WO2020040617A1 - 가도부트롤의 제조방법 - Google Patents

가도부트롤의 제조방법 Download PDF

Info

Publication number
WO2020040617A1
WO2020040617A1 PCT/KR2019/010802 KR2019010802W WO2020040617A1 WO 2020040617 A1 WO2020040617 A1 WO 2020040617A1 KR 2019010802 W KR2019010802 W KR 2019010802W WO 2020040617 A1 WO2020040617 A1 WO 2020040617A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
gadobutrol
compound
hydrate
gadolinium
Prior art date
Application number
PCT/KR2019/010802
Other languages
English (en)
French (fr)
Inventor
변창호
윤회진
김문수
정성수
박종문
이준원
우석훈
장순기
Original Assignee
에스티팜 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스티팜 주식회사 filed Critical 에스티팜 주식회사
Priority to CN201980055120.2A priority Critical patent/CN112585121B/zh
Priority to EP19851560.3A priority patent/EP3819294A4/en
Priority to US17/270,268 priority patent/US20210317142A1/en
Priority to JP2021506263A priority patent/JP7284250B2/ja
Publication of WO2020040617A1 publication Critical patent/WO2020040617A1/ko
Priority to JP2023019253A priority patent/JP2023062038A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to a process for preparing gadobutrol or a hydrate thereof. Specifically, the present invention relates to a manufacturing method that can produce a high yield of gadobutrol by managing the purity of the intermediate to a high standard, unlike the existing synthesis method, and can bring down the unit cost by simplifying the synthesis step.
  • Gadobutrol In the field of gadolinium-containing contrast agents, Gadobutrol is commercially available worldwide under the trade names Gadovist or Gadavist.
  • Gadobutrol represented by the following Chemical Formula 1 is Racemate, which is a microcyclic ligand 10- (2,3-dihydroxy-1- (hydroxymethyl) propyl) -1,4,7,10-tetraazacyclodecane It is a non-ionic complex of -1,4,7-triacetic acid (butrol) and gadolinium (III), which leads to a shortening of the relaxation time of protons in tissue water, especially at clinically recommended doses.
  • Gadobutrol Since international standards such as the ICH guideline recommend an impurity content of 0.1% or less, it is preferable to manufacture Gadobutrol with a high purity of 99.9% or more in order to be sold as a pharmaceutical. However, the methods disclosed in this document are complicated in the process and cannot produce high purity pseudobutrol.
  • the present invention provides a new method for preparing gadobutrol or a hydrate thereof.
  • the manufacturing method of the present invention may include the following steps.
  • R is C 1 -C 4 straight or branched alkyl.
  • hydrate means that the active ingredient and water are bonded by non-covalent intermolecular force and may include stoichiometric or non-stoichiometric amounts of water.
  • the hydrate may include about 0.25 moles to about 10 moles of water based on 1 mole of the active ingredient, and preferably a monohydrate including 1 mole.
  • the present invention is not limited thereto.
  • salts in the present invention include salts that can be prepared by conventional methods and refer to acid addition salts formed by free acid.
  • Inorganic salts made of, for example, inorganic ions made of calcium, potassium, sodium or magnesium, hydrochloric acid, nitric acid, phosphoric acid, bromic acid, iodic acid, perchloric acid or sulfuric acid; Acetic acid, trifluoroacetic acid, citric acid, maleic acid, succinic acid, oxalic acid, benzoic acid, tartaric acid, fumaric acid, mandelic acid, propionic acid, lactic acid, glycolic acid, glutonic acid, galacturonic acid, glutamic acid, glutaric acid, glucuronic acid, aspart Organic acid salts prepared with acid, ascorbic acid, carbonic acid, vanillic acid, or the like; Sulfonic acid salts prepared with methanesulfonic acid
  • carboxymethylation means the intrinsic bond formation between a substrate and a carboxymethyl group.
  • basic hydrolysis refers to hydrolysis performed in the presence of a base, and is a decomposition reaction caused by the action of water molecules during a natural chemical reaction. In the present invention, it means saponification, which is a basic hydrolysis reaction of an ester.
  • the term "in situ” refers to a reaction occurring in a container, and generally, when two or more processes proceed in succession in one chamber, it is said to react in situ.
  • the present invention relates to an invention in which gadolinium complexes are formed in situ after basic hydrolysis reactions occur.
  • the term "complex” means a plurality of atoms, ions, molecules, or atomic groups centered on one or more atoms or ions, and coordinated three-dimensionally to form one atomic group. Say what it is.
  • the case where the central atom is a metal or a similar metal element is called a metal complex, and the present invention relates to a method for producing a metal complex compound represented by the formula (1) wherein the central atom is gadolinium.
  • C x -C y means a functional group having carbon number of x or more and y or less.
  • the step (S-1) relates to a carboxymethylation reaction for preparing the compound of formula 2 using a compound of formula 3 or a salt thereof as a starting material.
  • R is as defined above.
  • the compound of Formula 2 in the step (S-1), may be prepared by reacting the compound of Formula 3 or a salt thereof with a compound of Formula 4 in the presence of a base.
  • R is as defined above
  • X is halogen, TsO - is - or MsO.
  • halogen refers to a group 17 element of the periodic table and includes, for example, fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).
  • TsO - is called, tosylate, an anion (CH 3 C 6 H 4 SO 3 -) of p- toluenesulfonic acid is represented by the.
  • This TsO as above-referred to or abbreviated as an ester of p- toluenesulfonic acid, and is used a good leaving group in organic reactions.
  • MsO - is called, mesylate, the anion of methane sulfonic acid (CH 3 SO 3 H) - is represented by (CH 3 SO 3).
  • This MsO as above-La ester of methanesulfonic acid or abbreviation with and is good leaving groups used in organic reactions.
  • the salt of the compound of Formula 3 may be tetrahydrochloride of the formula 3-1.
  • the compound of Formula 2 may be a compound of Formula 2-1 wherein R is tert-butyl.
  • the step (S-1) may use water, C 1 -C 4 alcohol or a mixed solvent thereof.
  • a mixed solvent of water and isopropyl alcohol may be used as the mixed solvent, and more preferably, a mixed solvent including water and isopropyl alcohol in a volume ratio (v / v) of 1: 2 to 1: 5.
  • v / v volume ratio
  • the present invention is not limited thereto.
  • alcohol means a compound in which a hydroxy group is bonded to a carbon atom of an alkyl or substituted alkyl group.
  • the step (S-1) may be carried out in the presence of an inorganic base.
  • an inorganic base potassium carbonate (K 2 CO 3 ), sodium bicarbonate (NaHCO 3 ), potassium hydrogen carbonate (KHCO 3 ) or a mixture thereof may be used.
  • the present invention is not limited thereto.
  • the reaction of the step (S-1) may be carried out at 70 to 90 ° C, preferably at 75 to 85 ° C, more preferably 77 to 83 It may be carried out at ° C.
  • the present invention is not limited thereto.
  • the (S-1) step may further include a step of crystallizing the compound of Formula 2.
  • the solvent used in the crystallization process may be methylene chloride, C 3 -C 12 ester or a mixture thereof.
  • the mixture may preferably be a mixture of methylene chloride and ethyl acetate, and more preferably, a mixture containing methylene chloride and ethyl acetate in a volume ratio (v / v) of 1: 7 to 1:10. .
  • the present invention is not limited thereto.
  • crystallization refers to a process of precipitation of a solute dissolved in a solution phase into a solid phase as a field of separation technology, and can easily separate a desired substance through a crystallization process.
  • the compound of Formula 2 may be obtained in a high yield of 90% or more, preferably 95% or more by the step (S-1).
  • the step (S-2) is a basic hydrolysis reaction of the compound of formula 2 to prepare a butrol, and then without additional purification to form a gadolinium complex in-situ (in-situ) To prepare a compound of formula (1).
  • R is as defined above.
  • the step (S-2) may not use a resin.
  • step (S-2) there is an advantage in that butrol may be prepared in a simpler process by effectively removing salts generated during the reaction even without using a resin.
  • the basic hydrolysis reaction can be carried out using conventional basic hydrolysis reaction conditions of the ester.
  • it may be performed by adding an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution to the compound of Formula 2.
  • the basic hydrolysis reaction may be performed at 60 to 100 ° C, preferably at 70 to 90 ° C, more preferably at 75 to 85 ° C.
  • the present invention is not limited thereto.
  • pH can be adjusted to acidic conditions to prepare a butrol compound, preferably using HBr can be adjusted to pH.
  • the pH can preferably be adjusted from 2 to 5, more preferably from 3 to 4, even more preferably from 3.3 to 3.7.
  • Conventional gadobutrol synthesis method had to be purified butrol prepared with a resin, but the production method of the present invention can be used intact gadolinium complex formation reaction in-situ without the purification of butrol only by adjusting the pH. Can be.
  • step (S-2) may continuously prepare gadobutrol, which is a gadolinium complex of butrol, by reacting a gadolinium ion source with a butrol prepared by a basic hydrolysis reaction.
  • the gadolinium ion source may use any compound capable of supplying gadolinium ions, and may use gadolinium oxide, gadolinium acetate, or gadolinium chloride.
  • gadolinium oxide can be used.
  • the present invention is not limited thereto.
  • the gadolinium complex formation reaction may be performed at 50 to 100 ° C, preferably at 70 to 95 ° C, more preferably at 87 to 93 ° C. .
  • the present invention is not limited thereto.
  • the (S-2) step may include a salt removing process.
  • the salt removal process may be performed through a nano filter.
  • the nano filter used in the salt removal process for example, DK1812 G / E (manufacturer: Pure Tech P & T) can be used.
  • the salt removal process can be simplified by removing the salt (salt) remaining after the reaction without an additional process, can uniform the quality, such as the size of the Gadobutrol, can increase the purity of the Gadobutrol.
  • the salt removal process may be carried out without using an organic solvent or an inorganic solvent, it can be an environmentally friendly, economically advantageous effect.
  • the salt removal process may be carried out to the electrical conductivity of the filtrate to 500 ⁇ S / cm or less. When the electrical conductivity exceeds 500 ⁇ S / cm, salt may not be sufficiently removed, thereby lowering the purity of the gasobutrol.
  • the salt removal process may be performed using 200 to 300 mL of water per g of crude gadobutrol prepared by the gadolinium complex formation reaction, preferably It may be performed using 220 to 280 times of water, more preferably 240 to 260 times of water.
  • the present invention is not limited thereto.
  • the (S-2) step may further include a crystallization process of gadobutrol.
  • a solvent used in the crystallization step water, C 1 -C 4 alcohol or a mixture thereof may be used, preferably methanol or anhydrous ethanol.
  • the present invention is not limited thereto.
  • the manufacturing method of the present invention may optionally further comprise the step (S-3) of purifying the crude gadobutrol prepared in the step (S-2).
  • the (S-3) step may purify gadobutrol using a resin.
  • the resin may include a cation exchange resin and an anion exchange resin, preferably, their volume ratio (v / v) may be 1: 1 to 1: 3.
  • the present invention is not limited thereto.
  • the step (S-3) may further include a process of crystallizing gadobutrol.
  • the solvent used in the crystallization step water, C 1 -C 4 alcohol or a mixture thereof may be used, preferably ethanol.
  • the present invention is not limited thereto.
  • gadobutrol or a hydrate thereof can be obtained from the step (S-3) with a high purity of 99% or more, preferably 99.5% or more, more preferably 99.9% or more.
  • the compounds represented by Chemical Formulas 1 to 3 include not only the compound or salts thereof, but also solvates, hydrates, and stereoisomers that can be prepared therefrom within the scope of the present invention.
  • gadobutrol may be prepared by the method represented by the following schemes 1-2.
  • the manufacturing method of the present invention can simplify the process by forming a gadolinium complex in-situ without purification of the butrol intermediate, and can eliminate the resin purification process. There is this.
  • the production method of the present invention can be produced in a high yield of high purity gadobutrol or a hydrate thereof by a simple process as described above can be usefully used for mass production.
  • IR was measured by using Agilent Technologies Inc. Cary 630 FTIR, HPLC was measured using the 1200 Series and Thermo scientific Dionex Inc. Ultimate 3000 series and Dionex coronaveo RS detector's Agilent Technoliges, 13 C NMR was measured at 100 MHz using Brucker's Biospin AG, Magnet system 400'54 Ascend, and MS was measured using Agilent Technoloiges' 6120 Quadrupoe LC / MS.
  • Step 1 tert-butyl-2,2 ', 2' '-(10- (1,3,4-trihydroxybutan-2-yl) -1,4,7,10-tetraazacyclododecane- Preparation of 1,4,7-triyl) triacetate
  • the organic layer was concentrated and removed under reduced pressure, and then the organic layer was separated using 1000 ml of purified water and 1000 ml of toluene, and 500 ml of hydrochloric acid was added to the separated organic layer to separate the aqueous layer.
  • 500 ml of methylene chloride was added to the separated aqueous layer, and the organic layer was separated after adjusting the pH to 9.3 to 9.8 using sodium carbonate (100 g). The separated organic layer was dehydrated and concentrated under reduced pressure.
  • Step 2 gadolinium complex of 10- (2,3-dihydroxy-1 (hydroxymethyl) propyl) -1,4,7,10-teazacyclododecane-1,4,7-triacetic acid Butrol)
  • the pH was adjusted to 3.3 to 3.7 using bromic acid, and gadolinium oxide (57.09 g, 0.1575 mol) was added after the decolorization treatment.
  • the internal temperature was raised to 87-93 ° C. and stirred at the same temperature for 1 hour.
  • the reaction solution was filtered using diatomaceous earth. The filtrate was concentrated under reduced pressure. 139.2 ml of purified water was added to the concentrated residue, and the mixture was dissolved by stirring after raising the internal temperature to 70 ° C or higher. After completion of the dissolution, 2785 ml of methanol was added and stirred under reflux for 3 hours.
  • Tetraacyclocyclodecane-1,4,7-triyl) triacetate (139.2 g, 0.225 mol) was dissolved in 557 ml of purified water, and sodium hydroxide (31.5 g, 0.7875 mol) was added while stirring, and the internal temperature was 75 to 80. The temperature was raised to ° C. When the temperature increase is completed, the reaction proceeds at the same temperature for 3 hours, and after confirming the completion of the reaction, the temperature is cooled to 15 ° C.
  • the pH was adjusted to 3.3 to 3.7 using bromic acid, and gadolinium oxide (57.09 g, 0.1575 mol) was added after the decolorization treatment.
  • the internal temperature was raised to 87-93 ° C. and stirred at the same temperature for 1 hour.
  • the reaction solution was cooled to room temperature and the reaction solution was filtered using diatomaceous earth. The filtrate was diluted and salt was removed with a nano filter (DK1812 G / E (manufactured by Pure TechnP)) using 34800 ml of water. The remaining mixture was concentrated under reduced pressure.
  • Gadobutrol was prepared according to Scheme 1 disclosed in the prior art (Inorg. Chem. 1997, 36, 6086-6093).
  • Gadobutrol was prepared according to scheme 2 disclosed in the prior art (Inorg. Chem. 1997, 36, 6086-6093).
  • the manufacturing method of the present invention can simplify the process by forming a gadolinium complex in-situ without purification of the butrol intermediate, and can eliminate the resin purification process. There is this.
  • the production method of the present invention can be used in a high-yield production of high purity gadobutrol or its hydrate in a high yield only by a simple process as described above is expected to be useful in related industrial fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 고순도의 가도부트롤 또는 이의 수화물을 제조하는 신규한 방법을 제공한다. 본 발명의 제조방법은 기존의 가도부트롤의 합성 방법과 달리 부트롤 중간체의 정제 없이 인시츄(in-situ)로 가돌리늄 착물을 형성하여 공정을 간소화할 수 있고 레진 정제 공정을 생략할 수 있는 이점이 있다. 또한, 본 발명의 제조방법은 위와 같은 간단한 공정만으로 고순도의 가도부트롤 또는 이의 수화물을 고수율로 제조할 수 있어 대량생산에 유용하게 사용될 수 있다.

Description

가도부트롤의 제조방법
관련 출원과의 상호 인용
본 출원은 2018년 08월 23일자 한국 특허 출원 제10-2018-0098501호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 가도부트롤 또는 이의 수화물의 제조방법에 관한 것이다. 구체적으로, 본 발명은 기존 합성방법과 달리 중간체의 순도를 높은 규격으로 관리하여 고수율의 가도부트롤을 제조할 수 있고, 합성 단계를 간소화하여 단가 절감을 가져올 수 있는 제조방법에 관한 것이다.
가돌리늄(Gadolinium) 함유 조영제(contrast agent) 분야에서 가도부트롤(Gadobutrol)은 전세계적으로 가도비스트(Gadovist) 또는 가다비스트(Gadavist)라는 상품명으로 전세계에서 시판 중이다.
하기 화학식 1로 표시되는 가도부트롤은 Racemate로서, 마이크로시클릭 리간드 10-(2,3-디히드록시-1-(히드록시메틸)프로필)-1,4,7,10-테트라아자시클로데칸-1,4,7-트리아세트산(부트롤)과 가돌리늄(III)의 비-이온성 착물이며, 이것은 특히 임상적으로 권장되는 용량에서 조직수 중 프로톤의 완화시간의 단축을 유발한다.
[화학식 1]
Figure PCTKR2019010802-appb-img-000001
가도부트롤의 합성방법은 Inorg. Chem. 1997, 36, 6086-6093 에 3가지 경로(스킴 1 내지 3)가 자세히 기술되어 있다. 그러나 상기 문헌에서 스킴 3의 경로는 수율이 낮아 대량생산의 면에서 부적합하며, 순도 측면에서는 HPLC (정지상: 샨돈(SHANDON)의 하이퍼실(Hypersil) 페닐(5 ㎛); 이동상: 아세토니트릴/보레이트 완충액(pH 8)(부피비 20/100); 검출: UV 검출기(200 nm); 주입 부피: 10 ㎕)에 의해 측정시 약 90 %의 순도를 갖는 가도부트롤이 얻어진다.
한편, 스킴 1의 경우 정제를 위하여 많은 양의 레진을 사용해야 하며, 그에 따른 tower 등의 특수 시설을 갖추어야 하는 단점이 있다. 따라서, 스킴 1의 방법은 단가 상승으로 인하여 대량생산에 적용하기 곤란하다. 또한, 스킴 2의 경우 수율이 낮으며, 순도도 좋지 못한 문제점이 있다.
ICH 가이드라인 등 국제기준에서는 불순물 함량이 0.1 % 이하가 되도록 권장하고 있으므로, 가도부트롤이 의약품으로 판매되기 위해서는 순도가 99.9 % 이상의 초고순도로 제조되는 것이 바람직하다. 그러나, 상기 문헌에 개시된 방법들은 공정이 복잡하고 고순도의 가도부트롤을 제조할 수 없다.
따라서, 복잡한 정제 공정 없이 제조 공정이 단순하면서 고순도의 가도부트롤을 고수율로 제조할 수 있고, 결국 대량생산 면에서 유리한 새로운 제조방법 개발이 요구되어 왔다.
[선행기술문헌]
[특허문헌]
대한민국 등록특허공보 제10-1653064호
[비특허문헌]
Inorg. Chem. 1997, 36, 6086-6093
본 발명의 목적은 간단하고 온화한 공정 만으로 중간체의 순도를 높은 규격으로 관리하여 고순도의 가도부트롤 또는 이의 수화물을 고수율 및 낮은 단가로 제조하는 방법을 제공하는 것이다.
본 발명의 목적을 달성하기 위하여, 본 발명은 가도부트롤 또는 이의 수화물의 새로운 제조방법을 제공한다.
구체적으로, 본 발명의 제조방법은 다음 단계들을 포함할 수 있다.
(S-1) 하기 화학식 3의 화합물 또는 이의 염을 카르복시메틸화 반응시켜 하기 화학식 2의 화합물을 제조하는 단계; 및
(S-2) 상기 화학식 2의 화합물을 염기성 가수분해시키고 인시츄(in-situ)로 가돌리늄 착물을 형성하여 하기 화학식 1의 화합물을 제조하는 단계:
[화학식 1]
Figure PCTKR2019010802-appb-img-000002
[화학식 2]
Figure PCTKR2019010802-appb-img-000003
[화학식 3]
Figure PCTKR2019010802-appb-img-000004
상기 화학식에서,
R은 C 1-C 4의 직쇄 또는 분지형 알킬이다.
이하에서는 각 단계에 대하여 상세히 설명한다.
본 명세서에서, 용어 「수화물」이란, 활성성분과 물이 비공유적 분자간 힘으로 결합되어 있는 것으로 화학양론적 또는 비화학양론적의 양의 물을 포함할 수 있다. 상기 수화물은 활성성분 1몰을 기준으로 물을 약 0.25몰 내지 약 10몰 비로 포함할 수 있으며, 바람직하게는 1몰을 포함하는 1수화물일 수 있다. 다만 이에 한정되지 않는다.
본 명세서에서, 용어 「염」 이란, 산과 염기와의 중화 반응에 의해 생기는 화합물이다. 본 발명에서의 염은 통상의 방법에 의해서 제조될 수 있는 염을 포함하며, 유리산(free acid)에 의해 형성된 산 부가염을 의미한다. 예를 들어 칼슘, 포타슘, 소듐 또는 마그네슘 등으로 제조된 무기이온염, 염산, 질산, 인산, 브롬산, 요오드산, 과염소산 또는 황산 등으로 제조된 무기산염; 아세트산, 트라이플루오로아세트산, 시트르산, 말레산, 숙신산, 옥살산, 벤조산, 타르타르산, 푸마르산, 만델산, 프로피온산, 젖산, 글리콜산, 글루콘산, 갈락투론산, 글루탐산, 글루타르산, 글루쿠론산, 아스파르트산, 아스코르브산, 카본산 또는, 바닐릭산 등으로 제조된 유기산염; 메탄술폰산, 에탄술폰산, 벤젠술폰산, 살리실산, p-톨루엔술폰산 또는 나프탈렌술폰산 등으로 제조된 술폰산염; 글리신, 아르기닌, 라이신 등으로 제조된 아미노산염; 또는 트라이메틸아민, 트라이에틸아민, 암모니아, 피리딘, 피콜린 등으로 제조된 아민염 등이 있으나, 열거된 이들 염에 의해 본 발명에서 의미하는 염의 종류가 한정되는 것은 아니다.
본 명세서에서, 용어 「카르복시메틸화」란, 기질과 카르복시 메틸기 사이의 고유 결합 형성을 의미한다.
본 명세서에서, 용어 「염기성 가수분해」란, 염기의 존재하에 수행되는 가수 분해를 의미하며 자연계의 화학반응 중에 물 분자가 작용하여 일어나는 분해반응이다. 본 발명에서는 에스테르의 염기성 가수분해 반응인 비누화반응(Saponification)을 의미한다.
본 명세서에서, 용어 「인시츄」란 한 용기내에서 일어나는 반응을 의미하며 일반적으로, 한 chamber 안에서 두 가지 이상의 진행이 연속적으로 진행되면 인시츄로 반응한다고 말한다. 본 발명은 염기성 가수분해 반응이 일어난 후, 인시츄로 가돌리늄 착물이 형성되는 발명에 관한 것이다.
본 명세서에서, 용어 「착물」이란, 1개 또는 그 이상의 원자나 이온을 중심으로 몇 개의 다른 원자·이온·분자 또는 원자단 등이 방향성을 갖고 입체적으로 배위(配位)하여 하나의 원자집단을 이루고 있는 것을 말한다. 특히 중심원자가 금속이나 유사 금속원소인 경우를 금속착물이라고 하며, 본 발명은 중심원자가 가돌리늄인 화학식 1로 표시되는 금속착물 화합물의 제조방법에 관한 발명이다.
본 명세서에서, 용어 「C x-C y」란, 탄소수가 x 이상 y 이하를 갖는 작용기를 의미한다.
(S-1) 단계 : 카르복시메틸화 반응
본 발명의 제조방법에 있어서, 상기 (S-1) 단계는 하기 화학식 3의 화합물 또는 그의 염을 출발물질로 하여 하기 화학식 2의 화합물을 제조하는 카르복시메틸화 반응에 관한 것이다.
[화학식 2]
Figure PCTKR2019010802-appb-img-000005
[화학식 3]
Figure PCTKR2019010802-appb-img-000006
R은 위에서 정의된 바와 같다.
본 발명의 구체예에 따르면, 상기 (S-1) 단계는 상기 화학식 3의 화합물 또는 이의 염과 하기 화학식 4의 화합물을 염기 존재 하에 반응시켜 상기 화학식 2의 화합물을 제조할 수 있다.
[화학식 4]
Figure PCTKR2019010802-appb-img-000007
상기 화학식 4에서,
R은 위에서 정의된 바와 같고,
X는 할로겐, TsO - 또는 MsO - 이다.
본 명세서에서, 용어 「할로겐」이란, 주기율표 17족 원소를 나타내며 예를 들어, 플루오린(F), 염소(Cl), 브로민(Br) 또는 아이오딘(I)을 포함한다.
본 명세서에서, 용어 「TsO -」이란, 토실 레이트라고 하며, p-톨루엔 술폰산의 음이온 (CH 3C 6H 4SO 3 -)으로 표시된다. 이는 상기와 같이 TsO -로 약칭하거나 p-톨루엔 술폰산의 에스테르라 하며, 유기 반응에서 좋은 이탈기로 이용된다.
본 명세서에서, 용어 「MsO -」이란, 메실 레이트라고 하며, 메탄 술폰산 (CH 3SO 3H)의 음이온 (CH 3SO 3 -)으로 표시된다. 이는 상기와 같이 MsO -로 약칭하거나 메탄 술폰산의 에스테르라 하며, 유기 반응에서 좋은 이탈기로 이용된다.
본 발명의 구체예에 따르면, 상기 화학식 3의 화합물의 염은 하기 화학식 3-1의 4 염산염일 수 있다.
[화학식 3-1]
Figure PCTKR2019010802-appb-img-000008
또한, 본 발명의 구체예에 따르면, 상기 화학식 2의 화합물은 R이 tert-부틸인 하기 화학식 2-1의 화합물일 수 있다.
[화학식 2-1]
Figure PCTKR2019010802-appb-img-000009
본 발명의 구체예에 따르면, 상기 (S-1) 단계는 물, C 1-C 4 알코올 또는 이들의 혼합용매를 사용할 수 있다. 상기 혼합용매로 바람직하게는 물 및 이소프로필알코올의 혼합용매를 사용할 수 있으며, 보다 바람직하게는 물과 이소프로필알코올을 1:2 내지 1:5의 부피비(v/v)로 포함하는 혼합용매를 사용할 수 있다. 다만, 이에 한정되지 않는다.
본 명세서에서, 용어 「알코올」이란, 히드록시기가 알킬 또는 치환된 알킬기의 탄소 원자에 결합된 화합물을 의미한다.
본 발명의 구체예에 따르면, 상기 (S-1) 단계는 무기 염기 존재 하에 반응을 수행할 수 있다. 바람직하게는 상기 무기 염기로 탄산칼륨 (K 2CO 3), 탄산수소나트륨 (NaHCO 3), 탄산수소칼륨 (KHCO 3) 또는 이들의 혼합물을 사용할 수 있다. 다만, 이에 한정되지 않는다.
본 발명의 구체예에 따르면, 상기 (S-1) 단계의 반응은 70 내지 90 °C에서 수행될 수 있고, 바람직하게는 75 내지 85 °C에서 수행될 수 있으며, 보다 바람직하게는 77 내지 83 °C에서 수행될 수 있다. 다만, 이에 한정되지 않는다.
본 발명의 구체예에 따르면, 상기 (S-1) 단계는 상기 화학식 2의 화합물을 결정화시키는 공정을 추가로 포함할 수 있다.
상기 결정화 공정에서 사용되는 용매는 메틸렌클로라이드, C 3-C 12 에스테르 또는 이들의 혼합물을 사용할 수 있다. 상기 혼합물은 바람직하게는 메틸렌클로라이드 및 에틸아세테이트의 혼합물을 사용할 수 있으며, 보다 바람직하게는 메틸렌클로라이드와 에틸아세테이트를 1:7 내지 1:10의 부피비(v/v)로 포함하는 혼합물을 사용할 수 있다. 다만 이에 한정되지 않는다.
본 명세서에서, 용어 「결정화」란, 분리기술의 한 분야로 용액 상에 용존해 있는 용질을 고체상으로 석출해 내는 과정을 의미하며, 결정화 과정을 통하여 원하는 물질을 쉽게 분리할 수 있다.
본 발명에 있어서, 상기 (S-1) 단계에 의하여 상기 화학식 2의 화합물을 90 % 이상, 바람직하게는 95 % 이상의 고수율로 수득할 수 있다.
(S-2) 단계 : 가도부트롤의 합성 (in-situ)
본 발명의 제조방법에 있어서, 상기 (S-2) 단계는 하기 화학식 2의 화합물을 염기성 가수분해 반응시켜 부트롤을 제조한 후, 별도의 정제 없이 인시츄(in-situ)로 가돌리늄 착물을 형성하여 하기 화학식 1의 화합물을 제조하는 단계이다.
[화학식 1]
Figure PCTKR2019010802-appb-img-000010
[화학식 2]
Figure PCTKR2019010802-appb-img-000011
R은 위에서 정의된 바와 같다.
본 발명의 구체예에 따르면, 상기 (S-2) 단계는 레진을 사용하지 않을 수 있다. 후술하는 바와 같이, (S-2) 단계에서는, 레진을 사용하지 않아도 효과적으로 반응 중에 발생하는 염을 제거하여 보다 간단한 공정으로 부트롤을 제조할 수 있는 이점이 있다.
본 발명의 구체예에 따르면, 상기 염기성 가수분해 반응은 에스테르의 통상적인 염기성 가수분해 반응 조건을 이용하여 수행할 수 있다. 바람직하게는, 상기 화학식 2의 화합물에 수산화나트륨 수용액 또는 수산화칼륨 수용액을 가하여 수행할 수 있다.
또한, 상기 염기성 가수분해 반응은 60 내지 100 °C에서 수행할 수 있고, 바람직하게는 70 내지 90 °C에서 수행할 수 있으며, 보다 바람직하게는 75 내지 85 °C에서 수행될 수 있다. 다만, 이에 한정되지 않는다.
본 발명의 구체예에 따르면, 상기 염기성 가수분해 반응 완료 후 pH를 산성 조건으로 조절하여 부트롤 화합물을 제조할 수 있으며, 바람직하게는 HBr을 사용하여 pH를 조절할 수 있다. 상기 pH는 바람직하게 2 내지 5로 조절할 수 있고, 보다 바람직하게는 3 내지 4로 조절할 수 있으며, 훨씬 더 바람직하게는 3.3 내지 3.7로 조절할 수 있다. 종래의 가도부트롤 합성방법은 제조된 부트롤을 레진 등으로 정제해야 했으나, 본 발명의 제조방법은 pH의 조절만으로 부트롤의 정제 없이 인시츄(in-situ)로 가돌리늄 착물 형성 반응에 그대로 사용할 수 있다.
본 발명의 구체예에 따르면, 상기 (S-2)단계는 염기성 가수분해 반응으로 제조된 부트롤에 가돌리늄 이온 공급원을 반응시켜 부트롤의 가돌리늄 착물인 가도부트롤을 연속적으로 제조할 수 있다.
본 발명의 구체예에 따르면, 상기 가돌리늄 이온 공급원은 가돌리늄 이온을 공급할 수 있는 모든 화합물을 사용할 수 있으며, 가돌리늄 옥사이드, 가돌리늄 아세테이트 또는 가돌리늄 클로라이드를 사용할 수 있다. 바람직하게는 가돌리늄 옥사이드를 사용할 수 있다. 다만, 이에 한정되지 않는다.
본 발명에 있어서, 상기 가돌리늄 착물 형성 반응은 50 내지 100 °C에서 수행될 수 있고, 바람직하게는 70 내지 95 °C에서 수행될 수 있으며, 보다 바람직하게는 87 내지 93 °C에서 수행될 수 있다. 다만, 이에 한정되지 않는다.
본 발명의 구체예에 따르면, 상기 (S-2) 단계는 염 제거 공정을 포함할 수 있다. 상기 염 제거 공정은 나노 필터(nano filter)를 통하여 수행할 수 있다. 상기 염 제거 공정에 사용되는 나노 필터는, 예를 들어 DK1812 G/E(제조사: 퓨어테크피앤티)를 사용할 수 있다. 상기 염 제거 공정은 추가 공정 없이 반응 후 남아있던 염(salt)을 제거하여 공정이 간소화될 수 있고, 가도부트롤의 크기 등의 품질을 균일하게 할 수 있으며, 가도부트롤의 순도를 높일 수 있다. 또한, 상기 염 제거 공정은 유기용매 또는 무기용매 등이 사용되지 않고도 공정이 수행될 수 있어, 환경 친화적이며, 경제적으로 유리한 효과를 가질 수 있다. 상기 염 제거 공정은 여과액의 전기전도도가 500 μS/cm 이하로 진행될 수 있다. 상기 전기전도도가 500 μS/cm를 초과하는 경우 염(salt)이 충분히 제거되지 않아 가도부트롤의 순도가 낮아지는 문제가 발생할 수 있다.
또한 본 발명의 구체예에 따르면, 상기 염 제거 공정은 상기 가돌리늄 착물 형성 반응에 의하여 제조된 조(crude) 가도부트롤 1 g 당 200 내지 300 mL의 물을 사용하여 수행될 수 있고, 바람직하게는 220 내지 280 배의 물을 사용하여 수행될 수 있으며, 보다 바람직하게는 240 내지 260 배의 물을 사용하여 수행될 수 있다. 다만 이에 한정되지 않는다.
본 발명의 구체예에 따르면, 상기 (S-2) 단계는 가도부트롤의 결정화 공정을 추가로 포함할 수 있다. 상기 결정화 단계에서 사용되는 용매는 물, C 1-C 4 알코올 또는 이들의 혼합물을 사용할 수 있으며, 바람직하게는 메탄올 또는 무수 에탄올을 사용할 수 있다. 다만 이에 한정되지 않는다.
(S-3) 단계 : 가도부트롤 또는 이의 수화물의 정제
본 발명의 제조방법은, 상기 (S-2) 단계에서 제조된 조(crude) 가도부트롤을 정제하는 단계 (S-3)를 선택적으로 더 포함할 수 있다.
본 발명의 구체예에 따르면, 상기 (S-3) 단계는 레진을 사용하여 가도부트롤을 정제할 수 있다. 상기 레진은 양이온교환수지 및 음이온교환수지를 포함할 수 있으며, 바람직하게는 이들의 부피비(v/v)는 1:1 내지 1:3 일 수 있다. 다만 이에 한정되지 않는다.
본 발명의 다른 구체예에 따르면, 상기 (S-3) 단계는 가도부트롤을 결정화시키는 공정을 추가로 포함할 수 있다. 상기 결정화 단계에서 사용되는 용매는 물, C 1-C 4 알코올 또는 이들의 혼합물을 사용할 수 있으며, 바람직하게는 에탄올을 사용할 수 있다. 다만 이에 한정되지 않는다.
본 발명에 있어서, 상기 (S-3) 단계로부터 가도부트롤 또는 이의 수화물을 99 % 이상, 바람직하게는 99.5 % 이상, 보다 바람직하게는 99.9 % 이상의 고순도로 수득할 수 있다.
본 발명에 있어서, 상기 화학식 1 내지 3으로 표시되는 화합물은, 상기 화합물 또는 이의 염뿐 아니라 이로부터 제조될 수 있는 용매화물, 수화물 및 입체이성질체도 모두 본 발명의 범주 내로 포함한다.
본 발명의 바람직한 구체 예에 따르면, 가도부트롤은 하기 반응식 1 내지 2로 표시되는 방법에 의해 제조될 수 있다.
[반응식 1]
Figure PCTKR2019010802-appb-img-000012
[반응식 2]
Figure PCTKR2019010802-appb-img-000013
본 발명의 제조방법은 기존의 가도부트롤의 합성 방법과 달리 부트롤 중간체의 정제 없이 인시츄(in-situ)로 가돌리늄 착물을 형성하여 공정을 간소화할 수 있고 레진 정제 공정을 생략할 수 있는 이점이 있다. 또한, 본 발명의 제조방법은 위와 같은 간단한 공정만으로 고순도의 가도부트롤 또는 이의 수화물을 고수율로 제조할 수 있어 대량생산에 유용하게 사용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
또한, 이하에서 언급된 시약 및 용매는 특별한 언급이 없는 한 Sigma-Aldrich Korea 및 대정화금으로부터 구입한 것이다. IR은 Agilent Technologies 사의 Cary 630 FTIR를 사용하여 측정하였고, HPLC는 Agilent Technoliges 사의 1200 Series와 Thermo scientific 사의 Dionex Ultimate 3000 series와 Dionex coronaveo RS detector를 사용하여 측정하였으며, 13C NMR은 Brucker사의 Biospin AG, Magnet system 400'54 Ascend를 사용하여 100 MHz에서 측정하였고, MS는 Agilent Technoloiges사의 6120 Quadrupoe LC/MS를 사용하여 측정하였다. 순도는 HPLC의 면적 %과 유럽 약전 'Gadobutrol monohydrate'의 Related substances의 분석법을 인용하여 측정하였다. Elementary analysis는 C, H 및 N에 대하여는 Thermo Scientific사의 Flash EA-2000 Organic Elemental Analyzer를 사용하여 측정하였고, O에 대하여는 Thermo Finnigan사의 Flash EA-1112 Series Elemental Analyzer를 사용하여 측정하였다.
실시예 1 : 10-(2,3-디히드록시-1(히드록시메틸)프로필)-1,4,7,10-테트라아자시클로도데칸-1,4,7-트리아세트산의 가돌리늄 착물(가도부트롤)의 제조
단계 1 : tert-부틸-2,2',2''-(10-(1,3,4-트리히드록시부탄-2-일)-1,4,7,10-테트라아자시클로도데칸-1,4,7-트리일)트리아세테이트의 제조
3-(1,4,7,10-테트라아자시클로도데칸-1-일)부탄-1,2,4-트리올 4 염산염 (100 g, 0.2368 mol)을 정제수 500 ml와 이소프로필알코올 1000 ml에 용해 교반하였다. 상온에서 탄산칼륨 (327 g, 2.3684 mol)을 첨가하고, tert-부틸브로모아세테이트 (143.2 g, 0.7434 mmol)을 천천히 투입하였다. 투입이 완료되면 77 내지 83 °C에서 반응을 진행하고, 반응이 완료되면 정제수 200 ml를 투입하고 교반하여 용해하였다. 용해 후 유기층은 감압 하에 농축하여 제거한 다음, 정제수 1000 ml와 톨루엔 1000 ml를 사용하여 유기층을 분리하고, 분리한 유기층에 염산 500 ml를 투입하여 수층을 분리하였다. 분리한 수층에 메틸렌클로라이드 500 ml를 투입하고 탄산나트륨 (100 g)을 이용하여 pH를 9.3 내지 9.8로 조절한 뒤 유기층을 분리하였다. 분리한 유기층을 탈수를 진행한 뒤 감압 하에 농축하였다. 농축 잔사에 메틸렌클로라이드 (200 ml)와 에틸아세테이트 (1400 ml)을 사용하여 결정화를 진행하고, 생성된 고체를 여과 및 건조하여 표제 화합물 139.2 g (수율: 95 %, 순도: 97.7 %)을 얻었다.
Mass spectrum: m/ e 619 [(M + H)+]
13C-NMR (CDCl 3, 100 MHz): δ (ppm) 27.86, 28.16, 45.01, 45.20, 55.43, 55.82, 56.26, 59.62, 64.70, 70.66, 81.88, 82.12, 172.09,
Infrared spectrum (KBr, cm -1): 3820, 2817, 1729, 1365, 1221, 1108, 1159.
단계 2 : 10-(2,3-디히드록시-1(히드록시메틸)프로필)-1,4,7,10-테트라아자시클로도데칸-1,4,7-트리아세트산의 가돌리늄 착물(가도부트롤)의 제조
단계 1에서 제조된 tert-부틸-2,2',2''-(10-(1,3,4-트리히드록시부탄-2-일)-1,4,7,10-테트라아자시클로도데칸-1,4,7-트리일)트리아세테이트 (139.2 g, 0.225 mol)을 정제수 557 ml에 용해 교반하면서 수산화나트륨 (31.5 g, 0.7875 mol)을 투입하고 내부 온도를 75 내지 80 °C로 승온하였다. 승온이 완료되면 동일 온도에서 3 시간 동안 반응을 진행하고 반응 종결을 확인하고 15 °C 이하로 냉각하였다.
냉각 완료 후 브롬산을 이용하여 pH 를 3.3 내지 3.7 로 조절하고, 탈색 처리 후 가돌리늄 옥사이드 (57.09 g, 0.1575 mol)를 투입하였다. 내부 온도를 87 내지 93 °C로 승온하고 동일 온도에서 1 시간 동안 교반하였다. 반응 종결을 확인한 후 반응액을 규조토를 이용하여 여과하였다. 여과액은 감압 하에 농축하였다. 농축 잔사에 정제수 139.2 ml를 투입하고, 내부 온도를 70 °C 이상으로 승온한 후 교반 용해하였다. 용해 완료 후 메탄올 2785 ml를 넣고 3 시간 동안 환류 교반하였다. 실온으로 냉각하고, 동일 온도에서 2 시간 이상 교반한 후, 질소 대기 하에서 여과하였다. 여과한 결정을 내부 온도 50 °C이하에서 진공건조하여 표제 화합물 126.2 g (수율: 90 %, 함량: 83.0 %)을 얻었다.
Mass spectrum: m/ e 606 [(M + H)+]
Infrared spectrum (KBr, cm -1): 3295, 1639, 1592, 1384, 1327, 1269, 1079, 1016, 936, 721.
실시예 2 : 10-(2,3-디히드록시-1(히드록시메틸)프로필)-1,4,7,10-테트라아자시클로도데칸-1,4,7-트리아세트산의 가돌리늄 착물(가도부트롤)의 제조
실시예 1의 단계 1에서 제조된 tert-부틸-2,2',2''-(10-(1,3,4-트리히드록시부탄-2-일)-1,4,7,10-테트라아자시클로도데칸-1,4,7-트리일)트리아세테이트 (139.2 g, 0.225 mol)를 정제수 557 ml에 용해 교반하면서 수산화나트륨 (31.5 g, 0.7875 mol)을 투입하고 내부 온도를 75 내지 80 °C로 승온하였다. 승온이 완료되면 동일 온도에서 3 시간 동안 반응을 진행하고, 반응 종결을 확인한 후 15 °C 이하로 냉각하였다.
냉각 완료 후 브롬산을 이용하여 pH 를 3.3 내지 3.7 로 조절하고 탈색 처리 후 가돌리늄 옥사이드 (57.09 g, 0.1575 mol)을 투입하였다. 내부 온도를 87 내지 93 °C로 승온하고, 동일 온도에서 1 시간 동안 교반하였다. 반응 종결을 확인한 후 실온으로 냉각하고 반응액을 규조토를 이용하여 여과하였다. 여과액을 희석하고, 물 34800 ml를 사용하여 나노 필터 (DK1812 G/E(제조사: 퓨어테크피앤티)) 로 염을 제거하였다. 잔류된 혼합액은 감압 하에 농축하였다. 농축 잔사에 정제수 139.2 ml를 투입하고, 내부 온도를 70 °C 이상으로 승온한 후 교반 용해하였다. 용해 완료 후 메탄올 1392 ml를 넣고, 3 시간 동안 환류 교반하였다. 실온으로 냉각하고, 동일 온도에서 2 시간 이상 교반한 후, 질소 대기 하에서 여과하였다. 여과한 결정을 내부 온도 50 °C 이하에서 진공건조하여 표제 화합물 82.7 g (수율: 59 %, 순도: 99.97 %)을 얻었다.
Mass spectrum: m/ e 606 [(M + H)+]
Infrared spectrum (KBr, cm -1): 3403, 3269, 2856, 1595, 1375, 1318, 1273, 1087, 1005, 992, 932
실시예 3 : 10-(2,3-디히드록시-1(히드록시메틸)프로필)-1,4,7,10-테트라아자시클로도데칸-1,4,7-트리아세트산의 가돌리늄 착물(가도부트롤 일수화물)의 제조
실시예 1의 단계 2에서 제조된 10-(2,3-디히드록시-1(히드록시메틸)프로필)-1,4,7,10-테트라아자시클로도데칸-1,4,7-트리아세트산의 가돌리늄 착물 (126.2 g, 0.2025 mol)을 정제수 1262 ml에 용해 교반하였다. 가돌리늄 옥사이드 여과액에 양이온교환수지 126 ml 및 음이온교환수지 252 ml의 레진을 넣고 교반 후 여과를 진행하고 감압 하에 농축하였다. 농축 잔사에 정제수 126.2 ml를 투입하고, 내부 온도 70 °C 이상에서 교반하였다. 용해 완료 후 에탄올 1262 ml를 넣고, 3 시간 동안 환류 교반하였다. 실온으로 냉각하고, 동일 온도에서 2 시간 이상 교반한 후, 질소 대기 하에서 여과하였다. 여과한 결정을 내부 온도 50 °C 이하에서 진공건조하여 표제 화합물 94.6 g (수율: 75.0 %, 순도: 99.99 %)을 얻었다.
Mass spectrum: m/ e 606 [(M + H)+]
Elemental Analysis for C 18H 31N 4O 9Gd, H 2O: C, 34.6(34.7), H, 5.3(5.3), N, 8.8(9.0), O, 21.1(25.7)
Infrared spectrum (KBr, cm -1): 3403, 3269, 2856, 1595, 1318, 1273, 1087, 1005, 992, 932
실시예 4 : 10-(2,3-디히드록시-1(히드록시메틸)프로필)-1,4,7,10-테트라아자시클로도데칸-1,4,7-트리아세트산의 가돌리늄 착물(가도부트롤)의 제조
용해 완료 후 메탄올을 2785 ml 만큼 넣은 것을 제외하고, 실시예 2와 동일한 방법으로 표제 화합물 79.9 g (수율: 57 %, 순도: 99.97 %)을 얻었다.
Mass spectrum: m/ e 606 [(M + H)+]
Infrared spectrum(KBr, cm -1): 3403, 3269, 3141, 2857, 1597, 1375 1320, 1273, 1066, 992, 932
실시예 5 : 10-(2,3-디히드록시-1(히드록시메틸)프로필)-1,4,7,10-테트라아자시클로도데칸-1,4,7-트리아세트산의 가돌리늄 착물(가도부트롤 일수화물)의 제조
용해 완료 후 메탄올 대신 무수 에탄올 2785 ml를 넣은 것을 제외하고, 실시예 2와 동일한 방법으로 표제 화합물 88.3 g (수율: 63 %, 순도: 99.97 %)을 얻었다.
Mass spectrum: m/ e 606 [(M + H)+]
Elemental Analysis for C 18H 31N 4O 9Gd, H 2O: C, 34.6(34.7), H, 5.3(5.3), N, 8.8(9.0), O, 21.1(25.7)
Infrared spectrum (KBr, cm -1): 3403, 3269, 3141, 2857, 1597, 1375, 1320, 1273, 1066, 992, 932
비교예 1
종래기술 (Inorg. Chem. 1997, 36, 6086-6093)에 개시된 스킴 1에 따라 가도부트롤을 제조하였다.
수율 65 %, 순도 95.98 %
Infrared spectrum(KBr, cm -1): 실시예 1과 동일함.
비교예 2
종래기술 (Inorg. Chem. 1997, 36, 6086-6093)에 개시된 스킴 2에 따라 가도부트롤을 제조하였다.
수율 63 %, 순도 93.57 %
Infrared spectrum(KBr, cm -1): 실시예 1과 동일함.
본 발명의 제조방법은 기존의 가도부트롤의 합성 방법과 달리 부트롤 중간체의 정제 없이 인시츄(in-situ)로 가돌리늄 착물을 형성하여 공정을 간소화할 수 있고 레진 정제 공정을 생략할 수 있는 이점이 있다. 또한, 본 발명의 제조방법은 위와 같은 간단한 공정만으로 고순도의 가도부트롤 또는 이의 수화물을 고수율로 제조할 수 있어 대량생산에 유용하게 사용될 수 있으므로 관련된 산업 분야에 유용하게 이용될 것으로 기대된다.

Claims (29)

  1. (S-1) 하기 화학식 3의 화합물 또는 이의 염을 카르복시메틸화 반응시켜 하기 화학식 2의 화합물을 제조하는 단계; 및
    (S-2) 상기 화학식 2의 화합물을 염기성 가수분해시키고 인시츄(in-situ)로 가돌리늄 착물을 형성하여 하기 화학식 1의 화합물을 제조하는 단계;
    를 포함하는, 가도부트롤 또는 이의 수화물의 제조방법:
    [화학식 1]
    Figure PCTKR2019010802-appb-img-000014
    [화학식 2]
    Figure PCTKR2019010802-appb-img-000015
    [화학식 3]
    Figure PCTKR2019010802-appb-img-000016
    상기 화학식 2에서,
    R은 C 1-C 4의 직쇄 또는 분지형 알킬이다.
  2. 제1항에 있어서, 상기 (S-1) 단계는 상기 화학식 3의 화합물 또는 이의 염과 하기 화학식 4의 화합물을 염기 존재 하에 반응시키는 것인, 가도부트롤 또는 이의 수화물의 제조방법:
    [화학식 4]
    Figure PCTKR2019010802-appb-img-000017
    상기 화학식 4에서,
    R은 C 1-C 4의 직쇄 또는 분지형 알킬이고,
    X는 할로겐, TsO - 또는 MsO - 이다.
  3. 제1항에 있어서, 상기 (S-1) 단계의 상기 화학식 3의 화합물의 염은 하기 화학식 3-1의 4 염산염인, 가도부트롤 또는 이의 수화물의 제조방법.
    [화학식 3-1]
    Figure PCTKR2019010802-appb-img-000018
  4. 제1항에 있어서, 상기 (S-1) 단계의 상기 화학식 2의 화합물은 하기 화학식 2-1의 화합물인, 가도부트롤 또는 이의 수화물의 제조방법.
    [화학식 2-1]
    Figure PCTKR2019010802-appb-img-000019
  5. 제1항에 있어서, 상기 (S-1) 단계는 물, C 1-C 4 알코올 또는 이들의 혼합용매에서 수행되는 것인, 가도부트롤 또는 이의 수화물의 제조방법.
  6. 제5항에 있어서, 상기 혼합용매는 물 및 이소프로필알코올의 혼합물인, 가도부트롤 또는 이의 수화물의 제조방법.
  7. 제2항에 있어서, 상기 염기는 무기 염기인, 가도부트롤 또는 이의 수화물의 제조방법.
  8. 제7항에 있어서, 상기 무기 염기는 탄산칼륨 (K 2CO 3), 탄산수소나트륨 (NaHCO 3), 탄산수소칼륨 (KHCO 3) 또는 이들의 혼합물인, 가도부트롤 또는 이의 수화물의 제조방법.
  9. 제1항에 있어서, 상기 (S-1) 단계는 결정화 공정을 추가로 포함하는 것인, 가도부트롤 또는 이의 수화물의 제조방법.
  10. 제9항에 있어서, 상기 결정화 단계에서 사용되는 용매는 메틸렌클로라이드, C 3-C 12 에스테르 또는 이들의 혼합물인, 가도부트롤 또는 이의 수화물의 제조방법.
  11. 제10항에 있어서, 상기 혼합물은 메틸렌클로라이드 및 에틸아세테이트의 혼합물인, 가도부트롤 또는 이의 수화물의 제조방법.
  12. 제1항에 있어서, 상기 (S-2) 단계는 레진을 사용하지 않는 것인, 가도부트롤 또는 이의 수화물의 제조방법.
  13. 제1항에 있어서, 상기 (S-2) 단계는 염기성 가수분해 반응 완료 후 pH를 산성으로 조절하는 공정을 포함하는 것인, 가도부트롤 또는 이의 수화물의 제조방법.
  14. 제13항에 있어서, 상기 pH는 2 내지 5인, 가도부트롤 또는 이의 수화물의 제조방법.
  15. 제1항에 있어서, 상기 (S-2) 단계는 가돌리늄 이온 공급원을 가하는 것인, 가도부트롤 또는 이의 수화물의 제조방법.
  16. 제15항에 있어서, 상기 가돌리늄 이온 공급원은 가돌리늄 옥사이드, 가돌리늄 아세테이트 또는 가돌리늄 클로라이드인, 가도부트롤 또는 이의 수화물의 제조방법.
  17. 제1항에 있어서, 상기 (S-2) 단계는 염 제거 공정을 포함하는 것인, 가도부트롤 또는 이의 수화물의 제조방법.
  18. 제17항에 있어서, 상기 염 제거 공정은 나노 필터를 통하여 수행되는 것인, 가도부트롤 또는 이의 수화물의 제조방법.
  19. 제17항에 있어서, 상기 염 제거 공정은 여과액의 전기전도도가 500 μS/cm 이하인, 가도부트롤 또는 이의 수화물의 제조방법.
  20. 제17항에 있어서, 상기 염 제거 공정은 상기 가돌리늄 착물 형성 반응에 의하여 제조된 조(crude) 가도부트롤 1 g 당 200 내지 300 mL 의 물을 사용하여 수행되는 것인, 가도부트롤 또는 이의 수화물의 제조방법.
  21. 제1항에 있어서, 상기 (S-2) 단계는 결정화 공정을 추가로 포함하는 것인, 가도부트롤 또는 이의 수화물의 제조방법.
  22. 제21항에 있어서, 상기 결정화 단계에서 사용되는 용매는 물, C 1-C 4 알코올 또는 이들의 혼합물인, 가도부트롤 또는 이의 수화물의 제조방법.
  23. 제22항에 있어서, 상기 결정화 단계에서 사용되는 용매는 메탄올 또는 무수 에탄올인, 가도부트롤 또는 이의 수화물의 제조방법.
  24. 제1항에 있어서, (S-3) 조(crude) 가도부트롤을 레진으로 정제하는 단계를 추가로 포함하는, 가도부트롤 또는 이의 수화물의 제조방법.
  25. 제24항에 있어서, 상기 레진은 양이온교환수지 및 음이온교환수지를 포함하는 것인, 가도부트롤 또는 이의 수화물의 제조방법.
  26. 제25항에 있어서, 상기 양이온교환수지 및 음이온교환수지의 부피비는 1:1 내지 1:3 인, 가도부트롤 또는 이의 수화물의 제조방법.
  27. 제1항에 있어서, 상기 (S-3) 단계는 결정화 공정을 추가로 포함하는 것인, 가도부트롤 또는 이의 수화물의 제조방법.
  28. 제27항에 있어서, 상기 결정화 단계에서 사용되는 용매는 물, C 1-C 4 알코올 또는 이들의 혼합물인, 가도부트롤 또는 이의 수화물의 제조방법.
  29. 제28항에 있어서, 상기 결정화 단계에서 사용되는 용매는 에탄올인, 가도부트롤 또는 이의 수화물의 제조방법.
PCT/KR2019/010802 2018-08-23 2019-08-23 가도부트롤의 제조방법 WO2020040617A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980055120.2A CN112585121B (zh) 2018-08-23 2019-08-23 制备钆布醇的方法
EP19851560.3A EP3819294A4 (en) 2018-08-23 2019-08-23 PROCESS FOR PRODUCTION OF GADOBUTROL
US17/270,268 US20210317142A1 (en) 2018-08-23 2019-08-23 Method for preparing gadobutrol
JP2021506263A JP7284250B2 (ja) 2018-08-23 2019-08-23 ガドブトロールの製造方法
JP2023019253A JP2023062038A (ja) 2018-08-23 2023-02-10 ガドブトロールの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180098501A KR102167614B1 (ko) 2018-08-23 2018-08-23 가도부트롤의 제조방법
KR10-2018-0098501 2018-08-23

Publications (1)

Publication Number Publication Date
WO2020040617A1 true WO2020040617A1 (ko) 2020-02-27

Family

ID=69593324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010802 WO2020040617A1 (ko) 2018-08-23 2019-08-23 가도부트롤의 제조방법

Country Status (6)

Country Link
US (1) US20210317142A1 (ko)
EP (1) EP3819294A4 (ko)
JP (2) JP7284250B2 (ko)
KR (1) KR102167614B1 (ko)
CN (1) CN112585121B (ko)
WO (1) WO2020040617A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113527223B (zh) * 2021-06-22 2023-05-09 安徽普利药业有限公司 一种钆布醇的精制方法
CN114685391A (zh) * 2022-04-01 2022-07-01 苏州美诺医药科技有限公司 一种四氮杂环十二烷衍生物的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140035911A (ko) * 2011-04-21 2014-03-24 바이엘 인텔렉쳐 프로퍼티 게엠베하 고순도 가도부트롤의 제조
KR20150083721A (ko) * 2014-01-10 2015-07-20 경북대학교 산학협력단 Do3a-트라넥스아믹산 콘쥬게이트를 포함하는 가돌리늄 착물
KR20160032872A (ko) * 2014-09-17 2016-03-25 에스티팜 주식회사 칼코부트롤의 제조방법
KR20160079460A (ko) * 2014-12-26 2016-07-06 에스티팜 주식회사 가도부트롤의 제조방법
US20170106103A1 (en) * 2014-03-17 2017-04-20 The Board Of Regents Of The University Of Texas System NEW GADOLINIUM-BASED CONTRAST AGENTS FOR SENSITIVE DETECTION OF Zn2+ WITH MRI

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4009119A1 (de) * 1990-03-19 1991-09-26 Schering Ag 1,4,7,10-tetraazacyclododecan-butyltriole, verfahren zu ihrer herstellung und diese enthaltende pharmazeutische mittel
DE102010023105A1 (de) * 2010-06-04 2011-12-08 Bayer Schering Pharma Aktiengesellschaft Gadobutrolherstellung im Eintopfverfahren mittels DMF-acetal und N-Methylimidazol
CN103613557B (zh) * 2013-10-18 2015-07-29 武汉利宝瑞医药科技有限公司 一种磁共振成像对比剂钆布醇的制备方法
US20160287726A1 (en) 2015-04-06 2016-10-06 The Trustees Of The University Of Pennsylvania Cationic contrast agents and methods of using the same
CN105037288B (zh) * 2015-07-23 2017-11-03 上海现代制药海门有限公司 一种布醇的制备方法
CN106543094A (zh) * 2016-11-04 2017-03-29 嘉实(湖南)医药科技有限公司 高纯度钆布醇的制备方法
CN108047151B (zh) * 2018-01-03 2020-08-04 广州康瑞泰药业有限公司 一种高收率钆布醇的制备方法
CN108299322B (zh) * 2018-02-07 2020-03-27 广州康瑞泰药业有限公司 一种制备钆布醇的方法
US20200397924A1 (en) 2019-01-28 2020-12-24 Hubei Tianshu Pharmaceutical Co., Ltd Preparation method of intermediate of gadolinium-based ionic contrast agent and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140035911A (ko) * 2011-04-21 2014-03-24 바이엘 인텔렉쳐 프로퍼티 게엠베하 고순도 가도부트롤의 제조
KR20150083721A (ko) * 2014-01-10 2015-07-20 경북대학교 산학협력단 Do3a-트라넥스아믹산 콘쥬게이트를 포함하는 가돌리늄 착물
US20170106103A1 (en) * 2014-03-17 2017-04-20 The Board Of Regents Of The University Of Texas System NEW GADOLINIUM-BASED CONTRAST AGENTS FOR SENSITIVE DETECTION OF Zn2+ WITH MRI
KR20160032872A (ko) * 2014-09-17 2016-03-25 에스티팜 주식회사 칼코부트롤의 제조방법
KR20160079460A (ko) * 2014-12-26 2016-07-06 에스티팜 주식회사 가도부트롤의 제조방법
KR101653064B1 (ko) 2014-12-26 2016-09-09 에스티팜 주식회사 가도부트롤의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INORG. CHEM., vol. 36, 1997, pages 6086 - 6093

Also Published As

Publication number Publication date
CN112585121A (zh) 2021-03-30
CN112585121B (zh) 2023-11-21
EP3819294A1 (en) 2021-05-12
EP3819294A4 (en) 2022-03-16
JP2021533146A (ja) 2021-12-02
KR102167614B1 (ko) 2020-10-19
US20210317142A1 (en) 2021-10-14
JP7284250B2 (ja) 2023-05-30
JP2023062038A (ja) 2023-05-02
KR20200022648A (ko) 2020-03-04

Similar Documents

Publication Publication Date Title
WO2010030132A2 (ko) 아데포비어 디피복실의 정제방법
WO2016043462A2 (ko) 칼코부트롤의 제조방법
WO2020040617A1 (ko) 가도부트롤의 제조방법
WO2011004980A2 (ko) 트리사이클릭 유도체의 제조방법
JP2022513151A (ja) 重水素化大環状化合物の調製方法
WO2013183800A1 (ko) 결정형 t-부틸 2-[(4R,6S)-6-포밀-2,2-디메틸-1,3-디옥산-4-일]아세테이트 및 이의 제조 방법
CN111072660B (zh) 一种瑞来巴坦的简便制备方法
WO2012050315A2 (ko) Fp-cit 전구체로서의 아제티디늄 염, 이의 선택적 제조방법 및 fp-cit 의 합성
WO2023033016A1 (ja) アルギニン誘導体
WO2021045585A1 (ko) 피리미딘일 바이피리딘 화합물의 제조방법 및 그를 위한 중간체
WO2019049824A1 (ja) 保護l-カルノシン誘導体、l-カルノシン、および結晶性l-カルノシン亜鉛錯体の製造方法
WO2022080812A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조 방법
TW202210486A (zh) 一種製備glp—1受體激動劑的方法
WO2015060657A1 (en) A method for preparing an intermediate of iopromide
WO2013180403A1 (en) Process for preparing gefitinib and an intermediate used for preparing thereof
WO2014175563A1 (en) Novel method of preparing 4-(4-aminophenyl)-3-morpholinone
WO2017090991A1 (ko) 벤조피란 유도체의 정제방법, 이의 결정형 및 상기 결정형의 제조방법
WO2021125819A1 (ko) 우리딘 5'-디인산(udp), 이의 염 또는 이의 수화물의 제조방법
WO2023249414A1 (ko) 벤조아민 유도체의 제조방법
JP3884063B2 (ja) セフカペンピボキシルのメタンスルホン酸塩
US4211883A (en) Process for the production of p-(N-methyl)-aminobenzoyl-L-glutamic acid
WO2022059948A1 (ko) 소디움 타우로디옥시콜레이트의 대량 생산 방법
WO2020085616A1 (ko) 아픽사반의 제조방법
WO2010087544A1 (en) (r)-sibutramine salts and the preparation thereof
CN118084772A (zh) 尼拉帕利中间体、制备方法及其用于制备尼拉帕利的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506263

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE