dobpdc) 합성 반응은 170 내지 230 ℃의 온도하에서 12시간 이상 수행하는 것이 바람직하다.
본 발명에서는 전술한 바와 같이, [반응식 1]에 따른 H 4(dobpdc) 합성 반응을 수행함에 있어, 아마이드 계열의 용매 및 카르보네이트 계열의 염기를 사용함으로써 반응 안정성 및 합성 수율을 현저하게 향상시킬 수 있으며, 특히, 본 발명에서는 H 4(dobpdc) 대량 합성을 위한 최적 공정 조건을 수립하였는바, 하기 실시예로부터 알 수 있는 바와 같이, 아마이드 계열의 용매로서 반응물인 4,4'-Biphenol 기준 16.1 내지 18.4 당량의 DMF를 사용하고, 카르보네이트 계열의 염기로서 반응물인 4,4'-Biphenol 기준 3 당량의 K 2CO 3를 사용하여 200 ℃의 온도하에서 72시간 이상 반응을 수행할 경우, 90% 이상의 수율로 H 4dobpdc를 대량으로 합성할 수 있다.
[실시예]
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
비교예 1. 종래 방법을 이용한 H 4dobpdc 합성(23 mL 반응기 사용)
종래 문헌(McDonald, T. M.; Lee, W. R.; Mason, J. A.; Weirs, B. M.; Hong, C. S.; Long, J. R. "Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg 2(dobpdc)", J. Am. Chem. Soc . 2012, 134, 7056)에 기재된 방법(도 1 참고)에 따라 23 mL 반응기를 사용하여 H 4dobpdc를 합성하였다. 구체적으로, 반응물질로 4,4'-Biphenol과 3 당량의 KHCO 3를 사용하며 반응용매로 1,2,4-Trichlorobenzene을 사용하였다. 사용되는 반응물을 강철로 된 23 mL 용기에 넣은 후 드라이아이스를 추가로 넣어주었고, 255 ℃에서 17 h간 용매열합성법으로 반응시켰다. 반응이 끝난 후 생성된 고체를 여과하여 용매와 분리시킨 후 ether로 세척하고, 세척이 완료된 고체를 증류수에 용해시켯다. 이후 염산을 이용하여 산성화시킨 후 생성된 리간드를 여과하고, 아세톤과 증류수를 이용하여 재결정화시켰다. 생성된 리간드의 수율은 40%로 나타났다.
비교예 2. 종래 방법을 이용한 H 4dobpdc 합성(300 mL 반응기 사용)
반응물질로 4,4'-Biphenol과 3 당량의 KHCO 3를 사용하며 반응용매로 1,2,4-Trichlorobenzene을 사용하였다. 반응이 시작하기 전 이산화탄소가스를 20 bar 이상 강철로 된 300 mL 용기에 넣어주었고, 250 ℃에서 72 h간 교반하며 용매열합성법으로 반응시켰다. 반응이 끝난 고체 생성물을 남아있는 용매와 분리하기 위해서 여과하였고, 여과 후 불순물을 제거하기 위하여 ether에 용해시켰다. 남은 용매와 불순물을 ether로 모두 제거한 후 다시 여과하여 고체생성물을 얻었고, 상기 고체 생성물을 증류수에 녹여 교반시켰다. 교반이 완료된 용액을 여과하여 여과된 용매를 염산을 이용하여 산성화시켰다. 산성화된 생성물을 증류수로 중성이 되기까지 여러 번 세척하였고, 세척된 물질을 오븐에 12 h 이상 건조시켜 흰색의 리간드를 얻었다. 생성된 리간드의 수율은 10%로 나타났다.
실시예 1. 본 발명에 따른 H 4dobpdc 합성(300 mL 반응기 사용)
도 2에 기재된 방법에 따라 H 4dobpdc를 합성하였다. 구체적으로, 300 mL 강철로 된 반응기에 4,4'-Biphenol([1,1'-Biphenyl]-4,4'-diol) 11.20 g 과 3 당량의 K 2CO 3 24.93 g, DMF(N,N-Dimethylformamide) 68 mL를 넣었다. 반응기를 200 ℃에서 70 h 조건에서 교반하며 용매열합성법으로 반응시켰다. 이렇게 얻어진 생성물은 연분홍색으로 나타나며 슬러지 형태를 나타낸다. 용매로 사용되었던 DMF 역시 붉은색으로 나타났다. 슬러지 상태의 연분홍색 생성물을 여과기를 이용하여 DMF 와 분리하였고, 분리 후에 연분홍색의 슬러지 상태의 생성물을 염산을 이용하여 산성화시켰다. 산성화 반응이 끝난 생성물은 흰색을 띄게됨을 확인하였다. 이후 산성화된 생성물을 증류수로 중성이 되기까지 여러 번 세척하고, 세척된 물질을 오븐에 12 h 이상 건조시켰다. 건조가 완료된 물질을 핵자기 공명 분광법을 이용하여 확인하였으며(도 3), 수율은 약 95%로 나타났다.
시험예 1. 생성된 H 4dobpdc의 슬러지화 여부 확인
상기 비교예 1, 2에 따라 반응에 사용하는 용매를 Trichlorobenzene (이하 TCB)를 사용 시 반응 후 생성물이 단단하게 굳는다는 것을 확인하였다(도 4의 좌측 이미지). 이러한 생성물이 굳는 현상은 반응의 크기가 클수록 큰 영향을 미치게 되었는데 생성물의 굳음으로 인하여 반응 간 교반을 방해하게 되어 반응이 원활하게 진행되지 않았으며, 이는 10-40%의 낮은 수율로 나타났다. 또한 TCB를 제거하기 위해서 ether로 분리해야 하는 과정도 수반되었다.
반면, 본 발명의 상기 실시예 1에 따라 DMF를 용매로 사용할 경우 반응물인 4,4'-Biphenol이 DMF에 잘 용해되기 때문에 더 많은 양의 합성을 시도할 수 있었고, 생성물의 슬러지화로 인하여 굳는 현상이 나타나지 않음을 확인하였다(도 5의 우측 이미지). 이러한 슬러지화로 인해, 대형반응기에서도 반응이 완벽하게 진행될 수 있었고, 이는 95% 이상의 수율로 나타났다. 또한 용매 안에 반응이 진행되지 않은 4,4'-Biphenol이 녹아 있기 때문에 ether를 이용한 분리과정이 필요하지 않을 뿐만 아니라 여과 후 바로 산성화가 가능하다는 것을 확인하였다.
시험예 2. H 4dobpdc 합성 반응의 내부 압력 및 반응 온도 확인
본 발명의 상기 실시예 1에 따른 반응은 염기로 K 2CO 3를 사용하였다. 본 발명과 같이 염기로 K 2CO 3를 사용할 경우 염기로 KHCO 3를 사용하는 경우와 달리 추가적인 이산화탄소 가스의 주입이 요구되지 않았다. 구체적으로, 염기로 KHCO 3를 사용할 경우에는 추가 주입되는 이산화탄소가 4,4'-Biphenol의 카르복시화를 진행하기 때문에 반응기 내부압력이 높아지는 것으로 확인되었다(최대 압력 50 bar 이상, 안전을 위해 반응기의 압력이 50 bar가 되면 자동으로 배출되는 장치를 부착). 염기로 K 2CO 3를 사용할 경우에는 카르복시화시에 필요한 이산화탄소 공급원이 CO 3 -, HCO 3 -, H 2CO 3 형태로 용매 내에서 존재할 수 있으며, 염기로 KHCO 3를 사용할 경우에는 카르복시화시에 필요한 이산화탄소 공급원이 HCO 3 -, H 2CO 3 형태로 존재할 수 있다. H 2CO 3가 분해될 때 이산화탄소가 발생되며 카르복시화에 사용되는데, KHCO 3를 염기로 사용할 경우에는 모든 H 2CO 3가 급진적으로 이산화탄소로 분해되며, 용매 내에 녹아있는 이산화탄소보다 기체 상태의 이산화탄소로 존재하게 되므로, 추가적인 이산화탄소를 용매에 녹여주어 반응을 진행시켜야 하는 반면, K 2CO 3를 염기로 사용할 경우에는 HCO 3 -에서 H 2CO 3로 점진적으로 반응이 진행되기 때문에 H 2CO 3가 분해되어 발생되는 이산화탄소 역시 점진적으로 발생된다. 따라서, 용매 내에 적정량의 이산화탄소가 녹아 있을 수 있으며, 추가적인 이산화탄소 공급없이 반응이 진행될 수 있다.
이러한 이유로, 본 발명의 상기 실시예 1과 같이 염기로 K 2CO 3를 사용할 경우에는 이산화탄소의 주입이 요구되지 않았는바, 최대 압력이 43 bar로 내부 압력이 낮아지게 되었으며, 이로 인해 반응 안정성이 확보됨을 확인하였다. 또한, 이러한 염기의 변화로 인해 종래 250 ℃의 반응온도를 200 ℃로 낮출 수 있음을 확인하였다(도 5).
시험예 3. H 4dobpdc 합성의 최적 조건 도출
아래의 순서에 따라, H 4dobpdc 합성의 최적 조건을 도출하기 위하여, 종래 보고된 방법의 문제점을 확인하고, 이로부터 수율 향상에 영향을 미치는 요소를 도출 및 그 최적 조건을 확인하기 위한 실험을 진행하였다.
(1) 비교예 1에 따른 합성법의 반응 시간에 따른 합성 수율 측정
비교예 1에 따라 H 4dobpdc를 합성하되, 하기 표 1에 기재된 바와 같이, 반응 시간을 변화시켜가면서 H 4dobpdc의 합성 수율을 측정하였다.
Base Solvent Temperature Carboxylation sauce Reaction time Yield
기존 KHCO 3 TCB 255 oC Dry ice 17h 40%
1 KHCO 3 TCB 250 oC Dry ice 6h X
2 KHCO 3 TCB 250 oC Dry ice 12h X
3 KHCO 3 TCB 250 oC Dry ice 24h 87%
4 KHCO 3 TCB 250 oC Dry ice 48h 89%
5 KHCO 3 TCB 250 oC Dry ice 72h 96%
※ 23 mL 반응기 사용
측정 결과, 종래 문헌에 보고된 바와 같이 반응 시간을 17 시간으로 할 경우, 40%의 낮은 수율을 나타내었는바, 대량 합성에 적합하지 않다는 것을 확인하였다. 또한, 반응 시간이 증가될 수록 수율이 상승하며, 특히 반응 시간이 72시간일 경우 합성 수율이 96%로 향상됨을 확인하였으며, 이하에서는 반응 시간을 72 시간으로 설정하여 비교예 2에 따른 합성을 수행하였다.
(2) 비교예 2에 따른 합성법의 합성 수율 측정
비교예 2에 따라 H 4dobpdc를 합성하되, 하기 표 2에 기재된 바와 같이, 상기 (1)에서 도출된 최적 반응시간을 적용하여 H 4dobpdc의 합성 수율을 측정하였다.
Base Solvent Temperature Carboxylation sauce Reaction time Yield
23mL반응기 KHCO 3 TCB 250 oC Dry ice 72h 96%
300mL반응기 KHCO 3 TCB 250 oC CO 2gas(20bar) 72h 10~20%
측정 결과, 상기 (1)에서 도출된 최적 반응 시간을 300 mL의 반응기에 적용시 TCB 사용으로 인해 생성물이 단단하게 굳는 현상으로 인해 반응이 원활하게 진행되지 않아 합성 수율이 10-20%로 현저하게 감소함을 확인하였다. 따라서, 이하에서는 반응에 사용되는 용매를 변경하면서, H 4dobpdc의 합성 수율을 측정하였다.
(3) 용매의 종류에 따른 H 4dobpdc의 합성 수율 측정
하기 표 3에 기재된 바와 같이, 반응 용매로 각각 TCB, MeOH, H2O+MeOH, DMF를 사용하여 H 4dobpdc의 합성 반응을 수행하였다.
Base Solvent Temperature Carboxylationsauce Reactiontime Yield
1 KHCO 3 TCB 250 oC Dry ice 72h 96%
2 KHCO 3 MeOH 130 oC Dry ice 72h X
3 KHCO 3 H 2O+MeOH 130 oC Dry ice 72h X
4 KHCO 3 DMF 200 oC Dry ice 72h 67%
※ 23 mL 반응기 사용
측정 결과, 사용되는 용매의 끓는점에 따라 반응온도가 변화함을 확인하였으며(TCB 끓는점: 210 ℃, DMF 끓는점: 150 ℃), DMF를 용매로 사용시 H 4dobpdc 합성이 가능할 뿐만 아니라, 생성물이 슬러지 상태로 만들어지는 것을 확인하였다. 따라서, 이하에서는 반응에 사용되는 염기를 변경하면서, H 4dobpdc의 합성 수율을 측정하였다.
(4) 염기의 종류에 따른 H 4dobpdc의 합성 수율 측정
하기 표 4에 기재된 바와 같이, 염기로 각각 KHCO 3, NaHCO 3, NaOME, KOH, K 2CO 3를 사용하여 H 4dobpdc의 합성 반응을 수행하였다.
Base Solvent Temperature Carboxylationsauce Reactiontime Yield
1 KHCO 3 DMF 200 oC Dry ice 72 h 67%
2 NaHCO 3 DMF 200 oC Dry ice 72 h X
3 NaOME DMF 200 oC Dry ice 72 h X
4 KOH DMF 200 oC Dry ice 72 h 51%
5 K 2CO 3 DMF 200 oC Dry ice 72 h 95%
※ 23 mL 반응기 사용
측정 결과, K 2CO 3를 염기로 사용할 경우 95% 이상의 높은 수율로 H 4dobpdc가 합성됨을 확인하였다. 따라서, 이하에서는 용매로 DMF를 사용하고, 염기로 K 2CO 3를 사용하되, 반응기의 용량을 300 mL로 변경한 후, H 4dobpdc의 합성 수율을 측정하였다.
(5) 반응기의 용량에 따른 H 4dobpdc의 합성 수율 측정
하기 표 5에 기재된 바와 같이, 300 mL의 반응기에서 반응을 진행하되, 용매로 각각 TCB와 DMF를 사용하고, 염기로 각각 KHCO 3와 K 2CO 3를 사용하여 H 4dobpdc의 합성 수율을 측정하였다.
Base Solvent Temperature Carboxylationsauce Reaction time Pressure Yield
1 KHCO 3 TCB 250 oC CO 2gas(20bar) 72 h 50bar↑ 10~20%
2 K 2CO 3 DMF 200 oC CO 2gas(20bar) 70h 50bar↑ 96%
※ 300 mL 반응기 사용
측정 결과, 용매로 DMF를 사용하고, 염기로 K 2CO 3를 사용할 경우 대용량 반응기에서도 생성물이 슬러지화되어 굳는 현상이 발생하지 않아 반응이 원활하게 진행되어 96% 이상의 높은 수율로 H 4dobpdc가 합성될 뿐만 아니라, 반응 온도가 낮아짐을 확인하였다. 따라서, 이하에서는 카복실레이션 소스인 이산화탄소 가스의 주입 여부에 따른 H 4dobpdc의 합성 수율을 측정하였다.
(6) 이산화탄소 가스 주입 여부에 따른 H 4dobpdc의 합성 수율 측정
하기 표 6에 기재된 바와 같이, 300 mL의 반응기에서 반응을 진행시 용매로 DMF를 사용하고, 염기로 K 2CO 3를 사용하되, 카복실레이션 소스인 이산화탄소 가스의 주입 여부에 따른 H 4dobpdc의 합성 수율을 측정하였다.
Base Solvent Temperature Carboxylationsauce Reaction time Pressure Yield
1 K 2CO 3 DMF 200 oC CO 2gas(20bar) 72h 50bar↑ 96%
2 K 2CO 3 DMF 200 oC X 72h 최대 43bar 95%
※ 300 mL 반응기 사용
측정 결과, 용매로 DMF를 사용하고, 염기로 K 2CO 3를 사용할 경우 K 2CO 3에서 발생하는 CO 2가 4,4’-biphenol의 carboxylation를 가능하게 하여, 이산화탄소 가스의 주입 여부에 상관없이 95% 이상의 높은 수율로 H 4dobpdc가 합성됨을 확인하였다. 또한, 이산화탄소 가스 주입이 없을 경우 반응기의 내부 압력이 최대 43 bar로 낮아진다는 것을 확인하였다. 이하에서는 H 4dobpdc의 합성의 최적 조건을 도출하기 위하여, 300 mL의 반응기에서 반응을 진행하되, 염기의 종류, 염기의 당량, 반응 온도, 반응 시간, 용매의 종류, 용매의 당량에 따른 H 4dobpdc의 합성 수율을 측정하였다.
(7) 염기의 종류에 따른 H 4dobpdc의 합성 수율 측정
하기 표 7에 기재된 바와 같이, 300 mL의 반응기에서 반응을 진행시 용매로 DMF를 사용하되, 염기로 각각 3 당량의 KOH, KHCO 3, K 2CO 3를 사용하여 H 4dobpdc의 합성 반응을 수행하였다.
  4,4’-biphenol Base DMF CO 2 time temp yield
1 11.20g KOH(10.12g,3eq) 70mL 20bar 72h 200 oC 10.66g(64.7%)
2 11.20g KHCO 3(18.06g,3eq) 70mL 20bar 72h 200 oC 16.09g(97.6%)
3 11.20g K 2CO 3(24.93g,3eq) 70mL X 72h 200 oC 15.01g(91.0%)
측정 결과, 용매로 DMF를 사용할 경우에는, 염기로 KOH, KHCO 3, K 2CO 3를 사용한 모든 경우에서 60% 이상의 합성 수율이 나타났으며, 특히 염기로 K 2CO 3를 사용한 경우에는 이산화탄소 가스의 주입이 요구되지 않으며, 43 bar 이하의 낮은 내부 압력하에서 91% 이상의 높은 수율로 H 4dobpdc가 합성됨을 확인하였다.
(8) 염기의 당량에 따른 H 4dobpdc의 합성 수율 측정
하기 표 8에 기재된 바와 같이, 300 mL의 반응기에서 반응을 진행시 용매로 DMF를 사용하고, 염기로 K 2CO 3를 사용하되, 염기의 당량을 1 내지 4 당량으로 변경시켜가면서 H 4dobpdc의 합성 반응을 수행하였다.
  4,4’-biphenol Base DMF CO 2 time temp yield
1 11.20g K 2CO 3(8.31g,1eq) 70mL X 72h 200 oC -
2 11.20g K 2CO 3(16.62g,2eq) 70mL X 72h 200 oC 12.44g(75.4%)
3 11.20g K 2CO 3(24.93g,3eq) 70mL X 72h 200 oC 15.01g(91.0%)
4 11.20g K 2CO 3(33.24g,4eq) 70mL X 72h 200 oC 14.42g(87.4%)
측정 결과, 2 내지 4 당량의 K 2CO 3를 사용할 경우 75% 이상의 합성 수율이 나타났으며, 특히 3 당량의 K 2CO 3를 사용할 경우 43 bar 이하의 낮은 내부 압력하에서 91% 이상의 높은 수율로 H 4dobpdc가 합성됨을 확인하였다.
(9) 반응 온도에 따른 H 4dobpdc의 합성 수율 측정
하기 표 9에 기재된 바와 같이, 300 mL의 반응기에서 반응을 진행시 용매로 DMF를 사용하고, 염기로 3 당량의 K 2CO 3를 사용하되, 반응 온도를 100 내지 200 ℃로 변경시켜가면서 H 4dobpdc의 합성 반응을 수행하였다.
  4,4’-biphenol Base DMF CO 2 time temp yield
1 11.20g K 2CO 3(24.93g,3eq) 70mL X 72h 100 oC -
2 11.20g K 2CO 3(24.93g,3eq) 70mL X 72h 150 oC 2.66g(16.1%)
3 11.20g K 2CO 3(24.93g,3eq) 70mL X 72h 200 oC 15.01g(91.0%)
측정 결과, 100-150 ℃의 매우 낮은 온도 조건에서는 반응기의 내부 압력은 낮아지지만 H 4dobpdc가 합성되지 않거나 합성 수율이 매우 낮게 측정된 반면, 200 ℃의 온도 조건에서는 43 bar 이하의 낮은 내부 압력하에서 91% 이상의 높은 수율로 H 4dobpdc가 합성됨을 확인하였다.
(10) 반응 시간에 따른 H 4dobpdc의 합성 수율 측정
하기 표 10에 기재된 바와 같이, 300 mL의 반응기에서 반응을 진행시 용매로 DMF를 사용하고, 염기로 3 당량의 K 2CO 3를 사용하되, 반응 시간을 12 내지 96시간으로 변경시켜가면서 H 4dobpdc의 합성 반응을 수행하였다.
  4,4’-biphenol Base DMF CO 2 time temp Yield
1 11.20g K 2CO 3(24.93g,3eq) 70mL X 12h 200 oC 10.91g(66.6%)
2 11.20g K 2CO 3(24.93g,3eq) 70mL X 24h 200 oC 12.08g(73.2%)
3 11.20g K 2CO 3(24.93g,3eq) 70mL X 48 h 200 oC 14.39g(87.2%)
4 11.20g K 2CO 3(24.93g,3eq) 70mL X 72 h 200 oC 15.01g(91.0%)
5 11.20g K 2CO 3(24.93g,3eq) 70mL X 96 h 200 oC 15.06g(91.3%)
측정 결과, 반응 시간이 12시간 이상일 경우 66% 이상의 합성 수율이 나타났으며, 특히 반응 시간이 48시간 이상일 경우 87% 이상의 높은 수율로 H 4dobpdc가 합성되며, 반응 시간이 72시간 이상일 경우 43 bar 이하의 낮은 내부 압력하에서 91% 이상의 높은 수율로 H 4dobpdc가 합성됨을 확인하였다.
(11) 용매의 종류에 따른 H 4dobpdc의 합성 수율 측정
하기 표 11에 기재된 바와 같이, 300 mL의 반응기에서 반응을 진행시 염기로 3 당량의 K 2CO 3를 사용하되, 용매의 종류를 변경시켜가면서 H 4dobpdc의 합성 반응을 수행하였다.
  Solvent Boiling point Solubilityof starting Product Yield
1 H 2O 100 oC insoluble 굳음 1.18g(67%)
2 Ethyleneglycol 197.6 oC insoluble 굳음 -
3 Formamide 210 oC insoluble 굳음 -
4 N,N-Dimethylformamide 153 oC soluble 슬러리 1.64g(93%)
5 N,N-Dimethylacetamide 165 oC soluble 슬러리 1.67g(95%)
6 N,N-Diethylformamide 176-177 oC soluble 슬러리 1.69g(96%)
7 N,N-Dibutylformamide 120 oC soluble 슬러리 1.54g(88%)
측정 결과, 용매로 N,N-Dimethylformamide(DMF), N,N-Dimethylacetamide(DMAc), N,N-Diethylformamide(DEF), N,N-Dibutylformamide를 사용할 경우 생성물이 슬러지화 되어 굳는 현상이 나타나지 않음을 확인하였으며, 약 90% 이상의 높은 수율로 H 4dobpdc가 합성됨을 확인하였다.
(12) 용매의 당량에 따른 H 4dobpdc의 합성 수율 측정
하기 표 12에 기재된 바와 같이, 300 mL의 반응기에서 반응을 진행시 염기로 3 당량의 K 2CO 3를 사용하고, 용매로 DMF를 사용하되, 용매의 당량을 2.3 내지 18.4 당량으로 변경시켜가면서 H 4dobpdc의 합성 반응을 수행하였다.
  4,4’-biphenol K 2CO 3 DMF CO 2 time temp Yield 최대압력
1 11.20g 24.93g(3eq) 10mL(2.3eq) X 72 h 200 oC 12.54g(76%) 21bar
2 11.20g 24.93g(3eq) 20mL(4.6eq) X 72 h 200 oC 13.17g(79%) 22bar
3 11.20g 24.93g(3eq) 30mL(6.9eq) X 72 h 200 oC 14.28g(86%) 36bar
4 11.20g 24.93g(3eq) 40mL(9.2eq) X 72 h 200 oC 14.13g(85%) 42bar
5 11.20g 24.93g(3eq) 50mL(11.5eq) X 72 h 200 oC 14.77g(89%) 42bar
6 11.20g 24.93g(3eq) 60mL(13.8eq) X 72 h 200 oC 14.41g(87%) 40bar
7 11.20g 24.93g(3eq) 70mL(16.1eq) X 72 h 200 oC 15.01g(91%) 43bar
8 11.20g 24.93g(3eq) 80mL(18.4eq) X 72 h 200 oC 15.32g(92%) 43bar
측정 결과, 2.3 내지 18.4 당량의 DMF를 사용할 경우 76% 이상의 합성 수율이 나타났으며, 특히 DMF의 당량이 6.9 이상일 경우 85% 이상의 높은 수율로 H 4dobpdc가 합성되며, DMF의 당량이 16.1 이상일 경우 43 bar 이하의 낮은 내부 압력하에서 91% 이상의 높은 수율로 H 4dobpdc가 합성됨을 확인하였다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명은 비교적 간단한 공정을 통해서 H 4dobpdc의 합성 수율을 현저히 향상시킬 수 있는바, H 4dobpdc의 대량 생산이 요구되는 금속-유기 골격체 기반의 이산화탄소 흡착제 개발 분야에 유용하게 사용될 수 있다.

Claims (7)

  1. 하기 [반응식 1]에 따라 하기 [화학식 2]로 표시되는 화합물을 염기와 반응시켜 하기 [화학식 1]로 표시되는 화합물을 제조하는 단계;를 포함하는 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법:
    [반응식 1]
    Figure PCTKR2019005212-appb-img-000013
    [화학식 2] [화학식 1]
    상기 [반응식 1]은, 하기 [화학식 3]으로 표시되는 용매하에서 수행된다:
    [화학식 3]
    Figure PCTKR2019005212-appb-img-000014
    상기 [화학식 3]에서,
    R 1은 H 또는 -(CH 2) n-CH 3이고, R 2는 -(CH 2) m-CH 3이며, R 3는 -(CH 2) p-CH 3이고, n, m, p는 각각 0 내지 20의 정수이다.
  2. 제1항에 있어서,
    상기 염기는 K 2CO 3, Na 2CO 3, Li 2CO 3, KHCO 3, NaHCO 3, LiHCO 3 및 KOH로 이루어진 군에서 선택되는 것을 특징으로 하는 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법.
  3. 제1항에 있어서,
    상기 [화학식 3]으로 표시되는 용매는 하기 [화학식 4] 내지 [화학식 7]로 표시되는 화합물 중에서 선택되는 것을 특징으로 하는 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법:
    [화학식 4] [화학식 5]
    Figure PCTKR2019005212-appb-img-000015
    Figure PCTKR2019005212-appb-img-000016
    [화학식 6] [화학식 7]
    Figure PCTKR2019005212-appb-img-000017
    .
  4. 제1항에 있어서,
    상기 염기는 상기 [화학식 2]로 표시되는 화합물 기준 2 내지 4 당량으로 사용되는 것을 특징으로 하는 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법.
  5. 제1항에 있어서,
    상기 [화학식 3]으로 표시되는 용매는 상기 [화학식 2]로 표시되는 화합물 기준 1 내지 30 당량으로 사용되는 것을 특징으로 하는 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법.
  6. 제1항에 있어서,
    상기 [반응식 1]은 170 내지 230 ℃의 온도하에서 수행되는 것을 특징으로 하는 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법.
  7. 제1항에 있어서,
    상기 [반응식 1]은 12시간 이상 수행되는 것을 특징으로 하는 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법.
PCT/KR2019/005212 2018-04-30 2019-04-30 4,4'-디하이드록시-[1,1'-바이페닐-3,3'-디카르복실산]의 제조방법 WO2019212233A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/050,925 US11465959B2 (en) 2018-04-30 2019-04-30 Method for preparing 4,4′-dihydroxy-[1,1′-biphenyl-3,3′-dicarboxylic acid]

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180049962 2018-04-30
KR10-2018-0049962 2018-04-30
KR10-2019-0049887 2019-04-29
KR1020190049887A KR102276691B1 (ko) 2018-04-30 2019-04-29 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법

Publications (1)

Publication Number Publication Date
WO2019212233A1 true WO2019212233A1 (ko) 2019-11-07

Family

ID=68386346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005212 WO2019212233A1 (ko) 2018-04-30 2019-04-30 4,4'-디하이드록시-[1,1'-바이페닐-3,3'-디카르복실산]의 제조방법

Country Status (1)

Country Link
WO (1) WO2019212233A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070018942A (ko) * 2004-04-09 2007-02-14 지티씨 테크놀러지 인코포레이티드 선택적 용매를 사용하는 착화에 의한 카복실산의 정제
WO2009011545A2 (en) * 2007-07-16 2009-01-22 Insilicotech Co., Ltd. Compound or solvate thereof with mesoporous metal-organic framework
US20130053585A1 (en) * 2011-08-25 2013-02-28 The Regents Of The University Of California Gas separations with redox-active metal-organic frameworks
JP2015504000A (ja) * 2011-10-18 2015-02-05 ザ レジェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア 混合ガス分離用アルキルアミン官能化金属有機骨格
KR20170043921A (ko) * 2015-10-14 2017-04-24 한국에너지기술연구원 금속-유기 골격체 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070018942A (ko) * 2004-04-09 2007-02-14 지티씨 테크놀러지 인코포레이티드 선택적 용매를 사용하는 착화에 의한 카복실산의 정제
WO2009011545A2 (en) * 2007-07-16 2009-01-22 Insilicotech Co., Ltd. Compound or solvate thereof with mesoporous metal-organic framework
US20130053585A1 (en) * 2011-08-25 2013-02-28 The Regents Of The University Of California Gas separations with redox-active metal-organic frameworks
JP2015504000A (ja) * 2011-10-18 2015-02-05 ザ レジェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア 混合ガス分離用アルキルアミン官能化金属有機骨格
KR20170043921A (ko) * 2015-10-14 2017-04-24 한국에너지기술연구원 금속-유기 골격체 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU, Z.-P. ET AL.: "Framework-solvent interactional mechanism and effect of NMP/DMF on solvothermal synthesis of [Zn4O(BDC)3]8", TRANS. NONFERROUS MET. SOC. CHINA, vol. 24, 2014, pages 3722 - 3731 *

Similar Documents

Publication Publication Date Title
WO2010030132A2 (ko) 아데포비어 디피복실의 정제방법
WO2011071314A2 (en) Processes for preparing crystalline forms a and b of ilaprazole and process for converting the crystalline forms
WO2017023123A1 (ko) 크로마논 유도체의 신규한 제조방법
EP3204364A2 (en) A method for preparing gadobutrol
KR102276691B1 (ko) 4,4′-디하이드록시-[1,1′-바이페닐-3,3′-디카르복실산]의 제조방법
WO2011004980A2 (ko) 트리사이클릭 유도체의 제조방법
WO2019212233A1 (ko) 4,4'-디하이드록시-[1,1'-바이페닐-3,3'-디카르복실산]의 제조방법
WO2022244969A1 (ko) 메틸렌 락톤계 화합물의 제조방법
WO2022164150A1 (ko) 나파모스타트 메실산염 및 그의 중간체의 제조방법
WO2020040617A1 (ko) 가도부트롤의 제조방법
WO2018084625A1 (en) Method for preparation of (s)-n1-(2-aminoethyl)-3-(4-alkoxyphenyl)propane-1,2-diamine trihydrochloride
WO2021107514A2 (ko) 리피테그라스트의 제조방법
EP0302195A1 (en) Process for the preparation of naphthacenes
WO2009083724A1 (en) Processes for the preparation of thalidomide
WO2013105708A1 (ko) α-메틸렌락톤의 제조 방법
WO2021210920A1 (ko) 라멜테온의 제조 방법 및 이러한 제조 방법에 이용되는 중간체 화합물
WO2020190080A1 (en) Method for the synthesis of 2,5-furandicarboxylic acid
WO2014175563A1 (en) Novel method of preparing 4-(4-aminophenyl)-3-morpholinone
WO2023249414A1 (ko) 벤조아민 유도체의 제조방법
WO2017074147A1 (en) Novel process for preparing thienopyrimidine compound and intermediates used therein
WO2020204647A1 (en) Processes for preparing (3r,4r)-1-benzyl-n,4-dimethylpiperidin-3-amine or a salt thereof and processes for preparing tofacitinib using the same
WO2023063653A1 (ko) 플루오렌 유도체 화합물의 합성방법
WO2017209458A1 (ko) 4'-히드록시-4-비페닐카르복실산의 신규 제조 방법
WO2023014160A1 (ko) 페닐카바메이트 결정형 및 이의 제조 방법
WO2017090991A1 (ko) 벤조피란 유도체의 정제방법, 이의 결정형 및 상기 결정형의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19796640

Country of ref document: EP

Kind code of ref document: A1