KR20180080250A - 플로트를 통한 유체 특성 검출 - Google Patents

플로트를 통한 유체 특성 검출 Download PDF

Info

Publication number
KR20180080250A
KR20180080250A KR1020187014791A KR20187014791A KR20180080250A KR 20180080250 A KR20180080250 A KR 20180080250A KR 1020187014791 A KR1020187014791 A KR 1020187014791A KR 20187014791 A KR20187014791 A KR 20187014791A KR 20180080250 A KR20180080250 A KR 20180080250A
Authority
KR
South Korea
Prior art keywords
float
fluid
sensor
density
magnetic
Prior art date
Application number
KR1020187014791A
Other languages
English (en)
Other versions
KR102309966B1 (ko
Inventor
제이 잼시드 카자아이
오언 폴 오리건
케네스 알. 터너
던 블랜디노
제임스 그레고리 스탠리
Original Assignee
본스인코오포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 본스인코오포레이티드 filed Critical 본스인코오포레이티드
Publication of KR20180080250A publication Critical patent/KR20180080250A/ko
Application granted granted Critical
Publication of KR102309966B1 publication Critical patent/KR102309966B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/56Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using elements rigidly fixed to, and rectilinearly moving with, the floats as transmission elements
    • G01F23/62Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using elements rigidly fixed to, and rectilinearly moving with, the floats as transmission elements using magnetically actuated indicating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/36Analysing materials by measuring the density or specific gravity, e.g. determining quantity of moisture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/64Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
    • G01F23/72Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using magnetically actuated indicating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/20Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of apparatus for measuring liquid level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2252Sampling from a flowing stream of gas in a vehicle exhaust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/10Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing bodies wholly or partially immersed in fluid materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/10Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing bodies wholly or partially immersed in fluid materials
    • G01N9/12Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing bodies wholly or partially immersed in fluid materials by observing the depth of immersion of the bodies, e.g. hydrometers
    • G01N9/18Special adaptations for indicating, recording, or control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1814Tank level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Level Indicators Using A Float (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

유체의 특성을 검출하기 위한 시스템. 일 예에서, 시스템은 튜브, 플로트, 센서 및 제어기를 포함한다. 튜브는 유체를 수용하도록 구성된다. 플로트는 튜브 안에 위치된다. 센서는 플로트의 위치를 감지하도록 구성된다. 제어기는 센서로부터 플로트의 위치를 수신하고, 플로트의 위치에 기초하여 유체의 특성을 결정하도록 구성된다. 특성은 밀도 또는 농도일 수 있다.

Description

플로트를 통한 유체 특성 검출
관련 출원
본원은 2016년 11월 30일자로 출원된 미국 가특허 출원 제 62/260,928호 및 2016년 4월 5일자로 출원된 미국 가특허 출원 제 62/318,620호의 이득을 주장하며, 이 출원의 개시내용 전체는 본원에 참조로 포함된다.
실시예는 유체의 밀도 또는 농도를 감지하는 것과 관련되어 있다.
유체 밀도 및 농도 감지는, 예를 들어 선택적 촉매 환원 디젤 배출물-제어 시스템에 사용되는 디젤 배기 유체(DEF)의 특성을 감지하는 것을 포함하는, 다수의 차량 적용예에 유용하다. 선택적 촉매 환원(SCR)은 디젤 질소 산화물(NOx) 배출물을, 촉매 작용에 의해, 이원자 무해 질소 가스(N2) 및 물(H2O)로 전환하는 방법이다.
DEF는 정제수와 요소의 혼합물이다. 전형적인 SCR 시스템에서, DEF는 차량의 탱크에 저장되고, 배기가스에 주입된다. 주입된 요소는 배기가스의 NOx를 질소, 물, 및 이산화탄소로 분해한다. 디젤 연료 및 에틸렌 글리콜(ethylene glycol)과 같은 오염물질이 DEF와 혼합될 때, 배기가스의 NOx를 환원시키는 DEF의 기능이 약화된다. 오염된 DEF는 또한 SCR 시스템의 손상을 야기한다.
다양한 센서와 기술이 밀도, 농도 또는 DEF의 레벨을 감지 또는 결정할 수 있음에도 불구하고, 이런 센서와 기술이 항상 만족스럽지는 않다.
일 실시예는 유체의 특성을 검출하기 위한 시스템을 제공한다. 일 예에서, 시스템은 튜브(tube), 플로트(float), 센서 및 제어기를 포함한다. 튜브는 유체를 수용하도록 구성된다. 플로트는 튜브 안에 위치된다. 센서는 플로트의 위치를 감지하도록 구성된다. 제어기는 센서로부터 플로트의 위치를 수신하고, 플로트의 위치에 기초하여 유체의 특성을 결정하도록 구성된다. 특성은 밀도와 농도로 구성되는 그룹에서 선택된 적어도 하나의 특성이다.
다른 실시예는 유체의 특성을 검출하는 방법을 제공한다. 일 예에서, 그 방법은 센서를 통해서 유체를 수용하도록 구성된 튜브 안에 위치된 플로트의 위치를 감지하는 단계 및 제어기를 통해서 플로트의 위치에 기초하여 유체의 특성을 결정하는 단계를 포함한다. 일 예에서, 특성은 밀도 및 농도로 구성되는 그룹에서 선택된 하나의 특성이다. 일부 실시예에서, 플로트 센서는 연결을 통해서, 측정된 정보 또는 데이터를 직접적으로 또는 간접적으로 외부 장치로 통신할 수 있다. 연결은, 예를 들어 통신버스를 통한, 아날로그 방식 또는 디지털 방식일 수 있다. 연결은 펄스-폭 변조(PWM) 프로토콜(protocol), CAN(controller area network) 프로토콜, SENT(single edge nibble transmission) 프로토콜, 로컬 상호접속 네트워크(LIN) 프로토콜 또는 다른 통신 프로토콜을 지원하기 위해 구현될 수 있다.
다른 실시예는 케이지, 플로트, 영구 자석, 자기 스위치(switch)를 포함하는 유체 센서를 제공한다. 일 예에서, 케이지는 유체를 유지하도록 구성된 탱크 안에 위치된다. 케이지는 유체가 케이지 안으로 들어가고 케이지 안의 층류 또는 난류를 감소시키거나 제거하기 위한 개구부를 포함한다. 플로트는 케이지 안에 위치되고, 미리 결정된 밀도인 플로트 밀도를 갖는다. 영구 자석은 플로트에 기계적으로 결합된다. 영구 자석은 외부 자기장의 효과를 감소시키는 자기장으로 구성된다. 자기 스위치는 케이지 안의 플로트의 위치를 결정하도록 구성된다. 자기 스위치의 상태는 유체의 유체 밀도가 미리 결정된 밀도보다 작은지 여부를 나타낸다.
다른 실시예는 자기 스위치 및 감지 집적 회로를 포함하는 유체 센서를 제공한다. 자기 스위치는 플로트의 위치를 결정하도록 구성된다. 일 예에서, 플로트의 위치는 유체의 밀도와 관련된다. 감지 집적 회로는 자기 각도 센서, 온도 센서, 디지털 입력부를 포함한다. 자기 각도 센서는 자기장의 각도를 측정하도록 구성된다. 일 예에서, 자기장의 각도는 유체의 유체 레벨과 관련되어 있다. 온도 센서는 유체의 온도를 측정하도록 구성된다. 디지털 입력부는 자기 스위치에 결합된다. 일 예에서, 감지 집적 회로는 유체 레벨, 유체의 온도 및 유체의 밀도와 관련된 출력 신호를 전달하도록 구성된다.
다른 양태는 상세한 설명 및 첨부된 도면을 고려함으로써 명백해 질 것이다.
도 1a는 일 실시예에 따른 감지 시스템을 도시한 사시도이다.
도 1b는 다른 실시예에 따른 감지 시스템을 도시한 사시도이다.
도 2는 일부 실시예에 따른 밀도 대 온도를 도시한 그래프이다.
도 3은 일부 실시예에 따른 밀도 대 온도를 도시한 그래프이다.
도 4a-4c는 일부 실시예에 따른 감지 시스템의 플로트를 도시한다.
도 5a-5c는 실시예에 따른 감지 시스템을 도시한다.
도 6은 일부 실시예에 따른 감지 시스템의 제어 시스템을 도시한 블록도이다.
도 7a-7c는 다른 실시예에 따른 감지 시스템을 도시한다.
도 8a-8d는 다른 실시예에 따른 감지 시스템을 도시한다.
도 9a-9b는 다른 실시예에 따른 감지 시스템을 도시한다.
도 10a-10b는 다른 실시예에 따른 감지 시스템을 도시한다.
도 11은 일부 실시예에 따른 유체 밀도 센서를 도시한 단면 절결도이다.
도 12는 일부 실시예에 따른 도 11의 유체 밀도 센서를 도시한 개략도이다.
도 13은 다른 실시예에 따른 도 11의 유체 밀도 센서를 도시한 개략도이다.
임의의 실시예를 자세하게 설명하기 전에, 실시예는 다음의 설명에서 제시되거나 다음의 도면에 도시되는 구성의 세부사항 및 구성요소 배열에 대한 그의 적용에 한정되지 않음을 이해해야 한다. 다른 실시예가 가능하며, 본원에 설명된 방법 및 시스템은 다양한 방식으로 실시 또는 수행될 수 있다.
도 1a는 일부 실시예에 따른 감지 시스템(100)을 도시한다. 도시된 예에서, 감지 시스템(100)은 안내 튜브(105), 캡(cap)(110) 및 안내 튜브(105) 안에 위치된 플로트 또는 플로팅 매스(floating mass)(115)를 포함한다. 안내 튜브(105)는 감지되는 유체를 수용하고 포함하도록 구성된다. 유체는 자동차 유체, 예를 들어 디젤 배기 유체(DEF), 브레이크 유체, 오일, 연료, 변속기 유체, 세척기 유체 및 냉매와 같은 어떤 유체도 될 수 있다.
안내 튜브(105)는 상단 부분(120), 하단 부분(125) 및 수직축(130)을 포함한다. 플로트(115)는 안내 튜브(105) 안에서 유체의 하나 이상의 특성(예를 들어, 밀도)에 기초하여, 수직축을 따라(130) 이동한다. 도시된 실시예에서, 감지 시스템(100)은 또한 안내 튜브(105)의 하단 부분(125)에 부근에 위치된 센서(135)를 포함한다.
센서(135)는 플로트(115)의 위치를 감지하도록 작동되는 센서이다. 예를 들어, 일 실시예에서, 센서(135)는 플로트(115)의 위치를 연속적으로 감지하도록 구성된 아날로그 센서이며, 감지된 위치를 실시간으로 출력할 수 있다. 다른 실시예에서, 센서(135)는 플로트가(115)가 센서(135)의 미리 결정된 거리 안에 있을 때를 검출하도록 구성된 디지털 센서일 수 있다. 이 같은 실시예에서, 센서(135)는 플로트가 미리 결정된 거리를 넘었을 때의 데이터를 출력한다. 일부 실시예에서, 센서(135)는 근접 센서이다. 일부 실시예에서, 센서(135)는 자기 센서(예를 들어, 홀 효과(Hall effect) 센서)이다. 이와 같은 실시예에서, 플로트(115)는 자성 재료를 포함하거나, 자성 재료로 형성될 수 있다. 다른 실시예에서, 센서(135)는, 예를 들어 유도센서, 용량성 센서, 광센서, 또는 플로트(115)의 존재를 검출하도록 구성된 다른 센서일 수 있다.
작동의 일부 실시예에서, 플로트(115)는 감지되는 유체의 밀도에 기초하여, 수직축(130)을 따라서 이동한다. 플로트(115)는, 수직 이동이 미리 결정된 임계 밀도와 대응하도록 설계될 수 있다. 예를 들어, 튜브(105) 안의 유체의 밀도가 미리 결정된 임계 밀도보다 크면, 플로트(115)는 수직축(130)에서 센서(135)로부터 멀리 이동할 것이고, 따라서 튜브(105) 안의 유체가 허용 밀도 임계값 위에 있다는 것을 나타낸다. 튜브(105) 안의 유체의 밀도가 미리 결정된 임계 밀도 보다 작으면, 플로트(115)는 수직축(130)에서 센서(135)를 향해 이동할 것이고, 따라서 튜브(105) 안의 유체가 허용 밀도 임계값 아래에 있다는 것을 나타낸다. 튜브(105) 안의 유체의 밀도가 미리 결정된 임계 밀도와 거의 같다면, 플로트(115)는 유체 안에서 튜브(105)의 상단 부분(120)과 하단 부분(125) 사이의 거리가 거의 같은 위치에서 부유할 것이다. 일부 실시예에서, 유체 안에서 부유하는 플로트(115)는 허용 불가능한 밀도를 나타낸다.
다른 실시예에서, 플로트(115)의 수직 이동은 유체의 레벨과 대응할 수 있다. 예를 들어, 튜브(105) 안의 유체의 밀도가 미리 결정된 임계 밀도보다 크면, 플로트(115)는 수직축(130)에서 센서(135)로부터 멀리 이동할 것이고, 따라서 튜브(105) 안의 유체가 허용 레벨 위에 있고 허용 밀도 임계값 위에 있다는 것을 나타낸다.
도 1b는 일 실시예에 따른 감지 시스템(150)을 도시한다. 감지 시스템(150)은 감지 시스템(100)과 실질적으로 유사하고, 실질적으로 유사한 구성요소를 포함한다. 예를 들어, 감지 시스템(150)은 안내 튜브(105), 캡(110) 및 플로트(115)를 포함할 수 있다. 감지 시스템(150)은 안내 튜브(105)의 상단 부분(120)에 부근에 위치된 센서(155)를 추가로 포함할 수 있다. 다른 실시예에서, 감지 시스템(100, 150)은 안내 튜브의 측면 부근에 위치된 하나 이상의 센서를 포함할 수 있다.
감지 시스템(150)의 작동의 일부 실시예에서, 플로트(115)는 감지되는 유체의 밀도에 기초하여 수직축(130)에서 이동한다. 플로트(115)는, 수직 이동이 미리 결정된 임계 밀도에 대응하도록 설계될 수 있다. 예를 들어, 튜브(105) 안의 유체의 밀도가 미리 결정된 임계 밀도보다 크면, 플로트(115)는 수직축(130)에서 센서(155)를 향해 이동할 것이고, 따라서 튜브(105) 안의 유체가 허용 밀도 위에 있다는 것을 나타낸다. 튜브(105) 안의 유체의 밀도가 미리 결정된 임계 밀도보다 작으면, 플로트(115)는 수직축(130)에서 센서(155)로부터 멀리 이동할 것이고, 따라서 튜브(105) 안의 유체가 허용 밀도 아래에 있다는 것을 나타낸다.
플로트(115)는 온도의 범위에 걸쳐, 미리 결정된 임계 밀도와 거의 동일한 밀도를 갖도록 형성될 수 있다. 플로트(115)는 하나 이상의 재료로 형성될 수 있다. 예를 들어, 일부 실시예에서, 플로트(115)는 철/자성의 혼합물 및 플라스틱(예를 들어, ABS(Acrylonitrile butadiene styrene)재료)으로 형성된다. 추가적으로, 플로트(115)는 낮은 흡수성을 갖는 재료로 형성될 수 있다.
작동의 일부 실시예에서, 아래 제시된 수학식이 사용될 수 있다. 이 수학식에서, Wfm는 플로트(115)의 중량, Bfmm는 플로트(115)의 부력, Fmfm는 플로트(115)의 기계적 제약, Mfm은 플로트(115)의 질량, ρfm는 플로트(115)의 밀도, Vfm는 플로트(115)의 체적, ρfluid는 유체의 밀도이다.
Figure pct00001
(수학식 1)
Figure pct00002
= 0이면, 따라서
Figure pct00003
(수학식 2)
플로트(115)는 유체 안에서 기계적 제약 없이 자유롭게 움직이도록 구성되었고, 따라서 Fmfm=0이다. 일부 실시예에서, 밀도(ρfm)는 미리 결정된 밀도 임계값과 거의 동일하게 선택될 수 있다. 다른 실시예에서, 예를 들어, 도 1a에 도시된 실시예에서, 플로트 밀도(ρfm)는 미리 결정된 밀도 임계값보다 약간 크게 선택될 수 있다. 이와 같은 실시예에서, 유체 밀도(ρfluid)가 미리 결정된 밀도 임계값과 거의 동일할 때, 플로트(115)는 수직축(130)을 따라서 튜브(105)의 하단 부분(125)을 향해 이동할 것이다. 다른 실시예에서, 예를 들어 도 1b에 도시된 실시예에서, 플로트 밀도(ρfm)는 미리 결정된 밀도 임계값보다 약간 작게 선택될 수 있다. 이와 같은 실시예에서 유체 밀도(ρfluid)가 미리 결정된 밀도 임계값과 거의 동일할 때, 유체 밀도(ρfluid)가 임계값보다 작지 않은 한, 플로트(115)는 수직축(130)을 따라 튜브(105)의 상단 부분(120)에 머물 것이다. 이 조건이 발생할 때, 플로트(115)는 하단 부분(125)을 향해 이동할 것이다.
유체 밀도(ρfluid)는 유체의 농도에 대응한다. 그러므로 유체의 농도의 변화는 또한 플로트(115)의 이동을 야기한다. 예를 들어, 유체의 농도가 상승하고, 임계값 위로 통과한다면, 플로트(115)는 안내 튜브(105)의 상단 부분(120)을 향해 이동할 것이다. 반대로, 유체의 농도가 감소하고, 임계값 아래로 떨어진다면, 플로트(115)는 안내 튜브(105)의 하단 부분(125)을 향해 이동할 것이다.
플로트(115)는 플로트 밀도(ρfm)가 온도의 범위에 걸쳐 유체 밀도(ρfluid)와 실질적으로 동일하도록 형성될 수 있다. 이런 플로트(115)는 아래 수학식 3에 도시된 바와 같이 유체 밀도 온도 계수와 거의 동일한 밀도 온도 계수를 가질 것이다.
Figure pct00004
(수학식 3)
위의 수학식 3에서,
Figure pct00005
는 플로트 밀도 온도 계수이고,
Figure pct00006
는 유체 밀도 온도 계수이다.
일부 실시예에서, 플로트(115)는 단일 재료로 형성된다. 이와 같은 실시예에서, 플로트 밀도 온도 계수(
Figure pct00007
) 및 유체 밀도 온도 계수(
Figure pct00008
)는 미리 결정된 온도 범위에 걸쳐 거의 같다. 이는 유체 및 플로트의 열팽창 계수(CTE)가 작동 온도 범위에 걸쳐 실질적으로 동일하게 유지되게한다.
도 2는 일부 실시예에 따른 밀도 대 온도를 도시하는 그래프(200)이다. 그래프(200)는 제1 라인(205), 제2 라인(210) 및 제3 라인(215)을 포함한다. 도시된 실시예에서, 제1 라인(205)은 DEF에 대응하고, 제2 라인(210)은 일 실시예에 따른 단일 재료로 형성된 플로트(115)에 대응하고, 제3 라인(215)은 물에 대응한다. 도시된 바와 같이, 미리 결정된 온도 범위에 걸쳐, 플로트 밀도(ρfm)(제2 라인(210)에 의해 도시됨)는 유체 밀도(ρfluid)(제1 라인(205)에 의해 도시됨)보다 약간 작다. 플로트 밀도(ρfm)는 유체 밀도(ρfluid)의 백분율로 선택되었다. 밀도 온도 계수(
Figure pct00009
)와 거의 동일한 플로트 밀도 온도 계수(
Figure pct00010
)를 갖는 플로트(115)는 넓은 온도의 범위에 걸쳐 유지되는 밀도 비율을 야기한다. 이와 같은 플로트(115)는 넓은 온도의 범위에 걸쳐 오경보를 실질적으로 감소시킬 수 있다. 다른 실시예에서, 초과 밀도 조건을 검출하려는 목적으로, 플로트 밀도(ρfm)는 유체 밀도(ρfluid)의 위에 있을 수 있다.
일부 실시예에서, 플로트(115)는 다른 두 재료, 예를 들어, 제1 재료(fm1)와 제2 재료(fm2)로 형성된다. 이와 같은 실시예에서, 제1 재료(fm1) 및 제2 재료(fm2)의 각각의 체적과 밀도는 아래 제시된 수학식에 따라 결정될 수 있다. 일부 실시예에서, 제1 재료(fm1)는 유체에서 부유하도록 구성된 재료일 수 있고, 제2 재료(fm2)는 센서(135,155)에 의해 감지되도록 구성된 재료일 수 있다.
Figure pct00011
(수학식 4)
Figure pct00012
(수학식 5)
Figure pct00013
(수학식 6)
Figure pct00014
(수학식 7)
Figure pct00015
(수학식 8)
Figure pct00016
, 여기서:
Figure pct00017
(수학식 9)
위의 수학식에서, Mfm 은 플로트(115)의 총 질량, Mfm1은 제1 재료(fm1)의 질량, Mfm2은 제2 재료(fm2)의 질량, Vfm는 플로트의 체적, Vfm1는 제1 재료(fm1)의 체적, Vfm2는 제2 재료(fm2)의 체적, ρfm는 플로트(115)의 총 밀도, ρfm1는 제1 재료(fm1)의 밀도, ρfm2는 제2 재료(fm2)의 밀도이다.
도 3은 밀도 대 온도를 도시하는 그래프(300)이다. 그래프(300)는 제1 라인(305), 제2 라인(310), 제3 라인(315) 및 제4 라인(320)을 포함한다. 도시된 실시예에서, 제1 라인(305)은 DEF에 대응하고, 제2 라인(310)은 일 실시예에 따른 제1 재료(fm1) 및 제2 재료(fm2)로 형성된 플로트(115)에 대응하고, 제3 라인(315)은 미리 결정된 밀도 임계값에 대응하고, 제4 라인(320)은 물에 대응한다.
도 4a-4c는 일부 실시예에 따른 플로트(400)를 도시한다. 플로트(400)는 플로트 재료(405), 표적 재료(410) 및 복수의 채널(415)을 포함한다. 도시된 실시예에서, 플로트(400)는 안내 튜브(105)에 따르는 안정된 이동과 센서(135)와의 정렬을 촉진하는 유체역학적 형상을 갖는다. 복수의 채널(415)은 플로트(400)의 안정된 이동과 정렬을 더욱 촉진한다.
플로트 재료(405)는 플로트(400)의 부유를 촉진하도록 구성된다. 일부 실시예에서, 플로트 재료(405)는 플라스틱 재료, 예를 들어 ABS(Acrylonitrile butadiene styrene)로 형성된다. 플로트 재료(405)는 약 800 kg/m3에서 약 900 kg/m3(예를 들어, 약 850 kg/m3)의 밀도를 가질 수 있다.
표적 재료(410)는 센서(135, 155)에 의해 감지되도록 구성된다. 일부 실시예에서, 표적 재료(410)는 자석, 예를 들어 세라믹 자석으로 형성된다. 표적 재료(410)는 약 4800 kg/m3에서 약 4900 kg/m3(예를 들어, 약 4850 kg/m3)의 밀도를 가질 수 있다. 도시된 실시예에서, 표적 재료(410)는 플로트(400)의 하단 부분(420)으로 통합된다.
도 5a-5c는 일부 실시예에 따른 안내 튜브(500)를 도시한다. 도시된 바와 같이, 안내 튜브(500)는 플로트(400)를 수용하도록 구성된다. 안내 튜브(500)와 플로트(400)는 실질적으로 마찰이 없거나, 저마찰 접촉을 제공하는 표면(예를 들어, 튜브 표면(505))을 포함한다. 일부 실시예에서, 표면은 기포의 형성을 방지하도록 구성된 친수성 표면이다. 안내 튜브(500)는 스토퍼(510) 및 복수의 개구부(515)를 추가로 포함한다. 스토퍼(stopper)(510)는 플로트(400)의 상향 이동을 제한한다. 복수의 개구부(515)는 유체가 안내 튜브(500)의 안팎으로 흐를 수 있도록 한다.
도 6은 감지 시스템(100)의 제어 시스템(600)의 블록도이다. 제어 시스템(600)은 또한 다른 실시예와 함께 사용되고, 본원에 논의된 하나 이상의 방법 또는 작동으로 수행된다. 제어 시스템(600)은 제어기(605), 입/출력 모듈(610), 그리고 센서(135,155)를 포함한다. 제어기(605)는 전자 프로세서 또는 처리 유닛(615) 및 메모리(620)를 포함한다. 메모리(620)는 처리 유닛(615)에 의해 실행 가능한 지시를 저장한다. 일부 경우에서, 제어기(605)는 하나 이상의 마이크로프로세서, 디지털 신호 프로세서(DSP), 필드 프로그램가능 게이트 어레이(FPGA), 주문형 집적 회로(ASIC) 등을 포함한다. 일부 실시예에서, 제어기(605)는 입/출력 모듈(610)을 추가로 포함한다.
입/출력 모듈(610)은 제어 시스템(600)과 외부 장치 사이의 유선 및/또는 무선 통신을 제공한다. 일부 실시예에서, 외부 장치는 컴퓨터 및/또는 자동차의 제어 시스템이다. 이와 같은 실시예에서, 입/출력 모듈(610)은 J1939 또는 CAN(controller area network) 표준을 준수하는 포트(port)와 같은 디지털 포트를 포함한다. 입/출력 모듈(610)은 차량의 데이터 버스(data bus)와의 통신을 위한 메커니즘을 제공한다. 다른 실시예에서, 입/출력 모듈(610)은 특정 용도의 필요에 따라, 적합한 아날로그 또는 디지털 신호를 사용하여 외부 장치와 통신할 수 있다. 일부 실시예에서, 감지 시스템(135, 155)은 아날로그 회선, 또는 디지털 회선, 예를 들어 펄스-폭 변조(PWM) 프로토콜, CAN(controller area network) 프로토콜, SENT(single edge nibble transmission) 프로토콜, 로컬 상호접속 통신망(LIN) 프로토콜 또는 다른 프로토콜에 따라 구현된 통신 버스를 통해 직접적으로 정보 신호를 출력할 수 있다.
도 7a-7c는 다른 실시예에 따른 감지 시스템(700)의 단면을 도시한다. 일부 실시예에서, 감지 시스템(700)은 유체를 포함하는 탱크 또는 저장소에 위치된다. 감지 시스템(700)은 안내 튜브(705), 플로트(710) 및 센서(715)를 포함한다. 도시된 실시예에서, 안내 튜브(705)는 기부(720)와 상기 기부(720)로부터 연장되는 제1 아암(725a) 및 제2 아암(725b)을 포함한다. 추가적으로, 도시된 실시예에서, 플로트(710)는 상단 부분(730)과 기부(735)를 포함한다. 플로트(710)는 기부(735)에 위치된 표적 또는 표적 재료(740)를 추가로 포함할 수 있다. 도시된 실시예에서, 센서(715)는 안내 튜브(705)의 기부(720) 안에 혹은 부근에 위치되고 플로트(710)의 표적(740)을 감지하도록 구성된다. 센서(715)는 위에 논의된 센서(135)와 유사할 수 있다.
작동 중에, 감지되는 유체는 감지 영역(745) 안에 수용된다. 플로트(710)는 감지 영역(745) 안에서 유체의 밀도에 관련하여 이동한다. 제1 아암(725a) 및 제2 아암(725b)은 센서(715)가 플로트(710)의 표적(740)의 위치를 감지하는 동안, 감지 영역(745)에서 상단 부분(730)을 통해 플로트(710)를 안내 및/또는 포함한다.
감지 시스템(700)은 감지 영역(745)에서 다양한 각도로 변위되면서 유체를 정확히 감지하도록 구성된다. 예를 들어, 감지 시스템(700)은 약 0˚에서 약 15˚의 범위의 각도에 있을 때, 유체를 정확히 감지할 수 있다.
도 7a는 제1 각도에서 미리 결정된 밀도 임계값보다 높은 밀도를 갖는 유체를 감지하는 감지 시스템(700)을 도시한다. 도시된 바와 같이, 제1 각도는 수평 기준선(또는 수평선)(750)에 대하여 약 0˚이다. 따라서, 도시된 바와 같이, 플로트(710)는 화살표(755)로 도시된 제1 방향으로, 센서(715)로부터 멀리 이동한다. 도 7b는 제1 각도에서 미리 결정된 밀도 임계값보다 낮은 밀도를 갖는 유체를 감지하는 감지 시스템(700)을 도시한다. 따라서, 도시된 바와 같이, 플로트(710)는 화살표(760)로 도시된 제2 방향으로, 센서(715)를 향해서 이동한다.
도 7c는 제2 각도에서 미리 결정된 밀도 임계값보다 낮은 밀도를 갖는 유체를 감지하는 감지 시스템(700)을 도시한다. 도시된 바와 같이, 제2 각도는 수평 기준선(750)에 대하여 0˚보다 크다. 일부 실시예에서, 제2 각도는 0˚를 약간 초과한 각도 내지 약 15˚의 범위에 있을 수 있다. 도시된 바와 같이, 감지 시스템(700)은 다양한 작동 각도에서 유체의 특성을 측정하도록 구성되었다.
도 8a-8d는 다른 실시예에 따른 감지 시스템(800)의 단면을 도시한다. 일부 실시예에서, 감지 시스템(800)은 유체를 포함하는 탱크 안에 위치된다. 감지 시스템(800)은 안내 튜브(805), 플로트(810) 및 센서(815)를 포함한다. 센서(815)는 위에 논의된 센서(135)와 유사할 수 있다. 도시된 실시예에서, 안내 튜브(805)는, 상부 벽(820) 및, 플로트(810)가 기부(825) 근처에 위치될 때 플로트(810)가 수평 기준선(835)에 대하여 배향된 상태로 있도록 윤곽진 경사부(830)을 갖는 기부(825)를 포함한다. 추가적으로, 도시된 실시예에서, 플로트(810)는 플로트(810)가 상부 벽(820) 근처에 위치될 때, 플로트(810)가 수평 기준선(835)에 대하여 배향된 상태로 있도록 윤곽진 경사부(840)을 갖는 상단 부분(837)을 포함한다.
도 8a는 제1 각도에서 미리 결정된 밀도 임계값보다 낮은 밀도를 갖는 유체를 감지하는 감지 시스템(800)을 도시한다. 도시된 바와 같이, 제1 각도는 수평 기준선(835)에 대하여 약 0˚이다. 도8b는 제1 각도에서 미리 결정된 밀도 임계값보다 높은 밀도를 갖는 유체를 감지하는 감지 시스템(800)을 도시한다.
도 8c는 제2 각도에서 미리 결정된 밀도 임계값보다 낮은 밀도를 갖는 유체를 감지하는 감지 시스템(800)을 도시한다. 도시된 바와 같이, 제2 각도는 수평 기준선(835)에 대하여 0˚보다 크다. 일부 실시예에서 제2 각도는 0˚를 약간 초과한 각도 내지 약 15˚의 범위에 있을 수 있다. 도 8d는 제2 각도에서 미리 결정된 밀도 임계값보다 높은 밀도를 갖는 유체를 감지하는 감지 시스템(800)을 도시한다. 도시된 바와 같이, 감지 시스템(800)은 다양한 작동 각도에서 유체의 특성을 측정하도록 구성된다.
도 9a 및 9b는 다른 실시예에 따른 감지 시스템(900)의 단면을 도시한다. 감지 시스템(900)은 안내부(905), 플로트(910) 및 센서(915)를 포함한다. 센서(915)는 위에 논의된 센서(135)와 유사할 수 있다. 플로트(910)는 아암(920)을 통해 안내부(905)에 피벗식으로 연결된다. 도시된 실시예에서, 아암(920)은 실질적으로 강성적이고, 제1 단부(925)에서 플로트(910)에 피벗식으로 부착되고, 부착점(927)을 통해, 제2 단부(930)에서, 제1 단부(925)에 대향하여, 안내부(905)에 피벗식으로 부착된다. 일부 실시예에서, 플로트(910)는 센서(915)에 의해 감지되도록 구성된 자석(935)을 포함한다.
도 9a는 미리 결정된 밀도 임계값보다 낮은 밀도를 갖는 유체를 감지하는 감지 시스템(900)을 도시한다. 도 9b는 미리 결정된 밀도 임계값보다 높은 밀도를 갖는 유체를 감지하는 감지 시스템(900)을 도시한다.
도 10a 및 10b는 다른 실시예에 따른 감지 시스템(1000)의 단면을 도시한다. 감지 시스템(1000)은 안내부(1005), 플로트(1010) 및 센서(1015)를 포함한다. 센서(1015)는 위에 논의된 센서(135)와 유사할 수 있다. 플로트(1010)는 아암(1020)을 통해 안내부(1005)에 피벗식으로 연결된다. 도시된 실시예에서, 아암(1020)은 유연하며 제1 단부(1025)에서 플로트(1010)에 부착되고, 부착점(1027)을 통해, 제2 단부(1030)에서, 제1 단부(1025)에 대향하여, 안내부(1005)에 부착된다. 일부 실시예에서, 아암(1020)은 스프링이다. 일부 실시예에서, 플로트(1010)는 센서(1015)에 의해 감지되도록 구성된 자석(1035)을 포함한다.
도 10a는 미리 결정된 밀도 임계값보다 낮은 밀도를 갖는 유체를 감지하는 감지 시스템(1000)을 도시한다. 도 10b는 미리 결정된 밀도 임계값보다 높은 밀도를 갖는 유체를 감지하는 감지 시스템(1000)을 도시한다.
도 11은 디지털 유체 밀도 스위치(1115)의 단면 절결도를 도시한다. 도시된 예에서, 디지털 유체 밀도 스위치(1115)는 유체가 케이지(1705)로 들어가도록 하는 개구부(1125)를 갖춘 케이지(1705)를 포함한다. 디지털 유체 밀도 스위치(1115)는 자기 센서 또는 스위치(1710) 및 영구 자석(1720)을 갖춘 플로트(1715)를 또한 포함한다. 자기 센서(1710)는 케이지(1705) 안의 플로트(1715)의 위치를 감시 또는 측정한다. 영구 자석(1720)은 플로트(1715)에 기계적으로 결합된다. 예를 들어, 일부 실시예에서, 영구 자석(1720)은 플로트(1715) 안에 위치되거나 플로트(1715)의 외부 표면에 부착될 수 있다. 플로트(1715)는 표준 DEF(즉, 미리 결정된 유체 밀도의 DEF)의 밀도의 아래에 있는 밀도를 갖는다. 이러한 플로트(1715)의 밀도는 공기(포켓 내부), 플라스틱(DEF보다 낮은 밀도를 가짐) 및 도 8과 도 9에 개략적으로 도시된 플로트(1715)의 감지 표적 엘리먼트(DEF보다 높은 밀도를 가짐, 예를 들어 자석)의 재료 조합을 통해 달성될 수 있다. 플로트(1715)의 밀도가 적절한 요소 농도를 갖는 DEF의 밀도의 하단(low end) 근처에 있기 때문에, 플로트(1715)는 DEF의 밀도가 너무 낮을 때(즉, 요소의 농도가 효과적인 선택적 촉매 환원 과정용으로 불충분할 때), 케이지(1705)의 하부로 가라앉는다. 반대로, 플로트(1715)는 DEF의 밀도가 적절할 때(즉, 요소의 농도가 효과적인 선택적 촉매 환원 과정용으로 적절할 때), 케이지(1705)의 하부 위로 떠오른다(도 11에 도시된 바와 같이). 자기 스위치(1710)는 케이지(1705) 안의 플로트(1715)(특히, 영구 자석(1720))의 위치를 결정하기 위해 사용된다. 예를 들어, 일부 실시예에서, 자기 스위치(1710)는 자기 스위치의 상태가 자기 스위치(1710)의 위치에서의 자기장에 의존하는 홀 스위치(Hall switch), 리드 스위치(reed switch) 또는 다른 스위치이다. 따라서, 자기 스위치(1710)의 위치에서의 자기장은 플로트(1715) 안의 영구 자석(1720)의 위치에 기초하여 변경된다. 일부 실시예에서 다른 감지 기술이 플로트(1715)의 위치를 확인하기 위해 사용될 수 있음을 이해해야 한다. 자기 센서(1710)는 직접 또는 간접적으로 아날로그 회선 또는 디지털 회선을 통해 정보 신호를 출력하며, 예를 들어, 신호는 펄스-폭 변조(PWM), CAN(controller area network), SENT(single edge nibble transmission), 로컬 상호접속 통신망(LIN) 또는 다른 통신 프로토콜을 사용할 수 있다.
도 12는 플로트(1715)에서 제2 영구 자석(1805)을 갖춘 디지털 유체 밀도 스위치(1115)의 개략도이다. 도 12에서 도시된 바와 같이, 일부 실시예에서, 디지털 유체 밀도 스위치(1115)는 외부 자기장(또는 외부에서 형성된 자기장)이 플로트(1715)에 미치는 영향을 감소시키거나 제거하는 구성요소를 포함한다. 플로트(1715)가 외부에 형성된 자기장의 존재 하에 있을 때, 플로트(1715)는 영구 자석(1720)과 외부에 형성된 자기장 사이의 상호작용으로 인해, 케이지(1705) 안에서 회전하거나 상승 또는 하강한다. 도 12에서 도시된 바와 같이, 일부 실시예에서, 플로트(1715)는 외부에서 형성된 자기장으로 인해 플로트(1715)가 받는 알짜힘을 감소시키거나 제거하기 위한 제2 영구 자석(1805)을 포함한다. 영구 자석(1720 및 1805)의 화살표가 나타내는 바와 같이, 영구 자석(1720 및 1805)은 반대의 극성을 갖는다. 따라서, 외부에서 형성된 자기장으로부터 영구 자석(1720 및 1805)이 받는 힘은 대체로 서로 상쇄된다. 그러므로, 플로트(1715)의 위치는 외부에서 형성된 자기장에 의해 영향을 받지 않는다. 그럼에도 불구하고, 플로트(1715)의 위치는 여전히 자기 스위치(1710)에 의해 결정될 수 있고, 이는 영구 자석(1720)이 자기 스위치(1710)에 근접한지 여부를 감지한다. 플로트(1715)는 외부에서 형성된 자기장이 플로트(1715)에 미치는 영향을 추가로 감소시키거나 제거하기 위한 영구 자석의 다른 구성을 포함한다. 예를 들어 다중 자석 또는 다중 자석 세그먼트는 외부에서 형성된 자기장으로 인한 플로트(1715)의 알짜힘이 감소되거나 제거되도록 자화될 수 있다. 다중 자석 세그먼트는 같은 형상일 수도 있고, 다른 형상일 수도 있다. 또한, 다중 자석 세그먼트는 같은 평면에 있을 수도 있고, 다른 평면에 있을 수도 있다.
도 13은 케이지(1705)의 상부 또는 부근에, 강자성 재료 또는 제2 영구 자석(1905)을 갖춘 디지털 유체 밀도 스위치(1115)의 개략도이다. 케이지(1705)는 플로트(1715)의 안정적인 이동을 위해 케이지(1705) 안의 유체의 층류 및 난류를 감소시키도록 기계적으로 설계되었다.
일부 실시예에서, 디지털 유체 밀도 스위치(1115)는 진동으로 인해 혹은 케이지(1705)를 통한 유체의 흐름으로 인해 플로트(1715)가 이동하는 것을 방지하도록 돕는 구성요소를 포함한다. 예를 들어, 진동 또는 케이지(1705)를 통한 유체의 흐름을 겪을 때, 플로트(1715)는 유체의 밀도가 충분함에도 불구하고, 케이지(1705)의 상부 근처에 머물지 않을 수 있다. 도 13에 도시된 바와 같이, 일부 실시예에서 케이지(1705)의 상부는 플로트(1715)의 제2 영구 자석(1805)을 견인하기 위한 강자성 재료(1905)를 포함한다. 강자성 재료(1905)와 제2 영구 자석(1805) 사이의 인력은 유체의 밀도의 측정치에 영향을 미치지 않기 위해 약화될 것이다. 예를 들어, 저장소(1105)의 유체가 너무 낮은 밀도를 가질 때, 플로트(1715)는 케이지(1705)의 하부로 가라앉을 것이다. 반대로, 저장소(1105)의 유체가 적절한 밀도를 가질 때, 플로트(1715)는 케이지(1705)의 상부로 부유할 것이다. 플로트(1715)가 케이지(1705)의 상부에 있을 때, 영구 자석(1805)의 강자성 재료(1905)에 대한 약간의 인력은 디지털 유체 밀도 스위치(1115)가 진동 및/또는 케이지(1705)를 통한 유체의 흐름을 겪을 때에도, 플로트(1715)를 케이지(1705)의 상부에 유지할 것이다. 강자성 재료(1905)는 다른 실시예에서 제2 영구 자석(1805)에 추가적으로 또는 대안적으로 플로트(1715) 안의 다른 자석을 약하게 견인하도록 사용될 수 있음을 이해해야 한다.
그러므로, 실시예는, 무엇보다도, 유체의 특성을 감지하도록 구성된 감지 시스템을 제공한다. 다양한 특징 및 이점이 아래 청구항에서 제시된다.

Claims (29)

  1. 유체의 특성을 검출하기 위한 시스템이며,
    유체를 수용하도록 구성된 튜브;
    튜브 안에 위치된 플로트;
    플로트의 위치를 감지하도록 구성된 센서; 및
    제어기로서,
    센서로부터 플로트의 위치를 수신하고,
    플로트의 위치에 기초하여 유체의 특성을 결정하도록 구성되고, 특성은 밀도 및 농도로 구성되는 그룹에서 선택된 적어도 하나의 특성인, 제어기;
    를 포함하는, 시스템.
  2. 제1항에 있어서, 센서가 자기 센서를 포함하는 시스템.
  3. 제2항에 있어서, 플로트가 적어도 부분적으로 자성 재료로 형성되는 시스템.
  4. 제1항에 있어서, 플로트의 플로트 밀도가 유체의 유체 밀도 임계값보다 약간 큰 시스템.
  5. 제1항에 있어서, 플로트의 플로트 밀도가 유체의 유체 밀도 임계값의 분율(fraction)로 설정되는 시스템.
  6. 제1항에 있어서, 플로트가 둘 이상의 재료의 조합으로 형성되는 시스템.
  7. 제1항에 있어서, 플로트가 채널을 포함하는 시스템.
  8. 제1항에 있어서, 시스템이 수평 기준선에 대하여 약 0˚에서 약 20˚의 범위에서 작동될 때, 유체의 특성을 검출하도록 구성된 시스템.
  9. 제1항에 있어서, 튜브가 플로트를 안내하도록 구성된 아암을 포함하는 시스템.
  10. 제1항에 있어서, 튜브가 경사부를 포함하는 시스템.
  11. 제1항에 있어서, 플로트가 경사부를 포함하는 시스템.
  12. 제1항에 있어서, 플로트가 아암을 통해 안내부에 연결되는 시스템.
  13. 제12항에 있어서, 아암이 스프링을 포함하는 시스템.
  14. 제1항에 있어서, 센서가 아날로그 센서인 시스템.
  15. 제1항에 있어서, 센서가 디지털 센서인 시스템.
  16. 유체의 특성을 검출하는 방법이며,
    센서를 통해, 유체를 수용하도록 구성된 튜브 안에 위치된 플로트의 위치를 감지하는 단계; 및
    제어기를 통해, 플로트의 위치에 기초하여 유체의 특성을 결정하는 단계를 포함하고,
    특성은 밀도 및 농도로 구성되는 그룹에서 선택된 적어도 하나의 특성인, 방법.
  17. 제16항에 있어서, 센서가 자기 센서를 포함하는 방법.
  18. 제17항에 있어서, 플로트가 적어도 부분적으로 자성 재료로 형성되는 방법.
  19. 제16항에 있어서, 플로트의 플로트 밀도가 유체의 유체 밀도 임계값보다 약간 큰 방법.
  20. 제16항에 있어서, 플로트의 플로트 밀도가 유체의 유체 밀도 임계값과 거의 같은 방법.
  21. 제16항에 있어서, 둘 이상의 재료의 조합을 사용하여 플로트를 형성하는 단계를 추가로 포함하는 방법.
  22. 제16항에 있어서, 플로트가 채널을 포함하는 방법.
  23. 유체 센서이며,
    탱크 안에 위치되도록 구성되고, 유체를 케이지 안에 있도록 하는 개구부를 포함하는 케이지;
    케이지 안에 위치되고, 미리 결정된 밀도인 플로트 밀도를 갖는 플로트;
    플로트에 기계적으로 결합된 영구 자석; 및
    케이지 안의 플로트의 위치를 결정하도록 구성된 자기 스위치로서, 자기 스위치의 상태가 유체의 유체 밀도가 미리 결정된 밀도보다 작은지 여부를 나타내는 자기 스위치;
    를 포함하는, 유체 센서.
  24. 제23항에 있어서, 케이지가 센서 안의 층류 및 난류를 감소시키도록 구성된 유체 센서.
  25. 제23항에 있어서, 케이지의 상부 부근에 제2 영구 자석을 추가로 포함하는 유체 센서.
  26. 유체 센서이며,
    플로트의 위치를 결정하도록 구성되고, 플로트의 위치는 유체의 밀도와 관련된 자기 스위치; 및
    감지 집적 회로를 포함하고, 감지 집적 회로는,
    자기장의 각도를 측정하도록 구성되고, 자기장의 각도는 유체의 유체레벨과 관련된 자기 각도 센서,
    유체의 온도를 측정하도록 구성된 온도 센서, 및
    자기 스위치에 결합된 디지털 입력부를 포함하고,
    감지 집적 회로는 유체 레벨, 유체의 온도 및 유체의 밀도와 관련된 출력 신호를 전달하도록 구성된, 유체 센서.
  27. 제26항에 있어서, 자기장은 외부 자기장의 효과를 감소시키도록 구성된 유체 센서.
  28. 제26항에 있어서, 자기 각도 센서는 아날로그 센서인 유체 센서.
  29. 제26항에 있어서, 자기 각도 센서는 디지털 센서인 유체 센서.
KR1020187014791A 2015-11-30 2016-11-30 플로트를 통한 유체 특성 검출 KR102309966B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562260928P 2015-11-30 2015-11-30
US62/260,928 2015-11-30
US201662318620P 2016-04-05 2016-04-05
US62/318,620 2016-04-05
PCT/US2016/064191 WO2017095906A1 (en) 2015-11-30 2016-11-30 Detecting fluid characteristics via a float

Publications (2)

Publication Number Publication Date
KR20180080250A true KR20180080250A (ko) 2018-07-11
KR102309966B1 KR102309966B1 (ko) 2021-10-07

Family

ID=58797686

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020187014789A KR102261619B1 (ko) 2015-11-30 2016-11-30 플로트를 통한 유체 레벨 검출
KR1020187014791A KR102309966B1 (ko) 2015-11-30 2016-11-30 플로트를 통한 유체 특성 검출

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020187014789A KR102261619B1 (ko) 2015-11-30 2016-11-30 플로트를 통한 유체 레벨 검출

Country Status (7)

Country Link
US (2) US10955280B2 (ko)
EP (3) EP4354105A3 (ko)
JP (2) JP6916182B2 (ko)
KR (2) KR102261619B1 (ko)
CN (2) CN108369168A (ko)
ES (1) ES2969069T3 (ko)
WO (2) WO2017095913A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4354105A3 (en) 2015-11-30 2024-06-19 Bourns, Inc. Detecting fluid level via a float
JP6384497B2 (ja) * 2016-02-05 2018-09-05 株式会社デンソー 液面検出装置
US10627245B2 (en) 2017-10-05 2020-04-21 Ford Global Technologies, Llc Vehicle service control
WO2019079533A1 (en) * 2017-10-18 2019-04-25 Magnum Venus Products CATALYTIC FLOW SENSOR
US11454979B2 (en) 2018-02-28 2022-09-27 Ford Global Technologies, Llc Washer fluid level detection
US10962219B2 (en) * 2018-08-03 2021-03-30 Lamplight Farms Incorporated Repellant string light
US11754279B2 (en) 2018-08-03 2023-09-12 Lamplight Farms Incorporated Repellant string light
CN109632039A (zh) * 2019-02-22 2019-04-16 国电锅炉压力容器检验有限公司 一种液位测量计以及液位测量方法
WO2021038593A1 (en) * 2019-08-27 2021-03-04 Logichive Solutions Private Limited System and method for automatically determining and digitally rendering density of liquid
KR102325841B1 (ko) 2019-10-22 2021-11-12 (주)브이엠에스 자체발광 알람기능이 있는 유체 레벨 측정장치 및 유체 레벨 측정방법
KR102374977B1 (ko) 2020-05-15 2022-03-16 (주)브이엠에스 유체 레벨 측정장치
CN112146721B (zh) * 2020-08-26 2022-11-29 潍柴动力股份有限公司 一种尿素液位检测方法、装置、存储介质及电子设备
CN114184260B (zh) * 2021-12-07 2022-05-31 大庆市镁龙测控技术有限公司 一种浮筒液位计

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400978A (en) * 1981-09-01 1983-08-30 Louis Boivin Electronic hydrometer and method of determining the density of a liquid
US5253522A (en) * 1991-07-11 1993-10-19 Mts Systems Corporation Apparatus for determining fluid level and fluid density
KR20130004151A (ko) * 2011-06-30 2013-01-09 티아이 그룹 오토모티브 시스템즈 엘엘씨 유체 레벨 센서
KR20150133223A (ko) * 2013-03-15 2015-11-27 알레그로 마이크로시스템스, 엘엘씨 자기장 센서가 파워 오프 되는 시간 동안 측정 임계 값을 메모리 장치에 저장할 수 있는 자기장 센서 및 관련 방법

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754446A (en) 1970-06-03 1973-08-28 Lummus Co Apparatus for measuring fluid characteristics
JPS4886865U (ko) * 1972-01-19 1973-10-20
US3964317A (en) 1973-04-23 1976-06-22 Foxboro/Trans-Sonics, Inc. Densimeter
JPS55141050U (ko) 1979-03-29 1980-10-08
US4371837A (en) * 1979-11-13 1983-02-01 American Can Company Temperature compensated input power and output offset circuits for a hall effect transducer
US4554494A (en) * 1984-09-21 1985-11-19 Rochester Gauges, Inc. Fluid level gauge having magnetic sensor
JPS63165721A (ja) * 1986-12-26 1988-07-09 Toyoda Gosei Co Ltd 液面レベル計
US4943773A (en) * 1987-09-24 1990-07-24 Magnetek Controls Magnetostrictive linear displacement transducer having preselected zero crossing detector
US4920797A (en) 1989-01-09 1990-05-01 Schaevitz Sensing Systems, Inc. Fluid level sensor
GB2270758A (en) * 1992-09-15 1994-03-23 Platon A & I Limited Apparatus for determining a parameter of a fluid
CA2189959C (en) * 1994-05-14 2005-11-15 Andrew N. Dames Position encoder
JP2704849B2 (ja) 1994-11-11 1998-01-26 日本フローセル製造株式会社 変位検出装置および変位信号発生装置
US5830375A (en) * 1996-06-10 1998-11-03 Taiwan Semiconductor Manufacturing Company Ltd. Automated method for monitoring and controlling the orthophosphoric acid etch rate of silicon nitride insulator layers
US5900547A (en) * 1997-09-12 1999-05-04 Thermoprobe Inc. Differential level hydrometer
US6028521A (en) * 1997-12-16 2000-02-22 Issachar; David Liquid level sensor
JP3390827B2 (ja) * 1998-04-01 2003-03-31 矢崎総業株式会社 液面レベル計測装置
CN2348367Y (zh) * 1998-04-01 1999-11-10 曲云峰 浮子式液位传感器
ITTO980504A1 (it) * 1998-06-09 1999-12-09 Bitron Spa Indicatore del livello del carburante per il serbatoio di un veicolo.
JP4115036B2 (ja) * 1999-03-24 2008-07-09 株式会社アミテック 液面検出装置
DE19935652A1 (de) * 1999-07-29 2001-03-08 Geiger Technik Gmbh Einrichtung für die Messung des Füllstandes in einem eine Flüssigkeit aufnehmenden Behälter
US6418788B2 (en) * 2000-02-25 2002-07-16 George A. Articolo Digital electronic liquid density/liquid level meter
JP2002022403A (ja) * 2000-07-13 2002-01-23 Tokyo Keiso Co Ltd 変位検出器および変位検出方法
JP2004188330A (ja) * 2002-12-11 2004-07-08 Kureha Techno Enji Kk 浮遊遮光部材
NO322352B1 (no) 2005-02-28 2006-09-18 Jan Gismervik Magnetisk bryter for nivamaling, nivamaler og anvendelse derav
US20060248952A1 (en) 2005-05-09 2006-11-09 Delaware Capital Formation, Inc. A method and apparatus for fluid density sensing
US7454969B2 (en) * 2005-05-31 2008-11-25 Veeder-Root Company Fuel density measuring device, system, and method using magnetostrictive probe bouyancy
DE102006007594A1 (de) 2006-02-18 2007-08-30 Festo Ag & Co. Vorrichtung zur Erfassung der Axialposition und/oder Winkelposition eines Körpers
US20080223130A1 (en) * 2007-03-13 2008-09-18 Provina Incorporated Method and device for measuring density of a liquid
AR062689A1 (es) * 2007-09-06 2008-11-26 Mundo Oscar Horacio Aparato para medir y/o controlar el nivel de liquidos
JP5208708B2 (ja) * 2008-02-06 2013-06-12 長野計器株式会社 残量検出装置
JP2009236615A (ja) 2008-03-26 2009-10-15 Kansai Electric Power Co Inc:The 磁気式液面計
EP2166336B1 (de) * 2008-09-18 2011-11-16 FAFNIR GmbH Verfahren zum Überwachen der Qualität eines alkoholhaltigen Kraftstoffs in einem Lagertank
US9223578B2 (en) 2009-09-25 2015-12-29 Nvidia Corporation Coalescing memory barrier operations across multiple parallel threads
US20110097816A1 (en) * 2009-10-23 2011-04-28 Goodwin Paul C Methods for changing densities of non-target particles of a suspension
US9151736B2 (en) 2009-12-21 2015-10-06 Wema Systems As Quality sensor apparatus
CN102906551B (zh) 2009-12-24 2014-12-31 英瑞杰汽车系统研究公司 检测scr系统中的异常流体的系统
JP5529656B2 (ja) * 2010-07-12 2014-06-25 矢崎総業株式会社 液位検出装置
JP2012220252A (ja) * 2011-04-05 2012-11-12 Hitachi Ltd ソレノイドコイル式流体レベル計測装置
JP5809836B2 (ja) * 2011-04-20 2015-11-11 矢崎総業株式会社 液位検出装置
JP5275403B2 (ja) * 2011-04-20 2013-08-28 東京計装株式会社 トルクチューブ式液面計の温度補償機構及び温度補償方法
ITTO20120728A1 (it) * 2012-08-14 2014-02-15 Carlo Farotto Dispositivo di misura di densita' a sospensione magnetica adatto all'utilizzo in ambienti ostili, e relativo metodo di funzionamento
US8978464B2 (en) 2013-02-14 2015-03-17 Ambroise Prinstil Magnetostrictive probe with inverted signal detection
CN103278216A (zh) * 2013-05-31 2013-09-04 江苏多维科技有限公司 液位传感器系统
US9170144B2 (en) 2013-07-10 2015-10-27 Baohua Qi Multifunctional fluid level and quality sensing device
CN203657892U (zh) * 2013-11-28 2014-06-18 江苏多维科技有限公司 一种非接触式滑轮液位传感器
CN204421990U (zh) 2015-01-14 2015-06-24 江苏多维科技有限公司 一种可消除相邻转轮磁干涉的直读表
EP4354105A3 (en) 2015-11-30 2024-06-19 Bourns, Inc. Detecting fluid level via a float
US10301167B2 (en) * 2016-08-03 2019-05-28 Paul Johnson Apparatus and method for automatically updating the relationship between measured storage tank depth and storage tank volume, and monitoring the accuracy of a dispenser flow meter
US10379023B2 (en) 2016-11-15 2019-08-13 Fresenius Medical Care Holdings, Inc. Digital hydrometer assistant reader

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400978A (en) * 1981-09-01 1983-08-30 Louis Boivin Electronic hydrometer and method of determining the density of a liquid
US5253522A (en) * 1991-07-11 1993-10-19 Mts Systems Corporation Apparatus for determining fluid level and fluid density
KR20130004151A (ko) * 2011-06-30 2013-01-09 티아이 그룹 오토모티브 시스템즈 엘엘씨 유체 레벨 센서
KR20150133223A (ko) * 2013-03-15 2015-11-27 알레그로 마이크로시스템스, 엘엘씨 자기장 센서가 파워 오프 되는 시간 동안 측정 임계 값을 메모리 장치에 저장할 수 있는 자기장 센서 및 관련 방법

Also Published As

Publication number Publication date
ES2969069T3 (es) 2024-05-16
US20180348108A1 (en) 2018-12-06
CN108369168A (zh) 2018-08-03
US20180356273A1 (en) 2018-12-13
US10955280B2 (en) 2021-03-23
EP3384272A1 (en) 2018-10-10
JP2018535425A (ja) 2018-11-29
EP3417251B1 (en) 2023-11-29
US10788355B2 (en) 2020-09-29
JP6916182B2 (ja) 2021-08-11
EP3417251A4 (en) 2020-03-11
WO2017095913A1 (en) 2017-06-08
KR102261619B1 (ko) 2021-06-07
KR20180080249A (ko) 2018-07-11
EP3384272A4 (en) 2020-04-01
EP3417251A1 (en) 2018-12-26
JP6916181B2 (ja) 2021-08-11
CN108291835B (zh) 2020-03-10
WO2017095906A1 (en) 2017-06-08
EP4354105A2 (en) 2024-04-17
EP4354105A3 (en) 2024-06-19
CN108291835A (zh) 2018-07-17
JP2019502108A (ja) 2019-01-24
KR102309966B1 (ko) 2021-10-07

Similar Documents

Publication Publication Date Title
KR102309966B1 (ko) 플로트를 통한 유체 특성 검출
CN101014838A (zh) 用于容器中的液位检测的接近传感器
US6408692B1 (en) Liquid level sensor
DE19982497T1 (de) Elektronikmontagevorrichtung mit Höhenerfassungssensor
CN101373209A (zh) 接近传感器
KR102480336B1 (ko) 레벨 센더
US6813946B1 (en) Liquid sensing
US5765290A (en) Adaptable tip sensor
Andò et al. A ferrofluid inclinometer with a time domain readout strategy
DE50112170D1 (de) Fahrzeug mit wenigstens einem sensor zur detektion des fahrzeugumfelds
JP2005338018A (ja) センサ
DE50109165D1 (de) Automatische warnvorrichtung vor einer kritischen schiffsneigung
CN220937927U (zh) 一种清洁机器人
JP6014836B2 (ja) フロート式液面レベル検出装置
EP3225820A1 (en) Vehicle tank equipped with a liquid level sensing system
JP3176564U (ja) 液位センサ
KR0135365Y1 (ko) 자동차 연로레벨 감지장치
JP2020012638A (ja) フロート及びフロートを用いた液面検出装置
TW201245723A (en) Method and system for measuring the variation in speed of a moving body
SE1150880A1 (sv) Mätsystem för mätning av en vätskas densitet och nivå i en behållare
KR20070107672A (ko) 기체 농도 계측을 위한 감지 모듈 및 방법
JPH09249300A (ja) 地下タンク等におけるフロート流れ防止及び水検知構造
JPH0680808U (ja) エンジンのオイルレベル検出装置
RU2002119263A (ru) Способ определения ускорений, преимущественно для судов, баркасов, подводных лодок гражданского назначения, батискафов и т.п., и устройство для его осуществления
JP2016223785A (ja) 油面レベル上限検出構造

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant