KR20170125358A - 네거티브형 감활성광선성 또는 감방사선성 수지 조성물, 네거티브형 감활성광선성 또는 감방사선성막, 패턴 형성 방법, 및 전자 디바이스의 제조 방법 - Google Patents

네거티브형 감활성광선성 또는 감방사선성 수지 조성물, 네거티브형 감활성광선성 또는 감방사선성막, 패턴 형성 방법, 및 전자 디바이스의 제조 방법 Download PDF

Info

Publication number
KR20170125358A
KR20170125358A KR1020177027179A KR20177027179A KR20170125358A KR 20170125358 A KR20170125358 A KR 20170125358A KR 1020177027179 A KR1020177027179 A KR 1020177027179A KR 20177027179 A KR20177027179 A KR 20177027179A KR 20170125358 A KR20170125358 A KR 20170125358A
Authority
KR
South Korea
Prior art keywords
group
sensitive
radiation
compound
general formula
Prior art date
Application number
KR1020177027179A
Other languages
English (en)
Other versions
KR102051343B1 (ko
Inventor
아키히로 카네코
슈헤이 야마구치
Original Assignee
후지필름 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 후지필름 가부시키가이샤 filed Critical 후지필름 가부시키가이샤
Publication of KR20170125358A publication Critical patent/KR20170125358A/ko
Application granted granted Critical
Publication of KR102051343B1 publication Critical patent/KR102051343B1/ko

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • G03F1/56Organic absorbers, e.g. of photo-resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2014Contact or film exposure of light sensitive plates such as lithographic plates or circuit boards, e.g. in a vacuum frame

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

특히, 초미세(예를 들면, 선폭 50nm 이하)의 패턴의 형성에 있어서, 감도, 해상성, PED 안정성, 및 라인 에지 러프니스(LER) 성능이 우수한 패턴을 형성하는 것이 가능한 네거티브형 감활성광선성 또는 감방사선성 수지 조성물과, 그것을 이용한 네거티브형 감활성광선성 또는 감방사선성막, 네거티브형 감활성광선성 또는 감방사선성막을 갖는 마스크 블랭크, 패턴 형성 방법, 및 상기 패턴 형성 방법을 포함하는 전자 디바이스의 제조 방법을 제공한다. 마스크 블랭크는, (A) 하기 일반식 (1)로 나타나는 반복 단위를 갖는 고분자 화합물과, (B) 활성광선 또는 방사선의 조사에 의하여, 체적이 130Å3 이상 2000Å3 이하인 산을 발생하는 화합물을 포함하는, 네거티브형 감활성광선성 또는 감방사선성 수지 조성물 및, 그것을 이용한 네거티브형 감활성광선성 또는 감방사선성막, 네거티브형 감활성광선성 또는 감방사선성막을 갖는다.
Figure pct00106

식 중, R1은 수소 원자, 알킬기, 또는 할로젠 원자를 나타내고, R2와 R3은, 각각 독립적으로, 수소 원자, 알킬기, 사이클로알킬기, 아랄킬기, 또는 아릴기를 나타내며, R4는 수소 원자, 알킬기, 사이클로알킬기, 아릴기, 또는 아실기를 나타내고, L은 단결합 또는 2가의 연결기를 나타내며, Ar은 방향족기를 나타내고, m과 n은, 각각 독립적으로, 1 이상의 정수를 나타낸다.

Description

네거티브형 감활성광선성 또는 감방사선성 수지 조성물, 네거티브형 감활성광선성 또는 감방사선성막, 패턴 형성 방법, 및 전자 디바이스의 제조 방법
본 발명은, 초LSI나 고용량 마이크로칩의 제조 등의 초마이크로리소그래피 프로세스나 그 외의 포토패브리케이션 프로세스에 적합하게 이용되는, 전자선이나 극자외선을 사용하여 고정세화(高精細化)한 패턴을 형성할 수 있는 네거티브형 감활성광선성 또는 감방사선성 수지 조성물, 네거티브형 감활성광선성 또는 감방사선성막, 패턴 형성 방법, 및 전자 디바이스의 제조 방법에 관한 것이다.
종래, IC나 LSI 등의 반도체 디바이스의 제조 프로세스에 있어서는, 포토레지스트 조성물을 이용한 리소그래피에 의한 미세 가공이 행해지고 있다. 최근, 집적 회로의 고집적화에 따라, 서브미크론 영역이나 쿼터미크론 영역의 초미세 패턴 형성이 요구되게 되었다. 그에 따라, 노광 파장도 g선에서 i선으로, 나아가서는 엑시머 레이저광으로와 같이 단파장화의 경향이 보이며, 현재는 전자선이나 X선을 이용한 리소그래피도 개발이 진행되고 있다.
이들 전자선이나 X선, 혹은 EUV광 리소그래피는, 차세대 혹은 차차세대의 패턴 형성 기술로서 자리매김하고 있으며, 고감도, 고해상성의 레지스트 조성물이 요망되고 있다. 네거티브형 리소그래피에 적합한 레지스트 조성물로서는, 알칼리 가용성 수지, 가교제 및 산발생제를 주성분으로 하는 이른바 네거티브형 화학 증폭형 레지스트 조성물이 유효하게 사용되고 있다(예를 들면, 특허문헌 1을 참조).
네거티브형 레지스트 패턴의 형성에 있어서는, 레지스트막에, 현상액에 의한 제거가 의도된 미노광부와, 현상액에 의한 제거가 의도되지 않는 노광부를, 노광에 의하여 마련한 경우에 있어서도, 미노광부 중, 노광부에 인접하는 영역은, 통상, 노광량은 낮지만 노광되어 있다(이하, 이 영역을 "약노광부"라고 한다). 따라서, 약노광부에 있어서도, 현상액에 대한 불용화 또는 난용화가 진행되게 되어, 현상에 의하여 형성되는 패턴 간에 브리지를 발생시키는 요인이 된다.
한편, 산발생제를 포함하는 네거티브형 화학 증폭형 레지스트 조성물로서, 산에 의하여 가교 반응이 진행되는 가교기, 및 그 가교기와 가교 반응할 수 있는 부위, 이들 양쪽 모두를 폴리머 구조 중에 갖는 폴리머(이하, "가교 담지 폴리머"라고 함)가 개발되고 있다. 저분자 가교제를 이용하여 네거티브화하는 일반적인 네거티브형 화학 증폭형 레지스트 조성물에서는, 프로세스 중에 있어서의 저분자 가교제의 휘발이 종종 문제가 되지만, 가교 담지 폴리머에서는, 그와 같은 우려가 없다는 이점이 있다. 예를 들면, 특허문헌 2에는, 페놀성 수산기를 갖는 폴리머에 가교성기로서 메틸올기를 갖는 폴리머가 기재되어 있다.
특허문헌 1: 일본 공개특허공보 2002-99085호 특허문헌 2: 일본 공개특허공보 평2-170165호
그러나, 선폭 50nm 이하와 같은 초미세 패턴 형성에 있어서, 충분한 해상성은 얻어지지 않았다.
또, PED 안정성(노광 후에 가열 조작(PEB)을 행하기까지의 사이, 방치한 경우의 도막 안정성)의 추가적인 개선도 요구되고 있지만, 특허문헌 2에 있어서는, PED 안정성에 관해서는 언급되어 있지 않음과 함께, 실제 PED 안정성이 불충분하다.
따라서, 본 발명의 목적은, 특히 초미세(예를 들면, 선폭 50nm 이하)의 패턴의 형성에 있어서, 감도, 해상성, PED 안정성, 및 라인 에지 러프니스(LER) 성능이 우수한 패턴을 형성하는 것이 가능한 네거티브형 감활성광선성 또는 감방사선성 수지 조성물과, 그것을 이용한 네거티브형 감활성광선성 또는 감방사선성막, 네거티브형 감활성광선성 또는 감방사선성막을 갖는 마스크 블랭크, 패턴 형성 방법, 상기 패턴 형성 방법을 포함하는 전자 디바이스의 제조 방법, 및 전자 디바이스를 제공하는 것에 있다.
본 발명들은, 예의 검토한 결과, 특정 구조의 고분자 화합물과, 활성광선 또는 방사선의 조사에 의하여 산을 발생하는 특정 화합물을 조합한 레지스트 조성물에 의하여 상기 목적이 달성되는 것을 발견했다.
즉, 본 발명은 이하와 같다.
〔1〕
(A) 하기 일반식 (1)로 나타나는 반복 단위를 갖는 고분자 화합물과, (B) 활성광선 또는 방사선의 조사에 의하여, 체적이 130Å3 이상 2000Å3 이하인 산을 발생하는 화합물을 포함하는, 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
[화학식 1]
Figure pct00001
식 중, R1은 수소 원자, 알킬기, 또는 할로젠 원자를 나타내고, R2와 R3은, 각각 독립적으로, 수소 원자, 알킬기, 사이클로알킬기, 아랄킬기, 또는 아릴기를 나타내며, R4는 수소 원자, 알킬기, 사이클로알킬기, 아릴기, 또는 아실기를 나타내고, L은 단결합 또는 2가의 연결기를 나타내며, Ar은 방향족기를 나타내고, m과 n은, 각각 독립적으로, 1 이상의 정수를 나타낸다.
〔2〕
상기 일반식 (1)로 나타나는 반복 단위가, 하기 일반식 (2)로 나타나는 반복 단위인, 상기 〔1〕에 기재된 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
[화학식 2]
Figure pct00002
식 중, R1, R2, R3 및 R4는, 일반식 (1) 중의 R1, R2, R3 및 R4와 동의이다. m'은 1 또는 2를 나타내고, n'은 1~3의 정수를 나타낸다.
〔3〕
상기 일반식 (2)로 나타나는 반복 단위가, 하기 일반식 (3)으로 나타나는 반복 단위인, 상기 〔2〕에 기재된 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
[화학식 3]
Figure pct00003
식 중, R2, R3, 및 R4는, 일반식 (1) 중의 R2, R3, 및 R4와 동의이다. n'은 1~3의 정수를 나타낸다.
〔4〕
상기 화합물 (B)가 설포늄염인, 상기 〔1〕 내지 〔3〕 중 어느 한 항에 기재된 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
〔5〕
활성광선 또는 방사선의 조사에 의하여 염기성이 저하되는, 염기성 화합물 또는 암모늄염 화합물 (C)를 더 포함하는, 상기 〔1〕 내지 〔4〕 중 어느 한 항에 기재된 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
〔6〕
상기 화합물 (C)가 하기 일반식 (4)로 나타나는 오늄염 화합물인, 상기 〔5〕에 기재된 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
[화학식 4]
Figure pct00004
식 중, A는 황 원자 또는 아이오딘 원자를 나타내고, RA는 수소 원자 또는 유기기를 나타내며, RB는 (p+1)가의 유기기를 나타내고, X는 단결합 또는 연결기를 나타내며, AN은 질소 원자를 포함한 염기성 부위를 나타낸다. RA, RB, X 및 AN은 각각 복수 존재하는 경우, 그들은 동일해도 되고 달라도 된다.
A가 황 원자인 경우, q는 1~3의 정수이며, o는 o+q=3의 관계를 충족시키는 정수이다.
A가 아이오딘 원자인 경우, q는 1 또는 2이며, o는 o+q=2의 관계를 충족시키는 정수이다.
p는 1~10의 정수를 나타내고, Y-는 음이온을 나타낸다.
RA, X, RB, AN 중 적어도 2개는, 서로 결합하여 환을 형성해도 된다.
〔7〕
상기 고분자 화합물 (A)의 분산도가 1.0~1.40인 상기 〔1〕 내지 〔6〕 중 어느 한 항에 기재된 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
〔8〕
상기 고분자 화합물 (A)가, 하기 일반식 (5)로 나타나는 반복 단위의 중합체를 원료로 하는 제조법에 의하여 제조된 고분자 화합물인, 상기 〔1〕 내지 〔7〕 중 어느 한 항에 기재된 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
[화학식 5]
Figure pct00005
식 중의 R1은, 상기 일반식 (1) 중의 R1과 동의이다.
〔9〕
상기 일반식 (5)로 나타나는 반복 단위의 중합체의 분산도가 1.0~1.20인 상기 〔8〕에 기재된 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
〔10〕
상기 일반식 (3) 중의 R2 및 R3이 모두 수소 원자인, 상기 〔3〕에 기재된 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
〔11〕
상기 〔1〕 내지 〔10〕 중 어느 한 항에 기재된 네거티브형 감활성광선성 또는 감방사선성 수지 조성물을 이용하여 형성된 네거티브형 감활성광선성 또는 감방사선성막.
〔12〕
상기 〔11〕에 기재된 네거티브형 감활성광선성 또는 감방사선성막을 구비한 마스크 블랭크.
〔13〕
상기 〔1〕 내지 〔10〕 중 어느 한 항에 기재된 네거티브형 감활성광선성 또는 감방사선성 수지 조성물을 기판 상에 도포하여 막을 형성하는 공정,
상기 막을 노광하는 공정, 및
노광한 상기 막을 현상하여 네거티브형 패턴을 형성하는 공정을 포함하는 패턴 형성 방법.
〔14〕
상기 〔13〕에 기재된 패턴 형성 방법을 포함하는 전자 디바이스의 제조 방법.
〔15〕
상기 〔14〕에 기재된 전자 디바이스의 제조 방법에 의하여 제조된 전자 디바이스.
본 발명에 의하여, 특히 초미세(예를 들면, 선폭 50nm 이하)의 패턴의 형성에 있어서, 감도, 해상성, PED 안정성, 및 LER 성능이 우수한 패턴을 형성하는 것이 가능한 네거티브형 감활성광선성 또는 감방사선성 수지 조성물과, 그것을 이용한 네거티브형 감활성광선성 또는 감방사선성막, 네거티브형 감활성광선성 또는 감방사선성막을 갖는 마스크 블랭크, 패턴 형성 방법, 상기 패턴 형성 방법을 포함하는 전자 디바이스의 제조 방법, 및 전자 디바이스를 제공할 수 있다.
이하, 본 발명의 실시형태에 대하여 상세하게 설명한다.
본 명세서에 있어서의 기(원자단)의 표기에 있어서, 치환 및 무치환을 기재하지 않은 표기는, 치환기를 갖지 않는 것과 함께 치환기를 갖는 것도 포함하는 것이다. 예를 들면, "알킬기"란, 치환기를 갖지 않는 알킬기(무치환 알킬기)뿐만 아니라, 치환기를 갖는 알킬기(치환 알킬기)도 포함하는 것이다.
본 명세서 중에 있어서의 "활성광선" 또는 "방사선"이란, 예를 들면 수은등의 휘선 스펙트럼, 엑시머 레이저로 대표되는 원자외선, 극자외선(EUV광), X선, 전자선(EB) 등을 의미한다. 또, 본 발명에 있어서 광이란, 활성광선 또는 방사선을 의미한다.
또, 본 명세서 중에 있어서의 "노광"이란, 특별히 설명하지 않는 한, 수은등의 휘선 스펙트럼, 엑시머 레이저로 대표되는 원자외선, 극자외선, X선, EUV광 등에 의한 노광뿐만 아니라, 전자선, 이온빔 등의 입자선에 의한 묘화도 노광에 포함시킨다.
본 명세서에 있어서, 고분자 화합물 및 수지의 중량 평균 분자량(Mw), 수평균 분자량(Mn), 및 분산도(Mw/Mn)는, GPC 장치(도소제 HLC-8120GPC)에 의한 GPC 측정(용매: 테트라하이드로퓨란, 유량(샘플 주입량): 10μl, 칼럼: 도소사제 TSK gel Multipore HXL-M(×4개), 칼럼 온도: 40℃, 유속: 1.0mL/분, 검출기: 시차 굴절률(RI) 검출기)에 의한 폴리스타이렌 환산값으로서 정의된다.
본 발명의 네거티브형 감활성광선성 또는 감방사선성 수지 조성물은,
(A) 일반식 (1)로 나타나는 반복 단위를 갖는 고분자 화합물(이하, "고분자 화합물 (A)"라고도 함)과,
(B) 활성광선 또는 방사선의 조사에 의하여 체적 130Å3 이상 2000Å3 이하의 크기의 산을 발생하는 화합물(이하, "산발생제 (B)" 또는 "화합물 (B)라고도 함)을 포함한다.
이로써, 초미세(예를 들면, 선폭 50nm 이하의 영역)의 패턴의 형성에 있어서, 감도, 해상성, PED 안정성, 및 LER 성능이 우수한 네거티브형 감활성광선성 또는 감방사선성 수지 조성물, 그것을 이용한 네거티브형 감활성광선성 또는 감방사선성막, 네거티브형 감활성광선성 또는 감방사선성막을 갖는 마스크 블랭크, 패턴 형성 방법, 상기 패턴 형성 방법을 포함하는 전자 디바이스의 제조 방법, 및 전자 디바이스를 제공할 수 있다.
상기가 달성된 이유로서는, 본 발명에 있어서, 활성광선 또는 방사선의 조사에 의하여 화합물 (B)가 발생하는 산의 체적은 130Å3 이상으로 크고, 상기 화합물 (B)로부터 발생하는 산의 확산성은 낮다. 이로써, 미노광부로의 여분의 산의 확산이 억제되기 때문에, 초미세 영역에 있어서의 해상도가 향상되는 것이라고 생각된다. 또, 노광 후의 산의 확산성이 낮은 것에 의하여, 결과적으로 PED 안정성이 향상되는 것이라고 생각된다. 그러나, 본 발명에서는 상기의 확산성만으로는 설명할 수 없는 고해상성이 얻어졌다. 그 이유는 확실하지 않지만, 이하를 추정하고 있다.
가교성기 함유 폴리머는, 전형적으로는, 가교성기를 포함하는 큰(벌키) 가교성 구조 부위를 폴리머의 측쇄에 갖고 있지만(예를 들면, 일본 공개특허공보 2014-24999호), 본 발명의 고분자 화합물 (A)는, 가교성기가, 고분자 화합물의 주쇄에 직접적으로 결합하는 벤젠환에 대하여 결합하고 있기 때문에, 상기의 전형적인 가교성기 함유 폴리머에 비하여 매우 콤팩트한 구조를 갖고 있다. 전형적인 가교성기 함유 폴리머의 경우, 그 크기로 인하여, 가교 후에도 어느 정도의 자유 체적을 갖기 때문에, 노광부에서 발생한 산의 확산 억제의 효과는 한정되지만, 본 발명과 같이 콤팩트한 구조의 경우, 가교 후의 자유 체적이 매우 적고, 상술한 산의 확산 억제 효과가 예상 이상으로 커져, 그 결과, 해상성이 매우 높아진 것이라고 추측된다. 또, 이 작용에 의하여, LER 성능도 우수한 것이라고 추측된다.
이하, 본 발명에 관한 네거티브형 감활성광선성 또는 감방사선성 수지 조성물에 대하여 설명한다.
본 발명에 관한 네거티브형 감활성광선성 또는 감방사선성 수지 조성물은, 전자선 또는 극자외선 노광용인 것이 바람직하고, 전자선 노광용인 것이 보다 바람직하다.
본 발명의 네거티브형 감활성광선성 또는 감방사선성 수지 조성물은, 전형적으로는 네거티브형 패턴 형성용 레지스트 조성물이며, 유기 용제 현상용 네거티브형 레지스트 조성물이어도 되고 알칼리 현상용 네거티브형 레지스트 조성물이어도 된다. 또 본 발명에 관한 조성물은, 전형적으로는 화학 증폭형 레지스트 조성물이다.
이하, 본 발명의 네거티브형 감활성광선성 또는 감방사선성 수지 조성물에 있어서의 각 성분에 대하여 상세하게 설명한다.
[1] (A) 고분자 화합물
고분자 화합물 (A)는, 하기 일반식 (1)로 나타나는 반복 단위를 갖는 고분자 화합물이다.
[화학식 6]
Figure pct00006
식 중, R1은 수소 원자, 알킬기, 또는 할로젠 원자를 나타내고, R2와 R3은 각각 독립적으로, 수소 원자, 알킬기, 사이클로알킬기, 아랄킬기, 또는 아릴기를 나타내며, R4는 수소 원자, 알킬기, 사이클로알킬기, 아릴기, 또는 아실기를 나타내고, L은 단결합 또는 2가의 연결기를 나타내며, Ar은 방향족기를 나타내고, m과 n은, 각각 독립적으로, 1 이상의 정수를 나타낸다.
R1의 할로젠 원자로서는, 불소, 염소, 브로민, 아이오딘을 들 수 있다. R1은, 수소 원자 또는 메틸기인 것이 바람직하고, 수소 원자인 것이 보다 바람직하다.
L로 나타나는 2가의 연결기로서는, 단환 혹은 다환의 방향환, -C(=O)-, -O-C(=O)-, -CH2-O-C(=O)-, 싸이오카보닐기, 직쇄상 혹은 분기상의 알킬렌기(바람직하게는 탄소수 1~10, 보다 바람직하게는 1~6), 직쇄상 혹은 분기상의 알켄일렌기(바람직하게는 탄소수 2~10, 보다 바람직하게는 2~6), 사이클로알킬렌기(바람직하게는 탄소수 3~10, 보다 바람직하게는 3~6), 설폰일기, -O-, -NH-, -S-, 환상 락톤 구조 또는 이들을 조합한 2가의 연결기(바람직하게는 총 탄소수 1~50, 보다 바람직하게는 총 탄소수 1~30, 더 바람직하게는 총 탄소수 1~20)를 들 수 있다.
Ar은 방향족기를 나타낸다. 방향족기의 바람직한 예로서는, 벤젠환, 나프탈렌환, 안트라센환, 플루오렌환, 페난트렌환 등의 방향족 탄화 수소환, 또는 예를 들면, 싸이오펜환, 퓨란환, 피롤환, 벤조싸이오펜환, 벤조퓨란환, 벤조피롤환, 트라이아진환, 이미다졸환, 벤즈이미다졸환, 트라이아졸환, 싸이아다이아졸환, 싸이아졸환 등의 헤테로환을 포함하는 방향환 헤테로환을 들 수 있다. 벤젠환 또는 나프탈렌환이 보다 바람직하고, 벤젠환이 가장 바람직하다.
R2와 R3은 각각 독립적으로, 수소 원자, 알킬기, 사이클로알킬기, 아랄킬기 또는 아릴기를 나타낸다.
R2 및 R3으로 나타나는 알킬기로서는, 탄소수 1~10의 직쇄상 또는 분기상의 알킬기 등을 들 수 있으며, 사이클로알킬기로서는 탄소수 3~10의 사이클로알킬기를 들 수 있다. 구체적으로는, 수소 원자, 메틸기, 사이클로헥실기, t-뷰틸기를 들 수 있다.
산에 의하여 가교 반응이 일어날 때, -OR4가 탈리하여 카보 양이온이 발생하여 반응이 진행되므로, R2 및 R3은 카보 양이온을 안정화시키는 치환기, 즉 전자 공여성기, 방향족기 또는 수소 원자인 것이 바람직하다. 구체적으로는, 알킬기, 사이클로알킬기, 페닐기 또는 수소 원자인 것이 바람직하고, 수소 원자인 것이 보다 바람직하다.
R4는 수소 원자, 알킬기, 사이클로알킬기, 아릴기 또는 아실기를 나타낸다. 가교 반응성의 관점에서, R4는 수소 원자 또는 알킬기인 것이 바람직하고, 알킬기인 것이 보다 바람직하며, 메틸기인 것이 특히 바람직하다.
일반식 (1)에 있어서의 R1로서의 알킬기, R2 및 R3으로서의 알킬기, 사이클로알킬기, 아랄킬기 및 아릴기, R4로서의 사이클로알킬기, 아릴기 및 아실기, L로서의 2가의 연결기, Ar로서의 방향족기는, 각각 치환기를 갖고 있어도 된다. 이 치환기로서는, 알킬기(직쇄 또는 분기 중 어느 것이어도 되고, 탄소수 1~12가 바람직함), 알켄일기(탄소수 2~12가 바람직함), 알카인일기(탄소수 2~12가 바람직함), 사이클로알킬기(단환, 다환 중 어느 것이어도 되고 탄소수 3~12가 바람직함), 아릴기(탄소수 6~18이 바람직함), 하이드록시기, 알콕시기, 에스터기, 아마이드기, 유레테인기, 유레이도기, 싸이오에터기, 설폰아마이드기, 할로젠 원자, 할로알킬기 및 설폰산 에스터기를 들 수 있다. 바람직한 예로서는, 알킬기, 사이클로알킬기, 할로젠 원자, 할로알킬기, 하이드록시기, 알콕시기, 아릴옥시기, 에스터기, 아릴기를 들 수 있고, 더 바람직한 예로서는, 알킬기, 할로젠 원자, 하이드록시기, 알콕시기를 들 수 있다. 할로젠 원자로서는, 상기 R1로 든 것과 동일한 것을 들 수 있다.
상기 치환기는, 치환기를 더 갖고 있어도 되며, 그 치환기로서는, 예를 들면 하이드록실기, 할로젠 원자(예를 들면, 불소 원자), 알킬기, 사이클로알킬기, 알콕시기, 카복실기, 알콕시카보닐기, 아릴기, 알콕시알킬기, 이들을 조합한 기를 들 수 있고, 탄소수 8 이하가 바람직하다.
m과 n은, 각각 독립적으로, 1 이상의 정수를 나타낸다. m은, 바람직하게는 1~3의 정수를 나타내고, 보다 바람직하게는 1을 나타낸다.
n은, 바람직하게는 1~4의 정수를 나타내고, 보다 바람직하게는 2~4의 정수를 나타내며, 특히 바람직하게는 1 또는 2이다.
또, 일반식 (1)로 나타나는 반복 단위는, 하기 일반식 (2)로 나타나는 반복 단위인 것이 보다 바람직하다.
[화학식 7]
Figure pct00007
식 중, R1, R2, R3 및 R4는, 일반식 (1) 중의 R1, R2, R3 및 R4와 동의이다. m'은 1 또는 2를 나타내고, n'은 1~3의 정수를 나타낸다.
R1, R2, R3 및 R4의 구체예 및 바람직한 예는, 일반식 (1)에 있어서의 R1, R2, R3 및 R4에 대하여 설명한 것과 동일하다.
m'은 1인 것이 보다 바람직하다.
n'은 1~3의 정수를 나타내고, 1 또는 2인 것이 보다 바람직하다.
또, 일반식 (2)로 나타나는 반복 단위는, 하기 일반식 (3)으로 나타나는 반복 단위인 것이 보다 바람직하다.
[화학식 8]
Figure pct00008
식 중, R2, R3, 및 R4는, 일반식 (1) 중의 R2, R3, R4 및 n'과 동의이다. n'은 1~3의 정수를 나타낸다.
R2, R3, R4 및 n'의 구체예 및 바람직한 예는, 일반식 (1) 또는 일반식 (2)에 있어서의 R2, R3, R4 및 n'에 대하여 설명한 것과 동일하다. 여기에서, R2 및 R3이 모두 수소 원자인 것이 바람직하다.
일반식 (1), (2) 또는 (3)으로 나타나는 반복 단위의 함유율은, 가교 효율과 현상성의 관점에서, 고분자 화합물 (A)에 포함되는 전체 반복 단위에 대하여, 20~100몰%인 것이 바람직하고, 40~100몰%인 것이 보다 바람직하다.
또, 일반식 (1), (2) 또는 (3)에 있어서의, 가교성기로서의 -(R2)(R3)(OR4)로 나타나는 기의 도입률(이하, 가교성기율이라고도 함)은, 가교 효율과 현상성의 관점에서, 20~100%인 것이 바람직하고, 40~100%인 것이 보다 바람직하다. 여기에서, 가교성기율은, 고분자 화합물 (A)에 있어서의 가교성기의 점수(개수)를, 가교성기를 도입 가능한 반응점의 수(개수)로 나눈 것의 백분율(%)이다. 가교성기를 도입 가능한 반응점은, 예를 들면 그 산출 대상이 페놀성 수산기를 갖는 경우, 페놀성 수산기의 존재 위치를 감안하여 페놀성 수산기의 오쏘위 및 파라위 중, 가교성기를 도입 가능한 개소가 된다. 그 상세한 설명은, 실시예의 항에서 후술하는 바와 같다.
일반식 (1), (2) 또는 (3)으로 나타나는 반복 단위의 구체예로서는, 하기 구조를 들 수 있지만, 이들에 한정되는 것은 아니다.
[화학식 9]
Figure pct00009
[화학식 10]
Figure pct00010
[화학식 11]
Figure pct00011
고분자 화합물 (A)는, 상기 일반식 (1)로 나타나는 반복 단위와는 다른, 페놀성 수산기를 갖는 반복 단위를 더 갖고 있어도 된다.
여기에서, 페놀성 수산기란, 방향환기의 수소 원자를 하이드록시기로 치환하여 이루어지는 기이다. 방향환기의 방향환은 단환 또는 다환의 방향환이며, 벤젠환이나 나프탈렌환 등을 들 수 있다.
페놀성 수산기를 갖는 반복 단위로서는 특별히 한정되지 않지만, 하기 일반식 (II)로 나타나는 구조 단위를 갖는 것이 바람직하다.
[화학식 12]
Figure pct00012
식 중,
R5는 수소 원자, 유기기 또는 할로젠 원자를 나타낸다.
D1은 단결합 또는 2가의 연결기를 나타낸다.
Ar2는 방향환기를 나타낸다.
m1은 1 이상의 정수를 나타낸다.
일반식 (II) 중의 R5가 유기기를 나타내는 경우, 유기기로서는, 알킬기, 사이클로알킬기, 아릴기가 바람직하고, 탄소수 1~10의 직쇄 또는 분기 알킬기(예를 들면, 메틸기, 에틸기, 프로필기, 뷰틸기, 펜틸기), 탄소수 3~10의 사이클로알킬기(예를 들면, 사이클로펜틸기, 사이클로헥실기, 노보닐기), 탄소수 6~10의 아릴기(예를 들면, 페닐기, 나프틸기)가 보다 바람직하다.
유기기는 치환기를 더 갖고 있어도 된다. 그 치환기로서는, 할로젠 원자(바람직하게는 불소 원자), 카복실기, 수산기, 아미노기, 사이아노기 등을 들 수 있는데, 이들에 한정되는 것은 아니다. 치환기로서는, 불소 원자, 수산기가 특히 바람직하다.
치환기를 갖는 경우의 유기기로서는, 트라이플루오로메틸기, 하이드록시메틸기 등을 들 수 있다.
R5는 수소 원자 또는 메틸기인 것이 바람직하고, 수소 원자인 것이 보다 바람직하다.
D1이 2가의 연결기를 나타내는 경우, 2가의 연결기로서는, 카보닐기, 알킬렌기, 아릴렌기, 설폰일기, -O-, -NH- 또는 이들을 조합한 기(예를 들면, 에스터 결합 등)가 바람직하다.
D1은 단결합 또는 카보닐옥시기가 바람직하고, 단결합인 것이 보다 바람직하다.
Ar2가 나타내는 방향환기로서는, 단환 또는 다환의 방향환으로부터 n+1개의 수소 원자를 제거한 기(n은 1 이상의 정수를 나타냄)인 것이 바람직하다.
상기 방향환으로서는, 벤젠환, 나프탈렌환, 안트라센환, 플루오렌환, 페난트렌환 등의 치환기를 갖고 있어도 되는 방향족 탄화 수소환(바람직하게는 탄소수 6~18), 및 예를 들면 싸이오펜환, 퓨란환, 피롤환, 벤조싸이오펜환, 벤조퓨란환, 벤조피롤환, 트라이아진환, 이미다졸환, 벤즈이미다졸환, 트라이아졸환, 싸이아다이아졸환, 싸이아졸환 등의 헤테로환을 포함하는 방향족 헤테로환을 들 수 있다. 그 중에서도, 벤젠환, 나프탈렌환이 해상성의 관점에서 바람직하고, 벤젠환이 가장 바람직하다.
m1은 1~5의 정수인 것이 바람직하고, 1~3의 정수를 나타내는 것이 보다 바람직하며, 1 또는 2를 나타내는 것이 더 바람직하고, 1을 나타내는 것이 특히 바람직하다.
m1이 1을 나타내며, Ar2가 벤젠환을 나타내는 경우, -OH의 치환 위치는 벤젠환에 있어서의 폴리머 주쇄와의 결합 위치에 대하여, 파라위여도 되고 메타위여도 되며 오쏘위여도 되지만, 알칼리 현상성의 관점에서 파라위가 바람직하다.
Ar2의 방향환기에 있어서의 방향환은, -OH로 나타나는 기 이외에도 치환기를 갖고 있어도 되고, 치환기로서는 예를 들면, 알킬기, 할로젠 원자, 수산기, 알콕시기, 카복실기, 알콕시카보닐기, 알킬카보닐기, 알킬카보닐옥시기, 알킬설폰일옥시기, 아릴카보닐기를 들 수 있다. 단, Ar2의 방향환기에 있어서의 방향환은, 치환기로서 상기 일반식 (1)에 있어서의 -C(R2)(R3)(OR4)로 나타나는 기를 갖지 않는다.
일반식 (II)는, 하기 일반식 (II-1)인 것이 바람직하다.
[화학식 13]
Figure pct00013
식 중,
R5는 수소 원자, 유기기 또는 할로젠 원자를 나타낸다.
D1은 단결합 또는 2가의 연결기를 나타낸다.
일반식 (II-1) 중의 R5 및 D1은 일반식 (II) 중의 R5 및 D1과 동의이며, 바람직한 범위도 동일하다.
일반식 (II)는, 하기 일반식 (II-2)인 것이 보다 바람직하다.
[화학식 14]
Figure pct00014
식 중, R5는 수소 원자, 유기기 또는 할로젠 원자를 나타낸다.
일반식 (II-2) 중의 R5는 일반식 (II) 중의 R5와 동의이며, 바람직한 범위도 동일하다.
이하, 일반식 (II)로 나타나는 반복 단위의 구체예를 나타내지만, 이에 한정되는 것은 아니다. Me는 메틸기를 나타낸다.
[화학식 15]
Figure pct00015
[화학식 16]
Figure pct00016
고분자 화합물 (A)가, 상기 일반식 (1)로 나타나는 반복 단위와는 다른, 페놀성 수산기를 갖는 반복 단위를 갖는 경우, 그 반복 단위의 함유량은, 고분자 화합물 (A)의 전체 반복 단위에 대하여, 1~80몰%인 것이 바람직하고, 1~70몰%인 것이 보다 바람직하며, 1~60몰%인 것이 더 바람직하다.
고분자 화합물 (A)는, 후술하는 바와 같은 반복 단위를 더 갖고 있어도 된다.
고분자 화합물 (A)는, "비산분해성의 다환 지환 탄화 수소 구조를 갖는 기에 의하여, 페놀성 수산기의 수소 원자가 치환된 구조(이하, "특정 구조"라고도 함)"를 가져도 된다. 이 경우, 고분자 화합물 (A)는, ""비산분해성의 다환 지환 탄화 수소 구조를 갖는 기에 의하여, 페놀성 수산기의 수소 원자가 치환된 구조"를 갖는 반복 단위"를 갖는 것이 바람직하다. 이로써, 높은 유리 전이 온도(Tg)가 얻어지는 점에서, 드라이 에칭 내성이 양호해진다.
고분자 화합물 (A)가 상술한 특정 구조를 가짐으로써, 고분자 화합물 (A)의 유리 전이 온도(Tg)가 높아지며, 매우 단단한 레지스트막을 형성할 수 있어, 산의 확산성이나 드라이 에칭 내성을 제어할 수 있다. 따라서, 전자선이나 극자외선 등의 활성광선 또는 방사선의 노광부에 있어서의 산의 확산성이 매우 억제되기 때문에, 미세한 패턴에서의 해상력, 패턴 형상 및 LER이 더 우수하다. 또, 화합물 (D)가 비산분해성의 다환 지환 탄화 수소 구조를 갖는 것이, 드라이 에칭 내성의 추가적인 향상에 기여하는 것이라고 생각된다. 또한, 상세는 불명확하지만, 다환 지환 탄화 수소 구조는 수소 라디칼의 공여성이 높아, 광산발생제의 분해 시의 수소원이 되어, 광산발생제의 분해 효율이 더 향상되고, 산발생 효율이 더 높아지고 있다고 추정된다. 이것이 보다 우수한 감도에 기여하는 것이라고 생각된다.
본 발명에 관한 고분자 화합물 (A)가 갖고 있어도 되는 상술한 특정 구조는, 벤젠환 등의 방향족환과, 비산분해성의 다환 지환 탄화 수소 구조를 갖는 기가, 페놀성 수산기에서 유래하는 산소 원자를 통하여 연결되어 있다. 상술과 같이, 상기 구조는 높은 드라이 에칭 내성에 기여할 뿐만 아니라, 고분자 화합물 (A)의 유리 전이 온도(Tg)를 높일 수 있어, 이들 조합의 효과에 의하여, 보다 높은 해상력이 제공되는 것이라고 추정된다.
본 발명에 있어서, 비산분해성이란, 광산발생제가 발생하는 산에 의하여, 분해 반응이 일어나지 않는 성질을 의미한다.
보다 구체적으로는, 비산분해성의 다환 지환 탄화 수소 구조를 갖는 기는, 산 및 알칼리에 안정적인 기인 것이 바람직하다. 산 및 알칼리에 안정적인 기란, 산분해성 및 알칼리 분해성을 나타내지 않는 기를 의미한다. 여기에서 산분해성이란, 광산발생제가 발생하는 산의 작용에 의하여 분해 반응을 일으키는 성질을 의미한다.
또 알칼리 분해성이란, 알칼리 현상액의 작용에 의하여 분해 반응을 일으키는 성질을 의미한다. 알칼리 분해성을 나타내는 기로서는, 포지티브형의 화학 증폭형 레지스트 조성물에 있어서 적합하게 사용되는 수지 중에 포함되는, 종래 공지의 알칼리 현상액의 작용으로 분해되어 알칼리 현상액 중으로의 용해 속도가 증대하는 기(예를 들면 락톤 구조를 갖는 기 등)를 들 수 있다.
다환 지환 탄화 수소 구조를 갖는 기란, 다환 지환 탄화 수소 구조를 갖는 1가의 기인 한 특별히 한정되지 않지만, 총 탄소수가 5~40인 것이 바람직하고, 7~30인 것이 보다 바람직하다. 다환 지환 탄화 수소 구조는, 환 내에 불포화 결합을 갖고 있어도 된다.
다환 지환 탄화 수소 구조를 갖는 기에 있어서의 다환 지환 탄화 수소 구조는, 단환형의 지환 탄화 수소기를 복수 갖는 구조, 혹은 다환형의 지환 탄화 수소 구조를 의미하고, 유교식(有橋式)이어도 된다. 단환형의 지환 탄화 수소기로서는, 탄소수 3~8의 사이클로알킬기가 바람직하고, 예를 들면 사이클로프로필기, 사이클로펜틸기, 사이클로헥실기, 사이클로뷰틸기, 사이클로옥틸기 등을 들 수 있으며, 단환형의 지환 탄화 수소기를 복수 갖는 구조는 이들 기를 복수 갖는다. 단환형의 지환 탄화 수소기를 복수 갖는 구조는, 단환형의 지환 탄화 수소기를 2~4개 갖는 것이 바람직하고, 2개 갖는 것이 특히 바람직하다.
다환형의 지환 탄화 수소 구조로서는, 탄소수 5 이상의 바이사이클로, 트라이사이클로, 테트라사이클로 구조 등을 들 수 있으며, 탄소수 6~30의 다환 사이클로 구조가 바람직하고, 예를 들면 아다만테인 구조, 데칼린 구조, 노보네인 구조, 노보넨 구조, 세드롤 구조, 아이소보네인 구조, 보네인 구조, 다이사이클로펜테인 구조, α-피넨 구조, 트라이사이클로데케인 구조, 테트라사이클로도데케인 구조, 혹은 안드로스테인 구조를 들 수 있다. 또한, 단환 혹은 다환의 사이클로알킬기 중의 탄소 원자의 일부가, 산소 원자 등의 헤테로 원자에 의하여 치환되어 있어도 된다.
상기의 다환 지환 탄화 수소 구조의 바람직한 것으로서는, 아다만테인 구조, 데칼린 구조, 노보네인 구조, 노보넨 구조, 세드롤 구조, 사이클로헥실기를 복수 갖는 구조, 사이클로헵틸기를 복수 갖는 구조, 사이클로옥틸기를 복수 갖는 구조, 사이클로데칸일기를 복수 갖는 구조, 사이클로도데칸일기를 복수 갖는 구조, 트라이사이클로데케인 구조를 들 수 있고, 아다만테인 구조가 드라이 에칭 내성의 관점에서 가장 바람직하다(즉, 상기 비산분해성의 다환 지환 탄화 수소 구조를 갖는 기가, 비산분해성의 아다만테인 구조를 갖는 기인 것이 가장 바람직하다).
이들 다환 지환 탄화 수소 구조(단환형의 지환 탄화 수소기를 복수 갖는 구조에 대해서는, 상기 단환형의 지환 탄화 수소기에 대응하는 단환형의 지환 탄화 수소 구조(구체적으로는 이하의 식 (47)~(50)의 구조))의 화학식을 이하에 표시한다.
[화학식 17]
Figure pct00017
상기 다환 지환 탄화 수소 구조는 치환기를 더 가져도 되고, 치환기로서는 예를 들면, 알킬기(바람직하게는 탄소수 1~6), 사이클로알킬기(바람직하게는 탄소수 3~10), 아릴기(바람직하게는 탄소수 6~15), 할로젠 원자, 수산기, 알콕시기(바람직하게는 탄소수 1~6), 카복실기, 카보닐기, 싸이오카보닐기, 알콕시카보닐기(바람직하게는 탄소수 2~7), 및 이들 기를 조합하여 이루어지는 기(바람직하게는 총 탄소수 1~30, 보다 바람직하게는 총 탄소수 1~15)를 들 수 있다.
상기 다환 지환 탄화 수소 구조로서는, 상기 식 (7), (23), (40), (41) 및 (51) 중 어느 하나로 나타나는 구조, 상기 식 (48)의 구조에 있어서의 임의의 하나의 수소 원자를 결합손으로 한 1가의 기를 2개 갖는 구조가 바람직하고, 상기 식 (23), (40) 및 (51) 중 어느 하나로 나타나는 구조, 상기 식 (48)의 구조에 있어서의 임의의 하나의 수소 원자를 결합손으로 한 1가의 기를 2개 갖는 구조가 보다 바람직하며, 상기 식 (40)으로 나타나는 구조가 가장 바람직하다.
다환 지환 탄화 수소 구조를 갖는 기로서는, 상기의 다환 지환 탄화 수소 구조의 임의의 하나의 수소 원자를 결합손으로 한 1가의 기인 것이 바람직하다.
고분자 화합물 (A)는, 하기 일반식 (IV) 또는 하기 일반식 (V)로 나타나는 반복 단위를 함유해도 된다.
[화학식 18]
Figure pct00018
식 중,
R6은 수소 원자, 하이드록시기, 탄소수 1~10의 직쇄상, 분기상 또는 환상의 알킬기, 알콕시기 또는 아실옥시기, 사이아노기, 나이트로기, 아미노기, 할로젠 원자, 에스터기(-OCOR 또는 -COOR: R은 탄소수 1~6의 알킬기 또는 불소화 알킬기), 또는 카복실기를 나타낸다.
n3은 0~6의 정수를 나타낸다.
[화학식 19]
Figure pct00019
식 중,
R7은 수소 원자, 하이드록시기, 탄소수 1~10의 직쇄상, 분기상 또는 환상의 알킬기, 알콕시기 또는 아실옥시기, 사이아노기, 나이트로기, 아미노기, 할로젠 원자, 에스터기(-OCOR 또는 -COOR: R은 탄소수 1~6의 알킬기 또는 불소화 알킬기), 또는 카복실기를 나타낸다.
n4는 0~4의 정수를 나타낸다.
X4는 메틸렌기, 산소 원자 또는 황 원자이다.
일반식 (IV) 또는 하기 일반식 (V)로 나타나는 반복 단위의 구체예를 하기에 나타내지만, 이들에 한정되지 않는다.
[화학식 20]
Figure pct00020
고분자 화합물 (A)의 구체예(각 반복 단위의 조합)를 이하에 나타내지만, 본 발명은 이들에 한정되는 것은 아니다.
[표 1]
Figure pct00021
[표 2]
Figure pct00022
[표 3]
Figure pct00023
[표 4]
Figure pct00024
고분자 화합물 (A)의 중량 평균 분자량은, 바람직하게는 1000~200000이고, 더 바람직하게는 2000~50000이며, 보다 더 바람직하게는 3000~10000이고, 특히 바람직하게는 3000~7000이다.
고분자 화합물 (A)의 분산도(분자량 분포)(Mw/Mn)는, 바람직하게는 1.7 이하이고, 감도 및 해상성의 향상의 관점에서 보다 바람직하게는 1.0~1.50이며, 특히 바람직하게는 1.0~1.40이다.
상기의 바람직한 분산도를 갖는 고분자 화합물 (A)를 얻기 위해서는, 분산도가 작은, 하기 일반식 (5)로 나타나는 반복 단위의 중합체를 원료로 하는 제조법에 의하여 제조하는 것이 바람직하다.
[화학식 21]
Figure pct00025
식 중의 R1은, 상기 일반식 (1) 중의 R1과 동의이다.
상기 제조법에 이용되는 원료의 중합체의 분산도는, 부반응에 의한 올리고머화의 가능성도 고려하여, 1.0~1.30이 바람직하고, 1.0~1.20이 보다 바람직하다. 상기 제조법에 이용되는 원료의 중합체는, 리빙 음이온 중합 등의 리빙 중합을 이용함으로써, 얻어지는 고분자 화합물의 분산도가 균일해져, 바람직하다.
상기 원료를 이용한 고분자 화합물 (A)의 합성은, 예를 들면 "실험 화학 강좌 18권 유기 화합물의 반응 II(하) 94페이지"에 기재된 수법 등을 참고로 하여 행할 수 있다.
고분자 화합물 (A)는, 1종 단독으로 또는 2종 이상을 배합하여 사용해도 된다.
고분자 화합물 (A)의 함유량은, 네거티브형 감활성광선성 또는 감방사선성 조성물의 전체 고형분을 기준으로 하여, 바람직하게는 50~97질량%이고, 보다 바람직하게는 60~95질량%이며, 더 바람직하게는 70~93질량%이다.
[2] (B) 활성광선 또는 방사선의 조사에 의하여, 체적이 130Å3 이상 2000Å3 이하인 산을 발생하는 화합물
본 발명의 화학 증폭형 레지스트 조성물은, 활성광선 또는 방사선의 조사에 의하여, 체적이 130Å3 이상 2000Å3 이하인 산을 발생하는 화합물 (B)(이하, 적절히 이들 화합물을 "산발생제"라고 약칭함)를 함유한다.
산발생제의 바람직한 형태로서 오늄 화합물을 들 수 있다. 그와 같은 오늄 화합물로서는, 예를 들면 설포늄염, 아이오도늄염, 포스포늄염 등을 들 수 있으며, 설포늄염인 것이 보다 바람직하다.
또, 산발생제의 다른 바람직한 형태로서, 활성광선 또는 방사선의 조사에 의하여, 설폰산, 이미드산 또는 메타이드산을 발생하는 화합물을 들 수 있다. 그 형태에 있어서의 산발생제는, 예를 들면 설포늄염, 아이오도늄염, 포스포늄염, 옥심설포네이트, 이미도설포네이트 등을 들 수 있다.
본 발명에 이용하는 산발생제로서는, 저분자 화합물에 한정하지 않고, 발생하는 산의 체적이 130Å3 이상 2000Å3 이하인 범위에서, 활성광선 또는 방사선의 조사에 의하여 산을 발생하는 기를 고분자 화합물의 주쇄 또는 측쇄에 도입한 화합물도 이용할 수 있다. 또한 상술한 바와 같이, 활성광선 또는 방사선의 조사에 의하여 산을 발생하는 기가, 본 발명에 이용하는 고분자 화합물 (A)의 공중합 성분으로 되어 있는 반복 단위 중에 존재하는 경우는, 본 발명의 고분자 화합물과는 별개 분자의 산발생제는 없어도 상관없다.
활성광선 또는 방사선의 조사에 의하여 산을 발생하는 화합물 (B)가, 저분자 화합물의 형태인 경우, 분자량이 3000 이하인 것이 바람직하고, 2000 이하인 것이 보다 바람직하며, 1000 이하인 것이 더 바람직하다.
산발생제는, 전자선 또는 극자외선의 조사에 의하여 산을 발생하는 화합물인 것이 바람직하다.
본 발명에 있어서, 바람직한 오늄 화합물로서, 하기 일반식 (7)로 나타나는 설포늄 화합물, 혹은 일반식 (8)로 나타나는 아이오도늄 화합물을 들 수 있다.
[화학식 22]
Figure pct00026
일반식 (7) 및 (8)에 있어서,
Ra1, Ra2, Ra3, Ra4 및 Ra5는, 각각 독립적으로, 유기기를 나타낸다.
X-는, 유기 음이온을 나타낸다.
이하, 일반식 (7)로 나타나는 설포늄 화합물 및 일반식 (8)로 나타나는 아이오도늄 화합물을 더 상세하게 설명한다.
상기 일반식 (7)의 Ra1~Ra3과, 상기 일반식 (8)의 Ra4 및 Ra5는, 각각 독립적으로 유기기를 나타내지만, 바람직하게는 Ra1~Ra3 중 적어도 하나와, Ra4 및 Ra5 중 적어도 하나가 각각 아릴기이다. 아릴기로서는, 페닐기, 나프틸기가 바람직하고, 더 바람직하게는 페닐기이다.
상기 일반식 (7) 및 (8)에 있어서의 X-의 유기 음이온은, 예를 들면 설폰산 음이온, 카복실산 음이온, 비스(알킬설폰일)아마이드 음이온, 트리스(알킬설폰일)메타이드 음이온 등을 들 수 있고, 바람직하게는 하기 일반식 (9), (10) 또는 (11)로 나타나는 유기 음이온이며, 보다 바람직하게는 하기 일반식 (9)로 나타나는 유기 음이온이다.
[화학식 23]
Figure pct00027
상기 일반식 (9), (10) 및 (11)에 있어서, Rc1, Rc2, Rc3 및 Rc4는, 각각 유기기를 나타낸다.
상기 X-의 유기 음이온이, 전자선이나 극자외선 등의 활성광선 또는 방사선의 조사에 의하여 발생하는 산인 설폰산, 이미드산, 메타이드산 등에 대응한다.
상기 Rc1~Rc4의 유기기로서는, 예를 들면 알킬기, 사이클로알킬기, 아릴기, 또는 이들의 복수가 연결된 기를 들 수 있다. 이들 유기기 중 보다 바람직하게는 1위가 불소 원자 또는 플루오로알킬기로 치환된 알킬기, 불소 원자 또는 플루오로알킬기로 치환된 사이클로알킬기, 불소 원자 또는 플루오로알킬기로 치환된 페닐기이다. 상기 Rc2~Rc4의 유기기의 복수가 서로 연결되어 환을 형성하고 있어도 되고, 이들 복수의 유기기가 연결된 기로서는, 불소 원자 또는 플루오로알킬기로 치환된 알킬렌기가 바람직하다. 불소 원자 또는 플루오로알킬기를 가짐으로써, 광조사에 의하여 발생한 산의 산성도가 높아져, 감도가 향상된다. 단, 말단기는 치환기로서 불소 원자를 함유하지 않는 것이 바람직하다.
그리고, 본 발명에 있어서는, 상기 산을 발생하는 화합물 (B)는, 체적 130Å3 이상의 크기의 산(보다 바람직하게는 설폰산)을 발생하는 화합물이다.
상기한 바와 같이, 화합물 (B)가 체적 130Å3 이상의 크기의 산을 발생하는 것으로부터 해상성, PED 안정성 및 LER 성능에 관하여 우수한 결과가 얻어진다.
화합물 (B)는, 활성광선 또는 방사선의 조사에 의하여, 체적 190Å3 이상의 크기의 산(보다 바람직하게는 설폰산)을 발생하는 화합물인 것이 바람직하고, 체적 270Å3 이상의 크기의 산(보다 바람직하게는 설폰산)을 발생하는 화합물인 것이 보다 더 바람직하며, 체적 400Å3 이상의 크기의 산(보다 바람직하게는 설폰산)을 발생하는 화합물인 것이 특히 바람직하다. 단, 감도나 도포 용제 용해성 등의 관점에서, 상기 체적은 2000Å3 이하이며, 1500Å3 이하인 것이 보다 바람직하다.
여기에서, 1Å은, 0.1nm에 상당한다.
상기 체적의 값은, 후지쓰 가부시키가이샤제의 "WinMOPAC"을 이용하여 구했다. 즉, 먼저 각 예에 관한 산의 화학 구조를 입력하고, 다음으로 이 구조를 초기 구조로 하여 MM3법을 이용한 분자력장 계산에 의하여, 각 산의 가장 안정된 입체 배좌를 결정하며, 그 후, 이들 가장 안정된 입체 배좌에 대하여 PM3법을 이용한 분자 궤도 계산을 행함으로써, 각 산의 "accessible volume"을 계산할 수 있다.
이하에 본 발명에 있어서, 특히 바람직한 산발생제를 이하에 예시한다. 또한, 예의 일부에는, 체적의 계산값을 부기하고 있다(단위 Å3). 또한, 여기에서 구한 계산값은, 음이온부에 프로톤이 결합한 산의 체적값이다.
[화학식 24]
Figure pct00028
[화학식 25]
Figure pct00029
[화학식 26]
Figure pct00030
[화학식 27]
Figure pct00031
[화학식 28]
Figure pct00032
[화학식 29]
Figure pct00033
[화학식 30]
Figure pct00034
[화학식 31]
Figure pct00035
산발생제는, 1종 단독으로 또는 2종 이상을 조합하여 사용할 수 있다.
산발생제의 조성물 중의 함유량은, 네거티브형 감활성광선성 또는 감방사선성 수지 조성물의 전체 고형분을 기준으로 하여, 바람직하게는 0.1~25질량%이고, 보다 바람직하게는 0.5~20질량%이며, 더 바람직하게는 1~18질량%이다.
[3] (E) 염기성 화합물
본 발명의 조성물은, 염기성 화합물을 산포착제로서 더 함유하는 것이 바람직하다. 염기성 화합물을 이용함으로써, 노광부터 후가열까지의 경시에 따른 성능 변화를 작게 할 수 있다. 이와 같은 염기성 화합물로서는, 유기 염기성 화합물인 것이 바람직하고, 보다 구체적으로는, 지방족 아민류, 방향족 아민류, 복소환 아민류, 카복실기를 갖는 함질소 화합물, 설폰일기를 갖는 함질소 화합물, 하이드록시기를 갖는 함질소 화합물, 하이드록시페닐기를 갖는 함질소 화합물, 알코올성 함질소 화합물, 아마이드 유도체, 이미드 유도체 등을 들 수 있다. 아민옥사이드 화합물(일본 공개특허공보 2008-102383호에 기재), 암모늄염(바람직하게는 하이드록사이드 또는 카복실레이트이다. 보다 구체적으로는 테트라뷰틸암모늄하이드록사이드로 대표되는 테트라알킬암모늄하이드록사이드가 LER의 관점에서 바람직함)도 적절히 이용된다.
또한, 산의 작용에 의하여 염기성이 증대되는 화합물도, 염기성 화합물의 1종으로서 이용할 수 있다.
아민류의 구체예로서는, 트라이-n-뷰틸아민, 트라이-n-펜틸아민, 트라이-n-옥틸아민, 트라이-n-데실아민, 트라이아이소데실아민, 다이사이클로헥실메틸아민, 테트라데실아민, 펜타데실아민, 헥사데실아민, 옥타데실아민, 다이데실아민, 메틸옥타데실아민, 다이메틸운데실아민, N,N-다이메틸도데실아민, 메틸다이옥타데실아민, N,N-다이뷰틸아닐린, N,N-다이헥실아닐린, 2,6-다이아이소프로필아닐린, 2,4,6-트라이(t-뷰틸)아닐린, 트라이에탄올아민, N,N-다이하이드록시에틸아닐린, 트리스(메톡시에톡시에틸)아민이나, 미국 특허공보 제6040112호의 칼럼 3, 60번째 행 이후에 예시된 화합물, 2-[2-{2-(2,2-다이메톡시-페녹시에톡시)에틸}-비스-(2-메톡시에틸)]-아민이나, 미국 특허출원 공개공보 제2007/0224539A1호의 단락 [0066]에 예시되어 있는 화합물 (C1-1)~(C3-3) 등을 들 수 있다. 함질소 복소환 구조를 갖는 화합물로서는, 2-페닐벤즈이미다졸, 2,4,5-트라이페닐이미다졸, N-하이드록시에틸피페리딘, 비스(1,2,2,6,6-펜타메틸-4-피페리딜)세바케이트, 4-다이메틸아미노피리딘, 안티피린, 하이드록시안티피린, 1,5-다이아자바이사이클로[4.3.0]노느-5-엔, 1,8-다이아자바이사이클로〔5.4.0〕-운데스-7-엔, 테트라뷰틸암모늄하이드록사이드 등을 들 수 있다.
또, 광 분해성 염기성 화합물(당초는 염기성 질소 원자가 염기로서 작용하여 염기성을 나타내지만, 활성광선 또는 방사선의 조사에 의하여 분해되어, 염기성 질소 원자와 유기산 부위를 갖는 양성(兩性) 이온 화합물을 발생하고, 이들이 분자 내에서 중화함으로써, 염기성이 저하 또는 소실되는 화합물, 예를 들면 일본 특허공보 제3577743호, 일본 공개특허공보 2001-215689호, 일본 공개특허공보 2001-166476호, 일본 공개특허공보 2008-102383호에 기재된 오늄염), 광 염기성 발생제(예를 들면, 일본 공개특허공보 2010-243773호에 기재된 화합물)도 적절히 이용된다.
이들 염기성 화합물 중에서도 해상성 향상의 관점에서 암모늄염이 바람직하다.
본 발명에 있어서의 염기성 화합물의 함유율은, 조성물의 전체 고형분에 대하여, 0.01~10질량%가 바람직하고, 0.03~5질량%가 보다 바람직하며, 0.05~3질량%가 특히 바람직하다.
본 발명에 있어서의 염기성 화합물은, 상기 "광 분해성 염기성 화합물"인 것이 바람직하고, "활성광선 또는 방사선의 조사에 의하여 염기성이 저하되는, 염기성 화합물 또는 암모늄염 화합물 (C)"인 것이 보다 바람직하다.
이와 같은 활성광선 또는 방사선의 조사에 의하여 염기성이 저하되는, 염기성 화합물 또는 암모늄염 화합물 (C)는, 이하에 설명하는 양이온부에 질소 원자를 포함하는 오늄염 화합물(이하, "화합물 (E)"라고도 함)인 것이 바람직하다.
오늄염 화합물로서, 예를 들면 다이아조늄염 화합물, 포스포늄염 화합물, 설포늄염 화합물, 및 아이오도늄염 화합물 등을 들 수 있다. 이들 중, 설포늄염 화합물 또는 아이오도늄염 화합물이 바람직하고, 설포늄염 화합물이 보다 바람직하다.
이 오늄염 화합물은, 전형적으로는, 양이온부에 질소 원자를 포함한 염기성 부위를 구비하고 있다. 여기에서 "염기성 부위"란, 화합물 (E)의 양이온 부위의 공액산의 pKa가 -3 이상이 되는 부위를 의미하고 있다. 이 pKa는, -3~15의 범위 내에 있는 것이 바람직하고, 0~15의 범위 내에 있는 것이 보다 바람직하다. 또한, 이 pKa는, ACD/ChemSketch(ACD/Labs 8.00 Release Product Version: 8.08)에 의하여 구한 계산값을 의미하고 있다.
상기 염기성 부위는, 예를 들면 아미노기(암모니아, 1급 아민 혹은 2급 아민으로부터 수소 원자를 1개 제거한 기; 이하 동일) 및 함질소 복소환기로 이루어지는 군으로부터 선택되는 구조를 포함하고 있다. 상기 아미노기는, 지방족 아미노기인 것이 바람직하다. 여기에서, 지방족 아미노기란, 지방족 아민으로부터 수소 원자를 1개 제거한 기를 의미한다.
이들 구조에 있어서는, 구조 중에 포함되는 질소 원자에 인접하는 원자의 전부가 탄소 원자 또는 수소 원자인 것이, 염기성 향상의 관점에서 바람직하다. 또, 염기성 향상의 관점에서는, 질소 원자에 대하여, 전자 흡인성의 관능기(카보닐기, 설폰일기, 사이아노기, 할로젠 원자 등)가 직결되어 있지 않는 것이 바람직하다.
오늄염 화합물은, 상기 염기성 부위를 2개 이상 구비하고 있어도 된다.
화합물 (E)의 양이온부가 아미노기를 포함하고 있는 경우, 이 양이온부는, 하기 일반식 (N-I)에 의하여 나타나는 부분 구조를 구비하고 있는 것이 바람직하다.
[화학식 32]
Figure pct00036
식 중,
RA 및 RB는, 각각 독립적으로, 수소 원자 또는 유기기를 나타낸다.
X는, 단결합 또는 연결기를 나타낸다.
RA, RB 및 X 중 적어도 2개는, 서로 결합하여 환을 형성하고 있어도 된다.
RA 또는 RB에 의하여 나타나는 유기기로서는, 예를 들면 알킬기, 사이클로알킬기, 알켄일기, 아릴기, 복소환식 탄화 수소기, 알콕시카보닐기, 락톤기, 및 설톤기 등을 들 수 있다.
이들 기는 치환기를 갖고 있어도 되고, 치환기로서는, 알킬기, 사이클로알킬기, 알콕시기, 알콕시카보닐기, 카복실기, 할로젠 원자, 수산기, 사이아노기 등을 들 수 있다.
RA 또는 RB에 의하여 나타나는 알킬기는, 직쇄상이어도 되고, 분기쇄상이어도 된다. 이 알킬기의 탄소수는, 1~50인 것이 바람직하고, 1~30인 것이 보다 바람직하며, 1~20인 것이 더 바람직하다. 이와 같은 알킬기로서는, 예를 들면 메틸기, 에틸기, 프로필기, 뷰틸기, 헥실기, 옥틸기, 데실기, 도데실기, 옥타데실기, 아이소프로필기, 아이소뷰틸기, sec-뷰틸기, t-뷰틸기, 1-에틸펜틸기, 및 2-에틸헥실기 등을 들 수 있다.
RA 또는 RB에 의하여 나타나는 사이클로알킬기는, 단환식이어도 되고, 다환식이어도 된다. 이 사이클로알킬기로서는, 바람직하게는 사이클로프로필기, 사이클로펜틸기 및 사이클로헥실기 등의 탄소수 3~8의 단환의 사이클로알킬기 등을 들 수 있다.
RA 또는 RB에 의하여 나타나는 알켄일기는, 직쇄상이어도 되고, 분기쇄상이어도 된다. 이 알켄일기의 탄소수는, 2~50인 것이 바람직하고, 2~30인 것이 보다 바람직하며, 3~20인 것이 더 바람직하다. 이와 같은 알켄일기로서는, 예를 들면 바이닐기, 알릴기, 및 스타이릴기 등을 들 수 있다.
RA 또는 RB에 의하여 나타나는 아릴기로서는, 탄소수 6~14의 것이 바람직하다. 이와 같은 기로서는, 예를 들면 페닐기 및 나프틸기 등을 들 수 있다.
RA 또는 RB에 의하여 나타나는 복소환식 탄화 수소기는, 탄소수 5~20의 것이 바람직하고, 탄소수 6~15의 것이 보다 바람직하다. 복소환식 탄화 수소기는, 방향족성을 갖고 있어도 되고, 방향족성을 갖고 있지 않아도 된다. 이 복소환식 탄화 수소기는, 방향족성을 갖고 있는 것이 바람직하다.
상기의 기에 포함되는 복소환은, 단환식이어도 되고, 다환식이어도 된다. 이와 같은 복소환으로서는, 예를 들면 이미다졸환, 피리딘환, 피라진환, 피리미딘환, 피리다진환, 2H-피롤환, 3H-인돌환, 1H-인다졸, 퓨린환, 아이소퀴놀린환, 4H-퀴놀리진환, 퀴놀린환, 프탈라진환, 나프틸리딘환, 퀴녹살린환, 퀴나졸린환, 신놀린환, 프테리딘환, 페난트리딘환, 아크리딘환, 페난트롤린환, 페나진환, 페리미딘환, 트라이아진환, 벤즈아이소퀴놀린환, 싸이아졸환, 싸이아다이아진환, 아제핀환, 아조신환, 아이소싸이아졸환, 아이소옥사졸환, 및 벤조싸이아졸환을 들 수 있다.
RA 또는 RB에 의하여 나타나는 락톤기로서는, 예를 들면 5~7원환의 락톤기이며, 5~7원환 락톤기에 바이사이클로 구조, 스파이로 구조를 형성하는 형태로 다른 환 구조가 축환하고 있는 것이어도 된다.
RA 또는 RB에 의하여 나타나는 설톤기로서는, 예를 들면 5~7원환의 설톤기이며, 5~7원환 설톤기에 바이사이클로 구조, 스파이로 구조를 형성하는 형태로 다른 환 구조가 축환하고 있는 것이어도 된다.
구체적으로는, 이하에 나타내는 구조를 갖는 기인 것이 바람직하다.
[화학식 33]
Figure pct00037
[화학식 34]
Figure pct00038
락톤기 및 설톤기는, 치환기 (Rb2)를 갖고 있어도 되고 갖고 있지 않아도 된다. 바람직한 치환기 (Rb2)로서는, 상기에서 RA 및 RB의 치환기로서 기재한 것과 동일한 치환기를 들 수 있다. n2는, 0~4의 정수를 나타낸다. n2가 2 이상일 때, 복수 존재하는 치환기 (Rb2)는, 동일해도 되고 달라도 된다. 또, 복수 존재하는 치환기 (Rb2)끼리가 결합하여 환을 형성해도 된다.
X에 의하여 나타나는 연결기로서는, 예를 들면 직쇄 혹은 분기쇄상 알킬렌기, 사이클로알킬렌기, 에터 결합, 에스터 결합, 아마이드 결합, 유레테인 결합, 유레아 결합, 및 이들의 2종 이상을 조합하여 이루어지는 기 등을 들 수 있다. X는, 보다 바람직하게는, 단결합, 알킬렌기, 알킬렌기와 에터 결합이 조합되어 이루어지는 기, 또는 알킬렌기와 에스터 결합이 조합되어 이루어지는 기를 나타낸다. X에 의하여 나타나는 연결기의 원자수는 20 이하가 바람직하고, 15 이하가 보다 바람직하다. 상기의 직쇄 혹은 분기쇄상 알킬렌기, 및 사이클로알킬렌기는, 탄소수 8 이하가 바람직하고, 치환기를 갖고 있어도 된다. 상기 치환기로서는, 탄소수 8 이하의 것이 바람직하고, 예를 들면 알킬기(탄소수 1~4), 할로젠 원자, 수산기, 알콕시기(탄소수 1~4), 카복실기, 알콕시카보닐기(탄소수 2~6) 등을 들 수 있다.
RA, RB 및 X 중 적어도 2개는, 서로 결합하여 환을 형성하고 있어도 된다. 환을 형성하는 탄소수는 4~20이 바람직하며, 단환식이어도 되고 다환식이어도 되며, 환 내에 산소 원자, 황 원자, 질소 원자, 에스터 결합, 아마이드 결합, 또는 카보닐기를 포함하고 있어도 된다.
화합물 (E)의 양이온부가 함질소 복소환기를 포함하고 있는 경우, 이 함질소 복소환기는, 방향족성을 갖고 있어도 되고, 방향족성을 갖고 있지 않아도 된다. 또, 이 함질소 복소환기는, 단환식이어도 되고, 다환식이어도 된다. 함질소 복소환기로서는, 바람직하게는 피페리딘환, 모폴린환, 피리딘환, 이미다졸환, 피라진환, 피롤환, 또는 피리미딘환을 포함한 기를 들 수 있다.
오늄염 화합물 (E)는, 하기 일반식 (4)로 나타나는 화합물인 것이 바람직하다.
[화학식 35]
Figure pct00039
식 중, A는 황 원자 또는 아이오딘 원자를 나타내고, RA는 수소 원자 또는 유기기를 나타내며, RB는 (p+1)가의 유기기를 나타내고, X는 단결합 또는 연결기를 나타내며, AN은 질소 원자를 포함한 염기성 부위를 나타낸다. RA, RB, X 및 AN은 각각 복수 존재하는 경우, 그들은 동일해도 되고 달라도 된다.
A가 황 원자인 경우, q는 1~3의 정수이며, o는 o+q=3의 관계를 충족시키는 정수이다.
A가 아이오딘 원자인 경우, q는 1 또는 2이며, o는 o+q=2의 관계를 충족시키는 정수이다.
p는 1~10의 정수를 나타내고, Y-는, 음이온을 나타낸다(상세는, 화합물 (E)의 음이온부로서 후술하는 바와 같다).
RA, X, RB, AN 중 적어도 2개는, 서로 결합하여 환을 형성해도 된다.
RB에 의하여 나타나는 (p+1)가의 유기기로서는, 예를 들면 쇄상(직쇄상, 분기상) 또는 환상의 지방족 탄화 수소기, 복소환식 탄화 수소기, 및 방향족 탄화 수소기를 들 수 있는데, 바람직하게는 방향족 탄화 수소기를 들 수 있다. RB가 방향족 탄화 수소기인 경우, 방향족 탄화 수소기의 p-위(1,4-위)로 결합되어 있는 것이 바람직하다.
X에 의하여 나타나는 연결기는, 상술한 일반식 (N-I) 중의 X에 의하여 나타나는 연결기와 동의이며, 동일한 구체예를 들 수 있다.
AN에 의하여 나타나는 염기성 부위는, 상술한 화합물 (E)의 양이온부에 포함되는 "염기성 부위"와 동의이며, 예를 들면 아미노기 또는 함질소 복소환기를 포함할 수 있다. 염기성 부위가 아미노기를 포함하는 경우, 아미노기로서는, 예를 들면 상기에 기재된 일반식 (N-I) 중의 -N(RA)(RB)기를 들 수 있다.
RA에 의하여 나타나는 유기기로서는, 예를 들면 알킬기, 알켄일기, 지방족환식기, 방향족 탄화 수소기, 및 복소환식 탄화 수소기를 들 수 있다. o=2인 경우, 2개의 RA가 서로 결합하여 환을 형성하고 있어도 된다. 이들 기 또는 환은, 치환기를 더 구비하고 있어도 된다.
RA에 의하여 나타나는 알킬기는, 직쇄상이어도 되고, 분기쇄상이어도 된다. 이 알킬기의 탄소수는, 1~50인 것이 바람직하고, 1~30인 것이 보다 바람직하며, 1~20인 것이 더 바람직하다. 이와 같은 알킬기로서는, 예를 들면 메틸기, 에틸기, 프로필기, 뷰틸기, 헥실기, 옥틸기, 데실기, 도데실기, 옥타데실기, 아이소프로필기, 아이소뷰틸기, sec-뷰틸기, t-뷰틸기, 1-에틸펜틸기, 및 2-에틸헥실기를 들 수 있다.
RA에 의하여 나타나는 알켄일기는, 직쇄상이어도 되고, 분기쇄상이어도 된다. 이 알켄일기의 탄소수는, 2~50인 것이 바람직하고, 2~30인 것이 보다 바람직하며, 3~20인 것이 더 바람직하다. 이와 같은 알켄일기로서는, 예를 들면 바이닐기, 알릴기, 및 스타이릴기를 들 수 있다.
RA에 의하여 나타나는 지방족환식기는, 예를 들면 사이클로알킬기이다. 사이클로알킬기는, 단환식이어도 되고, 다환식이어도 된다. 이 지방족환식기로서는, 바람직하게는 사이클로프로필기, 사이클로펜틸기 및 사이클로헥실기 등의 탄소수 3~8의 단환의 사이클로알킬기를 들 수 있다.
RA에 의하여 나타나는 방향족 탄화 수소기로서는, 탄소수 6~14의 것이 바람직하다. 이와 같은 기로서는, 예를 들면 페닐기 및 나프틸기 등의 아릴기를 들 수 있다. RA에 의하여 나타나는 방향족 탄화 수소기는, 바람직하게는 페닐기이다.
RA에 의하여 나타나는 복소환식 탄화 수소기는, 방향족성을 갖고 있어도 되고, 방향족성을 갖고 있지 않아도 된다. 이 복소환식 탄화 수소기는, 방향족성을 갖고 있는 것이 바람직하다.
상기의 기에 포함되는 복소환은, 단환식이어도 되고, 다환식이어도 된다. 이와 같은 복소환으로서는, 예를 들면 이미다졸환, 피리딘환, 피라진환, 피리미딘환, 피리다진환, 2H-피롤환, 3H-인돌환, 1H-인다졸, 퓨린환, 아이소퀴놀린환, 4H-퀴놀리진환, 퀴놀린환, 프탈라진환, 나프틸리딘환, 퀴녹살린환, 퀴나졸린환, 신놀린환, 프테리딘환, 페난트리딘환, 아크리딘환, 페난트롤린환, 페나진환, 페리미딘환, 트라이아진환, 벤즈아이소퀴놀린환, 싸이아졸환, 싸이아다이아진환, 아제핀환, 아조신환, 아이소싸이아졸환, 아이소옥사졸환, 및 벤조싸이아졸환을 들 수 있다.
RA는, 방향족 탄화 수소기이거나, 또는 2개의 RA가 결합하여 환을 형성하고 있는 것이 바람직하다.
RA, X, R, AN 중 적어도 2개가 서로 결합하여 형성해도 되는 환은, 4~7원환인 것이 바람직하고, 5 또는 6원환인 것이 보다 바람직하며, 5원환인 것이 특히 바람직하다. 또, 환 골격 중에, 산소 원자, 황 원자, 질소 원자 등의 헤테로 원자를 포함하고 있어도 된다.
RA에 의하여 나타나는 기 또는 2개의 RA가 서로 결합하여 형성되는 환이 치환기를 더 구비하고 있는 경우, 이 치환기로서는, 예를 들면 이하의 것을 들 수 있다. 즉, 이 치환기로서는, 예를 들면 할로젠 원자(-F, -Br, -Cl, 또는 -I), 하이드록실기, 알콕시기, 아릴옥시기, 머캅토기, 알킬싸이오기, 아릴싸이오기, 아미노기, 아실옥시기, 카바모일옥시기, 알킬설폭시기, 아릴설폭시기, 아실싸이오기, 아실아미노기, 유레이도기, 알콕시카보닐아미노기, 아릴옥시카보닐아미노기, N-알킬-N-알콕시카보닐아미노기, N-알킬-N-아릴옥시카보닐아미노기, N-아릴-N-알콕시카보닐아미노기, N-아릴-N-아릴옥시카보닐아미노기, 폼일기, 아실기, 카복실기, 카바모일기, 알킬설핀일기, 아릴설핀일기, 알킬설폰일기, 아릴설폰일기, 설포기(-SO3H) 및 그 공액 염기기(설포네이트기라고 칭함), 알콕시설폰일기, 아릴옥시설폰일기, 설피나모일기, 포스포노기(-PO3H2) 및 그 공액 염기기(포스포네이트기라고 칭함), 포스포노옥시기(-OPO3H2) 및 그 공액 염기기(포스포네이트옥시기라고 칭함), 사이아노기, 나이트로기, 아릴기, 알켄일기, 알카인일기, 헤테로환기, 실릴기와, 알킬기를 들 수 있다.
이들 치환기 중, 하이드록실기, 알콕시기, 사이아노기, 아릴기, 알켄일기, 알카인일기, 알킬기 등이 바람직하다.
일반식 (4)에 있어서, p는, 1~4의 정수인 것이 바람직하고, 1 또는 2인 것이 보다 바람직하며, 1인 것이 더 바람직하다.
일반식 (4)에 의하여 나타나는 화합물 (E)는, 일 양태에 있어서, 식 중의 q개의 RB 중 적어도 하나가 방향족 탄화 수소기인 것이 바람직하다. 그리고, 이 방향족 탄화 수소기 중 적어도 하나에 결합하는 p개의 -(X-AN)기 중 적어도 하나에 있어서의 X는, 상기 방향족 탄화 수소기와의 결합부가 탄소 원자인 연결기인 것이 바람직하다.
즉, 이 양태에 있어서의 화합물 (E)에서는, AN에 의하여 나타나는 염기성 부위가, RB에 의하여 나타나는 방향족 탄화 수소기에 직결한 탄소 원자를 통하여, 상기 방향족 탄화 수소기에 결합하고 있다.
RB에 의하여 나타나는 방향족 탄화 수소기는, 방향족 탄화 수소기에 있어서의 방향환으로서, 복소환을 포함하고 있어도 된다. 또, 방향환은, 단환식이어도 되고, 다환식이어도 된다.
방향환기는, 탄소수가 6~14인 것이 바람직하다. 이와 같은 기로서는, 예를 들면 페닐기, 나프틸기, 및 안트릴기 등의 아릴기를 들 수 있다. 방향환기가 복소환을 포함하고 있는 경우, 복소환으로서는, 예를 들면 싸이오펜환, 퓨란환, 피롤환, 벤조싸이오펜환, 벤조퓨란환, 벤조피롤환, 트라이아진환, 이미다졸환, 벤즈이미다졸환, 트라이아졸환, 싸이아다이아졸환, 및 싸이아졸환을 들 수 있다.
RB에 의하여 나타나는 방향족 탄화 수소기는, 페닐기 또는 나프틸기인 것이 바람직하고, 페닐기인 것이 특히 바람직하다.
RB에 의하여 나타나는 방향족 탄화 수소기는, 이하에 설명하는 -(X-AN)에 의하여 나타나는 기 이외에, 치환기를 더 구비하고 있어도 된다. 치환기로서는, 예를 들면 앞서 RA에 있어서의 치환기로서 열거한 것을 이용할 수 있다.
또, 이 양태에 있어서, 상기의 방향환 RB에 치환하는 적어도 하나의 -(X-AN)기에 있어서의 X로서의 연결기는, RB에 의하여 나타나는 방향족 탄화 수소기와의 결합부가 탄소 원자이면, 특별히 한정되지 않는다. 연결기는, 예를 들면 알킬렌기, 사이클로알킬렌기, 아릴렌기, -COO-, -CO-, 혹은 이들의 조합을 포함하고 있다. 연결기는, 이들 각 기와, -O-, -S-, -OCO-, -S(=O)-, -S(=O)2-, -OS(=O)2-, 및 -NR'-로 이루어지는 군으로부터 선택되는 적어도 하나의 조합을 포함하고 있어도 된다. 여기에서, R'은, 예를 들면 수소 원자, 알킬기, 사이클로알킬기, 또는 아릴기를 나타낸다.
X에 의하여 나타나는 연결기가 포함할 수 있는 알킬렌기는, 직쇄상이어도 되고, 분기쇄상이어도 된다. 이 알킬렌기의 탄소수는, 1~20인 것이 바람직하고, 1~10인 것이 보다 바람직하다. 이와 같은 알킬렌기로서는, 예를 들면 메틸렌기, 에틸렌기, 프로필렌기, 및 뷰틸렌기를 들 수 있다.
X에 의하여 나타나는 연결기가 포함할 수 있는 사이클로알킬렌기는, 단환식이어도 되고, 다환식이어도 된다. 이 사이클로알킬렌기의 탄소수는, 3~20인 것이 바람직하고, 3~10인 것이 보다 바람직하다. 이와 같은 사이클로알킬렌기로서는, 예를 들면 1,4-사이클로헥실렌기를 들 수 있다.
X에 의하여 나타나는 연결기가 포함할 수 있는 아릴렌기의 탄소수는, 6~20인 것이 바람직하고, 6~10인 것이 보다 바람직하다. 이와 같은 아릴렌기로서는, 예를 들면 페닐렌기 및 나프틸렌기를 들 수 있다.
적어도 하나의 X는, 하기 일반식 (N-III) 또는 (N-IV)에 의하여 나타나는 것이 바람직하다.
[화학식 36]
Figure pct00040
식 중,
R2 및 R3은, 수소 원자, 알킬기, 알켄일기, 지방족환식기, 방향족 탄화 수소기, 또는 복소환식 탄화 수소기를 나타낸다. R2와 R3은, 서로 결합하여 환을 형성하고 있어도 된다. R2 및 R3 중 적어도 한쪽은, E와 서로 결합하여 환을 형성하고 있어도 된다.
E는, 연결기 또는 단결합을 나타낸다.
[화학식 37]
Figure pct00041
식 중,
J는, 산소 원자, 또는 황 원자를 나타낸다.
E는, 연결기 또는 단결합을 나타낸다.
R2 및 R3에 의하여 나타나는 각 기와 이들이 더 구비할 수 있는 치환기로서는, 예를 들면 앞서 RA에 대하여 설명한 것과 동일한 것을 들 수 있다. R2와 R3이 결합하여 형성할 수 있는 환, 및 R2 및 R3 중 적어도 한쪽이 E와 결합하여 형성할 수 있는 환은, 4~7원환인 것이 바람직하고, 5 또는 6원환인 것이 보다 바람직하다. R2 및 R3은, 각각 독립적으로, 수소 원자 또는 알킬기인 것이 바람직하다.
E에 의하여 나타나는 연결기는, 예를 들면 알킬렌기, 사이클로알킬렌기, 아릴렌기, -COO-, -CO-, -O-, -S-, -OCO-, -S(=O)-, -S(=O)2-, -OS(=O)2-, -NR-, 또는 이들의 조합을 포함하고 있다. 여기에서, R은, 예를 들면 수소 원자, 알킬기, 사이클로알킬기, 또는 아릴기를 나타낸다.
E에 의하여 나타나는 연결기는, 알킬렌 결합, 에스터 결합, 에터 결합, 싸이오에터 결합, 유레테인 결합
[화학식 38]
Figure pct00042
, 유레아 결합
[화학식 39]
Figure pct00043
, 아마이드 결합, 및 설폰아마이드 결합으로 이루어지는 군으로부터 선택되는 적어도 하나인 것이 바람직하다. E에 의하여 나타나는 연결기는, 보다 바람직하게는, 알킬렌 결합, 에스터 결합, 또는 에터 결합이다.
또한, 화합물 (E)는, 질소 원자를 포함한 부위를 복수 갖는 화합물이어도 된다. 예를 들면, 화합물 (E)는, 일반식 (4)에 있어서의 RA 중 적어도 하나가, 일반식 (N-I)로 나타나는 구조를 갖는 화합물이어도 된다.
일반식 (4)에 의하여 나타나는 화합물 (E)는, 일 양태에 있어서, 하기 일반식 (N-V)에 의하여 나타난다.
[화학식 40]
Figure pct00044
식 중, X, AN 및 Y-는, 일반식 (4)에 있어서의 각 기와 동의이며, 구체예 및 바람직한 예도 동일하다.
R14, R15, r 및 l은, 광산발생제의 일 양태를 나타내는 일반식 (ZI-4) 중의 각 기 및 지수와 동의이며, 구체예 및 바람직한 예도 동일하다.
또, 일반식 (4)에 의하여 나타나는 화합물 (E)는, 일 양태에 있어서, 하기 일반식 (N-VI)에 의하여 나타난다.
[화학식 41]
Figure pct00045
일반식 (N-VI) 중,
A는, 황 원자 또는 아이오딘 원자를 나타낸다.
R11은, 각각 독립적으로, 알킬기, 알켄일기, 지방족환식기, 방향족 탄화 수소기, 또는 복소환식 탄화 수소기를 나타낸다. m=2의 경우, 2개의 R11이 서로 결합하여 환을 형성하고 있어도 된다.
Ar은, 각각 독립적으로, 방향족 탄화 수소기를 나타낸다.
X1은, 각각 독립적으로, 2가의 연결기를 나타낸다.
R12는, 각각 독립적으로, 수소 원자 또는 유기기를 나타낸다.
상기 A가 황 원자인 경우, m은 1~3의 정수이며, n은 m+n=3이 되는 관계를 충족시키는 정수이다.
상기 A가 아이오딘 원자인 경우, m은 1 또는 2의 정수이며, n은 m+n=2가 되는 관계를 충족시키는 정수이다.
Y-는, 음이온을 나타낸다(상세는, 화합물 (E)의 음이온부로서 후술하는 바와 같다).
R11로서의 알킬기, 알켄일기, 지방족환식기, 방향족 탄화 수소기, 및 복소환식 탄화 수소기의 구체예 및 바람직한 예는, 상기 일반식 (4)에 있어서의 RA로서의 알킬기, 알켄일기, 지방족환식기, 방향족 탄화 수소기, 및 복소환식 탄화 수소기의 구체예 및 바람직한 예와 동일하다.
Ar로서의 방향족 탄화 수소기의 구체예 및 바람직한 예는, 상기 일반식 (4)에 있어서의 RB로서의 방향족 탄화 수소기의 구체예 및 바람직한 예와 동일하다.
X1로서의 2가의 연결기의 구체예 및 바람직한 예는, 상기 일반식 (4)에 있어서의 X로서의 연결기의 구체예 및 바람직한 예와 동일하다.
R12로서의 유기기의 구체예 및 바람직한 예는, 상기 일반식 (N-I)에 있어서의 RA 및 RB로서의 유기기의 구체예 및 바람직한 예와 동일하다.
X가 알킬렌기(예를 들면, 메틸렌기)이며, 2개의 R12가 서로 결합하여 환을 형성하는 양태가, 노광 후 가열(PEB) 온도 의존성 및 노광 후 선폭(PED) 안정성의 관점에서는 특히 바람직하다.
화합물 (E)의 음이온부는, 특별히 제한은 없다. 화합물 (E)가 포함하고 있는 음이온은, 비구핵성 음이온인 것이 바람직하다. 여기에서, 비구핵성 음이온이란, 구핵 반응을 일으키는 능력이 현저히 낮은 음이온이며, 분자 내 구핵 반응에 의한 경시 분해를 억제할 수 있는 음이온이다. 이로써, 본 발명에 관한 조성물의 경시 안정성이 향상된다.
비구핵성 음이온으로서는, 예를 들면 설폰산 음이온, 카복실산 음이온, 설폰일이미드 음이온, 비스(알킬설폰일)이미드 음이온, 트리스(알킬설폰일)메틸 음이온 등을 들 수 있다.
설폰산 음이온으로서는, 예를 들면 지방족 설폰산 음이온, 방향족 설폰산 음이온, 캄퍼설폰산 음이온 등을 들 수 있다.
카복실산 음이온으로서는, 예를 들면 지방족 카복실산 음이온, 방향족 카복실산 음이온, 아랄킬카복실산 음이온 등을 들 수 있다.
지방족 설폰산 음이온에 있어서의 지방족 부위는, 알킬기여도 되고 사이클로알킬기여도 되며, 바람직하게는 탄소수 1~30의 알킬기 및 탄소수 3~30의 사이클로알킬기, 예를 들면 메틸기, 에틸기, 프로필기, 아이소프로필기, n-뷰틸기, 아이소뷰틸기, sec-뷰틸기, 펜틸기, 네오펜틸기, 헥실기, 헵틸기, 옥틸기, 노닐기, 데실기, 운데실기, 도데실기, 트라이데실기, 테트라데실기, 펜타데실기, 헥사데실기, 헵타데실기, 옥타데실기, 노나데실기, 에이코실기, 사이클로프로필기, 사이클로펜틸기, 사이클로헥실기, 아다만틸기, 노보닐기, 보닐기 등을 들 수 있다.
방향족 설폰산 음이온에 있어서의 방향족기로서는, 바람직하게는 탄소수 6~14의 아릴기, 예를 들면 페닐기, 톨릴기, 나프틸기 등을 들 수 있다.
지방족 설폰산 음이온 및 방향족 설폰산 음이온에 있어서의 알킬기, 사이클로알킬기 및 아릴기는, 치환기를 갖고 있어도 된다. 지방족 설폰산 음이온 및 방향족 설폰산 음이온에 있어서의 알킬기, 사이클로알킬기 및 아릴기의 치환기로서는, 예를 들면 나이트로기, 할로젠 원자(불소 원자, 염소 원자, 브로민 원자, 아이오딘 원자), 카복시기, 수산기, 아미노기, 사이아노기, 알콕시기(바람직하게는 탄소수 1~15), 사이클로알킬기(바람직하게는 탄소수 3~15), 아릴기(바람직하게는 탄소수 6~14), 알콕시카보닐기(바람직하게는 탄소수 2~7), 아실기(바람직하게는 탄소수 2~12), 알콕시카보닐옥시기(바람직하게는 탄소수 2~7), 알킬싸이오기(바람직하게는 탄소수 1~15), 알킬설폰일기(바람직하게는 탄소수 1~15), 알킬이미노설폰일기(바람직하게는 탄소수 2~15), 아릴옥시설폰일기(바람직하게는 탄소수 6~20), 알킬아릴옥시설폰일기(바람직하게는 탄소수 7~20), 사이클로알킬아릴옥시설폰일기(바람직하게는 탄소수 10~20), 알킬옥시알킬옥시기(바람직하게는 탄소수 5~20), 사이클로알킬알킬옥시알킬옥시기(바람직하게는 탄소수 8~20) 등을 들 수 있다. 각 기가 갖는 아릴기 및 환 구조에 대해서는, 치환기로서 추가로 알킬기(바람직하게는 탄소수 1~15)를 들 수 있다.
지방족 카복실산 음이온에 있어서의 지방족 부위로서는, 지방족 설폰산 음이온에 있어서와 동일한 알킬기 및 사이클로알킬기를 들 수 있다.
방향족 카복실산 음이온에 있어서의 방향족기로서는, 방향족 설폰산 음이온에 있어서와 동일한 아릴기를 들 수 있다.
아랄킬카복실산 음이온에 있어서의 아랄킬기로서는, 바람직하게는 탄소수 6~12의 아랄킬기, 예를 들면 벤질기, 펜에틸기, 나프틸메틸기, 나프틸에틸기, 나프틸뷰틸기 등을 들 수 있다.
지방족 카복실산 음이온, 방향족 카복실산 음이온 및 아랄킬카복실산 음이온에 있어서의 알킬기, 사이클로알킬기, 아릴기 및 아랄킬기는, 치환기를 갖고 있어도 된다. 지방족 카복실산 음이온, 방향족 카복실산 음이온 및 아랄킬카복실산 음이온에 있어서의 알킬기, 사이클로알킬기, 아릴기 및 아랄킬기의 치환기로서는, 예를 들면 방향족 설폰산 음이온에 있어서와 동일한 할로젠 원자, 알킬기, 사이클로알킬기, 알콕시기, 알킬싸이오기 등을 들 수 있다.
설폰일이미드 음이온으로서는, 예를 들면 사카린 음이온을 들 수 있다.
비스(알킬설폰일)이미드 음이온, 트리스(알킬설폰일)메틸 음이온에 있어서의 알킬기는, 탄소수 1~5의 알킬기가 바람직하고, 예를 들면 메틸기, 에틸기, 프로필기, 아이소프로필기, n-뷰틸기, 아이소뷰틸기, sec-뷰틸기, 펜틸기, 네오펜틸기 등을 들 수 있다. 이들 알킬기의 치환기로서는 할로젠 원자, 할로젠 원자로 치환된 알킬기, 알콕시기, 알킬싸이오기, 알킬옥시설폰일기, 아릴옥시설폰일기, 사이클로알킬아릴옥시설폰일기 등을 들 수 있으며, 불소 원자로 치환된 알킬기가 바람직하다. 또, 비스(알킬설폰일)이미드 음이온에 있어서의 2개의 알킬기가, 서로 결합하여 환상 구조를 형성하고 있는 양태도 바람직하다. 이 경우, 형성되는 환상 구조는 5~7원환인 것이 바람직하다.
그 외의 비구핵성 음이온으로서는, 예를 들면 불소화 인, 불소화 붕소, 불소화 안티모니 등을 들 수 있다.
비구핵성 음이온으로서는, 설폰산의 α위가 불소 원자로 치환된 지방족 설폰산 음이온, 불소 원자 또는 불소 원자를 갖는 기로 치환된 방향족 설폰산 음이온, 알킬기가 불소 원자로 치환된 비스(알킬설폰일)이미드 음이온, 알킬기가 불소 원자로 치환된 트리스(알킬설폰일)메타이드 음이온이 바람직하다. 비구핵성 음이온으로서, 보다 바람직하게는 탄소수 4~8의 퍼플루오로지방족 설폰산 음이온, 불소 원자를 갖는 벤젠설폰산 음이온, 보다 더 바람직하게는 노나플루오로뷰테인설폰산 음이온, 퍼플루오로옥테인설폰산 음이온, 펜타플루오로벤젠설폰산 음이온, 3,5-비스(트라이플루오로메틸)벤젠설폰산 음이온이다.
또, 비구핵성 음이온은, 예를 들면 하기 일반식 (LD1)에 의하여 나타나는 것이 바람직하다.
[화학식 42]
Figure pct00046
식 중,
Xf는, 각각 독립적으로, 불소 원자, 또는 적어도 하나의 불소 원자로 치환된 알킬기를 나타낸다.
R1 및 R2는, 각각 독립적으로, 수소 원자, 불소 원자, 또는 알킬기를 나타낸다.
L은, 각각 독립적으로, 2가의 연결기를 나타낸다.
Cy는, 환상의 유기기를 나타낸다.
x는, 1~20의 정수를 나타낸다.
y는, 0~10의 정수를 나타낸다.
z는, 0~10의 정수를 나타낸다.
Xf는, 불소 원자, 또는 적어도 하나의 불소 원자로 치환된 알킬기를 나타낸다. 이 알킬기의 탄소수는, 1~10인 것이 바람직하고, 1~4인 것이 보다 바람직하다. 또, 적어도 하나의 불소 원자로 치환된 알킬기는, 퍼플루오로알킬기인 것이 바람직하다.
Xf는, 바람직하게는 불소 원자 또는 탄소수 1~4의 퍼플루오로알킬기이다. 보다 구체적으로는, Xf는, 불소 원자, CF3, C2F5, C3F7, C4F9, C5F11, C6F13, C7F15, C8F17, CH2CF3, CH2CH2CF3, CH2C2F5, CH2CH2C2F5, CH2C3F7, CH2CH2C3F7, CH2C4F9, 또는 CH2CH2C4F9인 것이 바람직하다.
R1 및 R2는, 각각 독립적으로, 수소 원자, 불소 원자, 또는 알킬기이다. 이 알킬기는, 치환기(바람직하게는 불소 원자)를 갖고 있어도 되고, 탄소수 1~4의 것이 바람직하다. 더 바람직하게는 탄소수 1~4의 퍼플루오로알킬기이다. R1 및 R2로서의 치환기를 갖는 알킬기의 구체예로서는, 예를 들면 CF3, C2F5, C3F7, C4F9, C5F11, C6F13, C7F15, C8F17, CH2CF3, CH2CH2CF3, CH2C2F5, CH2CH2C2F5, CH2C3F7, CH2CH2C3F7, CH2C4F9, 및 CH2CH2C4F9를 들 수 있고, 그 중에서도 CF3이 바람직하다.
L은, 2가의 연결기를 나타낸다. 이 2가의 연결기로서는, 예를 들면 -COO-, -OCO-, -CONH-, -CO-, -O-, -S-, -SO-, -SO2-, 알킬렌기, 사이클로알킬렌기, 및 알켄일렌기를 들 수 있다. 이들 중에서도, -CONH-, -CO-, 또는 -SO2-가 바람직하고, -CONH- 또는 -SO2-가 보다 바람직하다.
Cy는, 환상의 유기기를 나타낸다. 환상의 유기기로서는, 예를 들면 지환기, 아릴기, 및 복소환기를 들 수 있다.
지환기는, 단환식이어도 되고, 다환식이어도 된다. 단환식의 지환기로서는, 예를 들면 사이클로펜틸기, 사이클로헥실기, 및 사이클로옥틸기 등의 단환의 사이클로알킬기를 들 수 있다. 다환식의 지환기로서는, 예를 들면 노보닐기, 트라이사이클로데칸일기, 테트라사이클로데칸일기, 테트라사이클로도데칸일기, 및 아다만틸기 등의 다환의 사이클로알킬기를 들 수 있다. 그 중에서도, 노보닐기, 트라이사이클로데칸일기, 테트라사이클로데칸일기, 테트라사이클로도데칸일기, 및 아다만틸기 등의 탄소수 7 이상의 벌키 구조를 갖는 지환기가, PEB(노광 후 가열) 공정에서의 막중 확산성의 억제 및 MEEF(Mask Error Enhancement Factor)의 향상의 관점에서 바람직하다.
아릴기는, 단환식이어도 되고, 다환식이어도 된다. 이 아릴기로서는, 예를 들면 페닐기, 나프틸기, 페난트릴기 및 안트릴기를 들 수 있다. 그 중에서도, 193nm에 있어서의 광흡광도가 비교적 낮은 나프틸기가 바람직하다.
복소환기는, 단환식이어도 되고, 다환식이어도 되는데, 다환식이 보다 산의 확산을 억제 가능하다. 또, 복소환기는, 방향족성을 갖고 있어도 되고, 방향족성을 갖고 있지 않아도 된다. 방향족성을 갖고 있는 복소환으로서는, 예를 들면 퓨란환, 싸이오펜환, 벤조퓨란환, 벤조싸이오펜환, 다이벤조퓨란환, 다이벤조싸이오펜환, 및 피리딘환을 들 수 있다. 방향족성을 갖지 않은 복소환으로서는, 예를 들면 테트라하이드로피란환, 락톤환, 및 데카하이드로아이소퀴놀린환을 들 수 있다. 복소환기에 있어서의 복소환으로서는, 퓨란환, 싸이오펜환, 피리딘환, 또는 데카하이드로아이소퀴놀린환이 특히 바람직하다. 또, 락톤환의 예로서는, 상기 일반식 (N-1)에 있어서의 RA 및 RB에 관하여 예시한 락톤환을 들 수 있다.
상기 환상의 유기기는, 치환기를 갖고 있어도 된다. 이 치환기로서는, 예를 들면 알킬기, 사이클로알킬기, 아릴기, 하이드록시기, 알콕시기, 에스터기, 아마이드기, 유레테인기, 유레이도기, 싸이오에터기, 설폰아마이드기, 및 설폰산 에스터기를 들 수 있다. 알킬기는, 직쇄상이어도 되고, 분기쇄상이어도 된다. 또, 알킬기는, 탄소수가 1~12인 것이 바람직하다. 사이클로알킬기는, 단환식이어도 되고, 다환식이어도 된다. 또, 사이클로알킬기는, 탄소수가 3~12인 것이 바람직하다. 아릴기는, 탄소수가 6~14인 것이 바람직하다.
x는 1~8이 바람직하고, 그 중에서도 1~4가 바람직하며, 1이 특히 바람직하다. y는 0~4가 바람직하고, 0이 보다 바람직하다. z는 0~8이 바람직하고, 그 중에서도 0~4가 바람직하다.
또, 비구핵성 음이온은, 예를 들면 하기 일반식 (LD2)에 의하여 나타나는 것도 바람직하다.
[화학식 43]
Figure pct00047
일반식 (LD2) 중, Xf, R1, R2, L, Cy, x, y 및 z는, 일반식 (LD1)에 있어서의 각각과 동의이다. Rf는, 불소 원자를 포함한 기이다.
Rf에 의하여 나타나는 불소 원자를 포함한 기로서는, 예를 들면 적어도 하나의 불소 원자를 갖는 알킬기, 적어도 하나의 불소 원자를 갖는 사이클로알킬기, 및 적어도 하나의 불소 원자를 갖는 아릴기를 들 수 있다.
이들 알킬기, 사이클로알킬기 및 아릴기는, 불소 원자에 의하여 치환되어 있어도 되고, 불소 원자를 포함한 다른 치환기에 의하여 치환되어 있어도 된다. Rf가 적어도 하나의 불소 원자를 갖는 사이클로알킬기 또는 적어도 하나의 불소 원자를 갖는 아릴기인 경우, 불소 원자를 포함한 다른 치환기로서는, 예를 들면 적어도 하나의 불소 원자로 치환된 알킬기를 들 수 있다.
또, 이들 알킬기, 사이클로알킬기 및 아릴기는, 불소 원자를 포함하지 않은 치환기에 의하여 더 치환되어 있어도 된다. 이 치환기로서는, 예를 들면 앞서 Cy에 대하여 설명한 것 중, 불소 원자를 포함하지 않는 것을 들 수 있다.
Rf에 의하여 나타나는 적어도 하나의 불소 원자를 갖는 알킬기로서는, 예를 들면 Xf에 의하여 나타나는 적어도 하나의 불소 원자로 치환된 알킬기로서 앞서 설명한 것과 동일한 것을 들 수 있다. Rf에 의하여 나타나는 적어도 하나의 불소 원자를 갖는 사이클로알킬기로서는, 예를 들면 퍼플루오로사이클로펜틸기, 및 퍼플루오로사이클로헥실기를 들 수 있다. Rf에 의하여 나타나는 적어도 하나의 불소 원자를 갖는 아릴기로서는, 예를 들면 퍼플루오로페닐기를 들 수 있다.
화합물 (E)의 음이온 부분의 바람직한 양태로서는, 상술한 일반식 (LD1) 및 (LD2)로 나타나는 구조 외에, 광산발생제의 바람직한 음이온 구조로서 예시하는 구조를 들 수 있다.
또, 화합물 (E)는, (화합물 중에 포함되는 전체 불소 원자의 질량의 합계)/(화합물 중에 포함되는 전체 원자의 질량의 합계)에 의하여 나타나는 불소 함유율이 0.30 이하인 것이 바람직하고, 0.25 이하인 것이 보다 바람직하며, 0.20 이하인 것이 더 바람직하고, 0.15 이하인 것이 특히 바람직하며, 0.10 이하인 것이 가장 바람직하다.
이하에, 화합물 (E)의 구체예를 들지만, 이들에 한정되는 것은 아니다.
[화학식 44]
Figure pct00048
[화학식 45]
Figure pct00049
[화학식 46]
Figure pct00050
[화학식 47]
Figure pct00051
[화학식 48]
Figure pct00052
[화학식 49]
Figure pct00053
[화학식 50]
Figure pct00054
[화학식 51]
Figure pct00055
[화학식 52]
Figure pct00056
[화학식 53]
Figure pct00057
화합물 (E)는, 1종류를 단독으로 이용해도 되고, 2종류 이상을 조합하여 이용해도 된다.
화합물 (E)의 함유량은, 조성물의 전체 고형분을 기준으로 하여, 통상은 0.001~10질량%의 범위 내에 있으며, 바람직하게는 0.1~10질량%, 보다 바람직하게는 1~10질량%의 범위 내에 있다.
또한, 화합물 (E)로부터의 발생산의 체적이 큰 편이, 해상성 향상의 관점에서 바람직하다.
[4] (C) 고분자 화합물 (A)와는 다른, 산가교성기를 갖는 화합물
본 발명의 조성물은, 상기 고분자 화합물 (A)와는 다른, 산가교성기를 갖는 화합물 (C)(이하, "화합물 (C)" 또는 "산가교제 (C)"라고도 함)를 함유할 수 있다. 화합물 (C)로서는, 하이드록시메틸기 또는 알콕시메틸기를 분자 내에 2개 이상 포함하는 화합물인 것이 바람직하다. 또, LER 향상의 관점에서는, 화합물 (C)가 메틸올기를 포함하고 있는 것이 바람직하다.
먼저 화합물 (C)가 저분자 화합물인 경우(이하, "화합물 (C')"라고도 함)에 대하여 설명한다. 화합물 (C')로서, 바람직하게는, 하이드록시메틸화 또는 알콕시메틸화 페놀 화합물, 알콕시메틸화 멜라민계 화합물, 알콕시메틸글라이콜우릴계 화합물 및 알콕시메틸화 유레아계 화합물을 들 수 있다. 특히 바람직한 화합물 (C')로서는, 분자 내에 벤젠환을 3~5개 포함하고, 하이드록시메틸기 또는 알콕시메틸기를 합하여 2개 이상 더 가지며, 분자량이 1200 이하인 페놀 유도체나 알콕시메틸글라이콜우릴 유도체를 들 수 있다.
알콕시메틸기로서는, 메톡시메틸기, 에톡시메틸기가 바람직하다.
상기 화합물 (C')의 예 중, 하이드록시메틸기를 갖는 페놀 유도체는, 대응하는 하이드록시메틸기를 갖지 않는 페놀 화합물과 폼알데하이드를 염기 촉매하에서 반응시킴으로써 얻을 수 있다. 또, 알콕시메틸기를 갖는 페놀 유도체는, 대응하는 하이드록시메틸기를 갖는 페놀 유도체와 알코올을 산촉매하에서 반응시킴으로써 얻을 수 있다.
다른 바람직한 화합물 (C')의 예로서, 추가로 알콕시메틸화 멜라민계 화합물, 알콕시메틸글라이콜우릴계 화합물류 및 알콕시메틸화 유레아계 화합물과 같은 N-하이드록시메틸기 또는 N-알콕시메틸기를 갖는 화합물을 들 수 있다.
이와 같은 화합물로서는, 헥사메톡시메틸멜라민, 헥사에톡시메틸멜라민, 테트라메톡시메틸글라이콜우릴, 1,3-비스메톡시메틸-4,5-비스메톡시에틸렌유레아, 비스메톡시메틸유레아 등을 들 수 있고, EP0,133,216A호, 서독 특허공보 제3,634,671호, 동 제3,711,264호, EP0,212,482A호에 개시되어 있다.
화합물 (C')의 구체예 중에서 특히 바람직한 것을 이하에 든다.
[화학식 54]
Figure pct00058
식 중, L1~L8은, 각각 독립적으로, 수소 원자, 하이드록시메틸기, 메톡시메틸기, 에톡시메틸기 또는 탄소수 1~6의 알킬기를 나타낸다.
본 발명의 일 형태에 있어서, 화합물 (C')는, 하기 일반식 (I)로 나타나는 화합물인 것이 바람직하다.
[화학식 55]
Figure pct00059
일반식 (I) 중,
R1 및 R6은, 각각 독립적으로, 수소 원자, 또는 탄소수 5 이하의 탄화 수소기를 나타낸다.
R2 및 R5는, 각각 독립적으로, 알킬기, 사이클로알킬기, 아릴기, 또는 아실기를 나타낸다.
R3 및 R4는, 각각 독립적으로, 수소 원자, 또는 탄소수 2 이상의 유기기를 나타낸다. R3 및 R4는, 서로 결합하여 환을 형성해도 된다.
본 발명의 일 형태에 있어서, R1 및 R6은, 바람직하게는 탄소수 5 이하의 탄화 수소기이고, 보다 바람직하게는 탄소수 4 이하의 탄화 수소기이며, 특히 바람직하게는 메틸기, 에틸기, 프로필기, 아이소프로필기를 들 수 있다.
R2 및 R5에 의하여 나타나는 알킬기로서는, 예를 들면 탄소수 1~6 이하의 알킬기가 바람직하고, 사이클로알킬기로서, 예를 들면 탄소수 3~12의 사이클로알킬기가 바람직하며, 아릴기로서는, 예를 들면 탄소수 6~12의 아릴기가 바람직하고, 아실기로서는, 예를 들면 알킬 부위의 탄소수가 1~6인 것이 바람직하다.
본 발명의 일 형태에 있어서, R2 및 R5는 알킬기인 것이 바람직하고, 보다 바람직하게는 탄소수 1~6의 알킬기인 것이 보다 바람직하며, 메틸기인 것이 특히 바람직하다.
R3 및 R4에 의하여 나타나는 탄소수 2 이상의 유기기로서는, 예를 들면 탄소수 2 이상의 알킬기, 사이클로알킬기, 아릴기 등을 들 수 있고, 또 R3 및 R4가 서로 결합하여 이하에 상세하게 설명하는 환을 형성하고 있는 것이 바람직하다.
R3 및 R4가 서로 결합하여 형성되는 환으로서는, 예를 들면 방향족 혹은 비방향족의 탄화 수소환, 방향족 혹은 비방향족의 복소환, 또는 이들 환이 2개 이상 조합되어 이루어지는 다환 축합환을 들 수 있다.
이들 환은 치환기를 갖고 있어도 되고, 이와 같은 치환기로서는, 예를 들면 알킬기, 사이클로알킬기, 알콕시기, 카복실기, 아릴기, 알콕시메틸기, 아실기, 알콕시카보닐기, 나이트로기, 할로젠, 또는 하이드록시기 등을 들 수 있다.
이하에, R3 및 R4가 서로 결합하여 형성하는 환의 구체예를 든다. 식 중의 *는, 페놀핵과의 연결 부위를 나타낸다.
[화학식 56]
Figure pct00060
본 발명의 일 형태에 있어서, 일반식 (I) 중의 R3 및 R4가 결합하여 벤젠환을 포함하는 다환 축합환을 형성하고 있는 것이 바람직하고, 플루오렌 구조를 형성하고 있는 것이 보다 바람직하다.
화합물 (C')는, 예를 들면 일반식 (I) 중의 R3 및 R4가 결합하여, 하기 일반식 (I-a)로 나타나는 플루오렌 구조를 형성하고 있는 것이 바람직하다.
[화학식 57]
Figure pct00061
식 중,
R7 및 R8은, 각각 독립적으로, 치환기를 나타낸다. 치환기로서는, 예를 들면 알킬기, 사이클로알킬기, 알콕시기, 아릴기, 알콕시메틸기, 아실기, 알콕시카보닐기, 나이트로기, 할로젠, 또는 하이드록시기 등을 들 수 있다.
n1 및 n2는, 각각 독립적으로, 0~4의 정수를 나타내고, 바람직하게는 0 또는 1을 나타낸다.
*는, 페놀핵과의 연결 부위를 나타낸다.
또, 본 발명의 일 형태에 있어서, 화합물 (C')는, 하기 일반식 (I-b)로 나타나는 것이 바람직하다.
[화학식 58]
Figure pct00062
식 중,
R1b 및 R6b는, 각각 독립적으로, 탄소수 5 이하의 알킬기를 나타낸다.
R2b 및 R5b는, 각각 독립적으로, 탄소수 6 이하의 알킬기 또는 탄소수 3~12의 사이클로알킬기를 나타낸다.
Z는, 식 중의 탄소 원자와 함께 환을 형성하는 데 필요한 원자군을 나타낸다.
Z가 식 중의 탄소 원자와 함께 형성하는 환에 대해서는, 상술한 일반식 (I)의 설명에 있어서, R3 및 R4가 서로 결합하여 형성하는 환에 대하여 설명한 것과 동일하다.
본 발명의 일 형태에 있어서, 화합물 (C')는, 분자 내에 4개 이상의 방향환과, 알콕시메틸기 및/또는 하이드록시메틸기를 합계로 2개 갖는 화합물인 것이 바람직하다.
다음으로, 일반식 (I)로 나타나는 화합물 (C')의 제조 방법에 대하여 설명한다.
일반식 (I)로 나타나는 화합물 (C')의 모핵이 되는 비스페놀 화합물은, 일반적으로, 대응하는 2분자의 페놀 화합물과, 대응하는 1분자의 케톤을, 산촉매 존재하, 탈수축합 반응함으로써 합성된다.
얻어진 비스페놀체를 파라폼알데하이드와 다이메틸아민으로 처리하여, 아미노메틸화함으로써, 하기 일반식 (I-C)로 나타나는 중간체를 얻는다. 계속해서, 아세틸화, 탈아세틸화, 알킬화를 거쳐, 목적의 산가교제가 얻어진다.
[화학식 59]
Figure pct00063
식 중, R1, R3, R4 및 R6은, 일반식 (I) 중의 각 기와 동의이다.
본 합성법은, 종래의 염기성 조건하에서 하이드록시메틸체를 경유하는 합성 방법(예를 들면, 일본 공개특허공보 2008-273844호)에 비하여 올리고머를 생성하기 어렵기 때문에, 파티클 형성 억제 효과가 있다.
이하에, 일반식 (I)로 나타나는 화합물 (C')의 구체예를 나타낸다.
[화학식 60]
Figure pct00064
본 발명에 있어서, 화합물 (C')는 단독으로 이용해도 되고, 2종 이상 조합하여 이용해도 된다. 양호한 패턴 형상의 관점에서는, 2종 이상 조합하여 이용하는 것이 바람직하다.
산가교성기를 포함하는 화합물 (C)는, 고분자 화합물 (A)에 있어서의 일반식 (1)로 나타나는 반복 단위와는 다른, 산가교성기를 갖는 반복 단위를 포함하는 수지(화합물 (C"))의 양태여도 된다.
본 발명에 관한 네거티브형 감활성광선성 또는 감방사선성 수지 조성물은, 화합물 (C)를 함유해도 되고 함유하지 않아도 되는데, 함유하는 경우, 화합물 (C)의 함유율은, 네거티브형 감활성광선성 또는 감방사선성 수지 조성물의 전체 고형분 중, 바람직하게는 0.5~30질량%이며, 보다 바람직하게는 1~15질량%이다.
[5] (D) 소수성 수지
본 발명에 관한 네거티브형 감활성광선성 또는 감방사선성 수지 조성물은, 특히 액침 노광에 적용할 때, 소수성 수지(이하, "소수성 수지 (D)" 또는 간단히 "수지 (D)"라고도 함)를 함유해도 된다. 또한, 소수성 수지 (D)는, 상기 고분자 화합물 (A)와는 다른 것이 바람직하다.
이로써, 막표층에 소수성 수지 (D)가 편재화하고, 액침 매체가 물인 경우, 물에 대한 레지스트막 표면의 정적/동적인 접촉각을 향상시켜, 액침액 추종성을 향상시킬 수 있다.
소수성 수지 (D)는 상술과 같이 계면에 편재하도록 설계되는 것이 바람직한데, 계면활성제와는 달리, 반드시 분자 내에 친수기를 가질 필요는 없고, 극성/비극성 물질을 균일하게 혼합하는 것에 기여하지 않아도 된다.
소수성 수지 (D)는, 막표층에 대한 편재화의 관점에서, "불소 원자", "규소 원자", 및 "수지의 측쇄 부분에 함유된 CH3 부분 구조" 중 어느 1종 이상을 갖는 것이 바람직하고, 2종 이상을 갖는 것이 더 바람직하다.
소수성 수지 (D)가, 불소 원자 및/또는 규소 원자를 포함하는 경우, 소수성 수지 (D)에 있어서의 상기 불소 원자 및/또는 규소 원자는, 수지의 주쇄 중에 포함되어 있어도 되고, 측쇄 중에 포함되어 있어도 된다.
소수성 수지 (D)가 불소 원자를 포함하고 있는 경우, 불소 원자를 갖는 부분 구조로서, 불소 원자를 갖는 알킬기, 불소 원자를 갖는 사이클로알킬기, 또는 불소 원자를 갖는 아릴기를 갖는 수지인 것이 바람직하다.
불소 원자를 갖는 알킬기(바람직하게는 탄소수 1~10, 보다 바람직하게는 탄소수 1~4)는, 적어도 하나의 수소 원자가 불소 원자로 치환된 직쇄 또는 분기 알킬기이며, 불소 원자 이외의 치환기를 더 갖고 있어도 된다.
불소 원자를 갖는 사이클로알킬기는, 적어도 하나의 수소 원자가 불소 원자로 치환된 단환 또는 다환의 사이클로알킬기이며, 불소 원자 이외의 치환기를 더 갖고 있어도 된다.
불소 원자를 갖는 아릴기로서는, 페닐기, 나프틸기 등의 아릴기 중 적어도 하나의 수소 원자가 불소 원자로 치환된 것을 들 수 있고, 불소 원자 이외의 치환기를 더 갖고 있어도 된다.
불소 원자를 갖는 알킬기, 불소 원자를 갖는 사이클로알킬기, 및 불소 원자를 갖는 아릴기로서, 바람직하게는 하기 일반식 (F2)~(F4)로 나타나는 기를 들 수 있지만, 본 발명은 이에 한정되는 것은 아니다.
[화학식 61]
Figure pct00065
일반식 (F2)~(F4) 중,
R57~R68은, 각각 독립적으로, 수소 원자, 불소 원자 또는 알킬기(직쇄 혹은 분기)를 나타낸다. 단, R57~R61 중 적어도 하나, R62~R64 중 적어도 하나, 및 R65~R68 중 적어도 하나는, 각각 독립적으로, 불소 원자 또는 적어도 하나의 수소 원자가 불소 원자로 치환된 알킬기(바람직하게는 탄소수 1~4)를 나타낸다.
R57~R61 및 R65~R67은, 모두가 불소 원자인 것이 바람직하다. R62, R63 및 R68은, 적어도 하나의 수소 원자가 불소 원자로 치환된 알킬기(바람직하게는 탄소수 1~4)가 바람직하고, 탄소수 1~4의 퍼플루오로알킬기인 것이 더 바람직하다. R62와 R63은, 서로 연결되어 환을 형성해도 된다.
일반식 (F2)로 나타나는 기의 구체예로서는, 예를 들면 p-플루오로페닐기, 펜타플루오로페닐기, 3,5-다이(트라이플루오로메틸)페닐기 등을 들 수 있다.
일반식 (F3)으로 나타나는 기의 구체예로서는, 트라이플루오로메틸기, 펜타플루오로프로필기, 펜타플루오로에틸기, 헵타플루오로뷰틸기, 헥사플루오로아이소프로필기, 헵타플루오로아이소프로필기, 헥사플루오로(2-메틸)아이소프로필기, 노나플루오로뷰틸기, 옥타플루오로아이소뷰틸기, 노나플루오로헥실기, 노나플루오로-t-뷰틸기, 퍼플루오로아이소펜틸기, 퍼플루오로옥틸기, 퍼플루오로(트라이메틸)헥실기, 2,2,3,3-테트라플루오로사이클로뷰틸기, 퍼플루오로사이클로헥실기 등을 들 수 있다. 헥사플루오로아이소프로필기, 헵타플루오로아이소프로필기, 헥사플루오로(2-메틸)아이소프로필기, 옥타플루오로아이소뷰틸기, 노나플루오로-t-뷰틸기, 퍼플루오로아이소펜틸기가 바람직하고, 헥사플루오로아이소프로필기, 헵타플루오로아이소프로필기가 더 바람직하다.
일반식 (F4)로 나타나는 기의 구체예로서는, 예를 들면 -C(CF3)2OH, -C(C2F5)2OH, -C(CF3)(CH3)OH, -CH(CF3)OH 등을 들 수 있으며, -C(CF3)2OH가 바람직하다.
불소 원자를 포함하는 부분 구조는, 주쇄에 직접 결합해도 되고, 또한 알킬렌기, 페닐렌기, 에터 결합, 싸이오에터 결합, 카보닐기, 에스터 결합, 아마이드 결합, 유레테인 결합 및 유레일렌 결합으로 이루어지는 군으로부터 선택되는 기, 혹은 이들의 2개 이상을 조합한 기를 통하여 주쇄에 결합해도 된다.
이하, 불소 원자를 갖는 반복 단위의 구체예를 나타내지만, 본 발명은 이에 한정되는 것은 아니다.
구체예 중, X1은, 수소 원자, -CH3, -F 또는 -CF3을 나타낸다. X2는, -F 또는 -CF3을 나타낸다.
[화학식 62]
Figure pct00066
[화학식 63]
Figure pct00067
소수성 수지 (D)는, 규소 원자를 함유해도 된다. 규소 원자를 갖는 부분 구조로서 알킬실릴 구조(바람직하게는 트라이알킬실릴기), 또는 환상 실록세인 구조를 갖는 수지인 것이 바람직하다.
알킬실릴 구조, 또는 환상 실록세인 구조로서는, 구체적으로는, 하기 일반식 (CS-1)~(CS-3)으로 나타나는 기 등을 들 수 있다.
[화학식 64]
Figure pct00068
일반식 (CS-1)~(CS-3)에 있어서,
R12~R26은, 각각 독립적으로, 직쇄 혹은 분기 알킬기(바람직하게는 탄소수 1~20) 또는 사이클로알킬기(바람직하게는 탄소수 3~20)를 나타낸다.
L3~L5는, 단결합 또는 2가의 연결기를 나타낸다. 2가의 연결기로서는, 알킬렌기, 페닐렌기, 에터 결합, 싸이오에터 결합, 카보닐기, 에스터 결합, 아마이드 결합, 유레테인 결합, 및 유레아 결합으로 이루어지는 군으로부터 선택되는 단독 혹은 2개 이상의 조합(바람직하게는 총 탄소수 12 이하)을 들 수 있다.
n은, 1~5의 정수를 나타낸다. n은, 바람직하게는 2~4의 정수이다.
이하, 일반식 (CS-1)~(CS-3)으로 나타나는 기를 갖는 반복 단위의 구체예를 들지만, 본 발명은 이에 한정되는 것은 아니다. 또한, 구체예 중, X1은, 수소 원자, -CH3, -F 또는 -CF3을 나타낸다.
[화학식 65]
Figure pct00069
또, 상기한 바와 같이, 소수성 수지 (D)는, 측쇄 부분에 CH3 부분 구조를 포함하는 것도 바람직하다.
여기에서, 상기 수지 (D) 중의 측쇄 부분이 갖는 CH3 부분 구조(이하, 간단히 "측쇄 CH3 부분 구조"라고도 함)에는, 에틸기, 프로필기 등이 갖는 CH3 부분 구조가 포함된다.
한편, 수지 (D)의 주쇄에 직접 결합하고 있는 메틸기(예를 들면, 메타크릴산 구조를 갖는 반복 단위의 α-메틸기)는, 주쇄의 영향에 의하여 수지 (D)의 표면 편재화에 대한 기여가 작기 때문에, CH3 부분 구조에 포함되지 않는 것으로 한다.
보다 구체적으로는, 수지 (D)가, 예를 들면 하기 일반식 (M)으로 나타나는 반복 단위 등의, 탄소-탄소 이중 결합을 갖는 중합성 부위를 갖는 모노머에서 유래하는 반복 단위를 포함하는 경우이며, R11~R14가 CH3 "자체"인 경우, 그 CH3은, CH3 부분 구조에는 포함되지 않는다.
한편, C-C 주쇄로부터 어떠한 원자를 통하여 존재하는 CH3 부분 구조는, 본 발명에 있어서의 CH3 부분 구조에 해당하는 것으로 한다. 예를 들면, R11이 에틸기(CH2CH3)인 경우, CH3 부분 구조를 "1개" 갖는 것으로 한다.
[화학식 66]
Figure pct00070
상기 일반식 (M) 중,
R11~R14는, 각각 독립적으로, 측쇄 부분을 나타낸다.
측쇄 부분의 R11~R14로서는, 수소 원자, 1가의 유기기 등을 들 수 있다.
R11~R14에 대한 1가의 유기기로서는, 알킬기, 사이클로알킬기, 아릴기, 알킬옥시카보닐기, 사이클로알킬옥시카보닐기, 아릴옥시카보닐기, 알킬아미노카보닐기, 사이클로알킬아미노카보닐기, 아릴아미노카보닐기 등을 들 수 있고, 이들 기는, 치환기를 더 갖고 있어도 된다.
소수성 수지 (D)는, 측쇄 부분에 CH3 부분 구조를 갖는 반복 단위를 갖는 수지인 것이 바람직하고, 이와 같은 반복 단위로서, 하기 일반식 (II)로 나타나는 반복 단위, 및 하기 일반식 (III)으로 나타나는 반복 단위 중 적어도 1종의 반복 단위 (x)를 갖고 있는 것이 보다 바람직하다.
이하, 일반식 (II)로 나타나는 반복 단위에 대하여 상세하게 설명한다.
[화학식 67]
Figure pct00071
상기 일반식 (II) 중, Xb1은 수소 원자, 알킬기, 사이아노기 또는 할로젠 원자를 나타내고, R2는 1개 이상의 CH3 부분 구조를 갖는, 산에 대하여 안정적인 유기기를 나타낸다. 여기에서, 산에 대하여 안정적인 유기기는, 비산분해성의 유기기이며, 비산분해성이란, 고분자 화합물 (A)의 항에서 설명한 바와 같이, 광산발생제가 발생하는 산에 의하여, 분해 반응이 일어나지 않는 성질을 의미한다.
Xb1의 알킬기는, 탄소수 1~4의 것이 바람직하고, 메틸기, 에틸기, 프로필기, 하이드록시메틸기 또는 트라이플루오로메틸기 등을 들 수 있는데, 메틸기인 것이 바람직하다.
Xb1은, 수소 원자 또는 메틸기인 것이 바람직하다.
R2로서는, 1개 이상의 CH3 부분 구조를 갖는, 알킬기, 사이클로알킬기, 알켄일기, 사이클로알켄일기, 아릴기, 및 아랄킬기를 들 수 있다. 상기의 사이클로알킬기, 알켄일기, 사이클로알켄일기, 아릴기, 및 아랄킬기는, 치환기로서 알킬기를 더 갖고 있어도 된다.
R2는, 1개 이상의 CH3 부분 구조를 갖는, 알킬기 또는 알킬 치환 사이클로알킬기가 바람직하다.
R2로서의 1개 이상의 CH3 부분 구조를 갖는 산에 안정적인 유기기는, CH3 부분 구조를 2개 이상 10개 이하 갖는 것이 바람직하고, 2개 이상 8개 이하 갖는 것이 보다 바람직하다.
R2에 있어서의, 1개 이상의 CH3 부분 구조를 갖는 알킬기로서는, 탄소수 3~20의 분기의 알킬기가 바람직하다. 바람직한 알킬기로서는, 구체적으로는, 아이소프로필기, 아이소뷰틸기, 3-펜틸기, 2-메틸-3-뷰틸기, 3-헥실기, 2-메틸-3-펜틸기, 3-메틸-4-헥실기, 3,5-다이메틸-4-펜틸기, 아이소옥틸기, 2,4,4-트라이메틸펜틸기, 2-에틸헥실기, 2,6-다이메틸헵틸기, 1,5-다이메틸-3-헵틸기, 2,3,5,7-테트라메틸-4-헵틸기 등을 들 수 있다. 보다 바람직하게는, 아이소뷰틸기, t-뷰틸기, 2-메틸-3-뷰틸기, 2-메틸-3-펜틸기, 3-메틸-4-헥실기, 3,5-다이메틸-4-펜틸기, 2,4,4-트라이메틸펜틸기, 2-에틸헥실기, 2,6-다이메틸헵틸기, 1,5-다이메틸-3-헵틸기, 2,3,5,7-테트라메틸-4-헵틸기이다.
R2에 있어서의, 1개 이상의 CH3 부분 구조를 갖는 사이클로알킬기는, 단환식이어도 되고, 다환식이어도 된다. 구체적으로는, 탄소수 5 이상의 모노사이클로, 바이사이클로, 트라이사이클로, 테트라사이클로 구조 등을 갖는 기를 들 수 있다. 그 탄소수는 6~30개가 바람직하고, 특히 탄소수 7~25개가 바람직하다. 바람직한 사이클로알킬기로서는, 아다만틸기, 노아다만틸기, 데칼린 잔기, 트라이사이클로데칸일기, 테트라사이클로도데칸일기, 노보닐기, 세드롤기, 사이클로펜틸기, 사이클로헥실기, 사이클로헵틸기, 사이클로옥틸기, 사이클로데칸일기, 사이클로도데칸일기를 들 수 있다. 보다 바람직하게는, 아다만틸기, 노보닐기, 사이클로헥실기, 사이클로펜틸기, 테트라사이클로도데칸일기, 트라이사이클로데칸일기를 들 수 있다. 보다 바람직하게는, 노보닐기, 사이클로펜틸기, 사이클로헥실기이다.
R2에 있어서의, 1개 이상의 CH3 부분 구조를 갖는 알켄일기로서는, 탄소수 1~20의 직쇄 또는 분기의 알켄일기가 바람직하고, 분기의 알켄일기가 보다 바람직하다.
R2에 있어서의, 1개 이상의 CH3 부분 구조를 갖는 아릴기로서는, 탄소수 6~20의 아릴기가 바람직하고, 예를 들면 페닐기, 나프틸기를 들 수 있으며, 바람직하게는 페닐기이다.
R2에 있어서의, 1개 이상의 CH3 부분 구조를 갖는 아랄킬기로서는, 탄소수 7~12의 아랄킬기가 바람직하고, 예를 들면 벤질기, 펜에틸기, 나프틸메틸기 등을 들 수 있다.
R2에 있어서의, 2개 이상의 CH3 부분 구조를 갖는 탄화 수소기로서는, 구체적으로는, 아이소프로필기, 아이소뷰틸기, t-뷰틸기, 3-펜틸기, 2-메틸-3-뷰틸기, 3-헥실기, 2,3-다이메틸-2-뷰틸기, 2-메틸-3-펜틸기, 3-메틸-4-헥실기, 3,5-다이메틸-4-펜틸기, 아이소옥틸기, 2,4,4-트라이메틸펜틸기, 2-에틸헥실기, 2,6-다이메틸헵틸기, 1,5-다이메틸-3-헵틸기, 2,3,5,7-테트라메틸-4-헵틸기, 3,5-다이메틸사이클로헥실기, 4-아이소프로필사이클로헥실기, 4-t-뷰틸사이클로헥실기, 아이소보닐기 등을 들 수 있다. 보다 바람직하게는, 아이소뷰틸기, t-뷰틸기, 2-메틸-3-뷰틸기, 2,3-다이메틸-2-뷰틸기, 2-메틸-3-펜틸기, 3-메틸-4-헥실기, 3,5-다이메틸-4-펜틸기, 2,4,4-트라이메틸펜틸기, 2-에틸헥실기, 2,6-다이메틸헵틸기, 1,5-다이메틸-3-헵틸기, 2,3,5,7-테트라메틸-4-헵틸기, 3,5-다이메틸사이클로헥실기, 3,5-다이 tert-뷰틸사이클로헥실기, 4-아이소프로필사이클로헥실기, 4-t-뷰틸사이클로헥실기, 아이소보닐기이다.
일반식 (II)로 나타나는 반복 단위의 바람직한 구체예를 이하에 든다. 또한, 본 발명은 이에 한정되는 것은 아니다.
[화학식 68]
Figure pct00072
일반식 (II)로 나타나는 반복 단위는, 산에 안정적인(비산분해성의) 반복 단위인 것이 바람직하고, 구체적으로는, 산의 작용에 의하여 분해되어, 극성기를 발생하는 기를 갖지 않는 반복 단위인 것이 바람직하다.
이하, 일반식 (III)으로 나타나는 반복 단위에 대하여 상세하게 설명한다.
[화학식 69]
Figure pct00073
상기 일반식 (III) 중, Xb2는 수소 원자, 알킬기, 사이아노기 또는 할로젠 원자를 나타내고, R3은 1개 이상의 CH3 부분 구조를 갖는, 산에 대하여 안정적인 유기기를 나타내며, n은 1에서 5의 정수를 나타낸다.
Xb2의 알킬기는, 탄소수 1~4의 것이 바람직하고, 메틸기, 에틸기, 프로필기, 하이드록시메틸기 또는 트라이플루오로메틸기 등을 들 수 있는데, 수소 원자인 것이 바람직하다.
Xb2는, 수소 원자인 것이 바람직하다.
R3은, 산에 대하여 안정적인 유기기이기 때문에, 보다 구체적으로는, 상기 수지 (A)에 있어서 설명한 "산의 작용에 의하여 분해되어 극성기를 발생하는 기"를 갖지 않는 유기기인 것이 바람직하다.
R3으로서는, 1개 이상의 CH3 부분 구조를 갖는 알킬기를 들 수 있다.
R3으로서의 1개 이상의 CH3 부분 구조를 갖는 산에 안정적인 유기기는, CH3 부분 구조를 1개 이상 10개 이하 갖는 것이 바람직하고, 1개 이상 8개 이하 갖는 것이 보다 바람직하며, 1개 이상 4개 이하 갖는 것이 더 바람직하다.
R3에 있어서의, 1개 이상의 CH3 부분 구조를 갖는 알킬기로서는, 탄소수 3~20의 분기의 알킬기가 바람직하다. 바람직한 알킬기로서는, 구체적으로는, 아이소프로필기, 아이소뷰틸기, 3-펜틸기, 2-메틸-3-뷰틸기, 3-헥실기, 2-메틸-3-펜틸기, 3-메틸-4-헥실기, 3,5-다이메틸-4-펜틸기, 아이소옥틸기, 2,4,4-트라이메틸펜틸기, 2-에틸헥실기, 2,6-다이메틸헵틸기, 1,5-다이메틸-3-헵틸기, 2,3,5,7-테트라메틸-4-헵틸기 등을 들 수 있다. 보다 바람직하게는, 아이소뷰틸기, t-뷰틸기, 2-메틸-3-뷰틸기, 2-메틸-3-펜틸기, 3-메틸-4-헥실기, 3,5-다이메틸-4-펜틸기, 2,4,4-트라이메틸펜틸기, 2-에틸헥실기, 2,6-다이메틸헵틸기, 1,5-다이메틸-3-헵틸기, 2,3,5,7-테트라메틸-4-헵틸기이다.
R3에 있어서의, 2개 이상의 CH3 부분 구조를 갖는 알킬기로서는, 구체적으로는, 아이소프로필기, 아이소뷰틸기, t-뷰틸기, 3-펜틸기, 2,3-다이메틸뷰틸기, 2-메틸-3-뷰틸기, 3-헥실기, 2-메틸-3-펜틸기, 3-메틸-4-헥실기, 3,5-다이메틸-4-펜틸기, 아이소옥틸기, 2,4,4-트라이메틸펜틸기, 2-에틸헥실기, 2,6-다이메틸헵틸기, 1,5-다이메틸-3-헵틸기, 2,3,5,7-테트라메틸-4-헵틸기 등을 들 수 있다. 보다 바람직하게는, 탄소수 5~20인 것이 보다 바람직하고, 아이소프로필기, t-뷰틸기, 2-메틸-3-뷰틸기, 2-메틸-3-펜틸기, 3-메틸-4-헥실기, 3,5-다이메틸-4-펜틸기, 2,4,4-트라이메틸펜틸기, 2-에틸헥실기, 2,6-다이메틸헵틸기, 1,5-다이메틸-3-헵틸기, 2,3,5,7-테트라메틸-4-헵틸기, 2,6-다이메틸헵틸기이다.
n은 1에서 5의 정수를 나타내고, 1~3의 정수를 나타내는 것이 보다 바람직하며, 1 또는 2를 나타내는 것이 더 바람직하다.
일반식 (III)으로 나타나는 반복 단위의 바람직한 구체예를 이하에 든다. 또한, 본 발명은 이에 한정되는 것은 아니다.
[화학식 70]
Figure pct00074
일반식 (III)으로 나타나는 반복 단위는, 산에 안정적인(비산분해성의) 반복 단위인 것이 바람직하고, 구체적으로는, 산의 작용에 의하여 분해되어, 극성기를 발생하는 기를 갖지 않는 반복 단위인 것이 바람직하다.
수지 (D)가, 측쇄 부분에 CH3 부분 구조를 포함하는 경우이며, 또한 특히 불소 원자 및 규소 원자를 갖지 않는 경우, 일반식 (II)로 나타나는 반복 단위, 및 일반식 (III)으로 나타나는 반복 단위 중 적어도 1종의 반복 단위 (x)의 함유량은, 수지 (D)의 전체 반복 단위에 대하여, 90몰% 이상인 것이 바람직하고, 95몰% 이상인 것이 보다 바람직하다. 상기 함유량은, 수지 (D)의 전체 반복 단위에 대하여, 통상, 100몰% 이하이다.
수지 (D)가, 일반식 (II)로 나타나는 반복 단위, 및 일반식 (III)으로 나타나는 반복 단위 중 적어도 1종의 반복 단위 (x)를, 수지 (D)의 전체 반복 단위에 대하여, 90몰% 이상으로 함유함으로써, 수지 (D)의 표면 자유 에너지가 증가한다. 그 결과, 수지 (D)가 레지스트막의 표면에 편재하기 어려워지고, 물에 대한 레지스트막의 정적/동적 접촉각을 확실히 향상시켜, 액침액 추종성을 향상시킬 수 있다.
또, 소수성 수지 (D)는, (i) 불소 원자 및/또는 규소 원자를 포함하는 경우에 있어서도, (ii) 측쇄 부분에 CH3 부분 구조를 포함하는 경우에 있어서도, 하기 (x)~(z)의 군으로부터 선택되는 기를 적어도 하나 갖고 있어도 된다.
(x) 산기,
(y) 락톤 구조를 갖는 기, 산무수물기, 또는 산이미드기,
(z) 산의 작용에 의하여 분해되는 기
산기 (x)로서는, 페놀성 수산기, 카복실산기, 불소화 알코올기, 설폰산기, 설폰아마이드기, 설폰일이미드기, (알킬설폰일)(알킬카보닐)메틸렌기, (알킬설폰일)(알킬카보닐)이미드기, 비스(알킬카보닐)메틸렌기, 비스(알킬카보닐)이미드기, 비스(알킬설폰일)메틸렌기, 비스(알킬설폰일)이미드기, 트리스(알킬카보닐)메틸렌기, 트리스(알킬설폰일)메틸렌기 등을 들 수 있다.
바람직한 산기로서는, 불소화 알코올기(바람직하게는 헥사플루오로아이소프로판올), 설폰이미드기, 비스(알킬카보닐)메틸렌기를 들 수 있다.
산기 (x)를 갖는 반복 단위로서는, 아크릴산, 메타크릴산에 의한 반복 단위와 같은 수지의 주쇄에, 직접 산기가 결합하고 있는 반복 단위, 혹은 연결기를 통하여 수지의 주쇄에 산기가 결합하고 있는 반복 단위 등을 들 수 있고, 나아가서는 산기를 갖는 중합 개시제나 연쇄 이동제를 중합 시에 이용하여 폴리머쇄의 말단에 도입할 수도 있으며, 어느 경우도 바람직하다. 산기 (x)를 갖는 반복 단위가, 불소 원자 및 규소 원자 중 어느 하나를 갖고 있어도 된다.
산기 (x)를 갖는 반복 단위의 함유량은, 소수성 수지 (D) 중의 전체 반복 단위에 대하여, 1~50몰%가 바람직하고, 보다 바람직하게는 3~35몰%, 더 바람직하게는 5~20몰%이다.
산기 (x)를 갖는 반복 단위의 구체예를 이하에 나타내지만, 본 발명은 이에 한정되는 것은 아니다. 식 중, Rx는 수소 원자, CH3, CF3, 또는 CH2OH를 나타낸다.
[화학식 71]
Figure pct00075
[화학식 72]
Figure pct00076
"락톤 구조를 갖는 기, 산무수물기, 또는 산이미드기 (y)"로서는, 락톤 구조를 갖는 기가 특히 바람직하다.
이들 기를 포함한 반복 단위는, 예를 들면 아크릴산 에스터 및 메타크릴산 에스터에 의한 반복 단위 등의, 수지의 주쇄에 직접 이 기가 결합하고 있는 반복 단위이다. 혹은, 이 반복 단위는, 이 기가 연결기를 통하여 수지의 주쇄에 결합하고 있는 반복 단위여도 된다. 혹은, 이 반복 단위는, 이 기를 갖는 중합 개시제 또는 연쇄 이동제를 중합 시에 이용하여, 수지의 말단에 도입되어 있어도 된다.
락톤 구조를 갖는 기를 갖는 반복 단위로서는, 예를 들면 앞서 산분해성 수지 (A)의 항에서 설명한 락톤 구조를 갖는 반복 단위와 동일한 것을 들 수 있다.
"락톤 구조를 갖는 기, 산무수물기, 또는 산이미드기 (y)"를 갖는 반복 단위의 함유량은, 소수성 수지 (D) 중의 전체 반복 단위를 기준으로 하여, 1~100몰%인 것이 바람직하고, 3~98몰%인 것이 보다 바람직하며, 5~95몰%인 것이 더 바람직하다.
소수성 수지 (D)에 있어서의, 산의 작용에 의하여 분해되는 기 (z)를 갖는 반복 단위는, 레지스트 조성물에 포함되는 것으로서 널리 알려지는 산분해성 수지가 갖는, 산분해성기를 갖는 반복 단위를 그대로 채용할 수 있다. 산의 작용에 의하여 분해되는 기 (z)를 갖는 반복 단위가, 불소 원자 및 규소 원자 중 어느 하나를 갖고 있어도 된다. 소수성 수지 (D)에 있어서의, 산의 작용에 의하여 분해되는 기 (z)를 갖는 반복 단위의 함유량은, 수지 (D) 중의 전체 반복 단위에 대하여, 1~80몰%가 바람직하고, 보다 바람직하게는 10~80몰%, 더 바람직하게는 20~60몰%이다.
소수성 수지 (D)는, 하기 일반식 (III)으로 나타나는 반복 단위를 더 갖고 있어도 된다.
[화학식 73]
Figure pct00077
일반식 (III)에 있어서,
Rc31은, 수소 원자, 알킬기(불소 원자 등으로 치환되어 있어도 됨), 사이아노기 또는 -CH2-O-Rac2기를 나타낸다. 식 중, Rac2는, 수소 원자, 알킬기 또는 아실기를 나타낸다. Rc31은, 수소 원자, 메틸기, 하이드록시메틸기, 트라이플루오로메틸기가 바람직하고, 수소 원자, 메틸기가 특히 바람직하다.
Rc32는, 알킬기, 사이클로알킬기, 알켄일기, 사이클로알켄일기 또는 아릴기를 갖는 기를 나타낸다. 이들 기는 불소 원자, 규소 원자를 포함하는 기로 치환되어 있어도 된다.
Lc3은, 단결합 또는 2가의 연결기를 나타낸다.
일반식 (III)에 있어서의, Rc32의 알킬기는, 탄소수 3~20의 직쇄 혹은 분기상 알킬기가 바람직하다.
사이클로알킬기는, 탄소수 3~20의 사이클로알킬기가 바람직하다.
알켄일기는, 탄소수 3~20의 알켄일기가 바람직하다.
사이클로알켄일기는, 탄소수 3~20의 사이클로알켄일기가 바람직하다.
아릴기는, 탄소수 6~20의 아릴기가 바람직하고, 페닐기, 나프틸기가 보다 바람직하며, 이들은 치환기를 갖고 있어도 된다.
Rc32는 무치환의 알킬기 또는 불소 원자로 치환된 알킬기가 바람직하다.
Lc3의 2가의 연결기는, 알킬렌기(바람직하게는 탄소수 1~5), 에터 결합, 페닐렌기, 에스터 결합(-COO-로 나타나는 기)이 바람직하다.
일반식 (III)에 의하여 나타나는 반복 단위의 함유량은, 소수성 수지 중의 전체 반복 단위를 기준으로 하여, 1~100몰%인 것이 바람직하고, 10~90몰%인 것이 보다 바람직하며, 30~70몰%인 것이 더 바람직하다.
소수성 수지 (D)는, 하기 일반식 (CII-AB)로 나타나는 반복 단위를 더 갖는 것도 바람직하다.
[화학식 74]
Figure pct00078
식 (CII-AB) 중,
Rc11' 및 Rc12'는, 각각 독립적으로, 수소 원자, 사이아노기, 할로젠 원자 또는 알킬기를 나타낸다.
Zc'는, 결합한 2개의 탄소 원자(C-C)를 포함하고, 지환식 구조를 형성하기 위한 원자단을 나타낸다.
일반식 (CII-AB)에 의하여 나타나는 반복 단위의 함유량은, 소수성 수지 중의 전체 반복 단위를 기준으로 하여, 1~100몰%인 것이 바람직하고, 10~90몰%인 것이 보다 바람직하며, 30~70몰%인 것이 더 바람직하다.
이하에 일반식 (III), (CII-AB)로 나타나는 반복 단위의 구체예를 이하에 들지만, 본 발명은 이들에 한정되지 않는다. 식 중, Ra는, H, CH3, CH2OH, CF3 또는 CN을 나타낸다.
[화학식 75]
Figure pct00079
소수성 수지 (D)가 불소 원자를 갖는 경우, 불소 원자의 함유량은, 소수성 수지 (D)의 중량 평균 분자량에 대하여, 5~80질량%인 것이 바람직하고, 10~80질량%인 것이 보다 바람직하다. 또, 불소 원자를 포함하는 반복 단위는, 소수성 수지 (D)에 포함되는 전체 반복 단위 중 10~100몰%인 것이 바람직하고, 30~100몰%인 것이 보다 바람직하다.
소수성 수지 (D)가 규소 원자를 갖는 경우, 규소 원자의 함유량은, 소수성 수지 (D)의 중량 평균 분자량에 대하여, 2~50질량%인 것이 바람직하고, 2~30질량%인 것이 보다 바람직하다. 또, 규소 원자를 포함하는 반복 단위는, 소수성 수지 (D)에 포함되는 전체 반복 단위 중, 10~100몰%인 것이 바람직하고, 20~100몰%인 것이 보다 바람직하다.
한편, 특히 수지 (D)가 측쇄 부분에 CH3 부분 구조를 포함하는 경우에 있어서는, 수지 (D)가, 불소 원자 및 규소 원자를 실질적으로 함유하지 않는 형태도 바람직하고, 이 경우, 구체적으로는, 불소 원자 또는 규소 원자를 갖는 반복 단위의 함유량이, 수지 (D) 중의 전체 반복 단위에 대하여 5몰% 이하인 것이 바람직하며, 3몰% 이하인 것이 보다 바람직하고, 1몰% 이하인 것이 더 바람직하며, 이상적으로는 0몰%, 즉, 불소 원자 및 규소 원자를 함유하지 않는다. 또, 수지 (D)는, 탄소 원자, 산소 원자, 수소 원자, 질소 원자 및 황 원자로부터 선택되는 원자에 의해서만 구성된 반복 단위만으로 실질적으로 구성되는 것이 바람직하다. 보다 구체적으로는, 탄소 원자, 산소 원자, 수소 원자, 질소 원자 및 황 원자로부터 선택되는 원자에 의해서만 구성된 반복 단위가, 수지 (D)의 전체 반복 단위 중 95몰% 이상인 것이 바람직하고, 97몰% 이상인 것이 보다 바람직하며, 99몰% 이상인 것이 더 바람직하고, 이상적으로는 100몰%이다.
소수성 수지 (D)의 표준 폴리스타이렌 환산의 중량 평균 분자량은, 바람직하게는 1,000~100,000이고, 보다 바람직하게는 1,000~50,000, 보다 더 바람직하게는 2,000~15,000이다.
또, 소수성 수지 (D)는, 1종으로 사용해도 되고, 복수 병용해도 된다.
소수성 수지 (D)의 조성물 중의 함유량은, 본 발명의 조성물 중의 전체 고형분에 대하여, 0.01~10질량%가 바람직하고, 0.05~8질량%가 보다 바람직하며, 0.1~7질량%가 더 바람직하다.
소수성 수지 (D)는, 금속 등의 불순물이 적은 것은 물론, 잔류 단량체나 올리고머 성분이 0.01~5질량%인 것이 바람직하고, 보다 바람직하게는 0.01~3질량%, 0.05~1질량%가 보다 더 바람직하다. 이로써, 액중 이물이나 감도 등의 경시 변화가 없는 감활성광선성 또는 감방사선성 수지 조성물이 얻어진다. 또, 해상도, 레지스트 형상, 레지스트 패턴의 측벽, 러프니스 등의 점에서, 분자량 분포(Mw/Mn, 분산도라고도 함)는, 1~5의 범위가 바람직하고, 보다 바람직하게는 1~3, 더 바람직하게는 1~2의 범위이다.
소수성 수지 (D)는, 각종 시판품을 이용할 수도 있고, 통상의 방법에 따라(예를 들면 라디칼 중합) 합성할 수 있다. 예를 들면, 일반적 합성 방법으로서는, 모노머종 및 개시제를 용제에 용해시켜, 가열함으로써 중합을 행하는 일괄 중합법, 가열 용제에 모노머종과 개시제의 용액을 1~10시간 동안 적하하여 첨가하는 적하 중합법 등을 들 수 있는데, 적하 중합법이 바람직하다.
반응 용매, 중합 개시제, 반응 조건(온도, 농도 등), 및 반응 후의 정제 방법은, 수지 (A)에서 설명한 내용과 동일하지만, 소수성 수지 (D)의 합성에 있어서는, 반응의 농도가 30~50질량%인 것이 바람직하다.
이하에 소수성 수지 (D)의 구체예를 나타낸다. 또, 하기 표에, 각 수지에 있어서의 반복 단위의 몰비(각 반복 단위와 왼쪽에서부터 순서대로 대응), 중량 평균 분자량, 분산도를 나타낸다.
[화학식 76]
Figure pct00080
[화학식 77]
Figure pct00081
[화학식 78]
Figure pct00082
[표 5]
Figure pct00083
[화학식 79]
Figure pct00084
[화학식 80]
Figure pct00085
[화학식 81]
Figure pct00086
[화학식 82]
Figure pct00087
[표 6]
Figure pct00088
[표 7]
Figure pct00089
[6] 계면활성제
본 발명의 네거티브형 감활성광선성 또는 감방사선성 조성물은, 도포성을 향상시키기 위하여 계면활성제를 더 함유하고 있어도 된다. 계면활성제의 예로서는, 특별히 한정되는 것은 아니지만, 폴리옥시에틸렌알킬에터류, 폴리옥시에틸렌알킬알릴에터류, 폴리옥시에틸렌폴리옥시프로필렌 블록 코폴리머류, 소비탄 지방산 에스터류, 폴리옥시에틸렌 소비탄 지방산 에스터 등의 비이온계 계면활성제, 메가팍 F171(다이닛폰 잉크 가가쿠 고교제)이나 플루오라드 FC430(스미토모 3M제)이나 서피놀 E1004(아사히 가라스제), OMNOVA사제의 PF656 및 PF6320 등의 불소계 계면활성제, 오가노실록세인 폴리머를 들 수 있다.
본 발명의 네거티브형 감활성광선성 또는 감방사선성 조성물은 계면활성제를 함유해도 되고 함유하지 않아도 되는데, 계면활성제를 함유하는 경우, 그 함유량은, 조성물의 전체량(용제를 제외함)에 대하여, 바람직하게는 0.0001~2질량%이며, 보다 바람직하게는 0.0005~1질량%이다.
[7] 유기 카복실산
본 발명의 네거티브형 감활성광선성 또는 감방사선성 조성물은, 상기 성분 외에, 유기 카복실산을 함유하는 것이 바람직하다. 이와 같은 유기 카복실산 화합물로서, 지방족 카복실산, 지환식 카복실산, 불포화 지방족 카복실산, 옥시카복실산, 알콕시카복실산, 케토카복실산, 벤조산 유도체, 프탈산, 테레프탈산, 아이소프탈산, 2-나프토산, 1-하이드록시-2-나프토산, 2-하이드록시-3-나프토산 등을 들 수 있다. 전자선 노광을 진공하에서 행할 때에는, 레지스트막 표면으로부터 휘발하여 묘화 챔버 내를 오염시켜 버릴 우려가 있으므로, 바람직한 화합물로서는, 방향족 유기 카복실산, 그 중에서도 예를 들면 벤조산, 1-하이드록시-2-나프토산, 2-하이드록시-3-나프토산이 적합하다.
본 발명의 네거티브형 감활성광선성 또는 감방사선성 조성물은 유기 카복실산을 함유해도 되고 함유하지 않아도 되는데, 함유하는 경우는, 유기 카복실산의 배합률로서는, 고분자 화합물 (A) 100질량부에 대하여, 0.01~10질량부의 범위 내가 바람직하고, 보다 바람직하게는 0.01~5질량부이며, 더 바람직하게는 0.01~3질량부이다.
본 발명의 네거티브형 감활성광선성 또는 감방사선성 조성물은, 필요에 따라서, 염료, 가소제, 산증식제(국제 공개공보 제95/29968호, 국제 공개공보 제98/24000호, 일본 공개특허공보 평8-305262호, 일본 공개특허공보 평9-34106호, 일본 공개특허공보 평8-248561호, 일본 공표특허공보 평8-503082호, 미국 특허공보 제5,445,917호, 일본 공표특허공보 평8-503081호, 미국 특허공보 제5,534,393호, 미국 특허공보 제5,395,736호, 미국 특허공보 제5,741,630호, 미국 특허공보 제5,334,489호, 미국 특허공보 제5,582,956호, 미국 특허공보 제5,578,424호, 미국 특허공보 제5,453,345호, 미국 특허공보 제5,445,917호, 유럽 특허공보 제665,960호, 유럽 특허공보 제757,628호, 유럽 특허공보 제665,961호, 미국 특허공보 제5,667,943호, 일본 공개특허공보 평10-1508호, 일본 공개특허공보 평10-282642호, 일본 공개특허공보 평9-512498호, 일본 공개특허공보 2000-62337호, 일본 공개특허공보 2005-17730호, 일본 공개특허공보 2008-209889호 등에 기재) 등을 더 함유하고 있어도 된다. 이들 화합물에 대해서는, 모두 일본 공개특허공보 2008-268935호에 기재된 각각의 화합물을 들 수 있다.
[8] 카복실산 오늄염
본 발명의 네거티브형 감활성광선성 또는 감방사선성 조성물은, 카복실산 오늄염을 함유해도 된다. 카복실산 오늄염으로서는, 카복실산 설포늄염, 카복실산 아이오도늄염, 카복실산 암모늄염 등을 들 수 있다. 특히, 카복실산 오늄염으로서는, 카복실산 설포늄염, 카복실산 아이오도늄염이 바람직하다. 또한, 본 발명에 있어서는, 카복실산 오늄염의 카복실레이트 잔기가 방향족기, 탄소-탄소 2중 결합을 함유하지 않는 것이 바람직하다. 특히 바람직한 음이온부로서는, 탄소수 1~30의 직쇄, 분기, 단환 또는 다환 환상 알킬카복실산 음이온이 바람직하다. 더 바람직하게는 이들 알킬기의 일부 또는 전부가 불소 치환된 카복실산의 음이온이 바람직하다. 알킬쇄 중에 산소 원자를 포함하고 있어도 된다. 이로써 220nm 이하의 광에 대한 투명성이 확보되고, 감도, 해상력이 향상되어, 소밀 의존성, 노광 마진이 개량된다.
본 발명의 네거티브형 감활성광선성 또는 감방사선성 조성물은 카복실산 오늄염을 함유해도 되고 함유하지 않아도 되는데, 함유하는 경우, 카복실산 오늄염의 함유량은, 네거티브형 감활성광선성 또는 감방사선성 조성물의 전체 고형분을 기준으로 하여, 바람직하게는 0.5~20질량%이고, 보다 바람직하게는 0.7~15질량%이며, 더 바람직하게는 1.0~10질량%이다.
[9] 용제
본 발명의 네거티브형 감활성광선성 또는 감방사선성 조성물은, 용제를 함유하는 것이 바람직하다.
네거티브형 감활성광선성 또는 감방사선성 조성물을 조제할 때에 사용할 수 있는 용제로서는, 예를 들면 알킬렌글라이콜모노알킬에터카복실레이트, 알킬렌글라이콜모노알킬에터, 락트산 알킬에스터, 알콕시프로피온산 알킬, 환상 락톤(바람직하게는 탄소수 4~10), 환을 가져도 되는 모노케톤 화합물(바람직하게는 탄소수 4~10), 알킬렌카보네이트, 알콕시아세트산 알킬, 피루브산 알킬 등의 유기 용제를 들 수 있다.
이들 용제의 구체예는, 미국 특허출원 공개공보 2008/0187860호 [0441]~[0455]에 기재된 것을 들 수 있다.
본 발명에 있어서는, 유기 용제로서 구조 중에 수산기를 함유하는 용제와, 수산기를 함유하지 않는 용제를 혼합한 혼합 용제를 사용해도 된다.
수산기를 함유하는 용제, 수산기를 함유하지 않는 용제로서는 상술한 예시 화합물이 적절히 선택 가능한데, 수산기를 함유하는 용제로서는, 알킬렌글라이콜모노알킬에터, 락트산 알킬, 뷰티르산 알킬 등이 바람직하고, 프로필렌글라이콜모노메틸에터(PGME, 별명 1-메톡시-2-프로판올), 락트산 에틸, 2-하이드록시아이소뷰티르산 메틸이 보다 바람직하다. 또, 수산기를 함유하지 않는 용제로서는, 알킬렌글라이콜모노알킬에터아세테이트, 알킬알콕시프로피오네이트, 환을 함유해도 되는 모노케톤 화합물, 환상 락톤, 아세트산 알킬 등이 바람직하고, 이들 중에서도 프로필렌글라이콜모노메틸에터아세테이트(PGMEA, 별명 1-메톡시-2-아세톡시프로페인), 에틸에톡시프로피오네이트, 2-헵탄온, γ-뷰티로락톤, 사이클로헥산온, 아세트산 뷰틸이 특히 바람직하며, 프로필렌글라이콜모노메틸에터아세테이트, 에틸에톡시프로피오네이트, 2-헵탄온이 가장 바람직하다.
수산기를 함유하는 용제와 수산기를 함유하지 않는 용제의 혼합비(질량)는, 1/99~99/1, 바람직하게는 10/90~90/10, 더 바람직하게는 20/80~60/40이다. 수산기를 함유하지 않는 용제를 50질량% 이상 함유하는 혼합 용제가 도포 균일성의 점에서 특히 바람직하다.
용제는, 프로필렌글라이콜모노메틸에터아세테이트를 포함하는 것이 바람직하고, 프로필렌글라이콜모노메틸에터아세테이트 단독 용매, 또는 프로필렌글라이콜모노메틸에터아세테이트를 함유하는 2종류 이상의 혼합 용제인 것이 바람직하다.
본 발명의 네거티브형 감활성광선성 또는 감방사선성 조성물의 고형분 농도는 1~40질량%인 것이 바람직하다. 보다 바람직하게는 1~30질량%, 더 바람직하게는 3~20질량%이다.
<네거티브형 감활성광선성 또는 감방사선성막>
본 발명은, 본 발명의 네거티브형 감활성광선성 또는 감방사선성 조성물에 의하여 형성된 네거티브형 감활성광선성 또는 감방사선성막에도 관한 것이며, 이와 같은 막은, 예를 들면 본 발명의 조성물이 기판 등의 지지체 상에 도포됨으로써 형성된다. 이 막의 두께는, 0.02~0.1μm가 바람직하다. 기판 상에 도포하는 방법으로서는, 스핀 코트, 롤 코트, 플로 코트, 딥 코트, 스프레이 코트, 닥터 코트 등의 적당한 도포 방법에 의하여 기판 상에 도포되는데, 스핀 도포가 바람직하고, 그 회전수는 1000~3000rpm이 바람직하다. 도포막은 60~150℃에서 1~20분간, 바람직하게는 80~120℃에서 1~10분간 프리베이크하여 박막을 형성한다.
피가공 기판 및 그 최표층을 구성하는 재료는, 예를 들면 반도체용 웨이퍼의 경우, 실리콘 웨이퍼를 이용할 수 있으며, 최표층이 되는 재료의 예로서는, Si, SiO2, SiN, SiON, TiN, WSi, BPSG, SOG, 유기 반사 방지막 등을 들 수 있다.
네거티브형 감활성광선성 또는 감방사선성막을 형성하기 전에, 기판 상에 미리 반사 방지막을 도설해도 된다.
반사 방지막으로서는, 타이타늄, 이산화 타이타늄, 질화 타이타늄, 산화 크로뮴, 카본, 어모퍼스 실리콘 등의 무기막형과, 흡광제와 폴리머 재료로 이루어지는 유기막형 모두 이용할 수 있다. 또, 유기 반사 방지막으로서, 브루어 사이언스사제의 DUV30 시리즈나, DUV-40 시리즈, 쉬플리사제의 AR-2, AR-3, AR-5 등의 시판 중인 유기 반사 방지막을 사용할 수도 있다.
<마스크 블랭크>
또, 본 발명은 네거티브형 감활성광선성 또는 감방사선성 조성물에 의하여 형성된 네거티브형 감활성광선성 또는 감방사선성막을 구비한 마스크 블랭크에도 관한 것이다. 이와 같은 네거티브형 감활성광선성 또는 감방사선성막을 구비하는 마스크 블랭크를 얻기 위하여, 포토마스크 제작용 포토마스크 블랭크 상에 패턴을 형성하는 경우, 사용되는 투명 기판으로서는, 석영, 불화 칼슘 등의 투명 기판을 들 수 있다. 일반적으로는, 상기 기판 상에, 차광막, 반사 방지막, 또한 위상 시프트막, 추가적으로는 에칭 스토퍼막, 에칭 마스크막과 같은 기능성막 중 필요한 것을 적층한다. 기능성막의 재료로서는, 규소, 또는 크로뮴, 몰리브데넘, 지르코늄, 탄탈럼, 텅스텐, 타이타늄, 나이오븀 등의 전이 금속을 함유하는 막이 예시된다. 또, 최표층에 이용되는 재료로서는, 규소 또는 규소에 산소 및/또는 질소를 함유하는 재료를 주구성 재료로 하는 것, 또한 그들에 전이 금속을 함유하는 재료를 주구성 재료로 하는 규소 화합물 재료나, 전이 금속, 특히 크로뮴, 몰리브데넘, 지르코늄, 탄탈럼, 텅스텐, 타이타늄, 나이오븀 등으로부터 선택되는 1종 이상, 또는 그들에 산소, 질소, 탄소로부터 선택되는 원소를 1 이상 더 포함하는 재료를 주구성 재료로 하는 전이 금속 화합물 재료가 예시된다.
차광막은 단층이어도 되지만, 복수의 재료를 덧칠한 복층 구조인 것이 보다 바람직하다. 복층 구조의 경우, 1층당 막의 두께는, 특별히 한정되지 않지만, 5~100nm인 것이 바람직하고, 10~80nm인 것이 보다 바람직하다. 차광막 전체의 두께로서는, 특별히 제한되는 것은 아니지만, 5~200nm인 것이 바람직하고, 10~150nm인 것이 보다 바람직하다.
일반적으로, 이들 재료 중, 크로뮴에 산소나 질소를 함유하는 재료를 최표층에 구비하는 포토마스크 블랭크 상에서 패턴 형성을 행한 경우, 기판 부근에서 잘록한 형상이 형성되는, 이른바 언더 컷 형상이 되기 쉽지만, 본 발명을 이용한 경우, 종래의 것에 비하여 언더 컷 문제를 개선할 수 있다.
이 네거티브형 감활성광선성 또는 감방사선성막에는 활성광선 또는 방사선(전자선 등)을 조사하고, 바람직하게는 베이크(통상 80~150℃, 보다 바람직하게는 90~130℃)를 행한 후, 현상한다. 이로써 양호한 패턴을 얻을 수 있다. 그리고 이 패턴을 마스크로서 이용하여, 적절히 에칭 처리 및 이온 주입 등을 행하고, 반도체 미세 회로 및 임프린트용 몰드 구조체 등을 제작한다.
또한, 본 발명의 네거티브형 감활성광선성 또는 감방사선성 조성물을 이용하여, 임프린트용 몰드를 제작하는 경우의 프로세스에 대해서는, 예를 들면 일본 특허공보 제4109085호, 일본 공개특허공보 2008-162101호, 및 "나노 임프린트의 기초와 기술 개발·응용 전개 -나노 임프린트의 기판 기술과 최신의 기술 전개- 편집: 히라이 요시히코(프론티어 슛판)"에 기재되어 있다.
본 발명의 조성물은, 상기의 성분을 소정의 유기 용제, 바람직하게는 상기 혼합 용제에 용해하여, 필터 여과한 후, 소정의 기판 상에 도포하여 이용한다. 필터 여과에 이용하는 필터의 포어 사이즈는 0.1μm 이하, 보다 바람직하게는 0.05μm 이하, 더 바람직하게는 0.03μm 이하의 폴리테트라플루오로에틸렌제, 폴리에틸렌제, 나일론제의 것이 바람직하다. 필터 여과에 있어서는, 예를 들면 일본 공개특허공보 2002-62667호와 같이, 순환적인 여과를 행하거나, 복수 종류의 필터를 직렬 또는 병렬로 접속하여 여과를 행하거나 해도 된다. 또, 조성물을 복수 회 여과해도 된다. 또한, 필터 여과의 전후로, 조성물에 대하여 탈기 처리 등을 행해도 된다.
<네거티브형 감활성광선성 또는 감방사선성 조성물을 이용한 패턴 형성 방법>
본 발명은, 상기 네거티브형 감활성광선성 또는 감방사선성 조성물을 기판 상에 도포하여 막을 형성하는 공정과, 상기 막을 노광하는 공정과, 노광한 상기 막을 현상하여 네거티브형 패턴을 형성하는 공정을 포함하는 패턴 형성 방법에도 관한 것이다. 또, 본 발명은 상기 네거티브형 감활성광선성 또는 감방사선성막을 갖는 마스크 블랭크를 노광하는 공정과, 상기 노광된 마스크 블랭크를 현상하는 공정을 포함하는, 레지스트 패턴 형성 방법에도 관한 것이다. 본 발명에 있어서, 상기 노광은 전자선 또는 극자외선을 이용하여 행해지는 것이 바람직하다.
정밀 집적 회로 소자의 제조 등에 있어서 네거티브형 감활성광선성 또는 감방사선성막상으로의 노광(패턴 형성 공정)은, 먼저 본 발명의 네거티브형 감활성광선성 또는 감방사선성막에 패턴 형상으로 전자선 또는 극자외선(EUV) 조사를 행하는 것이 바람직하다. 노광량은, 전자선의 경우, 0.1~20μC/cm2 정도, 바람직하게는 3~10μC/cm2 정도, 극자외선의 경우, 0.1~20mJ/cm2 정도, 바람직하게는 3~15mJ/cm2 정도가 되도록 노광한다. 이어서, 핫플레이트 상에서, 60~150℃에서 1~20분간, 바람직하게는 80~120℃에서 1~10분간, 노광 후 가열(포스트 익스포저 베이크)을 행하고, 이어서 현상, 린스, 건조함으로써 패턴을 형성한다. 현상액은 적절히 선택되는데, 알칼리 현상액(대표적으로는 알칼리 수용액) 또는 유기 용제를 함유하는 현상액(유기계 현상액이라고도 함)을 이용하는 것이 바람직하다. 현상액이 알칼리 수용액인 경우에는, 테트라메틸암모늄하이드록사이드(TMAH), 테트라뷰틸암모늄하이드록사이드(TBAH) 등의 0.1~5질량%, 바람직하게는 2~3질량% 알칼리 수용액으로, 0.1~3분간, 바람직하게는 0.5~2분간, 침지(dip)법, 퍼들(puddle)법, 스프레이(spray)법 등의 통상의 방법에 따라 현상한다. 알칼리 현상액에는, 알코올류 및/또는 계면활성제를 적당량 첨가해도 된다. 이렇게 하여, 미노광 부분의 막은 용해되고, 노광된 부분은 현상액에 용해되기 어려워, 기판 상에 목적의 패턴이 형성된다.
본 발명의 레지스트 패턴 형성 방법이, 알칼리 현상액을 이용하여 현상하는 공정을 갖는 경우, 알칼리 현상액으로서는, 예를 들면 수산화 나트륨, 수산화 칼륨, 탄산 나트륨, 규산 나트륨, 메타규산 나트륨, 암모니아수 등의 무기 알칼리류, 에틸아민, n-프로필아민 등의 제1 아민류, 다이에틸아민, 다이-n-뷰틸아민 등의 제2 아민류, 트라이에틸아민, 메틸다이에틸아민 등의 제3 아민류, 다이메틸에탄올아민, 트라이에탄올아민 등의 알코올아민류, 테트라메틸암모늄하이드록사이드, 테트라에틸암모늄하이드록사이드, 테트라프로필암모늄하이드록사이드, 테트라뷰틸암모늄하이드록사이드, 테트라펜틸암모늄하이드록사이드, 테트라헥실암모늄하이드록사이드, 테트라옥틸암모늄하이드록사이드, 에틸트라이메틸암모늄하이드록사이드, 뷰틸트라이메틸암모늄하이드록사이드, 메틸트라이아밀암모늄하이드록사이드, 다이뷰틸다이펜틸암모늄하이드록사이드 등의 테트라알킬암모늄하이드록사이드, 트라이메틸페닐암모늄하이드록사이드, 트라이메틸벤질암모늄하이드록사이드, 트라이에틸벤질암모늄하이드록사이드 등의 제4급 암모늄염, 피롤, 피페리딘 등의 환상 아민류 등의 알칼리성 수용액을 사용할 수 있다.
또한, 상기 알칼리성 수용액에 알코올류, 계면활성제를 적당량 첨가하여 사용할 수도 있다.
알칼리 현상액의 알칼리 농도는, 통상 0.1~20질량%이다.
알칼리 현상액의 pH는, 통상 10.0~15.0이다.
특히, 테트라메틸암모늄하이드록사이드의 2.38질량%의 수용액이 바람직하다.
알칼리 현상 후에 행하는 린스 처리에 있어서의 린스액으로서는, 순수를 사용하여, 계면활성제를 적당량 첨가하여 사용할 수도 있다.
또, 현상 처리 또는 린스 처리 후에, 패턴 상에 부착되어 있는 현상액 또는 린스액을 초임계 유체에 의하여 제거하는 처리를 행할 수 있다.
본 발명의 레지스트 패턴 형성 방법이, 유기 용제를 함유하는 현상액을 이용하여 현상하는 공정을 갖는 경우, 그 공정에 있어서의 당해 현상액(이하, 유기계 현상액이라고도 함)으로서는, 케톤계 용제, 에스터계 용제, 알코올계 용제, 아마이드계 용제, 에터계 용제 등의 극성 용제 및 탄화 수소계 용제를 이용할 수 있다.
본 발명에 있어서, 에스터계 용제란 분자 내에 에스터기를 갖는 용제이고, 케톤계 용제란 분자 내에 케톤기를 갖는 용제이며, 알코올계 용제란 분자 내에 알코올성 수산기를 갖는 용제이고, 아마이드계 용제란 분자 내에 아마이드기를 갖는 용제이며, 에터계 용제란 분자 내에 에터 결합을 갖는 용제이다. 이들 중에는, 1분자 내에 상기 관능기를 복수 종 갖는 용제도 존재하는데, 그 경우는, 그 용제가 갖는 관능기를 포함하는 어느 용제종에도 해당하는 것으로 한다. 예를 들면, 다이에틸렌글라이콜모노메틸에터는, 상기 분류 중의, 알코올계 용제, 에터계 용제 어느 것에도 해당하는 것으로 한다. 또, 탄화 수소계 용제란 치환기를 갖지 않는 탄화 수소 용제이다.
특히, 케톤계 용제, 에스터계 용제, 알코올계 용제 및 에터계 용제로부터 선택되는 적어도 1종류의 용제를 함유하는 현상액인 것이 바람직하다.
현상액은, 네거티브형 감활성광선성 또는 감방사선성막의 팽윤을 억제할 수 있다는 점에서, 탄소 원자수가 7 이상(7~14가 바람직하고, 7~12가 보다 바람직하며, 7~10이 더 바람직함), 또한 헤테로 원자수가 2 이하인 에스터계 용제를 이용하는 것이 바람직하다.
상기 에스터계 용제의 헤테로 원자는, 탄소 원자 및 수소 원자 이외의 원자이며, 예를 들면 산소 원자, 질소 원자, 황 원자 등을 들 수 있다. 헤테로 원자수는, 2 이하가 바람직하다.
탄소 원자수가 7 이상 또한 헤테로 원자수가 2 이하인 에스터계 용제의 바람직한 예로서는, 아세트산 아밀, 아세트산 아이소아밀, 아세트산 2-메틸뷰틸, 아세트산 1-메틸뷰틸, 아세트산 헥실, 프로피온산 펜틸, 프로피온산 헥실, 프로피온산 헵틸, 뷰탄산 뷰틸 등을 들 수 있고, 아세트산 아이소아밀을 이용하는 것이 특히 바람직하다.
현상액은, 상술한 탄소 원자수가 7 이상 또한 헤테로 원자수가 2 이하인 에스터계 용제 대신에, 상기 에스터계 용제 및 상기 탄화 수소계 용제의 혼합 용제, 또는 상기 케톤계 용제 및 상기 탄화 수소 용제의 혼합 용제를 이용해도 된다. 이 경우에 있어서도, 네거티브형 감활성광선성 또는 감방사선성막의 팽윤의 억제에 효과적이다.
에스터계 용제와 탄화 수소계 용제를 조합하여 이용하는 경우에는, 에스터계 용제로서 아세트산 아이소아밀을 이용하는 것이 바람직하다. 또, 탄화 수소계 용제로서는, 네거티브형 감활성광선성 또는 감방사선성막의 용해성을 조제한다는 관점에서, 포화 탄화 수소 용제(예를 들면, 옥테인, 노네인, 데케인, 도데케인, 운데케인, 헥사데케인 등)를 이용하는 것이 바람직하다.
케톤계 용제로서는, 예를 들면 1-옥탄온, 2-옥탄온, 1-노난온, 2-노난온, 아세톤, 2-헵탄온(메틸아밀케톤), 4-헵탄온, 1-헥산온, 2-헥산온, 다이아이소뷰틸케톤, 사이클로헥산온, 메틸사이클로헥산온, 페닐아세톤, 메틸에틸케톤, 메틸아이소뷰틸케톤, 아세틸아세톤, 아세톤일아세톤, 아이오논, 다이아세톤일알코올, 아세틸카비놀, 아세토페논, 메틸나프틸케톤, 아이소포론, 프로필렌카보네이트 등을 들 수 있다.
에스터계 용제로서는, 예를 들면 아세트산 메틸, 아세트산 뷰틸, 아세트산 에틸, 아세트산 아이소프로필, 아세트산 펜틸, 아세트산 아이소아밀, 아세트산 아밀, 프로필렌글라이콜모노메틸에터아세테이트, 에틸렌글라이콜모노에틸에터아세테이트, 다이에틸렌글라이콜모노뷰틸에터아세테이트, 다이에틸렌글라이콜모노에틸에터아세테이트, 에틸-3-에톡시프로피오네이트, 3-메톡시뷰틸아세테이트, 3-메틸-3-메톡시뷰틸아세테이트, 폼산 메틸, 폼산 에틸, 폼산 뷰틸, 폼산 프로필, 락트산 에틸, 락트산 뷰틸, 락트산 프로필, 뷰티르산 뷰틸, 2-하이드록시아이소뷰티르산 메틸 등을 들 수 있다.
알코올계 용제로서는, 예를 들면 메틸알코올, 에틸알코올, n-프로필알코올, 아이소프로필알코올, n-뷰틸알코올, sec-뷰틸알코올, 4-메틸-2-펜탄올, tert-뷰틸알코올, 아이소뷰틸알코올, n-헥실알코올, n-헵틸알코올, n-옥틸알코올, n-데칸올 등의 알코올이나, 에틸렌글라이콜, 다이에틸렌글라이콜, 트라이에틸렌글라이콜 등의 글라이콜계 용제나, 에틸렌글라이콜모노메틸에터, 프로필렌글라이콜모노메틸에터, 에틸렌글라이콜모노에틸에터, 프로필렌글라이콜모노에틸에터, 다이에틸렌글라이콜모노메틸에터, 트라이에틸렌글라이콜모노에틸에터, 메톡시메틸뷰탄올 등의 글라이콜에터계 용제 등을 들 수 있다.
에터계 용제로서는, 예를 들면 상기 글라이콜에터계 용제 외에, 아니솔, 다이옥세인, 테트라하이드로퓨란 등을 들 수 있다.
아마이드계 용제로서는, 예를 들면 N-메틸-2-피롤리돈, N,N-다이메틸아세트아마이드, N,N-다이메틸폼아마이드, 헥사메틸포스포릭 트라이아마이드, 1,3-다이메틸-2-이미다졸리딘온 등을 사용할 수 있다.
탄화 수소계 용제로서는, 예를 들면 톨루엔, 자일렌 등의 방향족 탄화 수소계 용제, 펜테인, 헥세인, 옥테인, 데케인, 운데케인 등의 지방족 탄화 수소계 용제를 들 수 있다.
상기의 용제는, 복수 혼합해도 되고, 상기 이외의 용제나 물과 혼합하여 사용해도 된다. 단, 본 발명의 효과를 충분히 나타내기 위해서는, 현상액 전체로서의 함수율이 10질량% 미만인 것이 바람직하고, 실질적으로 수분을 함유하지 않는 것이 보다 바람직하다.
즉, 유기계 현상액에 대한 유기 용제의 사용량은, 현상액의 전체량에 대하여, 90질량% 이상 100질량% 이하인 것이 바람직하고, 95질량% 이상 100질량% 이하인 것이 바람직하다.
특히, 유기계 현상액은, 케톤계 용제, 에스터계 용제, 알코올계 용제, 아마이드계 용제 및 에터계 용제로 이루어지는 군으로부터 선택되는 적어도 1종류의 유기 용제를 함유하는 현상액인 것이 바람직하다.
유기계 현상액의 증기압은, 20℃에 있어서, 5kPa 이하가 바람직하고, 3kPa 이하가 더 바람직하며, 2kPa 이하가 특히 바람직하다. 유기계 현상액의 증기압을 5kPa 이하로 함으로써, 현상액의 기판 상 혹은 현상컵 내에서의 증발이 억제되고, 웨이퍼면 내의 온도 균일성이 향상되어, 결과적으로 웨이퍼면 내의 치수 균일성이 양호해진다.
5kPa 이하의 증기압을 갖는 구체적인 예로서는, 1-옥탄온, 2-옥탄온, 1-노난온, 2-노난온, 2-헵탄온(메틸아밀케톤), 4-헵탄온, 2-헥산온, 다이아이소뷰틸케톤, 사이클로헥산온, 메틸사이클로헥산온, 페닐아세톤, 메틸아이소뷰틸케톤 등의 케톤계 용제, 아세트산 뷰틸, 아세트산 펜틸, 아세트산 아이소아밀, 아세트산 아밀, 프로필렌글라이콜모노메틸에터아세테이트, 에틸렌글라이콜모노에틸에터아세테이트, 다이에틸렌글라이콜모노뷰틸에터아세테이트, 다이에틸렌글라이콜모노에틸에터아세테이트, 에틸-3-에톡시프로피오네이트, 3-메톡시뷰틸아세테이트, 3-메틸-3-메톡시뷰틸아세테이트, 폼산 뷰틸, 폼산 프로필, 락트산 에틸, 락트산 뷰틸, 락트산 프로필 등의 에스터계 용제, n-프로필알코올, 아이소프로필알코올, n-뷰틸알코올, sec-뷰틸알코올, tert-뷰틸알코올, 아이소뷰틸알코올, n-헥실알코올, n-헵틸알코올, n-옥틸알코올, n-데칸올 등의 알코올계 용제, 에틸렌글라이콜, 다이에틸렌글라이콜, 트라이에틸렌글라이콜 등의 글라이콜계 용제나, 에틸렌글라이콜모노메틸에터, 프로필렌글라이콜모노메틸에터, 에틸렌글라이콜모노에틸에터, 프로필렌글라이콜모노에틸에터, 다이에틸렌글라이콜모노메틸에터, 트라이에틸렌글라이콜모노에틸에터, 메톡시메틸뷰탄올 등의 글라이콜에터계 용제, 테트라하이드로퓨란 등의 에터계 용제, N-메틸-2-피롤리돈, N,N-다이메틸아세트아마이드, N,N-다이메틸폼아마이드의 아마이드계 용제, 톨루엔, 자일렌 등의 방향족 탄화 수소계 용제, 옥테인, 데케인 등의 지방족 탄화 수소계 용제를 들 수 있다.
특히 바람직한 범위인 2kPa 이하의 증기압을 갖는 구체적인 예로서는, 1-옥탄온, 2-옥탄온, 1-노난온, 2-노난온, 2-헵탄온, 4-헵탄온, 2-헥산온, 다이아이소뷰틸케톤, 사이클로헥산온, 메틸사이클로헥산온, 페닐아세톤 등의 케톤계 용제, 아세트산 뷰틸, 아세트산 아밀, 프로필렌글라이콜모노메틸에터아세테이트, 에틸렌글라이콜모노에틸에터아세테이트, 다이에틸렌글라이콜모노뷰틸에터아세테이트, 다이에틸렌글라이콜모노에틸에터아세테이트, 에틸-3-에톡시프로피오네이트, 3-메톡시뷰틸아세테이트, 3-메틸-3-메톡시뷰틸아세테이트, 락트산 에틸, 락트산 뷰틸, 락트산 프로필 등의 에스터계 용제, n-뷰틸알코올, sec-뷰틸알코올, tert-뷰틸알코올, 아이소뷰틸알코올, n-헥실알코올, n-헵틸알코올, n-옥틸알코올, n-데칸올 등의 알코올계 용제, 에틸렌글라이콜, 다이에틸렌글라이콜, 트라이에틸렌글라이콜 등의 글라이콜계 용제나, 에틸렌글라이콜모노메틸에터, 프로필렌글라이콜모노메틸에터, 에틸렌글라이콜모노에틸에터, 프로필렌글라이콜모노에틸에터, 다이에틸렌글라이콜모노메틸에터, 트라이에틸렌글라이콜모노에틸에터, 메톡시메틸뷰탄올 등의 글라이콜에터계 용제, N-메틸-2-피롤리돈, N,N-다이메틸아세트아마이드, N,N-다이메틸폼아마이드의 아마이드계 용제, 자일렌 등의 방향족 탄화 수소계 용제, 옥테인, 데케인, 운데케인 등의 지방족 탄화 수소계 용제를 들 수 있다.
유기계 현상액은, 염기성 화합물을 포함하고 있어도 된다. 본 발명에서 이용되는 현상액이 포함할 수 있는 염기성 화합물의 구체예 및 바람직한 예로서는, 상술한 감활성광선성 또는 감방사선성 조성물이 포함할 수 있는 염기성 화합물에 있어서의 것과 동일하다.
유기계 현상액에는, 필요에 따라서 계면활성제를 적당량 첨가할 수 있다.
계면활성제로서는 특별히 한정되지 않지만, 예를 들면 이온성이나 비이온성의 불소계 및/또는 실리콘계 계면활성제 등을 이용할 수 있다. 이들 불소 및/또는 실리콘계 계면활성제로서, 예를 들면 일본 공개특허공보 소62-36663호, 일본 공개특허공보 소61-226746호, 일본 공개특허공보 소61-226745호, 일본 공개특허공보 소62-170950호, 일본 공개특허공보 소63-34540호, 일본 공개특허공보 평7-230165호, 일본 공개특허공보 평8-62834호, 일본 공개특허공보 평9-54432호, 일본 공개특허공보 평9-5988호, 미국 특허공보 제5405720호, 동 5360692호, 동 5529881호, 동 5296330호, 동 5436098호, 동 5576143호, 동 5294511호, 동 5824451호에 기재된 계면활성제를 들 수 있으며, 바람직하게는 비이온성의 계면활성제이다. 비이온성의 계면활성제로서는 특별히 한정되지 않지만, 불소계 계면활성제 또는 실리콘계 계면활성제를 이용하는 것이 더 바람직하다.
계면활성제의 사용량은 현상액의 전체량에 대하여, 바람직하게는 0~2질량%, 더 바람직하게는 0.0001~2질량%, 특히 바람직하게는 0.0005~1질량%이다.
현상 방법으로서는, 예를 들면 현상액이 채워진 조 중에 기판을 일정 시간 침지하는 방법(딥법), 기판 표면에 현상액을 표면 장력에 의하여 융기시켜 일정 시간 정지시킴으로써 현상하는 방법(퍼들법), 기판 표면에 현상액을 분무하는 방법(스프레이법), 일정 속도로 회전하고 있는 기판 상에 일정 속도로 현상액 토출 노즐을 스캔하면서 현상액을 계속 토출하는 방법(다이나믹 투여법) 등을 적용할 수 있다.
상기 각종 현상 방법이, 현상 장치의 현상 노즐로부터 현상액을 네거티브형 감활성광선성 또는 감방사선성막을 향하여 토출시키는 공정을 포함하는 경우, 토출되는 현상액의 토출압(토출되는 현상액의 단위 면적당 유속)은 바람직하게는 2mL/sec/mm2 이하, 보다 바람직하게는 1.5mL/sec/mm2 이하, 더 바람직하게는 1mL/sec/mm2 이하이다. 유속의 하한은 특별히 없지만, 스루풋을 고려하면 0.2mL/sec/mm2 이상이 바람직하다.
토출되는 현상액의 토출압을 상기의 범위로 함으로써, 현상 후의 레지스트 잔사에서 유래하는 패턴의 결함을 현저히 저감시킬 수 있다.
이 메커니즘의 상세는 확실하지 않지만, 아마도 토출압을 상기 범위로 함으로써, 현상액이 네거티브형 감활성광선성 또는 감방사선성막에 부여하는 압력이 작아져, 네거티브형 감활성광선성 또는 감방사선성막·패턴이 부주의하게 깎이거나 붕괴되거나 하는 것이 억제되기 때문이라고 생각된다.
또한, 현상액의 토출압(mL/sec/mm2)은, 현상 장치 중의 현상 노즐 출구에 있어서의 값이다.
현상액의 토출압을 조정하는 방법으로서는, 예를 들면 펌프 등으로 토출압을 조정하는 방법이나, 가압 탱크로부터의 공급으로 압력을 조정함으로써 변경하는 방법 등을 들 수 있다.
또, 유기 용제를 포함하는 현상액을 이용하여 현상하는 공정 후에, 다른 용매로 치환하면서, 현상을 정지시키는 공정을 실시해도 된다.
유기 용제를 포함하는 현상액을 이용하여 현상하는 공정 후에는, 린스액을 이용하여 세정하는 공정을 포함하고 있어도 되지만, 스루풋(생산성), 린스액 사용량 등의 관점에서, 린스액을 이용하여 세정하는 공정을 포함하지 않아도 된다.
유기 용제를 포함하는 현상액을 이용하여 현상하는 공정 후의 린스 공정에 이용하는 린스액으로서는, 레지스트 패턴을 용해하지 않으면 특별히 제한은 없고, 일반적인 유기 용제를 포함하는 용액을 사용할 수 있다. 상기 린스액으로서는, 탄화 수소계 용제, 케톤계 용제, 에스터계 용제, 알코올계 용제, 아마이드계 용제 및 에터계 용제로 이루어지는 군으로부터 선택되는 적어도 1종류의 유기 용제를 함유하는 린스액을 이용하는 것이 바람직하다.
탄화 수소계 용제, 케톤계 용제, 에스터계 용제, 알코올계 용제, 아마이드계 용제 및 에터계 용제의 구체예로서는, 유기 용제를 포함하는 현상액에 있어서 설명한 것과 동일한 것을 들 수 있다.
유기 용제를 포함하는 현상액을 이용하여 현상하는 공정 후에, 보다 바람직하게는, 에스터계 용제, 알코올계 용제, 탄화 수소계 용제로 이루어지는 군으로부터 선택되는 적어도 1종류의 유기 용제를 함유하는 린스액을 이용하여 세정하는 공정을 행하고, 더 바람직하게는, 알코올계 용제 또는 탄화 수소계 용제를 함유하는 린스액을 이용하여 세정하는 공정을 행하는 것이 바람직하다.
린스액에 포함되는 유기 용제로서는, 유기 용제 중에서도 탄화 수소계 용제를 이용하는 것도 바람직하고, 지방족 탄화 수소계 용제를 이용하는 것이 보다 바람직하다. 린스액에 이용되는 지방족 탄화 수소계 용제로서는, 그 효과가 보다 향상된다는 관점에서, 탄소수 5 이상의 지방족 탄화 수소계 용제(예를 들면, 펜테인, 헥세인, 옥테인, 데케인, 운데케인, 도데케인, 헥사데케인 등)가 바람직하고, 탄소 원자수가 8 이상인 지방족 탄화 수소계 용제가 바람직하며, 탄소 원자수가 10 이상인 지방족 탄화 수소계 용제가 보다 바람직하다.
또한, 상기 지방족 탄화 수소계 용제의 탄소 원자수의 상한값은 특별히 한정되지 않지만, 예를 들면 16 이하를 들 수 있고, 14 이하가 바람직하며, 12 이하가 보다 바람직하다.
상기 지방측 탄화 수소계 용제 중에서도, 특히 바람직하게는, 데케인, 운데케인, 도데케인이며, 가장 바람직하게는 운데케인이다.
이와 같이 린스액에 포함되는 유기 용제로서 탄화 수소계 용제(특히 지방족 탄화 수소계 용제)를 이용함으로써, 현상 후에 약간 네거티브형 감활성광선성 또는 감방사선성막에 스며들어 있던 현상액이 씻겨나가, 팽윤이 보다 억제되어, 패턴 붕괴가 억제된다는 효과가 더 발휘된다.
상기 각 성분은, 복수 혼합해도 되고, 상기 이외의 유기 용제와 혼합하여 사용해도 된다.
린스액 중의 함수율은, 10질량% 이하가 바람직하고, 보다 바람직하게는 5질량% 이하, 특히 바람직하게는 3질량% 이하이다. 함수율을 10질량% 이하로 함으로써, 양호한 현상 특성을 얻을 수 있다.
유기 용제를 포함하는 현상액을 이용하여 현상하는 공정 후에 이용하는 린스액의 증기압은, 20℃에 있어서 0.05kPa 이상, 5kPa 이하가 바람직하고, 0.1kPa 이상, 5kPa 이하가 더 바람직하며, 0.12kPa 이상, 3kPa 이하가 가장 바람직하다. 린스액의 증기압을 0.05kPa 이상, 5kPa 이하로 함으로써, 웨이퍼면 내의 온도 균일성이 향상되고, 나아가서는 린스액의 침투에 기인한 팽윤이 억제되어, 웨이퍼면 내의 치수 균일성이 양호해진다.
린스액에는, 계면활성제를 적당량 첨가하여 사용할 수도 있다.
린스 공정에 있어서는, 유기 용제를 포함하는 현상액을 이용하는 현상을 행한 웨이퍼를 상기의 유기 용제를 포함하는 린스액을 이용하여 세정 처리한다. 세정 처리의 방법은 특별히 한정되지 않지만, 예를 들면 일정 속도로 회전하고 있는 기판 상에 린스액을 계속 토출하는 방법(회전 도포법), 린스액이 채워진 조 중에 기판을 일정 시간 침지하는 방법(딥법), 기판 표면에 린스액을 분무하는 방법(스프레이법) 등을 적용할 수 있다. 이 중에서도 회전 도포 방법으로 세정 처리를 행하고, 세정 후에 기판을 2000rpm~4000rpm의 회전수로 회전시켜, 린스액을 기판 상으로부터 제거하는 것이 바람직하다. 또, 린스 공정 후에 가열 공정(PostBake)을 포함하는 것도 바람직하다. 베이크에 의하여 패턴 간 및 패턴 내부에 잔류한 현상액 및 린스액이 제거된다. 린스 공정 후의 가열 공정은, 통상 40~160℃, 바람직하게는 70~95℃에서, 통상 10초~3분, 바람직하게는 30초에서 90초간 행한다.
또, 본 발명의 패턴 형성 방법은, 유기계 현상액을 이용한 현상 공정과, 알칼리 현상액을 이용한 현상 공정을 갖고 있어도 된다. 유기계 현상액을 이용한 현상에 의하여 노광 강도가 약한 부분이 제거되고, 알칼리 현상액을 이용한 현상을 행함으로써 노광 강도가 강한 부분도 제거된다. 이와 같이 현상을 복수 회 행하는 다중 현상 프로세스에 의하여, 중간적인 노광 강도의 영역만을 용해시키지 않고 패턴 형성을 행할 수 있으므로, 통상보다 미세한 패턴을 형성할 수 있다(일본 공개특허공보 2008-292975호의 단락 [0077]과 동일한 메커니즘).
또, 본 발명은 상기 네거티브형 감방사선성 또는 감활성광선성막을 갖는 마스크 블랭크를, 노광 및 현상하여 얻어지는 포토마스크에도 관한 것이다. 노광 및 현상으로서는, 상기에 기재된 공정이 적용된다. 상기 포토마스크는 반도체 제조용으로서 적합하게 사용된다.
본 발명에 있어서의 포토마스크는, ArF 엑시머 레이저 등에서 이용되는 광투과형 마스크여도 되고, EUV광을 광원으로 하는 반사계 리소그래피에서 이용되는 광반사형 마스크여도 된다.
또한, 본 발명의 조성물을 이용하여 임프린트용 몰드를 제작해도 되고, 그 상세에 대해서는, 예를 들면 일본 특허공보 제4109085호, 일본 공개특허공보 2008-162101호를 참조할 수 있다.
본 발명의 레지스트 패턴 형성 방법은, DSA(Directed Self-Assembly)에 있어서의 가이드 패턴 형성(예를 들면, ACS Nano Vol. 4 No. 8 Page 4815-4823 참조)에도 이용할 수 있다.
또, 상기 방법에 의하여 형성된 레지스트 패턴은, 예를 들면 일본 공개특허공보 평3-270227호 및 일본 공개특허공보 2013-164509호에 개시된 스페이서 프로세스의 심재(코어)로서 사용할 수 있다.
또, 본 발명은 상기한 본 발명의 패턴 형성 방법을 포함하는, 전자 디바이스의 제조 방법, 및 이 제조 방법에 의하여 제조된 전자 디바이스에도 관한 것이다.
본 발명의 전자 디바이스(바람직하게는 반도체 디바이스)는, 전기 전자 기기(가전, OA·미디어 관련 기기, 광학용 기기 및 통신 기기 등)에 적합하게 탑재되는 것이다.
실시예
이하, 실시예에 의하여 본 발명을 더 상세하게 설명하지만, 본 발명의 내용은 이것에 의하여 한정되는 것은 아니다.
<합성예: 고분자 화합물 (A1)의 합성>
하기에 기재된 표 8에 나타내는 고분자 화합물 (A1)을, 이하와 같이 합성했다.
[화학식 83]
Figure pct00090
(중합물 1a의 합성)
닛폰 소다 가부시키가이샤제의 폴리(p-하이드록시스타이렌)(VP2500, 분산도 1.10) 10g과 수산화 칼륨 수용액(수산화 칼륨 5.7g을 물 49g에 용해)을 혼합하고, 이것에 메탄올 20g을 첨가하여 40℃에서 수 분 교반했다. 거기에, 파라폼알데하이드 7.5g을 첨가하여 40℃에서 5시간 교반했다. 반응 종료 후, 반응액을 실온으로 되돌려, 아세트산 에틸 80ml와 희염산(1N) 80ml를 첨가하여, 분액 조작을 행했다. 수층이 중성이 될 때까지 유기층을 증류수로 세정한 후, 유기층을 농축했다. 진공 건조 후, 중합물 (1a) 13g을 얻었다.
1H-NMR(DMSO-d6: ppm)δ: 9.04, 8.39, 6.59, 4.11-5.50, 0.92-2.26(피크는 모두 브로드)
(고분자 화합물 A1의 합성)
중합물 (1a) 7g과 메탄올 100g을 혼합하고, 이것에 농황산 3.4g과 메탄올 10g을 혼합한 용액을 첨가하여 55℃에서 3시간 교반했다. 반응 종료 후, 반응액을 실온으로 되돌려, 아세트산 에틸 200g과 증류수 200g을 첨가하여, 분액 조작을 행했다. 유기층을 증류수로 3회 세정한 후, 유기층을 농축했다. 얻어진 분체를 아세트산 에틸 70g에 용해한 용액을, n-헥세인 700g에 적하했다. 분체를 여과하여, 진공 건조 후, 고분자 화합물 (A1) 5.4g을 얻었다.
1H-NMR(DMSO-d6: ppm)δ: 9.02, 8.09, 6.49, 4.27, 3.13, 0.81-2.22(피크는 모두 브로드)
다른 고분자 화합물 A2~A8도 상기와 대략 동일한 방법으로 합성했다. 한편, 고분자 화합물 A9는, 일본 공개특허공보 평2-170165호에 기재된 방법에 준하여 준비했다.
상기 합성예에서는, 합성되는 고분자 화합물이 2성분계보다 많아지는 경우가 있다. 예를 들면, 상기의 합성예 1에서는 3성분계, 즉, 가교성기의 수가 0인 반복 단위와, 가교성기의 수가 1인 반복 단위와, 가교성기의 수가 2인 반복 단위로 이루어져 있는 경우가 있다. 가교성기의 수가 1인 반복 단위의 비율 및 가교성기의 수가 2인 반복 단위의 비율을 구별하여 산출하는 것은 번잡하므로, 이하에 정의하는 가교성기율에 의하여, 고분자 화합물 중에 포함되는 가교성기수를 평가했다.
(가교성기율)=(가교성기가 도입된 개수)/(가교성기를 도입 가능한 반응점의 수)×100(%)
여기에서, 예를 들면 가교성기로서의 메틸올기를 도입 가능한 반응점의 수는, 페놀성 수산기가 결합하고 있는 방향환이 벤젠환인 경우, 오쏘위 2개소와 파라위 1개소의 최대 3개소이다. 상기 고분자 화합물 A1의 경우, 파라위가 고분자 주쇄와의 결합에 의하여 막혀 있기 때문에, 메틸올기를 도입 가능한 반응점의 수(메틸올화 가능한 개수)는 2가 된다. 상기 가교성기율은, 가교성기를 도입 가능한 점의 수소 원자의 적분값의 반응 전후에 있어서의 변화를, 1H-NMR로부터 추측함으로써 산출했다.
이하의 표에, 고분자 화합물의 가교성기율, 중량 평균 분자량 및 분산도를 나타낸다. 중량 평균 분자량 및 분산도는, GPC(용매: THF) 측정에 의하여 산출했다. 고분자 화합물 A1~A8의 구조는, 상기와 같이 3성분계 이상으로 되어 있는 경우가 있지만, 간략화를 위하여, 가교성기수 0의 반복 단위의 구조와 가교성기수 최대(반응 가능점이 모두 반응한 경우를 의미함)의 반복 단위의 구조의 2성분만을 기재한다. 한편, 고분자 화합물 A9는, 하기 표에 기재된 반복 단위에 대응하는 모노머의 중합에 의하여 얻어지는 것이며, 실질적으로는, 하기 표에 기재된 반복 단위의 1성분만을 갖는 것이다.
[표 8]
Figure pct00091
〔실시예 1E~33E, 및 비교예 1ER~5ER〕
(1) 지지체의 준비
산화 Cr 증착한 6인치 실리콘 웨이퍼(통상의 포토마스크 블랭크에 사용하는 차폐막 처리를 실시한 것)를 준비했다.
(2) 레지스트 도포액의 준비
하기 표 9에 나타내는 성분을 동 표에 나타내는 용제에 용해시키고, 각각을 0.04μm의 구멍 직경을 갖는 폴리테트라플루오로에틸렌 필터로 정밀 여과하여, 레지스트 도포 용액을 얻었다.
(3) 레지스트막의 제작
상기 6인치 실리콘 웨이퍼 상에 도쿄 일렉트론제 스핀 코터 Mark8을 이용하여 레지스트 도포 용액을 도포하고, 110℃, 90초간 핫플레이트 상에서 건조하여, 네거티브형 감활성광선성 또는 감방사선성막으로서 막두께 50nm의 레지스트막을 얻었다. 즉, 네거티브형 감활성광선성 또는 감방사선성막을 구비한 마스크 블랭크를 얻었다.
(4) 네거티브형 레지스트 패턴의 제작
이 레지스트막에, 전자선 묘화 장치((주)엘리오닉스사제; ELS-7500, 가속 전압 50KeV)를 이용하여, 패턴 조사를 행했다. 조사 후에, 120℃, 90초간 핫플레이트 상에서 가열하여, 2.38질량% 테트라메틸암모늄하이드로옥사이드(TMAH) 수용액을 이용하여 60초간 침지한 후, 30초간 물로 린스하여 건조했다.
(5) 레지스트 패턴의 평가
얻어진 패턴을 하기 방법으로, 감도, 해상력, PED 안정성, 및 라인 에지 러프니스(LER) 성능에 대하여 평가했다.
〔감도〕
얻어진 패턴의 단면 형상을 주사형 전자현미경((주)히타치 세이사쿠쇼제 S-4300)을 이용하여 관찰했다. 선폭 50nm의 1:1 라인 앤드 스페이스의 레지스트 패턴을 해상할 때의 노광량(전자선 조사량)을 감도로 했다. 이 값이 작을수록 감도가 높다.
단, 비교예 1ER~5ER에 대해서는, 선폭 50nm의 1:1 라인 앤드 스페이스 패턴을 해상할 수 없었기 때문에, 비교예 1ER에 대해서는 선폭 100nm의 1:1 라인 앤드 스페이스 패턴을, 비교예 2ER에 대해서는 선폭 80nm의 1:1 라인 앤드 스페이스 패턴을, 비교예 3ER에 대해서는 선폭 70nm의 1:1 라인 앤드 스페이스 패턴을, 비교예 4ER에 대해서는 선폭 60nm의 1:1 라인 앤드 스페이스 패턴을, 비교예 5ER에 대해서는 선폭 65nm의 1:1 라인 앤드 스페이스 패턴을 각각 해상할 때의 조사 에너지를 감도(Eop)로 했다.
〔해상력〕
상기의 감도를 나타내는 노광량(전자선 조사량)에 있어서의 한계 해상력(라인과 스페이스가 분리 해상하는 최소의 선폭)을 해상력(nm)으로 했다.
〔라인 에지 러프니스(LER) 성능〕
상기의 감도를 나타내는 노광량(전자선 조사량)으로, 선폭 50nm의 1:1 라인 앤드 스페이스 패턴을 형성했다. 그리고, 그 길이 방향 10μm에 포함되는 임의의 30점에 대하여, 주사형 전자현미경((주)히타치 세이사쿠쇼제 S-9220)을 이용하여, 에지가 있어야 할 기준선으로부터의 거리를 측정했다. 그리고, 이 거리의 표준 편차를 구하여 3σ를 산출했다. 값이 작을수록 양호한 성능인 것을 나타낸다.
단, 비교예 1ER~5ER에 대해서는, 선폭 50nm의 1:1 라인 앤드 스페이스 패턴을 해상할 수 없었기 때문에, 비교예 1ER에 있어서는 선폭 100nm의 1:1 라인 앤드 스페이스 패턴에 대하여, 비교예 2ER에 있어서는 선폭 80nm의 1:1 라인 앤드 스페이스 패턴에 대하여, 비교예 3ER에 있어서는 선폭 70nm의 1:1 라인 앤드 스페이스 패턴에 대하여, 비교예 4ER에 있어서는 선폭 60nm의 1:1 라인 앤드 스페이스 패턴에 대하여, 비교예 5ER에 있어서는 선폭 65nm의 1:1 라인 앤드 스페이스 패턴에 대하여, 각각 상기의 거리의 표준 편차를 구하여 3σ를 산출했다.
〔PED(Post Exposure time Delay) 안정성〕
선폭 50nm의 1:1 라인 앤드 스페이스 패턴의 선폭 치수가 50nm가 되는 노광량에 있어서, 노광 후, 신속하게 PEB 처리한 웨이퍼 상의 라인 선폭 치수(0h)와, 5시간 후에 PEB 처리한 웨이퍼 상의 라인 선폭 치수(5.0h)를 측장하여, 선폭 변화율을 이하의 식에 의하여 산출했다.
선폭 변화율(%)=|ΔCD(5.0h-0h)|nm/50nm
값이 작을수록 양호한 성능인 것을 나타내며, PED 안정성의 지표로 했다.
단, 비교예 1ER~5ER에 대해서는, 선폭 50nm의 1:1 라인 앤드 스페이스 패턴을 해상할 수 없었기 때문에, 비교예 1ER에 있어서는 선폭 100nm의 1:1 라인 앤드 스페이스 패턴의 선폭 치수가 100nm가 되는 노광량에 있어서, 상기의 선폭 변화율을 산출했다. 비교예 2ER에 있어서는 선폭 80nm의 1:1 라인 앤드 스페이스 패턴의 선폭 치수가 80nm가 되는 노광량에 있어서, 상기의 선폭 변화율을 산출했다. 비교예 3ER에 있어서는 선폭 70nm의 1:1 라인 앤드 스페이스 패턴의 선폭 치수가 70nm가 되는 노광량에 있어서, 상기의 선폭 변화율을 산출했다. 비교예 4ER에 있어서는 선폭 60nm의 1:1 라인 앤드 스페이스 패턴의 선폭 치수가 60nm가 되는 노광량에 있어서, 상기의 선폭 변화율을 산출했다. 비교예 5ER에 있어서는 선폭 65nm의 1:1 라인 앤드 스페이스 패턴의 선폭 치수가 65nm가 되는 노광량에 있어서, 상기의 선폭 변화율을 산출했다.
[표 9]
Figure pct00092
〔광산발생제〕
실시예에서 사용한 광산발생제의 구조를 광산발생제가 발생하는 산의 체적값과 함께 이하에 나타낸다. 여기에서, 산의 체적값은, 상기 화합물 (B)로부터 발생하는 산의 체적값과 동일한 산출 방법에 의하여 얻었다.
[화학식 84]
Figure pct00093
[화학식 85]
Figure pct00094
[화학식 86]
Figure pct00095
〔염기성 화합물〕
B1: 테트라뷰틸암모늄하이드록사이드
B2: 트라이(n-옥틸)아민
B3: 2,4,5-트라이페닐이미다졸
[화학식 87]
Figure pct00096
〔가교제〕
[화학식 88]
Figure pct00097
〔그 외의 고분자 화합물〕
그 외의 고분자 화합물 P1에 있어서의 각 반복 단위의 조성비(몰비; 왼쪽에서부터 순서대로 대응)와, 그 외의 고분자 화합물 P1 및 P2에 있어서의 중량 평균 분자량(Mw) 및 분산도(Mw/Mn)에 대해서도 이하에 나타낸다.
[화학식 89]
Figure pct00098
〔유기 카복실산〕
D1: 2-하이드록시-3-나프토산
D2: 2-나프토산
D3: 벤조산
〔계면활성제〕
W-1: PF6320(OMNOVA(주)제)
W-2: 메가팍 F176(다이닛폰 잉크 가가쿠 고교(주)제; 불소계)
W-3: 폴리실록세인 폴리머 KP-341(신에쓰 가가쿠 고교(주)제; 실리콘계)
〔용제〕
S1: 프로필렌글라이콜모노메틸에터아세테이트(1-메톡시-2-아세톡시프로페인)
S2: 프로필렌글라이콜모노메틸에터(1-메톡시-2-프로판올)
S3: 2-헵탄온
S4: 락트산 에틸
S5: 사이클로헥산온
S6: γ-뷰티로락톤
S7: 프로필렌카보네이트
[표 10]
Figure pct00099
상기 표로부터, 본 발명에 관한 패턴 형성 방법을 사용한 실시예 1E~33E에 따르면, 이것을 사용하지 않는 비교예 1ER~5ER과 비교하여, 감도, 해상력, PED 안정성, 및 LER 성능을 고차원으로 양립할 수 있는 것을 알 수 있었다.
〔실시예 1F~10F 및 비교예 1FR~4FR〕
(레지스트막의 제작)
상기 6인치 실리콘 웨이퍼 상에 도쿄 일렉트론제 스핀 코터 Mark8을 이용하여, 상기와 같이 하여 조제한 레지스트 도포 용액을 도포하고, 110℃, 90초간 핫플레이트 상에서 건조하여, 네거티브형 감활성광선성 또는 감방사선성막으로서 막두께 50nm의 레지스트막을 얻었다. 즉, 네거티브형 감활성광선성 또는 감방사선성막을 구비한 마스크 블랭크를 얻었다.
(레지스트 평가)
얻어진 레지스트막에 관하여, 하기 방법으로, 감도, 해상력, PED 안정성, 및 라인 에지 러프니스(LER) 성능에 대하여 평가했다.
〔감도〕
얻어진 레지스트막에, EUV 노광 장치(Exitech사제 MicroExposure Tool, NA0.3, Quadrupole, 아우터 시그마 0.68, 이너 시그마 0.36)를 이용하여, 노광량을 0~20.0mJ/cm2의 범위에서 0.1mJ/cm2씩 변경하면서, 선폭 50nm의 1:1 라인 앤드 스페이스 패턴의 반사형 마스크를 통과시켜, 노광을 행한 후, 110℃에서 90초간 베이크했다. 그 후, 2.38질량% 테트라메틸암모늄하이드로옥사이드(TMAH) 수용액을 이용하여 현상했다.
선폭 50nm의 1:1 라인 앤드 스페이스의 마스크 패턴을 재현하는 노광량을 감도로 했다. 이 값이 작을수록 감도가 높다.
단, 비교예 1FR~4FR에 대해서는, 선폭 50nm의 1:1 라인 앤드 스페이스 패턴을 해상할 수 없었기 때문에, 비교예 1FR에 대해서는 선폭 350nm의 1:1 라인 앤드 스페이스 패턴을, 비교예 2FR에 대해서는 선폭 100nm의 1:1 라인 앤드 스페이스 패턴을, 비교예 3FR에 대해서는 선폭 85nm의 1:1 라인 앤드 스페이스 패턴을, 비교예 4FR에 대해서는 선폭 60nm의 1:1 라인 앤드 스페이스 패턴을 각각 해상할 때의 조사 에너지를 감도(Eop)로 했다.
〔해상력〕
상기의 감도를 나타내는 노광량에 있어서의 한계 해상력(라인과 스페이스(라인:스페이스=1:1)가 분리 해상하는 최소의 선폭)을 해상력(nm)으로 했다.
〔라인 에지 러프니스(LER) 성능〕
상기의 감도를 나타내는 노광량으로, 선폭 50nm의 1:1 라인 앤드 스페이스 패턴을 형성했다. 그리고, 그 길이 방향 50μm에 있어서의 임의의 30점에 대하여, 주사형 전자현미경((주)히타치 세이사쿠쇼제 S-9220)을 이용하여, 에지가 있어야 할 기준선으로부터의 거리를 측정했다. 그리고, 이 거리의 표준 편차를 구하여 3σ를 산출했다. 값이 작을수록 양호한 성능인 것을 나타낸다.
단, 비교예 1FR~4FR에 대해서는, 선폭 50nm의 1:1 라인 앤드 스페이스 패턴을 해상할 수 없었기 때문에, 비교예 1FR에 있어서는 선폭 350nm의 1:1 라인 앤드 스페이스 패턴에 대하여, 비교예 2FR에 있어서는 선폭 100nm의 1:1 라인 앤드 스페이스 패턴에 대하여, 비교예 3FR에 있어서는 선폭 85nm의 1:1 라인 앤드 스페이스 패턴에 대하여, 비교예 4FR에 있어서는 선폭 60nm의 1:1 라인 앤드 스페이스 패턴에 대하여, 각각 상기의 거리의 표준 편차를 구하여 3σ를 산출했다.
〔PED(Post Exposure time Delay) 안정성〕
50nm의 라인 앤드 스페이스 1:1 패턴의 선폭 치수가 50nm가 되는 노광량에 있어서, 노광 후, 신속하게 PEB 처리한 라인 선폭 치수(0h)와, 5시간 후에 PEB 처리한 웨이퍼 상의 라인 선폭 치수(5.0h)를 측장하여, 선폭 변화율을 이하의 식에 의하여 산출했다.
선폭 변화율(%)=|ΔCD(5.0h-0h)|nm/50nm
값이 작을수록 양호한 성능인 것을 나타내며, PED 안정성의 지표로 했다.
단, 비교예 1FR~4FR에 대해서는, 선폭 50nm의 1:1 라인 앤드 스페이스 패턴을 해상할 수 없었기 때문에, 비교예 1FR에 있어서는 선폭 350nm의 1:1 라인 앤드 스페이스 패턴의 선폭 치수가 350nm가 되는 노광량에 있어서, 상기의 선폭 변화율을 산출했다. 비교예 2FR에 있어서는 선폭 100nm의 1:1 라인 앤드 스페이스 패턴의 선폭 치수가 100nm가 되는 노광량에 있어서, 상기의 선폭 변화율을 산출했다. 비교예 3FR에 있어서는 선폭 85nm의 1:1 라인 앤드 스페이스 패턴의 선폭 치수가 85nm가 되는 노광량에 있어서, 상기의 선폭 변화율을 산출했다. 비교예 4FR에 있어서는 선폭 60nm의 1:1 라인 앤드 스페이스 패턴의 선폭 치수가 60nm가 되는 노광량에 있어서, 상기의 선폭 변화율을 산출했다.
[표 11]
Figure pct00100
상기 표로부터, 본 발명에 관한 패턴 형성 방법을 사용한 실시예 1F~10F에 따르면, 이것을 사용하지 않는 비교예 1ER~4FR과 비교하여, 감도, 해상력, PED 안정성, 및 LER 성능을 고차원으로 양립할 수 있는 것을 알 수 있었다.

Claims (14)

  1. (A) 하기 일반식 (1)로 나타나는 반복 단위를 갖는 고분자 화합물과,
    (B) 활성광선 또는 방사선의 조사에 의하여, 체적이 130Å3 이상 2000Å3 이하인 산을 발생하는 화합물을 포함하는, 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
    [화학식 1]
    Figure pct00101

    식 중, R1은 수소 원자, 알킬기, 또는 할로젠 원자를 나타내고,
    R2와 R3은, 각각 독립적으로, 수소 원자, 알킬기, 사이클로알킬기, 아랄킬기, 또는 아릴기를 나타내며,
    R4는 수소 원자, 알킬기, 사이클로알킬기, 아릴기, 또는 아실기를 나타내고,
    L은 단결합 또는 2가의 연결기를 나타내며,
    Ar은 방향족기를 나타내고,
    m과 n은, 각각 독립적으로, 1 이상의 정수를 나타낸다.
  2. 청구항 1에 있어서,
    상기 일반식 (1)로 나타나는 반복 단위가, 하기 일반식 (2)로 나타나는 반복 단위인, 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
    [화학식 2]
    Figure pct00102

    식 중, R1, R2, R3 및 R4는, 일반식 (1) 중의 R1, R2, R3 및 R4와 동의이다. m'은 1 또는 2를 나타내고, n'은 1~3의 정수를 나타낸다.
  3. 청구항 2에 있어서,
    상기 일반식 (2)로 나타나는 반복 단위가, 하기 일반식 (3)으로 나타나는 반복 단위인, 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
    [화학식 3]
    Figure pct00103

    식 중, R2, R3, 및 R4는, 일반식 (1) 중의 R2, R3, 및 R4와 동의이다. n'은 1~3의 정수를 나타낸다.
  4. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 화합물 (B)가 설포늄염인, 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
  5. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,
    활성광선 또는 방사선의 조사에 의하여 염기성이 저하되는, 염기성 화합물 또는 암모늄염 화합물 (C)를 더 포함하는, 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
  6. 청구항 5에 있어서,
    상기 화합물 (C)가 하기 일반식 (4)로 나타나는 오늄염 화합물인, 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
    [화학식 4]
    Figure pct00104

    식 중, A는 황 원자 또는 아이오딘 원자를 나타내고, RA는 수소 원자 또는 유기기를 나타내며, RB는 (p+1)가의 유기기를 나타내고, X는 단결합 또는 연결기를 나타내며, AN은 질소 원자를 포함한 염기성 부위를 나타낸다. RA, RB, X 및 AN은 각각 복수 존재하는 경우, 그들은 동일해도 되고 달라도 된다.
    A가 황 원자인 경우, q는 1~3의 정수이며, o는 o+q=3의 관계를 충족시키는 정수이다.
    A가 아이오딘 원자인 경우, q는 1 또는 2이며, o는 o+q=2의 관계를 충족시키는 정수이다.
    p는 1~10의 정수를 나타내고, Y-는 음이온을 나타낸다.
    RA, X, RB, AN 중 적어도 2개는, 서로 결합하여 환을 형성해도 된다.
  7. 청구항 1 내지 청구항 6 중 어느 한 항에 있어서,
    상기 고분자 화합물 (A)의 분산도가 1.0~1.40인 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
  8. 청구항 1 내지 청구항 7 중 어느 한 항에 있어서,
    상기 고분자 화합물 (A)가, 하기 일반식 (5)로 나타나는 반복 단위의 중합체를 원료로 하는 제조법에 의하여 제조된 고분자 화합물인, 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
    [화학식 5]
    Figure pct00105

    식 중의 R1은, 상기 일반식 (1) 중의 R1과 동의이다.
  9. 청구항 8에 있어서,
    상기 일반식 (5)로 나타나는 반복 단위의 중합체의 분산도가 1.0~1.20인 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
  10. 청구항 3에 있어서,
    상기 일반식 (3) 중의 R2 및 R3이 모두 수소 원자인, 네거티브형 감활성광선성 또는 감방사선성 수지 조성물.
  11. 청구항 1 내지 청구항 10 중 어느 한 항에 기재된 네거티브형 감활성광선성 또는 감방사선성 수지 조성물을 이용하여 형성된 네거티브형 감활성광선성 또는 감방사선성막.
  12. 청구항 11에 기재된 네거티브형 감활성광선성 또는 감방사선성막을 구비한 마스크 블랭크.
  13. 청구항 1 내지 청구항 10 중 어느 한 항에 기재된 네거티브형 감활성광선성 또는 감방사선성 수지 조성물을 기판 상에 도포하여 막을 형성하는 공정,
    상기 막을 노광하는 공정, 및
    노광한 상기 막을 현상하여 네거티브형 패턴을 형성하는 공정을 포함하는 패턴 형성 방법.
  14. 청구항 13에 기재된 패턴 형성 방법을 포함하는 전자 디바이스의 제조 방법.
KR1020177027179A 2015-04-07 2016-03-04 네거티브형 감활성광선성 또는 감방사선성 수지 조성물, 네거티브형 감활성광선성 또는 감방사선성막, 패턴 형성 방법, 및 전자 디바이스의 제조 방법 KR102051343B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2015-078738 2015-04-07
JP2015078738 2015-04-07
PCT/JP2016/056856 WO2016163187A1 (ja) 2015-04-07 2016-03-04 ネガ型感活性光線性又は感放射線性樹脂組成物、ネガ型感活性光線性又は感放射線性膜、パターン形成方法、及び、電子デバイスの製造方法

Publications (2)

Publication Number Publication Date
KR20170125358A true KR20170125358A (ko) 2017-11-14
KR102051343B1 KR102051343B1 (ko) 2019-12-03

Family

ID=57073202

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177027179A KR102051343B1 (ko) 2015-04-07 2016-03-04 네거티브형 감활성광선성 또는 감방사선성 수지 조성물, 네거티브형 감활성광선성 또는 감방사선성막, 패턴 형성 방법, 및 전자 디바이스의 제조 방법

Country Status (4)

Country Link
JP (1) JP6402245B2 (ko)
KR (1) KR102051343B1 (ko)
TW (1) TWI697732B (ko)
WO (1) WO2016163187A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6459989B2 (ja) * 2016-01-20 2019-01-30 信越化学工業株式会社 レジスト材料及びパターン形成方法
JP6929070B2 (ja) * 2017-01-25 2021-09-01 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法
CN113474728A (zh) * 2019-02-28 2021-10-01 富士胶片株式会社 带图案的基板的制造方法、电路基板的制造方法、触控面板的制造方法及层叠体
JP7334687B2 (ja) * 2019-08-14 2023-08-29 信越化学工業株式会社 レジスト材料及びパターン形成方法
TW202128970A (zh) * 2019-08-29 2021-08-01 日商富士軟片股份有限公司 感光化射線性或感放射線性樹脂組成物、感光化射線性或感放射線性膜、圖案形成方法及電子裝置之製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170165A (ja) 1988-12-23 1990-06-29 Hitachi Ltd 放射線感応性組成物及びそれを用いたパターン形成法
JP2002099085A (ja) 2000-09-25 2002-04-05 Fuji Photo Film Co Ltd 電子線又はx線用ネガ型レジスト組成物
KR20120097461A (ko) * 2011-02-21 2012-09-04 후지필름 가부시키가이샤 레지스트막, 그 레지스트막을 사용한 레지스트 도포 마스크 블랭크스와 레지스트 패턴 형성방법, 및 화학 증폭형 레지스트 조성물
KR20150013832A (ko) * 2012-07-27 2015-02-05 후지필름 가부시키가이샤 수지 조성물 및 그것을 사용한 패턴 형성 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3798531B2 (ja) * 1997-09-26 2006-07-19 富士写真フイルム株式会社 ネガ型画像記録材料
JP2008250227A (ja) * 2007-03-30 2008-10-16 Fujifilm Corp ポジ型レジスト組成物及びこれを用いたパターン形成方法
JP4973876B2 (ja) * 2007-08-22 2012-07-11 信越化学工業株式会社 パターン形成方法及びこれに用いるパターン表面コート材
JP5856991B2 (ja) * 2012-05-21 2016-02-10 富士フイルム株式会社 化学増幅型レジスト組成物、ネガ型化学増幅型レジスト組成物、それを用いたレジスト膜、レジスト塗布マスクブランクス、フォトマスクの製造方法及びパターン形成方法、並びに、電子デバイスの製造方法
JP6127832B2 (ja) * 2012-09-05 2017-05-17 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
JP2015031850A (ja) * 2013-08-02 2015-02-16 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、それを用いたレジスト膜、レジスト塗布マスクブランクス、フォトマスク及びパターン形成方法、並びに、電子デバイスの製造方法及び電子デバイス
JP6122754B2 (ja) * 2013-09-30 2017-04-26 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、感活性光線性又は感放射線性膜を備えたマスクブランクス、パターン形成方法、及び電子デバイスの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170165A (ja) 1988-12-23 1990-06-29 Hitachi Ltd 放射線感応性組成物及びそれを用いたパターン形成法
JP2002099085A (ja) 2000-09-25 2002-04-05 Fuji Photo Film Co Ltd 電子線又はx線用ネガ型レジスト組成物
KR20120097461A (ko) * 2011-02-21 2012-09-04 후지필름 가부시키가이샤 레지스트막, 그 레지스트막을 사용한 레지스트 도포 마스크 블랭크스와 레지스트 패턴 형성방법, 및 화학 증폭형 레지스트 조성물
KR20150013832A (ko) * 2012-07-27 2015-02-05 후지필름 가부시키가이샤 수지 조성물 및 그것을 사용한 패턴 형성 방법

Also Published As

Publication number Publication date
KR102051343B1 (ko) 2019-12-03
JP6402245B2 (ja) 2018-10-10
WO2016163187A1 (ja) 2016-10-13
TW201636732A (zh) 2016-10-16
TWI697732B (zh) 2020-07-01
JPWO2016163187A1 (ja) 2018-02-01

Similar Documents

Publication Publication Date Title
KR101967626B1 (ko) 네가티브형 레지스트 조성물, 그것을 사용한 레지스트 막, 패턴 형성 방법, 및 레지스트 막을 구비한 마스크 블랭크스
KR101691432B1 (ko) 레지스트 패턴 형성 방법, 레지스트 패턴, 유기용제 현상용의 가교성 네가티브형 화학증폭형 레지스트 조성물, 레지스트 필름 및 레지스트 코팅 마스크 블랭크스
CN113166312B (zh) 感光化射线性或感放射线性树脂组合物、抗蚀剂膜、图案形成方法及电子器件的制造方法
KR101838040B1 (ko) 수지 조성물, 그것을 이용한 레지스트막, 레지스트 도포 마스크 블랭크, 레지스트 패턴 형성 방법, 및 포토마스크
KR101821620B1 (ko) 감활성광선성 또는 감방사선성 수지 조성물, 감활성광선성 또는 감방사선성막, 감활성광선성 또는 감방사선성막을 구비한 마스크 블랭크, 패턴 형성 방법, 전자 디바이스의 제조 방법, 및 전자 디바이스
KR101821234B1 (ko) 감활성광선성 또는 감방사선성 수지 조성물, 감활성광선성 또는 감방사선성막, 감활성광선성 또는 감방사선성막을 구비한 마스크 블랭크, 포토마스크, 패턴 형성 방법, 전자 디바이스의 제조 방법, 전자 디바이스, 화합물, 및 화합물의 제조 방법
KR20160090352A (ko) 감활성광선성 또는 감방사선성 수지 조성물, 감활성광선성 또는 감방사선성막, 감활성광선성 또는 감방사선성막을 구비한 마스크 블랭크, 포토마스크, 패턴 형성 방법, 전자 디바이스의 제조 방법, 및 전자 디바이스
KR20170131609A (ko) 패턴 형성 방법, 포토마스크의 제조 방법 및 전자 디바이스의 제조 방법
KR102051343B1 (ko) 네거티브형 감활성광선성 또는 감방사선성 수지 조성물, 네거티브형 감활성광선성 또는 감방사선성막, 패턴 형성 방법, 및 전자 디바이스의 제조 방법
CN108431690B (zh) 感光化射线性或感放射线性树脂组合物及其膜、图案形成方法及电子器件的制造方法
KR20150006035A (ko) 감활성광선성 또는 감방사선성 수지 조성물, 이것을 사용한 레지스트막 및 패턴형성방법, 반도체 디바이스의 제조방법, 및 반도체 디바이스
KR20130012916A (ko) 화학증폭형 레지스트 조성물, 및 그것을 사용한 레지스트막, 레지스트 도포 마스크 블랭크, 레지스트 패턴 형성 방법 및 포토마스크
KR101924363B1 (ko) 감활성광선성 또는 감방사선성 수지 조성물, 감활성광선성 또는 감방사선성막, 감활성광선성 또는 감방사선성막을 구비한 마스크 블랭크, 패턴 형성 방법, 전자 디바이스의 제조 방법, 및 전자 디바이스
KR101911300B1 (ko) 감활성광선성 또는 감방사선성 조성물과, 이를 이용한, 레지스트막, 마스크 블랭크, 레지스트 패턴 형성 방법, 및 전자 디바이스의 제조 방법
WO2017002430A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法及び電子デバイスの製造方法
JP6793088B2 (ja) 感活性光線性又は感放射線性組成物、レジスト膜、マスクブランクス、パターン形成方法、及び電子デバイスの製造方法
CN105593760B (zh) 感活性光线性或感放射线性树脂组合物、膜及化合物
KR20160106680A (ko) 감활성광선성 또는 감방사선성 수지 조성물, 레지스트막, 레지스트 도포 마스크 블랭크, 레지스트 패턴 형성 방법, 및 포토마스크
KR101981508B1 (ko) 감활성광선성 또는 감방사선성 수지 조성물, 감활성광선성 또는 감방사선성막, 감활성광선성 또는 감방사선성막을 구비한 마스크 블랭크, 패턴 형성 방법, 전자 디바이스의 제조 방법, 및 전자 디바이스
KR20130021323A (ko) 레지스트 패턴 형성 방법, 레지스트 패턴, 가교성 네거티브형 레지스트 조성물, 나노임프린트 몰드 및 포토마스크
KR20190026879A (ko) 감활성광선성 또는 감방사선성 수지 조성물, 감활성광선성 또는 감방사선성막, 패턴 형성 방법, 전자 디바이스의 제조 방법, 화합물, 및 수지

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant