KR20160136315A - 생체분자 시퀀싱 장치용 전극, 생체분자 시퀀싱 장치, 방법, 및 프로그램 - Google Patents

생체분자 시퀀싱 장치용 전극, 생체분자 시퀀싱 장치, 방법, 및 프로그램 Download PDF

Info

Publication number
KR20160136315A
KR20160136315A KR1020167025837A KR20167025837A KR20160136315A KR 20160136315 A KR20160136315 A KR 20160136315A KR 1020167025837 A KR1020167025837 A KR 1020167025837A KR 20167025837 A KR20167025837 A KR 20167025837A KR 20160136315 A KR20160136315 A KR 20160136315A
Authority
KR
South Korea
Prior art keywords
biomolecule
electrodes
shape
electrode
downstream side
Prior art date
Application number
KR1020167025837A
Other languages
English (en)
Inventor
토모지 카와이
마사테루 타니구치
타카히토 오시로
Original Assignee
퀀텀 바이오시스템즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀀텀 바이오시스템즈 가부시키가이샤 filed Critical 퀀텀 바이오시스템즈 가부시키가이샤
Publication of KR20160136315A publication Critical patent/KR20160136315A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/60Detection means characterised by use of a special device
    • C12Q2565/607Detection means characterised by use of a special device being a sensor, e.g. electrode

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명의 나노 갭 전극쌍(12)은, 시료에 포함되는 적어도 1종류 이상의 단분자(單分子)가 연결된 생체분자가 대향 위치를 통과할 때에, 터널 전류가 흐르도록 배치된 전극쌍(電極對)이며, 대향 위치(64)로부터 하류측으로 미리 정한 거리만큼 이격(離隔)된 위치에 있어서의 전계의 강도가, 대향 위치(64)로부터 상류측으로 상기 거리만큼 이격된 위치에 있어서의 전계의 강도보다 강해지도록, 상류측의 형상과 하류측의 형상을 다르게 한 전극쌍이다.

Description

생체분자 시퀀싱 장치용 전극, 생체분자 시퀀싱 장치, 방법, 및 프로그램{ELECTRODES FOR BIOMOLECULAR SEQUENCING DEVICE, AND BIOMOLECULAR SEQUENCING DEVICE, METHOD, AND PROGRAM}
[0001] 본 발명은, 생체분자 시퀀싱(sequencing) 장치용 전극, 생체분자 시퀀싱 장치, 방법, 및 프로그램에 관한 것이다.
[0002] 종래, 단백질을 구성하는 아미노산의 서열, 핵산을 구성하는 뉴클레오티드(nucleotide)의 서열, 당쇄(糖鎖)를 구성하는 단당(單糖)의 서열 등, 생체분자, 특히 생체 고분자를 구성하는 단분자(單分子)의 서열을 시퀀싱에 의해 결정하는 것이 행해지고 있다. 예컨대, 효소 분해법에 의한 HPLC(High performance liquid chromatography)법, 질량 분석, X선 결정 구조 해석, 에드먼 분해법(Edman degradation method) 등을 이용하여, 단백질의 서열을 결정하는 것이 행해지고 있다.
[0003] 또, 전극간 거리를 1㎚ 이하로 고정한 나노 갭(nano-gap) 전극을 이용하여, 1 분자를 흐르는 터널 전류를 측정함으로써, 단분자 식별을 행하는 시퀀싱 기술이 제안되어 있다. 또, 이러한 기술에 있어서, 시료가 흐르는 유로에 관하여 여러 가지 기술이 제안된 바 있다(예컨대, 특허문헌 1, 2 참조).
[0004] 일본 특허공개공보 제2010-227735호 일본 특허공개공보 제2012-110258호
J. M. van Ruitenbeek, A. Alvarez, I. Pineyro, C. Grahmann, P. Joyez, M. H. Devoret, D. Esteve, C. Urbina, Rev. Sci. Instrum. 67. 108(1996) M. Tsutsui, K. Shoji, M.Taniguchi, T. Kawai, Nano Lett. 8, 345 (2008) M. Tsutsui. M. Taniguchi, T. Kawai, Appl. Phys. Lett. 93, 163115 (2008)
[0005] 터널 전류에 의한 단분자 식별을 행하는 단분자 전기 계측법은, 시료 분자의 전자 에너지 상태를 직접 계측함으로써 단분자 식별이 가능해지는 방법이다. 종래의 단분자 전기 계측법에 있어서의 시료 분자의 도입 방법에서는, 열 요동에 따른 브라운 운동(Brownian motion)에 의한 우발적 확률 사상(事象)을 이용하고 있기 때문에, 분자가 센싱 전극 사이를 통과하는 빈도가 낮으며 또한 분자의 검출 정밀도가 낮다는 문제가 있었다.
[0006] 용액 중의 시료 분자의 도입 방법으로서는, 펌프압이나 전기 침투류(浸透流)를 이용한 방법이 있지만, 모두 분자 스케일로 제어할 수 있는 정상류(定常流)를 유기(誘起)시키는 것은 불가능하기 때문에, 분자가 센싱 전극 사이를 통과하는 빈도가 낮아지는 것을 해결하기에는 충분하지 못하다. 이 때문에, 종래의 터널 전류에 의한 단분자 전기 계측법에서는, 고농도의 순수 시료 용액을 이용하는 것과 같은 한정적인 조건에 있어서의 리시퀀싱(resequencing)을 목적으로 하는 경우밖에 적용할 수 없다는 문제가 있었다.
[0007] 본 발명은, 상기의 문제점을 감안하여 이루어진 것으로서, 생체분자를 구성하는 단분자를 고정밀도로 식별할 수 있는 생체분자 시퀀싱 장치용 전극, 생체분자 시퀀싱 장치, 방법, 및 프로그램을 제공하는 것을 목적으로 한다.
[0008] 상기 목적을 달성하기 위하여, 본 발명에 따른 생체분자 시퀀싱 장치용 전극은, 시료에 포함되는 적어도 1종류 이상의 단분자가 연결된 생체분자가 대향 위치를 통과할 때에, 터널 전류가 흐르도록 배치된 전극쌍을 구비하고, 상기 대향 위치로부터 하류측으로 미리 정한 거리만큼 이격된 위치에 있어서의 전계의 강도가, 상기 대향 위치로부터 상류측으로 상기 거리만큼 이격된 위치에 있어서의 전계의 강도보다 강해지도록, 상기 전극쌍의 상기 상류측의 형상과 상기 하류측의 형상을 다르게 하고 있다.
[0009] 본 발명에 의하면, 전극쌍의 대향 위치로부터 하류측으로 미리 정한 거리만큼 이격된 위치에 있어서의 전계의 강도가, 상기 대향 위치로부터 상류측으로 상기 거리만큼 이격된 위치에 있어서의 전계의 강도보다 강해지도록, 전극쌍의 상류측의 형상과 하류측의 형상을 다르게 하고 있다. 즉, 전극쌍의 형상이, 생체분자의 도입측인 상류측과, 생체분자의 배출측인 하류측에서 비대칭(非對稱)으로 되어 있다. 이로써, 시료의 생체분자의 전기 영동력(electrophoretic force)을 촉진하여 안정적인 정상류를 유기할 수 있으며, 생체분자를 안정적으로 전기 영동시킬 수 있기 때문에, 단분자를 고정밀도로 식별할 수가 있다.
[0010] 또한, 상기 상류측의 상류측 유로의 형상이, 상기 대향 위치로부터 상기 상류측으로 이격됨에 따라서 서서히 확대되는 형상인 동시에, 상기 하류측의 하류측 유로의 형상이, 상기 대향 위치로부터 상기 하류측으로 이격됨에 따라서 서서히 확대되는 형상이며, 상기 하류측 유로의 확대 각도가, 상기 상류측 유로의 확대 각도보다 작아지도록, 상기 전극쌍의 상기 상류측의 형상과 상기 하류측의 형상을 다르게 하여도 무방하다.
[0011] 또, 상기 전극쌍의 대향 방향과 직교하는 직교 방향에 있어서의 상기 하류측 유로의 길이가, 상기 직교 방향에 있어서의 상기 상류측 유로의 길이보다 길어지도록, 상기 전극쌍의 상기 상류측의 형상과 상기 하류측의 형상을 다르게 하여도 무방하다.
[0012] 또, 상기 직교 방향에 있어서의 상기 하류측 유로의 길이가, 상기 직교 방향에 있어서의 상기 상류측 유로의 길이의 2배 이상이며 또한 4배 이하인 것이 바람직하다.
[0013] 또, 상기 전극쌍의 가장 좁은 전극간의 중심을 중심으로 하는 원과 상기 하류측의 하류측 유로의 단부(端部)가 교차하여 형성되는 원호(圓弧)의 길이가, 상기 원과 상기 상류측의 상류측 유로의 단부가 교차하여 형성되는 원호의 길이보다 짧아지도록, 상기 전극쌍의 상기 상류측의 형상과 상기 하류측의 형상을 다르게 하여도 무방하다.
[0014] 또, 상기 전극쌍의 가장 좁은 전극간의 중심을 중심으로 하는 미리 정한 범위에 포함되는 상기 하류측의 하류측 유로의 면적이, 상기 미리 정한 범위에 포함되는 상기 상류측의 상류측 유로의 면적보다 작아지도록, 상기 전극쌍의 상기 상류측의 형상과 상기 하류측의 형상을 다르게 하여도 무방하다.
[0015] 또, 상기 전극쌍을, 전극간 거리가 각각 다른 복수의 전극쌍으로 하여도 무방하다.
[0016] 본 발명의 생체분자 시퀀싱 장치는, 상기 생체분자 시퀀싱 장치용 전극과, 상기 생체분자가 상기 생체분자 시퀀싱 장치용 전극의 전극쌍의 대향 위치를 통과했을 때에 생기는 터널 전류를 측정하는 측정부와, 상기 측정부에 의해 측정된 터널 전류로부터 얻어진 검출 물리량에 근거하여, 상기 생체분자를 구성하는 적어도 1종류의 단분자의 종류를 식별하는 식별부를 구비한다.
[0017] 본 발명의 생체분자 시퀀싱 방법은, 상기 생체분자 시퀀싱 장치용 전극을 구비한 생체분자 시퀀싱 장치에 있어서 실행되는 생체분자 시퀀싱 방법으로서, 상기 생체분자가 상기 생체분자 시퀀싱 장치용 전극의 전극쌍의 대향 위치를 통과했을 때에 생기는 터널 전류를 측정하고, 측정된 터널 전류로부터 얻어진 검출 물리량에 근거하여, 상기 생체분자를 구성하는 적어도 1종류의 단분자의 종류를 식별한다.
[0018] 본 발명의 생체분자 시퀀싱 프로그램은, 컴퓨터를, 상기 생체분자 시퀀싱 장치의 측정부 및 식별부로서 기능시킨다.
[0019] 본 발명에 의하면, 생체분자를 구성하는 단분자를 고정밀도로 식별할 수가 있다.
[0020] 도 1은 제 1 실시형태에 관한 생체분자 시퀀싱 장치의 구성을 나타내는 개략도이다.
도 2는 제 1 실시형태에 있어서의 나노 갭 전극쌍의 주변의 확대도이다.
도 3은 도 3의 일부 확대도이다.
도 4는 나노 갭 전극쌍에 전압이 인가됨에 따라 발생하는 전계에 대해 설명하기 위한 도면이다.
도 5는 나노 갭 전극쌍의 상류측 유로의 길이와 하류측 유로의 길이의 비가 1:1인 경우에 있어서의 리드 시간(read time)의 측정 결과를 나타내는 도면이다.
도 6은 나노 갭 전극쌍의 상류측 유로의 길이와 하류측 유로의 길이의 비가 1:2인 경우에 있어서의 리드 시간의 측정 결과를 나타내는 도면이다.
도 7은 나노 갭 전극쌍의 상류측 유로의 길이와 하류측 유로의 길이의 비가 1:4인 경우에 있어서의 리드 시간의 측정 결과를 나타내는 도면이다.
도 8은 나노 갭 전극쌍의 상류측 유로의 길이에 대한 하류측 유로의 길이와 리드 시간 간의 관계의 측정 결과를 나타내는 도면이다.
도 9는 제 1 실시형태에 있어서의 제어부의 기능적 구성을 나타내는 블록도이다.
도 10은 제 1 실시형태에 있어서의 생체분자 시퀀싱 처리를 나타내는 플로우 차트이다.
도 11은 판독하는 염기의 길이마다 리드 수(read count)를 측정한 결과를 나타내는 그래프이다.
도 12는 리드 전환의 횟수에 대한 정상적으로 리드된 횟수의 비율마다 리드 수를 측정한 결과를 나타내는 그래프이다.
도 13은 제 2 실시형태에 관한 생체분자 시퀀싱 장치의 구성을 나타내는 개략도이다.
도 14는 제 2 실시형태에 있어서의 제어부의 기능적 구성을 나타내는 블록도이다.
도 15는 제 2 실시형태에 있어서의 생체분자 시퀀싱 처리를 나타내는 플로우 차트이다.
[0021] 이하, 도면을 참조하여 본 발명의 실시형태를 상세하게 설명한다. 이하의 실시형태에서는, 전극 사이를 단분자가 통과했을 때에 흐르는 터널 전류를 측정함으로써 생체분자를 시퀀싱하는 경우에 대해 설명한다.
[0022] <제 1 실시형태>
[0023] 도 1에 나타내는 바와 같이, 제 1 실시형태에 관한 생체분자 시퀀싱 장치(10)는, 생체분자 시퀀싱 장치용 전극으로서의 나노 갭 전극쌍(12; 12a, 12b), 측정용 전원(18), 전류계(24), 및 제어부(26)를 포함하여 구성되어 있다. 이하에, 각 구성에 대해 설명한다.
[0024] 나노 갭 전극쌍(12)은, 대향하는 2개의 나노 갭 전극(12a, 12b)에 의해 구성되어 있다. 나노 갭 전극(12a, 12b)은, 시료(50)에 포함되는 생체분자를 구성하는 단분자(52)가 도 1에 있어서의 화살표 A방향으로 흘러 전극 사이를 통과할 때에, 터널 전류가 흐르는 것과 같은 거리를 두고 배치되어 있다. 여기서, 생체분자에는, 생체 고분자인 단백질, 펩티드, 핵산, 당쇄 등이 포함된다. 또, 생체분자를 구성하는 단분자에는, 단백질 또는 펩티드를 구성하는 아미노산, 핵산을 구성하는 뉴클레오티드, 당쇄를 구성하는 단당 등이 포함되지만, 이들로 한정되는 것은 아니다.
[0025] 전극간 거리가, 단분자(52)의 분자 직경보다 지나치게 길면, 나노 갭 전극쌍(12)의 전극 사이에 터널 전류가 흐르기 어려워지거나, 2개 이상의 단분자(52)가, 동시에 나노 갭 전극쌍(12)의 사이에 들어가거나 하게 된다. 반대로, 전극간 거리가 단분자(52)의 분자 직경보다 지나치게 짧으면, 나노 갭 전극쌍(12)의 전극 사이에 단분자(52)가 들어갈 수 없게 된다.
[0026] 전극간 거리가, 단분자(52)의 분자 직경보다 너무 길거나 너무 짧거나 하면, 단분자(52)를 통해 터널 전류를 검출하기가 어려워진다. 따라서, 전극간 거리는, 단분자(52)의 분자 직경보다 조금 짧거나, 동일하거나, 또는, 그것보다 조금 긴 정도인 것이 바람직하다. 예컨대, 전극간 거리는, 단분자(52)의 분자 직경의 0.5배~2배의 길이이며, 1배~1.5배의 길이인 것이 바람직하고, 1배~1.2배의 길이인 것이 보다 바람직하다.
[0027] 나노 갭 전극쌍(12)의 구체적인 제작 방법은 특별히 한정되지 않는다. 이하에, 제작 방법의 일례를 나타낸다.
[0028] 상술한 나노 갭 전극쌍(12)은, 공지의 나노 가공 기계적 파단(破斷) 접합법(nanofabricated mechanically-controllable break junctions)을 이용함으로써 제작할 수 있다. 상기 나노 가공 기계적 파단 접합법은, 피코미터(picometer) 이하의 분해능(分解能)으로, 기계적 안정성이 뛰어난 전극간 거리를 제어할 수 있는 우수한 방법이다. 나노 가공 기계적 파단 접합법을 이용한 전극쌍의 제작 방법은, 예컨대, J. M. van Ruitenbeek, A. Alvarez, I. Pineyro, C. Grahmann, P. Joyez, M. H. Devoret, D. Esteve, C. Urbina, Rev. Sci. Instrum. 67. 108(1996) 또는 M. Tsutsui, K. Shoji, M.Taniguchi, T. Kawai, Nano Lett. 8, 345 (2008)에 기재되어 있다. 전극의 재료로서는, 금 등의 임의의 금속을 들 수 있다.
[0029] 예컨대, 이하에 나타내는 순서에 따라 나노 갭 전극쌍(12)을 제작할 수 있다.
[0030] 우선, 나노 스케일(nano scale)의 금의 접합을, 전자선 묘화(描畵) 장치(일본전자사(JEOL Ltd.) 제조, 카탈로그 번호:JSM6500F)를 이용하여, 공지의 전자 빔 리소그래피 및 리프트 오프(lift-off) 기술에 의해, 폴리이미드로 코팅된 가요성(可撓性)의 금속 기판상에 패턴 성형한다. 이어서, 이러한 접합의 아래에 있는 폴리이미드를, 반응성 이온 에칭 장치(삼코(SAMCO)사 제조, 카탈로그 번호:10NR)를 이용하여, 공지의 에칭법(반응성 이온 에칭법 등)에 근거하는 에칭에 의해 제거한다.
[0031] 그리고, 기판을 접어 구부림으로써, 3점에서 접어 구부러진 구조의 나노 스케일의 금의 브릿지(bridge)를 제작한다. 이 경우, 피에조(piezo) 액추에이터(CEDRAT사 제조, 카탈로그 번호:APA150M)를 이용하여 기판의 접어 구부림(절곡(折曲))을 정밀하게 조작함으로써, 전극쌍의 전극간 거리를 피코미터 이하의 분해능으로 제어할 수가 있다.
[0032] 이어서, 제작한 상기 브릿지를 잡아당겨, 브릿지의 일부를 파단(破斷)시킨다. 브릿지를 더 잡아당겨, 파단에 의해 생긴 갭의 크기(전극간 거리)가 목적하는 단분자(52)의 길이가 되도록 설정한다. 예컨대 단분자(52)가, 생체 고분자인 단백질을 적당한 길이로 분해한 펩티드를 구성하는 아미노산 분자인 경우, 그 길이는 약 1㎚이다. 이 경우, 자기(自己) 파단 기술을 이용하여 브릿지의 잡아당김(인장(引張))을 조절함으로써 전극쌍의 전극간 거리를 정확하게 제어할 수가 있다(M. Tsutsui, K. Shoji, M. Taniguchi, T. Kawai, Nano Lett. 8, 345 (2008), 및 M. Tsutsui. M. Taniguchi, T. Kawai, Appl. Phys. Lett. 93, 163115 (2008) 참조).
[0033] 구체적으로는, 데이터 수집(集錄) 보드(data acquisition board)(내셔널 인스트루먼트사 제조, 카탈로그 번호:NIPCIe-6321)를 이용하여, 저항 피드백법(resistance feedback method)(M. Tsutsui, K. Shoji, M. Taniguchi, T. Kawai, Nano Lett. 8, 345 (2008), 및 M. Tsutsui, M. Taniguchi, T. Kawai, Appl. Phys. Lett. 93, 163115 (2008) 참조)에 의해, 프로그래밍된 접합의 연신 속도(elongation speed) 하에서, 10㏀의 직렬의 저항을 이용하여, 0.1V의 DC 바이어스 전압(Vb)을 상기 브릿지에 인가하여, 금의 나노 접합을 잡아당겨, 브릿지를 파단시킨다. 그리고, 브릿지를 더 잡아당겨, 파단에 의해 생긴 갭의 크기(전극간 거리)가, 목적하는 길이가 되도록 설정한다. 이와 같이 하여, 나노 갭 전극쌍(12)을 형성한다.
[0034] 측정용 전원(18)은, 나노 갭 전극쌍(12)에 대해 전압을 인가한다. 측정용 전원(18)에 의해 나노 갭 전극쌍(12)에 인가하는 전압의 크기는 특별히 한정되지 않으며, 예컨대, 0.25V~0.75V로 할 수 있다. 측정용 전원(18)의 구체적인 구성은 특별히 한정되지 않으며, 적절히, 공지된 전원 장치를 이용할 수가 있다.
[0035] 전류계(24)는, 측정용 전원(18)에 의해 전압이 인가된 나노 갭 전극쌍(12)의 전극 사이를 단분자(52)가 통과했을 때에 생기는 터널 전류를 측정한다. 전류계(24)의 구체적인 구성은 특별히 한정되지 않으며, 적절히, 주지(周知)의 전류 측정 장치를 이용하면 된다.
[0036] 다음으로, 생체분자 시퀀싱 장치(10)의 나노 갭 전극쌍(12) 주변의 구체적인 구성에 대해 설명한다.
[0037] 도 2에는, 나노 갭 전극쌍(12)의 전극간 주변의 확대 평면도를 나타내었다. 도 2에 나타내는 바와 같이, 나노 갭 전극(12a, 12b)은 좌우 대칭의 형상이며, 각각 선단부가 가늘게 되어 있다.
[0038] 도 3에는, 도 2의 파선으로 나타낸 영역(60)의 확대 평면도를 나타내었다. 나노 갭 전극쌍(12)의 전극간 거리(d)는, 상술한 바와 같이, 단분자(52)의 분자 직경보다 조금 짧거나, 동일하거나, 또는, 그것보다 조금 긴 정도인 것이 바람직하며, 예컨대 수 백pm~1.0㎚이다.
[0039] 또, 도 3에 나타내는 바와 같이, 나노 갭 전극(12a, 12b)의 선단부는 좌우 대칭의 형상이며, 전극 사이가 가장 좁아지는 대향 위치(64)로부터 하류측으로 미리 정한 거리만큼 이격된 위치에 있어서의 전계의 강도가, 대향 위치(64)로부터 상류측으로 상기 거리만큼 이격된 위치에 있어서의 전계의 강도보다 강해지도록, 나노 갭 전극쌍(12)의 상류측의 형상과 하류측의 형상이 다르게 되어 있다. 여기서, 상류측의 형상이란, 대향 위치(64)로부터 도 3에 있어서 상측의 형상을 말하며, 하류측의 형상이란, 대향 위치(64)로부터 도 3에 있어서 하측의 형상을 말한다.
[0040] 구체적으로는, 시료(50)가 흐르는 유로 중 상류측의 상류측 유로(62A)의 형상이, 대향 위치(64)로부터 상류측으로 이격됨에 따라서 서서히 확대되는 형상인 동시에, 하류측의 하류측 유로(62B)의 형상이, 대향 위치(64)로부터 하류측으로 이격됨에 따라서 서서히 확대되는 형상이며, 하류측 유로(62B)의 확대 각도가, 상류측 유로(62A)의 확대 각도보다 작아지도록, 나노 갭 전극(12a, 12b)의 상류측의 형상과 하류측의 형상이 다르게 되어 있다.
[0041] 이로써, 나노 갭 전극(12a, 12b)에 전압이 인가되었을 때에 상류측 유로(62A)에 형성되는 전계의 전기력선(電氣力線)의 밀도보다, 하류측 유로(62B)에 형성되는 전계의 전기력선의 밀도가 높아진다.
[0042] 따라서, 도 4에 나타내는 바와 같이, 대향 위치(64)로부터 하류측으로 미리 정한 거리(c)만큼 이격된 위치(68B)에 있어서의 전계의 강도는, 대향 위치(64)로부터 상류측으로 같은 거리(c)만큼 이격된 위치(68A)에 있어서의 전계의 강도보다 강해진다. 이로써, 시료(50)에 포함되는 생체분자의 전기 영동력을 촉진하여 안정적인 정상류를 유기할 수 있으며, 생체분자를 안정적으로 전기 영동시킬 수 있기 때문에, 단분자(52)를 고정밀도로 식별할 수가 있다.
[0043] 또한, 나노 갭 전극쌍(12)의 형상은, 대향 위치(64)로부터 하류측으로 미리 정한 거리(c)만큼 이격된 위치(68B)에 있어서의 전계의 강도가, 대향 위치(64)로부터 상류측으로 같은 거리(c)만큼 이격된 위치(68A)에 있어서의 전계의 강도보다 강해지도록, 상류측과 하류측에서 형상을 다르게 한 것이면, 도 3, 4에 나타내는 형상으로 한정되지 않는다.
[0044] 또, 도 4에 나타내는 나노 갭 전극쌍(12)은, 가장 좁은 전극간의 중심(70)을 중심으로 하는 원과 하류측 유로(62B)의 단부(端部)(나노 갭 전극쌍(12)의 하류측의 단부)가 교차하여 형성되는 원호의 길이가, 상기 원과 상류측 유로(62A)의 단부(나노 갭 전극쌍(12)의 상류측의 단부)가 교차하여 형성되는 원호의 길이보다 짧아지도록, 상류측과 하류측에서 형상을 다르게 한 것이라 할 수도 있다.
[0045] 또, 도 4에 나타내는 나노 갭 전극쌍(12)은, 가장 좁은 전극간의 중심(70)을 중심으로 하는 미리 정한 범위에 포함되는 하류측 유로(62B)의 면적이, 상기 미리 정한 범위에 포함되는 상류측 유로(62A)의 면적보다 작아지도록, 상류측과 하류측에서 형상을 다르게 한 것이라 할 수도 있다. 여기서, 미리 정한 범위는, 예컨대 원, 정사각형, 직사각형 등의 대칭인 형상으로 나타내어진다.
[0046] 또, 도 3에 나타내는 바와 같이, 나노 갭 전극쌍(12)은, 나노 갭 전극(12a, 12b)의 대향 방향(B)과 직교하는 직교 방향(A)에 있어서의 하류측 유로(62B)의 길이(b)가, 상기 직교 방향에 있어서의 상류측 유로(62A)의 길이(a)보다 길어지도록, 상류측과 하류측에서 형상이 다르게 되어 있다. 여기서, 상류측 유로(62A)의 길이(a)는, 대향 위치(64)로부터 나노 갭 전극쌍(12)의 상류측의 단부(72A)까지의 거리이며, 하류측 유로(62B)의 길이는, 대향 위치(64)로부터 나노 갭 전극쌍(12)의 하류측의 단부(72B)까지의 거리이다.
[0047] 그리고, 직교 방향(A)에 있어서의 하류측 유로(62B)의 길이(b)가, 직교 방향(A)에 있어서의 상류측 유로(62A)의 길이(a)의 2배 이상인 것이 바람직하다.
[0048] 도 5에는, 종래와 같이, 나노 갭 전극쌍(12)의 상류측의 형상과 하류측의 형상이 동일한 경우, 즉 상류측 유로(62A)의 길이(a)와 하류측 유로(62B)의 길이(b)의 비가 1:1인 경우에 있어서의 염기의 리드 시간의 그래프를 나타내었다. 그래프 중의 굵은 선(80)은, 염기의 이상적인 리드 시간을 나타내는 직선이며, 1 염기당 약 1㎳이다. 또, 그래프 중의 복수의 얇은 선(82)은, 각 염기의 리드 시간을 나타내고 있고, 파선(破線; 84)은, 복수의 얇은 선(82)의 평균치를 나타낸다. 여기서, 복수의 얇은 선(82)이 파선(84)에 가까워질수록 리드 시간의 편차가 작다고 할 수 있으며, 파선(84)이 굵은 선(80)에 가까워질수록 이상적인 리드 시간에 가깝다고 할 수 있으나, 도 5에 나타내는 바와 같이, 종래 구성의 경우에는, 복수의 얇은 선(82)의 편차가 크고 또한 파선(84)은 굵은 선(80)으로부터 떨어져 있다.
[0049] 도 6에는, 본 실시형태에 관한 나노 갭 전극쌍(12)과 같이, 상류측의 형상과 하류측의 형상을 다르게 한 경우에 있어서의 염기의 리드 시간의 그래프를 나타내었다. 도 6은, 상류측 유로(62A)의 길이(a)와 하류측 유로(62B)의 길이(b)의 비가 1:2인 경우에 있어서의 염기의 리드 시간의 그래프를 나타내었다. 도 6에 나타내는 바와 같이, 도 5의 종래 구성의 경우와 비교하면, 복수의 얇은 선(82)이 파선(84)에 보다 가까워져 있어, 리드 시간의 편차가 작다고 할 수 있다.
[0050] 또, 도 7에는, 상류측 유로(62A)의 길이(a)와 하류측 유로(62B)의 길이(b)의 비가 1:4인 경우에 있어서의 염기의 리드 시간의 그래프를 나타내었다. 도 7에 나타내는 바와 같이, 도 5의 종래 구성의 경우와 비교하면, 복수의 얇은 선(82)이 파선(84)에 가까워져 있어, 리드 시간의 편차가 작다고 할 수 있다. 또, 파선(84)이 굵은 선(80)에 가까워져 있어, 리드 시간이 이상적인 시간에 가깝다고 할 수 있다.
[0051] 또, 도 8에는, 상류측 유로(62A)의 길이(a)와 하류측 유로(62B)의 길이(b)의 비를 1:Ratio로 한 경우에 있어서의 핵산 염기쇄의 리드 시간(ms)을 측정한 결과를 나타내었다. 또한, 도 8의 측정 결과는, 터널 전류에 따른 시그널의 계측 취득 속도를 10㎑로 하여 측정한 결과이다. 또, 도면 중의 PRatio는, Ratio 및 리드 시간의 각각의 평균치를 나타내는 위치에 플롯(plot)되어 있다. 또, PRatio를 중심으로 한 세로 선(縱線; VL)은, 측정한 리드 시간의 범위(편차)를 나타내고, PRatio를 중심으로 한 가로 선(橫線; HL)은, 측정한 Ratio의 범위(편차)를 나타내고 있다. 리드 시간은, 1㎳ 부근에서 편차가 작아지는 것이 이상적인데, 도 8에 나타내는 바와 같이, Ratio=2~4인 경우가 리드 시간의 평균치가 1㎳에 가까우며 또한 편차가 작기 때문에 바람직하다.
[0052] 이상으로부터, 하류측 유로(62B)의 길이(b)는, 직교 방향(A)에 있어서의 상류측 유로(62A)의 길이(a)의 2배 이상이고 또한 4배 이하인 것이 바람직하다.
[0053] 제어부(26)는, 생체분자 시퀀싱 장치(10)의 각 구성을 제어하는 동시에, 측정된 터널 전류에 따른 시그널에 근거하여, 단분자(52)의 종류를 식별한다.
[0054] 제어부(26)는, CPU(Central Processing Unit), RAM(Random Access Memory), 및 후술하는 생체분자 시퀀싱 프로그램이 저장된 ROM(Read Only Memory) 등을 구비한 컴퓨터로 구성할 수 있다. 이러한 컴퓨터로 구성되는 제어부(26)는, 기능적으로는, 도 9에 나타내는 바와 같이, 측정 제어부(32) 및 식별부(34)를 포함한 구성으로 나타낼 수 있다. 이하, 각 부에 대해 상세히 기술한다.
[0055] 측정 제어부(32)는, 나노 갭 전극쌍(12)의 전극 사이에 흐르는 터널 전류를 측정하도록 전류계(24)를 제어한다. 터널 전류의 측정 시간은 한정되지 않지만, 예컨대, 10분간, 20분간, 30분간, 40분간, 50분간, 1시간으로 할 수 있다. 측정 시간은, 단분자(52)의 길이에 따라 적절히 설정하면 된다.
[0056] 또, 측정 제어부(32)는, 전류계(24)로 측정된 터널 전류의 전류치를 취득하고, 취득한 전류치로부터 컨덕턴스(conductance)를 계산하여, 컨덕턴스-시간 프로파일을 작성한다. 컨덕턴스는, 터널 전류를 측정했을 때에 나노 갭 전극쌍(12)에 인가되어 있던 전압(V)으로, 터널 전류의 전류치를 나눔으로써, 계산할 수 있다. 컨덕턴스를 이용함으로써, 나노 갭 전극쌍(12) 사이에 인가하는 전압치가 측정시마다 다른 경우에도, 통일된 기준의 프로파일을 얻을 수가 있다. 또한, 측정시마다 나노 갭 전극쌍(12) 사이에 인가하는 전압치를 일정하게 한 경우에는, 터널 전류의 전류치와 컨덕턴스는, 동등하게 취급할 수가 있다.
[0057] 또, 측정 제어부(32)는, 전류계(24)에 의해 측정된 터널 전류를, 전류 증폭기를 이용하여 일단 증폭하고 나서 취득하도록 하여도 무방하다. 전류 증폭기를 이용함으로써, 미약한 터널 전류의 값을 증폭할 수 있기 때문에, 터널 전류를 고감도로 측정할 수 있게 된다. 전류 증폭기로서는, 예컨대, 시판(市販)의 가변 고속 전류 앰프(펨토(Femto)사 제조, 카탈로그 번호:DHPCA-100)를 이용할 수가 있다.
[0058] 식별부(34)는, 측정 제어부(32)에 의해 작성된 컨덕턴스-시간 프로파일로부터 얻어지는 검출 물리량과, 상대 컨덕턴스 테이블(36)에 저장된, 기지(旣知)의 종류(known type)의 단분자(52)에 대한 상대 컨덕턴스를 비교함으로써, 단분자(52)의 종류를 식별한다. 본 실시형태에서는, 검출 물리량은, 측정 제어부(32)에 의해 작성된 컨덕턴스-시간 프로파일의 측정점마다의 컨덕턴스이다. 여기서, 상대 컨덕턴스는, 기지의 종류의 단분자(52)로부터 측정한, 단분자(52)의 종류마다의 상대 컨덕턴스이며, 단분자(52)의 종류마다 측정한 컨덕턴스의 최대치로, 단분자(52) 각각의 1 분자의 컨덕턴스를 나눔으로써 산출한 것이다.
[0059] 다음으로, 제 1 실시형태에 관한 생체분자 시퀀싱 장치(10)의 작용에 대해 설명한다.
[0060] 우선, 적어도 1종류 이상의 식별 대상인 단분자(52)를 용액에 용해시킨다. 용액은, 특별히 한정되지 않는다. 예컨대, 초순수(超純水)를 이용할 수가 있다. 초순수는, 예컨대, 밀리포어(Millipore Corp.)사의 Milli-Q Integral 3(장치명)(Milli-Q Integral 3/5/10/15(카탈로그 번호))를 이용함으로써 제작할 수 있다. 용액 중의 단분자(52)의 농도는, 특별히 한정되지 않지만, 예컨대, 0.01~1.0μM로 할 수 있다.
[0061] 그리고, 시료 속에 나노 갭 전극쌍(12)을 배치하고, 측정용 전원(18)에 의해, 나노 갭 전극쌍(12)에 전압을 인가한다. 그리고, 제어부(26)를 구성하는 컴퓨터의 CPU가, ROM에 저장된 생체분자 시퀀싱 프로그램을 판독하여 실행함으로써, 생체분자 시퀀싱 장치(10)에 의해, 도 10에 나타내는 생체분자 시퀀싱 처리가 행해진다.
[0062] 단계 S10에서는, 측정 제어부(32)가, 전류계(24)를 제어하여, 나노 갭 전극쌍(12)의 전극 사이를 단분자(52)가 통과할 때에 생긴 터널 전류를, 소정 시간 측정시킨다.
[0063] 다음으로, 단계 S12에서, 측정 제어부(32)가, 측정된 터널 전류의 전류치를 취득하고, 측정점마다 컨덕턴스를 계산하여, 컨덕턴스-시간 프로파일을 작성한다.
[0064] 다음으로, 단계 S14에서, 식별부(34)가, 상대 컨덕턴스 테이블(36)로부터, 식별 대상인 단분자(52)의 상대 컨덕턴스를 취득한다.
[0065] 다음으로, 단계 S16에서, 식별부(34)가, 상기 단계 S12에서 작성된 컨덕턴스-시간 프로파일과, 상기 단계 S14에서 취득한 상대 컨덕턴스를 비교하여, 각 시그널이 나타내는 단분자의 종류를 식별한다. 다음으로, 단계 S18에서, 식별부(34)가, 식별 결과를 출력하고, 단분자 식별 처리를 종료한다.
[0066] 이상 설명한 바와 같이, 제 1 실시형태에 관한 생체분자 시퀀싱 장치에 의하면, 대향 위치(64)로부터 하류측의 전계의 강도가 상류측의 전계의 강도보다 강해지도록, 나노 갭 전극쌍(12)의 상류측의 형상과 하류측의 형상을 다르게 하고 있기 때문에, 시료(50)에 포함되는 생체분자의 전기 영동력을 촉진하여 안정적인 정상류를 유기할 수 있으며, 생체분자를 안정적으로 전기 영동시킬 수 있기 때문에, 단분자(52)를 고정밀도로 식별할 수가 있다.
[0067] 도 11에는, 종래와 같이 나노 갭 전극쌍(12)의 상류측의 형상과 하류측의 형상을 대칭으로 한 경우(Sim)와, 본 실시형태와 같이, 나노 갭 전극쌍(12)의 상류측의 형상과 하류측의 형상을 비대칭으로 한 경우(Usim)의 각각에 대하여, 판독하는 염기의 길이마다 리드 수를 측정한 결과를 나타내었다. 도 11에 나타내는 바와 같이, 본 실시형태와 같이 나노 갭 전극쌍(12)의 상류측의 형상과 하류측의 형상을 비대칭으로 하는 것이, 전체적으로 리드 수가 증가됨을 알 수 있다.
[0068] 또, 도 12에는, 상기와 마찬가지로 나노 갭 전극쌍(12)이 종래 구성인 경우(Sim)와 본 실시형태인 경우(Usim)의 각각에 대하여, 염기의 영동 방향이 전환되는 리드 전환의 횟수에 대한 정상적으로 리드된 횟수의 비율마다, 리드 수를 측정한 결과를 나타내었다. 도 12에 나타내는 바와 같이, 횡축의 수치가 클수록 리드 전환의 발생 빈도가 적은 것을 나타내는데, 종래 구성에 비해 본 발명이 리드 전환이 감소되어, 정상(正常)의 리드 가능한 빈도가 높음을 알 수가 있다.
[0069] 이와 같이, 본 실시형태에 관한 나노 갭 전극쌍(12)과 같이, 상류측의 형상과 하류측의 형상을 비대칭으로 함으로써, 리드 수를 증가시킬 수 있는 동시에, 리드 전환을 감소시킬 수 있음을 알 수 있었다.
[0070] <제 2 실시형태>
[0071] 다음으로, 제 2 실시형태에 대해 설명한다. 또한, 제 1 실시형태에 관한 생체분자 시퀀싱 장치(10)와 동일한 부분에 대해서는, 동일 부호를 사용하고 상세한 설명을 생략한다.
[0072] 도 13에 나타내는 바와 같이, 제 2 실시형태에 관한 생체분자 시퀀싱 장치(210)는, 나노 갭 전극(12A, 12B, 12C), 측정용 전원(18), 전류계(24), 및 제어부(226)를 포함하여 구성되어 있다.
[0073] 나노 갭 전극(12a, 12B, 12C)의 각각의 구성은, 제 1 실시형태에 있어서의 나노 갭 전극쌍(12)과 마찬가지이다. 나노 갭 전극(12A, 12B, 12C)의 각각은, 각 전극 간의 중심이 동일축 상에 나란하도록, 절연체(14)를 통해 적층되어 있다. 즉, 나노 갭 전극(12A, 12B, 12C)의 각각의 전극 사이에 의해, 단분자(52)가 통과하는 하나의 통로를 형성하고 있다. 나노 갭 전극(12a)의 전극간 거리는 d1, 나노 갭 전극쌍(12B)의 전극간 거리는 d2, 나노 갭 전극쌍(12C)의 전극간 거리는 d3으로 각각 다르다. 도 13의 예에서는, d1>d2>d3이다. 예컨대, d1=1.0㎚, d2=0.7㎚, d3=0.5㎚로 할 수가 있다.
[0074] 제어부(226)는, 도 14에 나타내는 바와 같이, 측정 제어부(232) 및 식별부(234)를 구비한 구성으로 나타낼 수 있다.
[0075] 측정 제어부(232)는, 나노 갭 전극(12a, 12B, 12C)의 각각의 전극 사이에서 생긴 터널 전류를, 각각 측정하도록 전류계(24)를 제어한다. 또, 측정 제어부(232)는, 전류계(24)에 의해 측정된 전극간 거리마다의 터널 전류의 전류치를 취득하여 컨덕턴스를 계산하고, 전극간 거리마다의 컨덕턴스-시간 프로파일을 작성한다.
[0076] 식별부(234)는, 측정 제어부(32)에 의해 작성된 전극간 거리마다의 컨덕턴스-시간 프로파일로부터 얻어지는 검출 물리량과, 상대 컨덕턴스 테이블(236)에 저장된, 기지(旣知)의 종류의 단분자(52)에 대한 상대 컨덕턴스를 비교함으로써, 단분자(52)의 종류를 식별한다.
[0077] 다음으로, 제 2 실시형태에 관한 생체분자 시퀀싱 장치(210)를 이용하여 행해지는 생체분자 시퀀싱 방법에 대해 설명한다.
[0078] 우선, 제 1 실시형태와 마찬가지로, 적어도 1종류 이상의 식별 대상인 단분자(52)를 용액에 용해시킨다. 그리고, 시료 속에 나노 갭 전극(12A, 12B, 12C)을 배치하고, 측정용 전원(18)에 의해, 나노 갭 전극(12A, 12B, 12C)의 각각에 전압을 인가한다. 그리고, 제어부(226)를 구성하는 컴퓨터의 CPU가, ROM에 저장된 생체분자 시퀀싱 프로그램을 판독하여 실행함으로써, 생체분자 시퀀싱 장치(210)에 의해, 도 15에 나타내는 생체분자 시퀀싱 처리가 행해진다.
[0079] 단계 S20에서는, 측정 제어부(232)가, 전류계(24)를 제어하여, 나노 갭 전극(12A, 12B, 12C)의 각각의 전극 사이에 의해 형성된 하나의 통로를 단분자(52)가 통과할 때에 생긴 터널 전류를, 소정 시간 측정하게 한다.
[0080] 다음으로, 단계 S22에서, 측정 제어부(232)가, 측정된 터널 전류의 전류치를 취득하고, 측정점마다 컨덕턴스를 계산하여, 컨덕턴스-시간 프로파일을, 전극간 거리마다 작성한다.
[0081] 다음으로, 단계 S24에서, 식별부(234)가, 변수(i)에 1을 설정한다.
[0082] 다음으로, 단계 S26에서, 식별부(234)가, 상대 컨덕턴스 테이블(236)로부터, 전극간 거리(di)에 대응한 단분자(52)의 상대 컨덕턴스, 즉, 전극간 거리(di)로 식별 가능한 식별 대상인 단분자(52)의 상대 컨덕턴스를 취득한다.
[0083] 다음으로, 단계 S28에서, 식별부(234)가, 상기 단계 S22에서 작성된 전극간 거리(di)의 컨덕턴스-시간 프로파일과, 상기 단계 S26에서 취득한 상대 컨덕턴스를 비교하여, 각 시그널이 나타내는 단분자의 종류를 식별한다.
[0084] 다음으로, 단계 S30에서, 식별부(234)가, 모든 전극간 거리(di)에 대해 처리를 종료했는지 여부를 판정한다. 미처리(未處理)의 전극간 거리(di)가 존재할 경우에는, 단계 S32로 이행하여, i를 1만큼 인크리먼트(increment)하고, 단계 S26으로 돌아온다. 모든 전극간 거리(di)에 대해 처리가 종료된 경우에는, 단계 S34로 이행하여, 식별부(234)가, 식별 결과를 출력하고, 생체분자 시퀀싱 처리를 종료한다.
[0085] 이상 설명한 바와 같이, 제 2 실시형태에 관한 생체분자 시퀀싱 장치에 의하면, 복수의 전극간 거리의 나노 갭 전극 사이에서 생긴 터널 전류로부터 얻어진 컨덕턴스를 이용함으로써, 제 1 실시형태의 효과에 추가하여, 보다 정밀도가 높은 식별을 행할 수가 있다.
[0086] 또, 제 2 실시형태에서는, 전극간 거리가 다른 복수의 나노 갭 전극쌍을 설치하는 경우에 대해 설명하였으나, 1개의 나노 갭 전극쌍의 전극간 거리를 변경하는 기구(mechanism)를 마련한 구성으로 하여도 무방하다. 예컨대, 지렛대의 원리를 이용하여, 힘점, 받침점, 및 작용점의 기하학적 배치를 조정함으로써, 전극간 거리를 변경하는 구성으로 할 수 있다. 보다 구체적으로는, 피에조 소자(piezo element)에 의해 나노 갭 전극쌍의 일부를 밀어올림으로써, 작용점이 되는 전극 단부를 이동시켜, 전극간 거리를 변경하는 구성으로 할 수 있다. 이 경우, 피에조 소자의 밀어올림 거리와 전극간 거리 간의 대응 관계에 근거하여, 원하는 전극간 거리로 설정할 수가 있다.
[0087] 또, 본 발명은, 상기 각 실시형태에서 설명한 각 구성으로 한정되는 것은 아니며, 특허청구범위에 나타낸 범위에서 다양한 변경이 가능하고, 다른 실시형태에 각각 개시된 기술적 수단을 적절히 조합하여 얻어지는 실시형태에 대해서도 본 발명의 기술적 범위에 포함된다.
[0088] 또, 본원 명세서 중에 있어서, 프로그램이 미리 인스톨되어 있는 실시형태로서 설명하였으나, 외부의 기억장치나 기록 매체 등에 저장된 프로그램을 수시로 읽어 들이고, 또 인터넷을 통해 다운로드하여 실행하도록 하여도 무방하다. 또, 해당 프로그램을, 컴퓨터 판독이 가능한 기록 매체에 저장하여 제공할 수도 있다.
[0089] 10, 210; 생체분자 시퀀싱 장치
12, 12A, 12B, 12C; 나노 갭 전극쌍
18; 측정용 전원
24; 전류계
26, 226; 제어부
32, 232; 측정 제어부
34, 234; 식별부
36, 236; 상대 컨덕턴스 테이블
50; 시료
52; 단분자

Claims (10)

  1. 시료에 포함되는 적어도 1종류 이상의 단분자(單分子)가 연결된 생체분자가 대향 위치를 통과할 때에, 터널 전류가 흐르도록 배치된 전극쌍(電極對)을 구비하고,
    상기 대향 위치로부터 하류측으로 미리 정한 거리만큼 이격(離隔)된 위치에 있어서의 전계의 강도가, 상기 대향 위치로부터 상류측으로 상기 거리만큼 이격된 위치에 있어서의 전계의 강도보다 강해지도록, 상기 전극쌍의 상기 상류측의 형상과 상기 하류측의 형상을 다르게 한
    생체분자 시퀀싱(sequencing) 장치용 전극.
  2. 제 1항에 있어서,
    상기 상류측의 상류측 유로(流路)의 형상이, 상기 대향 위치로부터 상기 상류측으로 이격됨에 따라서 서서히 확대되는 형상인 동시에, 상기 하류측의 하류측 유로의 형상이, 상기 대향 위치로부터 상기 하류측으로 이격됨에 따라서 서서히 확대되는 형상이며, 상기 하류측 유로의 확대 각도가, 상기 상류측 유로의 확대 각도보다 작아지도록, 상기 전극쌍의 상기 상류측의 형상과 상기 하류측의 형상을 다르게 한
    생체분자 시퀀싱 장치용 전극.
  3. 제 2항에 있어서,
    상기 전극쌍의 대향 방향과 직교하는 직교 방향에 있어서의 상기 하류측 유로의 길이가, 상기 직교 방향에 있어서의 상기 상류측 유로의 길이보다 길어지도록, 상기 전극쌍의 상기 상류측의 형상과 상기 하류측의 형상을 다르게 한
    생체분자 시퀀싱 장치용 전극.
  4. 제 3항에 있어서,
    상기 직교 방향에 있어서의 상기 하류측 유로의 길이가, 상기 직교 방향에 있어서의 상기 상류측 유로의 길이의 2배 이상이며 또한 4배 이하인
    생체분자 시퀀싱 장치용 전극.
  5. 제 1항 내지 제 4항 중 어느 한 항에 있어서,
    상기 전극쌍의 가장 좁은 전극간의 중심을 중심으로 하는 원과 상기 하류측의 하류측 유로의 단부(端部)가 교차하여 형성되는 원호의 길이가, 상기 원과 상기 상류측의 상류측 유로의 단부가 교차하여 형성되는 원호의 길이보다 짧아지도록, 상기 전극쌍의 상기 상류측의 형상과 상기 하류측의 형상을 다르게 한
    생체분자 시퀀싱 장치용 전극.
  6. 제 1항 내지 제 5항 중 어느 한 항에 있어서,
    상기 전극쌍의 가장 좁은 전극간의 중심을 중심으로 하는 미리 정한 범위에 포함되는 상기 하류측의 하류측 유로의 면적이, 상기 미리 정한 범위에 포함되는 상기 상류측의 상류측 유로의 면적보다 작아지도록, 상기 전극쌍의 상기 상류측의 형상과 상기 하류측의 형상을 다르게 한
    생체분자 시퀀싱 장치용 전극.
  7. 제 1항 내지 제 6항 중 어느 한 항에 있어서,
    상기 전극쌍을, 전극간 거리가 각각 다른 복수의 전극쌍으로 한
    생체분자 시퀀싱 장치용 전극.
  8. 제 1항 내지 제 7항 중 어느 한 항에 기재된 생체분자 시퀀싱 장치용 전극과,
    상기 생체분자가 상기 생체분자 시퀀싱 장치용 전극의 전극쌍의 대향 위치를 통과했을 때에 생기는 터널 전류를 측정하는 측정부와,
    상기 측정부에 의해 측정된 터널 전류로부터 얻어진 검출 물리량에 근거하여, 상기 생체분자를 구성하는 적어도 1종류의 단분자의 종류를 식별하는 식별부
    를 구비한 생체분자 시퀀싱 장치.
  9. 제 1항 내지 제 7항 중 어느 한 항에 기재된 생체분자 시퀀싱 장치용 전극을 구비한 생체분자 시퀀싱 장치에 있어서 실행되는 생체분자 시퀀싱 방법으로서,
    상기 생체분자가 상기 생체분자 시퀀싱 장치용 전극의 전극쌍의 대향 위치를 통과했을 때에 생기는 터널 전류를 측정하고,
    측정된 터널 전류로부터 얻어진 검출 물리량에 근거하여, 상기 생체분자를 구성하는 적어도 1종류의 단분자의 종류를 식별하는
    생체분자 시퀀싱 방법.
  10. 컴퓨터를,
    제 8항에 기재된 생체분자 시퀀싱 장치의 측정부 및 식별부로서 기능시키기 위한 생체분자 시퀀싱 프로그램.
KR1020167025837A 2014-02-20 2015-02-20 생체분자 시퀀싱 장치용 전극, 생체분자 시퀀싱 장치, 방법, 및 프로그램 KR20160136315A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014031084A JP2015154750A (ja) 2014-02-20 2014-02-20 生体分子シーケンシング装置用電極、生体分子シーケンシング装置、方法、及びプログラム
JPJP-P-2014-031084 2014-02-20
PCT/JP2015/054796 WO2015125920A1 (ja) 2014-02-20 2015-02-20 生体分子シーケンシング装置用電極、生体分子シーケンシング装置、方法、及びプログラム

Publications (1)

Publication Number Publication Date
KR20160136315A true KR20160136315A (ko) 2016-11-29

Family

ID=53878418

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167025837A KR20160136315A (ko) 2014-02-20 2015-02-20 생체분자 시퀀싱 장치용 전극, 생체분자 시퀀싱 장치, 방법, 및 프로그램

Country Status (6)

Country Link
US (1) US20170306396A1 (ko)
EP (1) EP3109627A4 (ko)
JP (1) JP2015154750A (ko)
KR (1) KR20160136315A (ko)
CN (1) CN106461583A (ko)
WO (1) WO2015125920A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108540A1 (ja) 2010-03-03 2011-09-09 国立大学法人大阪大学 ヌクレオチドを識別する方法および装置、ならびにポリヌクレオチドのヌクレオチド配列を決定する方法および装置
CA2929929A1 (en) 2013-09-18 2015-03-26 Quantum Biosystems Inc. Biomolecule sequencing devices, systems and methods
JP2015077652A (ja) 2013-10-16 2015-04-23 クオンタムバイオシステムズ株式会社 ナノギャップ電極およびその製造方法
US10438811B1 (en) 2014-04-15 2019-10-08 Quantum Biosystems Inc. Methods for forming nano-gap electrodes for use in nanosensors
WO2015170782A1 (en) 2014-05-08 2015-11-12 Osaka University Devices, systems and methods for linearization of polymers
WO2024048422A1 (ja) * 2022-08-29 2024-03-07 国立大学法人大阪大学 分子メモリ、分子メモリの製造方法、分子メモリのデコード方法および分子メモリをデコードするためのデバイス

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081896A1 (en) * 2000-04-24 2001-11-01 Eagle Research & Development, Llc An ultra-fast nucleic acid sequencing device and a method for making and using the same
US6905586B2 (en) * 2002-01-28 2005-06-14 Ut-Battelle, Llc DNA and RNA sequencing by nanoscale reading through programmable electrophoresis and nanoelectrode-gated tunneling and dielectric detection
US7279337B2 (en) * 2004-03-10 2007-10-09 Agilent Technologies, Inc. Method and apparatus for sequencing polymers through tunneling conductance variation detection
US20050227239A1 (en) * 2004-04-08 2005-10-13 Joyce Timothy H Microarray based affinity purification and analysis device coupled with solid state nanopore electrodes
JP2010227735A (ja) * 2009-03-25 2010-10-14 Tohoku Univ マイクロ流路デバイス
JP2012110258A (ja) * 2010-11-22 2012-06-14 Nippon Steel Chem Co Ltd 塩基配列の決定方法及び塩基配列の決定方法に用いる測定用デバイス
US20140231274A1 (en) * 2011-11-22 2014-08-21 Panasonic Corporation Single molecule detection method and single molecule detection apparatus for biological molecule, and disease marker testing apparatus

Also Published As

Publication number Publication date
EP3109627A1 (en) 2016-12-28
US20170306396A1 (en) 2017-10-26
WO2015125920A1 (ja) 2015-08-27
JP2015154750A (ja) 2015-08-27
EP3109627A4 (en) 2018-04-18
CN106461583A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
KR20160136315A (ko) 생체분자 시퀀싱 장치용 전극, 생체분자 시퀀싱 장치, 방법, 및 프로그램
US20160377591A1 (en) Devices, systems and methods for sequencing biomolecules
US8003319B2 (en) Systems and methods for controlling position of charged polymer inside nanopore
US9182369B2 (en) Manufacturable sub-3 nanometer palladium gap devices for fixed electrode tunneling recognition
US20190242846A1 (en) Devices and methods for creation and calibration of a nanoelectrode pair
JP6334115B2 (ja) 生体分子シーケンシング装置、方法、及びプログラム
US9322820B2 (en) System and apparatus for nanopore sequencing
JP5106116B2 (ja) 粒子および電磁放射線の検出、測定および制御
JP6209122B2 (ja) 孔形成方法及び測定装置
US20100188109A1 (en) Electrode systems and their use in the characterization of molecules
US11981963B2 (en) Methods for nucleic acid sequencing by tunneling recognition
KR20140138526A (ko) 폴리뉴클레오티드의 염기 서열을 결정하는 방법, 및 폴리뉴클레오티드의 염기 서열을 결정하는 장치
WO2017087908A1 (en) Nanochannel devices and methods for analysis of molecules
US20180280968A1 (en) Nanopore devices for sensing biomolecules
US11333623B2 (en) Hole forming method and hole forming apparatus
Sadar et al. Confined electrochemical deposition in sub-15 nm space for preparing nanogap electrodes
Willmott et al. Tunable elastomeric nanopores
JP2017187443A (ja) 分析装置用ポリマー膜、分析装置、分析装置用基板、分析装置用ポリマー膜の製造方法、および分析装置用基板の製造方法
JP7440375B2 (ja) 孔形成方法及び孔形成装置
Wang et al. Screening of Short Single-and Double-stranded DNA Molecules Using Silicon Nitride Nanopores
Iqbal An electrical framework for detection and characterization of DNA using nanoscale silicon based sensors
JP2007163188A (ja) 試料導入装置及び試料導入方法