KR20160107098A - 촬상 장치, 그 제어 방법 및 그 컴퓨터 프로그램 - Google Patents

촬상 장치, 그 제어 방법 및 그 컴퓨터 프로그램 Download PDF

Info

Publication number
KR20160107098A
KR20160107098A KR1020160021083A KR20160021083A KR20160107098A KR 20160107098 A KR20160107098 A KR 20160107098A KR 1020160021083 A KR1020160021083 A KR 1020160021083A KR 20160021083 A KR20160021083 A KR 20160021083A KR 20160107098 A KR20160107098 A KR 20160107098A
Authority
KR
South Korea
Prior art keywords
angular velocity
subject
exposure period
motion
camera
Prior art date
Application number
KR1020160021083A
Other languages
English (en)
Other versions
KR101951076B1 (ko
Inventor
마사유키 무쿠나시
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20160107098A publication Critical patent/KR20160107098A/ko
Application granted granted Critical
Publication of KR101951076B1 publication Critical patent/KR101951076B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/188Capturing isolated or intermittent images triggered by the occurrence of a predetermined event, e.g. an object reaching a predetermined position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19602Image analysis to detect motion of the intruder, e.g. by frame subtraction
    • G08B13/19608Tracking movement of a target, e.g. by detecting an object predefined as a target, using target direction and or velocity to predict its new position
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19617Surveillance camera constructional details
    • G08B13/1963Arrangements allowing camera rotation to change view, e.g. pivoting camera, pan-tilt and zoom [PTZ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Computer Vision & Pattern Recognition (AREA)

Abstract

촬상 장치(100)에서, 제어부(132)는 촬상 장치의 움직임이 피사체의 움직임을 추종할 때, 촬상 장치의 움직임을 검출하는 제1 검출기(107)로부터 얻어지는 제1 움직임 정보 및 피사체의 움직임을 검출하는 제2 검출기(135)로부터 얻어지는 제2 움직임 정보를 이용하여 광학 소자(104)를 제어한다. 산출부(134)는 노광 기간 전의 복수의 시간에서 검출된 제2 움직임 정보를 이용하여 노광 기간 중의 상기 피사체의 움직임에 대한 예측 정보를 산출한다. 제어부는 예측 정보를 이용하여 노광 기간 중에 광학 소자를 제어한다.

Description

촬상 장치, 그 제어 방법 및 그 컴퓨터 프로그램{IMAGE CAPTURING APPARATUS, CONTROL METHOD THEREOF AND COMPUTER PROGRAM THEREFOR}
본 발명은 소위 "팔로우 샷(follow shot)"에 있어서의 상의 흔들림(image blur)을 저감하는 기술에 관한 것이다.
팔로우 샷은, 움직이고 있는 피사체의 속도감의 표현을 가능하게 하는 것으로, 촬영자가 피사체의 움직임에 맞춰서 촬상 장치(카메라)을 패닝함으로써, 피사체가 정지하고 배경이 흐르는 화상을 취득하는 촬영 기법이다. 그러한 팔로우 샷에 있어서, 패닝 속도가 피사체의 움직임 속도보다 빠르거나 늦으면 흐릿한 피사체 상을 포함하는 화상이 생성된다.
일본 특허 공개 04-163535호 공보는, 촬영(노광)전에 산출한 카메라에 대한 피사체의 각속도와 각속도 센서로부터 얻은 촬영중의 카메라의 각속도에 기초하여 촬영중에 광학계의 일부 또는 이미지 센서를 이동시켜서 피사체 상의 흔들림을 보정하는 카메라를 개시하고 있다. 이 카메라는 카메라에 대한 상대적인 각속도(이하 "상대 피사체 각속도"라고 함)을 피사체 상의 상면(image plane) 상에서의 화상의 변위량과 각속도 센서로부터의 출력을 이용하여 산출한다; 변위량은 시간적으로 순차적인 화상으로부터 검출된다.
일본 특허 공개 04-163535호 공보에서 개시된 카메라는, 상대 피사체 각속도가 상의 흔들림이 보정되는 촬영중에 있어서 일정하게 유지되고 있는 것을 전제로 하고 있다. 그러나, 피사체(예를 들어, 열차)가 등속 직선 운동을 하고 있어도, 피사체의 이동 방향에 직교하는 방향에 위치하는 카메라로부터 측정되는 상대 피사체 각속도는 변화(가속 또는 감속)한다. 이 경우, 상대 피사체 각속도의 측정 시간과 실제의 촬영 시간 사이에 타임 래그가 있을 경우에, 그 타임 래그 중에 있어서의 상대 피사체 각속도의 변화를 무시하면 촬영중에 있어서의 상 흔들림을 적절히 보정하는 것은 불가능하게 된다.
본 발명은 카메라로부터 검출된 피사체의 속도가 변화하는 경우에서도 피사체 상의 흔들림이 저감된 양호한 팔로우 샷을 행할 수 있는 촬상 장치를 제공한다.
본 발명은 피사체의 촬상을 수행하도록 구성된 촬상 장치를 제공한다. 이 장치는 상기 촬상 장치의 움직임이 상기 피사체의 움직임을 추종할 때, 상기 촬상 장치의 움직임을 검출하는 제1 검출기로부터 얻어지는 제1 움직임 정보 및 상기 피사체의 움직임을 검출하는 제2 검출기로부터 얻어지는 제2 움직임 정보를 이용하여 광학 소자를 제어하도록 구성된 제어부, 노광 기간 전의 복수의 시간에서 검출된 상기 제2 정보를 이용하여 상기 노광 기간 중의 상기 피사체의 움직임에 대한 예측 정보를 산출하도록 구성된 산출부를 포함한다. 상기 제어부는 상기 예측 정보를 이용하여 상기 노광 기간 중에 상기 광학 소자를 제어한다.
본 발명은 그것의 다른 양태로서 피사체의 촬상을 수행하도록 구성된 촬상 장치를 제공한다. 이 장치는 상기 촬상 장치의 움직임이 상기 피사체의 움직임을 추종할 때, 상기 촬상 장치의 움직임을 검출하는 제1 검출기로부터 얻어지는 제1 움직임 정보 및 상기 피사체의 움직임을 검출하는 제2 검출기로부터 얻어지는 제2 움직임 정보를 이용하여 광학 소자를 제어하도록 구성된 제어부, 및 노광 기간 전의 복수의 시간에서 검출된 상기 제2 정보를 이용하여 상기 노광 기간 중의 상기 피사체의 움직임에 대한 예측 정보를 산출하도록 구성된 산출부를 포함한다. 상기 제어부는 상기 예측 정보와 상기 노광 기간 중에 얻어지는 상기 제1 움직임 정보를 이용하여 상기 노광 기간 중에 상기 광학 소자를 제어한다.
본 발명은 그것의 또 다른 양태로서 촬상 장치에서 상기와 같이 광학 소자를 제어하는 방법, 컴퓨터 프로그램 또는 그 제어 프로그램을 저장하는 비일시적 컴퓨터 판독 가능 저장 매체를 제공한다.
본 발명의 다른 양태들은 도면들에 관련하여 아래에 기술되는 실시예들로부터 명백할 것이다.
도 1은 본 발명의 실시예 1인 카메라에 있어서의 각속도 설정 처리를 나타내는 흐름도.
도 2는 실시예 1의 카메라에 있어서의 팔로우 샷 보조 처리를 나타내는 흐름도.
도 3은 실시예 1의 카메라 구성을 도시하는 블록도.
도 4는 실시예 1의 카메라에 있어서의 상 안정화 시스템의 구성을 도시하는 블록도.
도 5는 실시예 1의 카메라에 있어서의 패닝 제어를 나타내는 흐름도.
도 6은 실시예 1의 카메라에 있어서의 팔로우 샷 보조 모드에서의 시프트 구동 제어 시스템의 구성을 도시하는 블록도.
도 7은 실시예 1의 카메라에 있어서의 패닝 판정 역치를 설명하는 도면.
도 8은 실시예 1에 있어서의 상대 피사체 각속도와 그 변화(각가속도)를 나타내는 그래프.
도 9는 실시예 1에 있어서의 상대 피사체 각속도를 설명하는 도면.
도 10은 실시예 1에 있어서의 특이점을 설명하는 도면.
도 11은 실시예 1에 있어서의 0°특이점의 판정을 설명하는 도면.
도 12는 본 발명의 실시예 2의 카메라에 있어서의 각속도 설정 처리를 나타내는 흐름도.
도 13a 내지 13d는 각각 실시예 2에 있어서의 2개의 지점간의 거리와 각도를 설명하는 도면.
도 14는 실시예 3의 카메라에 있어서의 팔로우 샷 보조 처리를 나타내는 흐름도.
도 15는 본 발명의 실시예 4인 렌즈 교환식 카메라 시스템의 구성을 도시하는 블록도.
도 16은 실시예 4의 교환 가능 렌즈에 있어서의 팔로우 샷 보조 제어 시스템의 구성을 도시하는 블록도.
도 17은 실시예 4에 있어서의 카메라 측 팔로우 샷 보조 처리를 나타내는 흐름도.
도 18은 실시예 4에 있어서의 렌즈 측 팔로우 샷 보조 처리를 나타내는 흐름도.
도 19는 본 발명의 실시예 5인 렌즈 교환식 카메라 시스템의 카메라 측 팔로우 샷 보조 처리를 나타내는 흐름도.
도 20은 실시예 5에 있어서의 교환 가능 렌즈 측 팔로우 샷 보조 처리를 나타내는 흐름도.
도 21은 실시예 5의 변형예에 있어서의 카메라 측 팔로우 샷 보조 처리를 나타내는 흐름도.
도 22는 실시예 5의 변형예에 있어서의 렌즈 측 팔로우 샷 보조 처리를 나타내는 흐름도.
이하 첨부 도면들을 참고하여 본 발명의 예시적인 실시예들을 설명한다.
[실시예 1]
도 3은 본 발명의 제1 실시예(실시예 1)인 촬상 장치로서의 렌즈 교환식 카메라(이하 간단히 "카메라"라고 함)(100)의 구성을 나타내고 있다.
카메라(100)는 피사체로부터의 광이 광학 상(피사체 상)을 형성하게 하는 촬영 광학계인 촬영 렌즈 유닛(101)을 구비하고 있다. 촬영 렌즈 유닛(101)은 주 렌즈 계(102)와, 촬영 렌즈 유닛(101)의 광축이 연장하는 광축 방향으로 이동해서 촬영 렌즈 유닛(101)의 초점 거리를 변경하는 줌 렌즈(103)와, 광축 방향으로 이동해서 초점 조절을 행하는 포커스 렌즈(도시하지 않음)를 포함한다. 또한, 촬영 렌즈 유닛(101)은 그 일부를 구성하는 광학 소자인 시프트 렌즈(104)를 포함한다.
시프트 렌즈(104)는 팔로우 샷 보조를 위해서 광축에 대하여 직교하는 방향(이하 수정하여 "시프트 방향"이라고 함)으로 이동(시프트) 가능한 시프트 소자이다. 팔로우 샷 보조는 유저가 카메라(100)의 패닝에 의해 카메라의 방향을 변화시키면서 움직이는 피사체의 피사체 상을 촬영하는 팔로우 샷에서, 피사체 상의 흔들림을 저감하기 위해 수행된다. 또한, 시프트 렌즈(104)는 유저의 손 떨림에 의한 카메라(100)의 요동(이하 요동은 "카메라 요동"이라고 함)에 기인하는 피사체 상의 흔들림을, 시프트 렌즈(104)를 광축에 대하여 직교하는 방향으로 시프트 함으로써, 광학적으로 보정하는 상 안정화 기능도 갖는다.
카메라(100)는 줌 인코더(105)와, 시프트 위치 센서(106)와, 각속도 센서(107)와, 각속도 증폭기(108)와, 카메라 제어용 마이크로컴퓨터(130)와, 시프트 드라이버(109)와, 시프트 위치 증폭기(110)를 구비하고 있다.
줌 인코더(105)는 줌 렌즈(103)의 광축 방향에서의 위치를 검출한다. 시프트 위치 센서(106)는 시프트 렌즈(104)의 시프트 방향에서의 위치를 검출한다. 각속도 센서(107)는 제1 움직임 검출기로서 광축에 대하여 직교하는 방향들(피치(pitch) 및 요(yaw) 방향들)에 있어서의 카메라(100)의 움직임 속도인 각속도(각속도 정보)를 검출한다. 각속도 증폭기(108)는 각속도 센서(107)로부터의 출력을 증폭한다.
카메라 제어용 마이크로컴퓨터(이하 간단히 "카메라 마이크로컴퓨터"라고 함)(130)는 카메라(100) 전체의 동작을 제어한다. 시프트 드라이버(109)는 음성 코일 모터 등의 시프트 액추에이터와 그 구동 회로를 포함하고 시프트 액추에이터를 구동함으로써 시프트 렌즈(104)을 시프트시킨다. 시프트 위치 증폭기(110)는 시프트 위치 센서(106)로부터의 출력을 증폭한다.
또한, 카메라(100)는 셔터(111)와, 이미지 센서(112)와, 아날로그 신호 처리 회로(113)와, 카메라 신호 처리 회로(114)와, 타이밍 제너레이터(115)와, 조작 스위치들(116)과, 셔터 모터(117)와, 셔터 드라이버(118)를 구비하고 있다.
이미지 센서(112)는 CMOS 센서나 CCD 센서 등의 광전 변환 소자에 의해 구성되어, 촬영 렌즈 유닛(101)에 의해 형성된 피사체 상을 광전 변환해서 아날로그 전기 신호를 출력한다. 셔터(111)는 이미지 센서(112)의 노광 기간(바꾸어 말해서, 노광의 시간 길이)을 제어한다.
아날로그 신호 처리 회로(AFE)(113)는 이미지 센서(112)로부터 출력된 아날로그 신호를 증폭하고, 증폭 후의 아날로그 신호를 디지털 신호로서의 촬상 신호로 변환해서 카메라 신호 처리 회로(114)에 출력한다.
카메라 신호 처리 회로(114)는 촬상 신호에 대하여 각종 화상 처리를 행함으로써 영상 신호(촬영 영상)를 생성한다. 촬영 영상(또는 이것으로부터 취출된 정지 화상)은 카메라(100)에 대하여 착탈이 가능한 메모리 카드(119)에 기록되거나, 액정 패널 등의 표시 소자에 의해 구성되는 모니터(이하 "LCD"라고 함)(120)에 표시되거나 한다.
타이밍 제너레이터(115)는 이미지 센서(112)와 아날로그 신호 처리 회로(113)의 동작 시간들을 설정한다.
조작 스위치들(116)은 전원 스위치, 릴리즈 스위치, 모드 선택 스위치 등의 각종 스위치와, 다이얼을 포함한다. 본 실시예의 카메라(100)는 모드 선택 스위치의 조작을 통해서 팔로우 샷 보조 모드와 통상 촬영 모드 간에 전환이 가능하다. 셔터 모터(117)는 셔터 드라이버(118)에 의해 구동되어 셔터(111)가 차징(charging) 동작(닫는 동작)을 행하게 한다.
카메라 신호 처리 회로(114)는 촬영 영상 신호를 구성하는 프레임 화상들로부터 움직임 벡터를 검출하는 제2 검출기로서 움직임 벡터 검출부(135)을 포함한다.
또한, 카메라 마이크로컴퓨터(130)는 상 안정화 제어부(131)와, 팔로우 샷 제어부(132)와, 셔터 제어부(133)와, 피사체 각속도 산출부(134)를 포함한다. 피사체 각속도 산출부(134)는 산출기에 상당하고, 팔로우 샷 제어부(132)는 제어기에 상당한다.
상 안정화 제어부(131)는 피사체 상의 흔들림, 즉, 카메라 요동에 기인하는 상 흔들림을 보정(저감)하기 위해서 시프트 렌즈(104)의 시프트 구동을 제어하는 상 흔들림 보정 제어(상 안정화 제어)를 행한다.
팔로우 샷 제어부(132)는 팔로우 샷 보조를 수행하기 위해서 시프트 렌즈(104)의 시프트 구동을 제어한다.
셔터 제어부(133)는 셔터 드라이버(118)를 통해서 릴리즈 전자기 마그네트(도시하지 않음)의 통전을 해제해서 셔터(111)가 차징된 상태로부터 개방 동작을 수행하게 하고 또한 셔터 모터(117)를 제어해서 셔터(111)가 차징 동작을 행하게 한다.
피사체 각속도 산출부(134)는 피사체(주 피사체)의 카메라(100)에 대한 측정된 각속도로서 상대 피사체 각속도를 산출한다. 주 피사체는 촬영 대상을 의미한다. 카메라 마이크로컴퓨터(130)는 포커스 렌즈 제어, 조리개 제어 등을 행한다.
조작 스위치들(116)의 전원 스위치가 ON 조작되어 카메라(100)의 전원이 투입되면, 카메라 마이크로컴퓨터(130)는 카메라(100) 내의 상기 부분들 각각에의 전원 공급을 개시하는 동시에, 필요한 초기 설정을 행한다.
팔로우 샷 보조 모드가 아닌 통상 촬영 모드에서는, 각속도 센서(107)가 카메라 요동을 검출하고, 그 검출 결과에 따라서 상 안정화 제어부(131)가 시프트 렌즈(104)을 시프트시킴으로써 카메라 요동에 의한 상 흔들림을 보정한다.
도 4는 카메라(100)의 상 안정화 시스템의 구성을 나타내고 있다. 도 4에 있어서, 도 3에 도시한 구성 요소와 공통되는 구성 요소는 도 3과 같은 부호로 표시하고, 그것들의 설명은 생략한다. 실제의 상 안정화 시스템은 시프트 렌즈(104)를 2개의 방향(피치 방향과 요 방향)으로 시프트시키는 2개의 시스템을 갖지만, 그 구성들은 동일하기 때문에, 도 4는 그 중 하나만을 나타내고 있다.
각속도 A/D 변환기(401)는 각속도 센서(107)(각속도 증폭기(108))로부터 출력되는 각속도 신호(아날로그 신호)를 디지털 신호로서의 각속도 데이터로 변환해서 필터 연산부(402)에 출력한다. 각속도 데이터는 카메라 요동의 주파수에 대응하는 약 1-10kHz의 주파수에서 샘플링된다.
필터 연산부(402)는, 고역 통과 필터(HPF)에 의해 구성되어, 각속도 데이터에 포함되는 오프셋 성분을 제거하거나, 후술하는 패닝 제어부(407)로부터의 명령에 따라서 HPF의 차단 주파수를 변경하거나 한다. 제1 적분기(403)는 시프트 렌즈(104)의 목표 시프트 위치의 데이터인 목표 위치 데이터를 생성하기 위해서, 각속도 데이터를 각 변위 데이터로 변환한다.
시프트 위치 A/D 변환기(406)는 시프트 위치 센서(106)(시프트 위치 증폭기(110))로부터 출력되는 시프트 위치 신호(아날로그 신호)를 디지털 신호로서의 시프트 위치 데이터로 변환한다. 제1 가산기(404)는 시프트 렌즈(104)의 목표 위치 데이터로부터 시프트 위치 데이터(현재의 시프트 위치 데이터)를 감산함으로써 시프트 렌즈(104)의 구동량 데이터를 산출한다.
PWM 출력부(405)는 산출된 구동량 데이터를 시프트 드라이버(109)에 출력한다. 시프트 드라이버(109)는 구동량 데이터에 기초하여 시프트 액추에이터를 구동해서 시프트 렌즈(104)를 목표 시프트 위치에 시프트시킨다.
패닝 제어부(407)는, 각속도 센서(107)(각속도 A/D 변환기(401))로부터 얻어지는 각속도 데이터로부터, 카메라(100)의 패닝이 수행되고 있는지의 여부를 판정한다. 패닝 제어부(407)은, 카메라(100)의 패닝이 수행되고 있다고 판정되는 경우에는, 필터 연산부(HPF)(402)의 차단 주파수를 변경하는 동시에 제1 적분기(403)의 출력을 조정한다.
도 5는 패닝 제어부(407)에 의해 행해지는 패닝 제어의 예를 나타내고 있다. 패닝 제어부(407)(즉, 카메라 마이크로컴퓨터(130))는 컴퓨터 프로그램인 패닝 제어 프로그램을 따라서 이 패닝 제어를 행한다.
스텝 S501에 있어서, 패닝 제어부(407)는 각속도 A/D 변환기(401)로부터 도입한 각속도 데이터의 평균값이 미리 결정된 값 a보다도 큰지의 여부를 판정한다. 평균값(이하 "각속도 평균값"이라고 함)은 미리 결정된 횟수 샘플링된 각속도 데이터의 평균값이다. 각속도 평균값이 미리 결정된 값 a 이하인 경우에는, 패닝 제어부(407)는 패닝이 행해지고 있지 않다고 판정하고 스텝 S507로 진행한다. 한편, 각속도 평균값이 미리 결정된 값 a보다 큰 경우에는, 패닝 제어부(407)는 스텝 S502로 진행하여, 각속도 평균값이 미리 결정된 값 b(>a)보다 큰지의 여부를 판정한다. 각속도 평균값이 미리 결정된 값 b 이하인 경우에는, 패닝 제어부(407)는 저속 패닝이 행해지고 있다고 판정하고 스텝 S506으로 진행한다. 각속도 평균값이 미리 결정된 값 b보다 큰 경우에는, 패닝 제어부(407)는 고속 패닝이 행해지고 있다고 판정하고 스텝 S503으로 진행한다.
스텝 S503에서는, 패닝 제어부(407)는 필터 연산부(HPF)(402) 차단 주파수를 최대 값으로 설정한다. 다음으로 스텝 S504에서는, 패닝 제어부(407)는 상 안정화 제어를 OFF로 한다(즉, 비동작 상태로). 고속 패닝이 수행되고 있을 때 상 안정화 제어를 OFF로 하는 이유는 고속 패닝을 큰 카메라 요동으로 간주하여 시프트 렌즈(104)를 시프트시킬 경우 시프트 렌즈(104)가 그 시프트 끝에 도달한 시점에 촬영 영상이 크게 움직여서 유저에게 이상한 느낌을 부여하기 때문이다. 그렇게 하는 다른 이유는 고속 패닝은 촬영 영상을 크게 움직이므로 카메라 요동에 기인하는 상 흔들림이 유저에게 이상한 느낌을 거의 부여하지 않기 때문이다. 또한, HPF의 차단 주파수를 최대 값으로 설정한 후에 시프트 렌즈(104)의 시프트를 서서히 정지시킴으로써, 상 안정화 제어의 OFF에 따라 카메라 요동에 기인하는 상 흔들림이 갑자기 나타나서 유저에게 이상한 느낌을 부여하는 것을 회피할 수 있다.
상 안정화 제어를 OFF로 한 패닝 제어부(407)는, 스텝 S505에 있어서, 제1 적분기(403)의 출력을 현재의 각 변위 데이터로부터 서서히 초기 위치 데이터로 변경한다. 제1 적분기(403)의 출력의 이 서서히 일어나는 변화는 시프트 렌즈(104)를, 시프트 렌즈(104)의 광축이 촬영 렌즈 유닛(101)의 광축과 일치하게 되는 초기 위치로 서서히 되돌린다.
저속 패닝이 수행되고 있다고 판정한 패닝 제어부(407)는, 스텝 S506에 있어서, 각속도 데이터에 따라서 필터 연산부(HPF)(402)의 차단 주파수를 설정한다. 이는 저속 패닝 동안에는 카메라 요동에 기인하는 상 흔들림이 두드러지기 쉽고, 이러한 상 흔들림은 보정될 필요가 있기 때문이다. 차단 주파수는 패닝 동안에 촬영 영상의 부자연스러운 변화가 방지되면서 카메라 요동에 기인하는 상 흔들림이 보정 될 수 있도록 설정된다. 그 후, 스텝 S508에서, 패닝 제어부(407)는 상 안정화 제어를 ON으로 한다(즉, 동작 상태로).
각속도 평균값이 미리 결정된 값 a 이하라고(즉, 패닝이 행해지고 있지 않다고) 판정해서 스텝 S507로 진행한 패닝 제어부(407)는 필터 연산부(HPF)(402)의 차단 주파수를 통상시의 값으로 설정한다. 그리고, 패닝 제어부(407)는 스텝 S508로 진행하여 상 안정화 제어를 ON으로 한다.
도 7은 패닝 동안의 요 방향에서의 각속도 데이터와 미리 결정된 값 a 및 b 간의 관계를 나타내고 있다. 도 7에서 참조 번호 701은 샘플링된 각속도 데이터를 나타낸다. 각속도 데이터는 카메라(100)의 우측 방향 패닝이 수행되는 경우에는 플러스(+) 값을 가지고 좌측 방향 패닝이 수행되는 경우에는 마이너스(-) 값을 가진다. 도 7에서는, 우측 방향의 고속(급격한) 패닝, 우측 방향의 저속 패닝 및 좌우 방향의 저속 패닝이 검출되고 있다.
도 7에 도시된 바와 같이, 패닝 동안에는 각속도 데이터가 초기값(0)으로부터 크게 빗나간다. 시프트 렌즈(104)의 목표 위치 데이터를 산출하기 위해 이 각속도 데이터를 적분하는 제1 적분기(403)의 출력은 DC 같은 오프셋 성분으로 인해 매우 크게 증가하여, 시프트 렌즈(104)가 제어 불가능하게 된다. 따라서, 패닝이 검출된 경우에는, HPF의 차단 주파수를 높게 설정함으로써, 오프셋 성분을 차단하는 것이 필요하다.
특히, 고속 패닝이 행해지고 있는 경우에는, 이러한 제어 불가능 상태가 드러날 가능성이 높기 때문에, HPF의 차단 주파수를 높게 설정함으로써 제1 적분기(403)의 출력이 증대하지 않도록 하는 것이 필요하다.
이상과 같은 패닝 제어에 의해, 패닝 중이라도, 유저에게 이상한 느낌을 거의 부여하지 않는 촬영 영상을 생성할 수 있다. 도 3에 있어서, 조작 스위치들(116) 중 모드 선택 스위치의 조작에 의해 팔로우 샷 보조 모드가 설정되면, 카메라 신호 처리 회로(114) 내의 움직임 벡터 검출기(135)가 연속적인 프레임 화상들로부터 피사체 상의 움직임 벡터를 검출한다. 검출된 움직임 벡터는 카메라 마이크로컴퓨터(130) 내의 팔로우 샷 제어부(132)에 입력된다. 이와 동시에, 팔로우 샷 제어부(132)는 각속도 센서(107)(각속도 증폭기(108))로부터의 각속도 신호(제1 움직임 정보)을 수신한다.
팔로우 샷 중에 움직임 벡터 검출기(135)로부터 출력되는 움직임 벡터에는, 촬영 대상인 주 피사체 상의 움직임 벡터와 주 피사체 상의 뒤에 흐르고 있는 배경 상의 움직임 벡터가 있다. 이들 움직임 벡터 중, 다른 것보다 작은 움직임량을 나타내는 움직임 벡터가 주 피사체 상의 움직임 벡터이다. 주 피사체 상의 이 움직임 벡터(제2 움직임 정보)가 1 프레임 기간 중의 주 피사체 상의 상면 상, 즉 이미지 센서(112) 상에서의 변위(움직임)를 나타낸다.
한편, 각속도 센서(107)로부터 출력되는 각속도 데이터는 카메라(100)의 패닝 속도(팔로우 샷 속도)에 대응하고 있다. 이 각속도 데이터와, 1 프레임 기간 중의 주 피사체 상의 상면 상에서의 변위량 및 촬영 렌즈 유닛(101)의 초점 거리로부터 산출되는 각속도 사이의 차분을 산출하면, 카메라(100)에 대한 주 피사체의 각속도(즉, 상대 피사체 각속도)가 얻어진다.
피사체 각속도 산출부(134)는, 프레임 화상이 생성되는 각 시간에, 즉 프레임 주기에 상대 피사체 각속도를 산출(취득)한다. 피사체 각속도 산출부(134)는 산출된 상대 피사체 각속도와 이 상대 피사체 각속도가 산출된 산출 시간(취득 시간)의 세트에 대한 정보를 팔로우 샷 제어부(132)에 송신한다.
도 6은 팔로우 샷 보조 모드에서의 시프트 렌즈(104)의 시프트 구동 제어를 행하는 시프트 구동 제어 시스템의 구성을 나타내고 있다. 도 6에 있어서, 도 3 및 도 4에 도시한 구성 요소와 공통되는 구성 요소는 도 3 및 도 4와 같은 부호로 표시하고, 그것들의 설명은 생략한다.
팔로우 샷 제어부(132)는, 카메라 정보 취득부(601)와, 각속도 데이터 출력부(602)와, 피사체 각속도 설정부(603)와, 제2 가산기(604)와, 제2 적분기(605)와, 설정 변경부(606)를 포함한다.
카메라 정보 취득부(601)는, 조작 스위치들(116)로부터, 모드 선택 스위치의 조작에 의해 팔로우 샷 보조 모드가 설정된 것을 나타내는 팔로우 샷 설정 정보와, 릴리즈 스위치의 조작에 의해 촬영이 지시된 것을 나타내는 릴리즈 정보를 취득한다. 각속도 데이터 출력부(602)는 미리 결정된 시간들에서 각속도 데이터를 샘플링하고 샘플링된 데이터를 피사체 각속도 산출부(134)에 출력한다.
피사체 각속도 설정부(603)는 기록용 촬영 전(즉, 정지 화상 기록을 위한 이미지 센서(112)의 노광 전)에 피사체 각속도 산출부(134)가 산출한 상대 피사체 각속도와 그 산출 시간의 세트(복수의 세트)에 대한 정보를 취득한다. 피사체 각속도 설정부(603)는 이 취득된 정보를 각속도 이력으로서 유지(축적)한다. 이하의 설명에서는, 노광은 기록용 촬영을 의미한다. 피사체 각속도 설정부(603)는 그 노광 전의 각속도 이력을 사용하여, 노광 기간 동안의 추정된 각속도(예측 정보)로서 카메라(100)에 대한 상대 피사체 각속도를 산출 등에 의해 취득한다. 노광 전에 피사체 각속도 산출부(134)에 의해 산출된 상대 피사체 각속도는 이하에서 "노광기간전 상대 피사체 각속도"라고 하고, 노광 전의 각속도 이력은 이하에서 "노광기간전 각속도 이력"이라고 하고, 노광 기간 동안의 상대 피사체 각속도는 "노광기간중 상대 피사체 각속도"라고 한다. 피사체 각속도 설정부(603)은 취득한 노광기간중 상대 피사체 각속도를 팔로우 샷 보조에 있어서의 노광 기간 중의 시프트 렌즈(104)의 시프트 구동의 제어에 사용하는 상대 피사체 각속도로서 설정한다.
제2 가산기(604)는 각속도 센서(107)로부터의 각속도 데이터와 피사체 각속도 설정부(603)에 의해 설정된 노광기간중 상대 피사체 각속도 간의 차분을 산출한다. 제2 적분기(605)는 노광 기간 중에만 적분 동작을 행한다. 설정 변경부(606)는 카메라 정보 취득부(601)로부터의 팔로우 샷 보조 모드의 취득 통지에 따라서 패닝 제어부(407)의 설정을 변경한다. 조작 스위치들(116) 중 모드 선택 스위치 조작에 의해 팔로우 샷 보조 모드가 설정되면, 카메라 정보 취득부(601)는 팔로우 샷 설정 정보를 설정 변경부(606)에 통지한다. 설정 변경부(606)는, 팔로우 샷 설정 정보의 통지에 따라, 유저에 의한 고속 패닝을 제한하지 않기 위해서 패닝 제어부(407)에 있어서의 미리 결정된 값 a 및 b를 변경한다.
또한, 제2 가산기(604)는 각속도 센서(107)로부터의 각속도 데이터와 피사체 각속도 설정부(603)로부터의 상대 피사체 각속도 간의 차를 산출하고, 그 차를 제2 적분기(605)에 송신한다.
제2 적분기(605)는 카메라 정보 취득부(601)로부터의 릴리즈 정보에 따라, 노광 기간 중에 상기 차의 적분 동작을 개시하고 그 결과를 출력한다. 제2 적분기(605)는 노광 기간 이외의 기간에 있어서는 시프트 렌즈(104)가 그 초기 위치에 위치하는 값을 출력한다. 노광 기간의 종료 시에 시프트 렌즈(104)가 그 시점에서의 위치로부터 초기 위치까지 단시간에서 시프트해도 문제는 없다. 즉, 노광 기간의 종료 직후에는 이미지 센서(112)로부터의 아날로그 신호가 판독되기 때문에 LCD(120)는 촬영 영상을 표시하지 않으므로, 시프트 렌즈(104)의 시프트에 의한 촬영 영상의 움직임은 문제가 안 된다.
제2 적분기(605)의 출력은 제1 가산기(404)에 의해 제1 적분기(403)의 출력에 가산된다. 그 후, 그 가산 결과로부터, 시프트 위치 센서(106)(시프트 위치 A/D 변환기(406))로부터의 시프트 렌즈(104)의 시프트 위치 데이터가 감산되고, 이에 의해, 시프트 렌즈(104)의 구동량 데이터가 산출된다.
팔로우 샷 보조 모드에서, 실제로 유저에 의해 고속 패닝이 행해질 때, 패닝 제어부(407)는 바로 패닝 제어를 개시하고 도 5의 스텝 S504에서 설명한 바와 같이 상 안정화 제어를 OFF로 한다. 패닝 제어를 받는 시프트 렌즈(104)는 피사체 상의 상면 상에서의 변위량을 보정한다; 변위량은 카메라(100)의 패닝의 각속도와 카메라(100)에 대한 주 피사체(이하 간단히 "피사체"라고 함)의 각속도인 상대 피사체 각속도 간의 차분에 대응한다. 이 패닝 제어에 의해, 팔로우 샷 실패의 원인이 되는, 노광 기간 중의 카메라(100)의 패닝 속도와 피사체의 움직임 속도 간의 차분이 시프트 렌즈(104)의 시프트 구동에 의해 상쇄되어, 그 결과, 팔로우 샷이 성공한다.
피사체 각속도 설정부(603)는 노광 전에 피사체 각속도 산출부(134)로부터 취득되어 축적된 노광기간전 각속도 이력을 이용하여 노광기간중 상대 피사체 각속도를 설정할 때, 릴리즈 타임 래그와 노광 기간을 고려한다.
예를 들어, 등속 직선 운동을 하고 있는 피사체에 대해 그 피사체의 진행 방향에 직교하는 방향에 위치하는 카메라(100)를 이용해 팔로우 샷이 수행되는 경우에, 카메라(100)로부터 측정되는 각속도는 연속적으로 변화한다. 이로 인해, 피사체의 측정된 각속도와 노광 기간 중의 그것의 실제 각속도는 서로 같지 않게 된다. 따라서, 이 각속도의 변화(즉, 각가속도)를 고려하지 않으면, 시프트 렌즈(104)의 시프트 구동에 의한 충분한 보정을 달성하는 것은 불가능하게 된다.
도 8은 도 9에 도시하는 바와 같이 등속 직선 운동을 하고 있는 피사체(열차)의 각속도 ω의 변화를 나타내고 있다. 이 각속도 ω는 해당 피사체의 진행 방향에 직교하는 방향에 위치하는 카메라(100)로부터 측정된다. 도 9에 있어서, 피사체는 왼쪽 방향으로 속도 v에서 등속 직선 운동을 하고 있다. 점(이하 "원점"이라고 함) A는 피사체의 등속 직선 운동에 의한 이동 궤적 상에 있어서 카메라(100)로부터의 거리가 최단이 되는 위치를 나타낸다. L은 카메라(100)로부터 원점 A까지의 거리(즉, 카메라(100)로부터 이동 궤적까지의 최단 거리)이다. 또한, θ는 카메라(100)로부터 원점 A를 향하는 방향, 즉 피사체의 진행 방향에 직교하는 방향에 대하여 카메라(100)로부터 피사체로의 방향이 이루는 각도(즉, 카메라(100)의 방향)를 나타낸다. 각도 θ는 이하 "패닝 각도"라고 한다. 패닝 각도 θ는 원점 A보다 더 우측에서는 플러스(+) 값을 가지고 원점 A보다 더 좌측에서는 마이너스(-) 값을 가진다.
도 8에서, 횡축은 도 9에서의 피사체가 원점 A에 위치할 때 0이 되는 패닝 각도 θ를 나타내고, 중앙의 종축은 피사체의 각속도 ω를 나타낸다. 실선은 각속도 ω의 변화를 나타낸다. 또한, 우측의 종축은 각가속도 α를 나타내고, 파선의 그래프가 각가속도 α의 변화를 나타낸다.
각가속도 α의 변화는 카메라(100)의 위치를 기준으로 한 피사체의 위치에 따른 피사체의 각가속도의 변화이다. 도 8은 카메라(100)로부터 원점 A까지의 최단 거리가 20m이고, 피사체가 60km/h의 속도로 등속 직선 운동을 하고 있을 경우의 각속도 ω와 각가속도 α의 예를 나타내고 있다.
도 8에 있어서, 피사체가 원점 A를 통과할 때(θ=0°), 각속도 ω가 최대가 되고, 각가속도 α가 0이 된다. 피사체가 θ=+30°의 위치를 통과할 때, 각가속도 α가 최대가 된다. 피사체가 θ=-30°의 위치를 통과할 때, 각가속도 α가 최소가 된다. 패닝 각도 θ와 각속도 ω 및 각가속도 α 간의 관계는, 상술한 최단 거리나 피사체의 속도에 의존하지 않는다.
도 2는 카메라 마이크로컴퓨터(130)가 팔로우 샷 보조 모드에서 행하는 팔로우 샷 보조 처리를 나타내는 흐름도이다. 카메라 마이크로컴퓨터(130)는 컴퓨터 프로그램인 팔로우 샷 보조 제어 프로그램에 따라 이를 실행한다. 유저는 카메라(100)을 패닝하면서 움직이는 피사체를 쫓는다.
스텝 S201에 있어서, 카메라 마이크로컴퓨터(130)는 릴리즈 스위치의 절반 누름(half-press) 조작(SW1ON)이 수행되었는지 여부를 판정한다. SW1ON이 수행되는 경우에는, 카메라 마이크로컴퓨터(130)는 스텝 S202으로 진행하여, 시간 계측 카운터를 인크리먼트한 다음 스텝 S204로 진행한다. SW1ON이 수행되지 않은 경우에는, 카메라 마이크로컴퓨터(130)는 스텝 S203으로 진행하여, 시간 계측 카운터를 리셋한 다음 스텝 S201로 복귀한다.
스텝 S204에서는, 카메라 마이크로컴퓨터(130)는 피사체 각속도 산출부(134)에 의해 노광기간전 상대 피사체 각속도(도 2에서는 간단히 "노광기간전 피사체 각속도"라고 기재함)가 이미 산출되어 있는지의 여부를 확인한다. 노광기간전 상대 피사체 각속도가 이미 산출되어 있는 경우에는, 카메라 마이크로컴퓨터(130)는 스텝 S205로 진행하여, 시간 계측 카운터가 미리 결정된 시간 T에 도달했는지의 여부를 확인한다. 노광기간전 상대 피사체 각속도가 아직 산출되어 있지 않은 경우 또는 노광기간전 상대 피사체 각속도가 이미 산출되어 있어도 시간 계측 카운터가 미리 결정된 시간 T에 도달한 경우(즉, SW1ON이 수행되는 기간이 미리 결정된 시간 T보다 긴 경우)에는, 카메라 마이크로컴퓨터(130)는 스텝 S206으로 진행한다.
스텝 S206에서는, 카메라 마이크로컴퓨터(130)는 피사체 각속도 산출부(134)가 노광기간전 상대 피사체 각속도를 산출하게 한다. 제1 처리로서의 이 처리는 후술하는 SW2ON에 따라서 개시되는 노광 전에 피사체 각속도 산출부(134)가 상대 피사체 각속도를 산출하게 하고 피사체 각속도 설정부(603)가 노광기간전 각속도 이력을 취득하게 한다.
시간 계측 카운터가 미리 결정된 시간 T에 도달한 경우에 노광기간전 상대 피사체 각속도를 다시 산출하는 이유는 미리 결정된 시간 T 내에 피사체 속도가 변화할 가능성을 고려하기 위해서이다. 피사체 각속도 산출부(134)가 산출한 노광기간전 상대 피사체 각속도는, 그 산출마다, 팔로우 샷 제어부(132)의 피사체 각속도 설정부(603)에 송신된다. 스텝 S205에서 시간 계측 카운터가 아직 미리 결정된 시간 T에 도달하지 않은 경우에는, 카메라 마이크로컴퓨터(130)는 스텝 S208로 진행한다.
스텝 S206의 후의 스텝 S207에서는, 카메라 마이크로컴퓨터(130)는 피사체 각속도 설정부(603)가 노광기간중 상대 피사체 각속도(도 2에서는 간단히 "노광기간중 피사체 각속도"라고 기재함)를 설정하게 한다. 제2 처리로서의 이 처리(각속도 설정 처리)의 상세에 대해서는 후술한다. 그리고, 카메라 마이크로컴퓨터(130)는 스텝 S208로 진행한다.
스텝 S208에서는, 카메라 마이크로컴퓨터(130)는 릴리즈 스위치의 전 누름(full-press) 조작(SW2ON)이 수행되었는지의 여부를 판정한다. SW2ON이 수행되지 않은 경우에는, 카메라 마이크로컴퓨터(130)는 스텝 S201로 복귀한다. 한편, SW2ON이 수행된 경우에는, 카메라 마이크로컴퓨터(130)는 스텝 S209로 진행하여, 셔터 제어부(133)을 통해서 셔터(111)가 개방되게 하여 노광을 개시한다.
또한, 스텝 S210에 있어서, 카메라 마이크로컴퓨터(130)는 팔로우 샷 제어부(132)가 스텝 S207에서 설정된 노광기간중 상대 피사체 각속도에 따라 시프트 렌즈(104)의 시프트 구동을 제어하게 하고, 이에 의해, 피사체 상의 상면 상에서의 변위량을 보정하는 팔로우 샷 보조를 행한다. 이 시프트 구동의 제어에서, 도 5의 스텝 S502에서 고속 패닝이 수행되고 있다는 판정이 이루어지는 경우에는, 카메라 마이크로컴퓨터(130)는 상 안정화 제어부(131)를 통해서 카메라 요동에 기인하는 상 흔들림을 보정하기 위해서 시프트 렌즈(104)의 시프트 구동을 행한다.
다음으로, 스텝 S211에서 카메라 마이크로컴퓨터(130)는 노광이 완료했는지의 여부를 판정한다. 노광이 완료한 경우에는, 카메라 마이크로컴퓨터(130)는 스텝 S212로 진행한다. 노광이 완료하지 않은 경우에는, 카메라 마이크로컴퓨터(130)는 스텝 S210으로 복귀된다.
스텝 S212에서는, 카메라 마이크로컴퓨터(130)는 다시 SW2ON이 수행되었는지 여부를 판정한다. SW2ON이 수행된 경우에는, 카메라 마이크로컴퓨터(130)는 스텝 S209로 복귀하여 다음 노광을 행한다(즉, 연속 샷에서 다음 상의 촬영을 행한다). 한편, SW2ON이 수행되지 않은 경우에는, 카메라 마이크로컴퓨터(130)는 스텝 S201로 복귀한다.
도 1은 피사체 각속도 설정부(603)가 도 2의 스텝 S207에서 행하는 각속도 설정 처리를 나타내는 흐름도이다. 피사체 각속도 설정부(603)(즉, 카메라 마이크로컴퓨터(130))는 팔로우 샷 보조 제어 프로그램의 일부에 따라서 이 처리를 실행한다.
스텝 S101에 있어서, 카메라 마이크로컴퓨터(130)로부터 노광기간중 상대 피사체 각속도의 설정의 지시를 수신한 피사체 각속도 설정부(603)는 피사체 각속도 설정부(603)가 이전에 피사체 각속도 산출부(134)로부터 취득해서 축적한 노광기간전 각속도 이력을 판독한다.
그리고, 스텝 S102에 있어서, 피사체 각속도 설정부(603)는 판독한 노광기간전 각속도 이력에 포함되는 노광기간전 상대 피사체 각속도와 산출 시간의 복수의 세트로부터, 각속도의 특이점을 검출한다. 도 8에서, 패닝 각도 θ가 0°, +30° 및 -30°인 각속도의 3개의 특이점에서는, 그 각속도의 시간 변화율인 각가속도에서의 3종류의 특정한 변화가 발생된다.
피사체 각속도 설정부(603)는 노광기간전 각속도 이력에 있어서 인접하는 2개의 산출 시간에서의 상대 피사체 각속도의 차분을 해당 2개의 산출 시간 사이의 시간 간격으로 나눔으로써 각가속도(각가속도 정보)를 산출한다. 피사체 각속도 설정부(603)는 이 각가속도의 산출을 인접하는 2개의 산출 시간의 복수의 세트에 대해 수행하여 각가속도의 시간적 변화들을 산출한다. 그리고, 피사체 각속도 설정부(603)는, 시간적으로 변화하는 각가속도에 있어서, 플러스의 극대값(local maximum value)(즉, θ=+30°에서의 증가로부터 감소로의 변화)과 마이너스의 극대값(즉, θ=-30°에서의 감소로부터 증가로의 변화)을 검출하는 처리를 행한다. 또한, 피사체 각속도 설정부(603)는 각가속도에 있어서, 플러스와 마이너스 간의 변화(즉, θ=0°에서의 플러스와 마이너스 중 한쪽으로부터 다른 쪽으로의 변화)도 검출한다.
스텝 S103에서는, 피사체 각속도 설정부(603)는 상기 특이점 검출 처리에 의해 검출한 특이점의 수가 2개 이상인지의 여부를 판정한다. 즉, 피사체 각속도 설정부(603)는 패닝 각도 θ=0°, +30° 및 -30° 중에서, "0°, +30° 및 -30°", +30° 및 0°" 또는 "0° 및 -30°"에 상당하는 특이점들이 검출되었는지의 여부를 판정한다. 2개 이상의 특이점이 검출된 경우에는, 피사체 각속도 설정부(603)는 스텝 S104로 진행하고, 그렇지 않으면 스텝 S105로 진행한다.
스텝 S104에서는, 피사체 각속도 설정부(603)는 이하의 식(1)을 이용하여 노광기간중 상대 피사체 각속도 ω을 산출(설정)한다.
Figure pat00001
(1)
식 (1)에 있어서, t30은 피사체가 패닝 각도 θ=+30° 및 -30° 중, 특이점이 검출되는 것에 대응하는 위치로부터 패닝 각도 θ=0°에 대응하는 위치까지 움직이는 데 걸리는 시간 길이를 나타낸다. 또한, tc는 피사체가 패닝 각도 θ=0°에 대응하는 위치를 통과한 시점부터 노광기간전 상대 피사체 각속도들 중 마지막 것이 검출된 시점, 즉, 릴리즈 정보가 입력되는 직전의 시점까지의 시간 길이를 나타낸다. 또한, tlag는 노광기간전 상대 피사체 각속도들 중 마지막 것이 검출된 시점부터 노광 기간의 중간점까지의 시간 길이를 나타낸다. 이하의 설명에서는 노광 기간의 중간점을 노광 기간의 절반 시점에 대응하지만, 노광 기간의 중간점은 노광 기간 안에 있는 한 노광 기간의 절반의 시점이 아니어도 좋다.
도 10은 t30이 피사체가 θ=+30°의 위치로부터 θ=0°의 위치까지 움직이는 데 걸리는 시간 길이인 경우의 t30, tc 및 tlag를 나타내고 있다.
식 (1)의 도출에 대해서 도 9에 관련하여 설명한다. 도 9에서, v는 피사체의 이동 속도(이하 "피사체 속도"라고 함)이고, L은 피사체(원점 A)의 이동 궤적과 카메라(100) 간의 최단 거리를 나타내고, t는 피사체가 θ의 위치로부터 원점 A까지 이동하는 데 걸리는 시간 길이를 나타낸다. 피사체의 각속도ω은, θ의 시간 미분이고, 다음과 같이 산출된다.
Figure pat00002
여기서 u는 다음과 같이 정의된다:
Figure pat00003
arctan(u)를 u로 미분하고 그 미분 결과를 다시 u로 전개하면 다음과 같은 식이 된다.
Figure pat00004
u를 t로 미분하면 다음이 되고:
Figure pat00005
이를 미분의 연쇄 법칙에 적용하면 다음과 같은 식이 된다.
Figure pat00006
도 10에서 L을 구하면 다음이 되고,
Figure pat00007
이 L과 과 t=tc+tlag를 상기 ω의 식에 적용하면 식 (1)이 된다.
스텝 S105에서는, 피사체 각속도 설정부(603)는 θ=+30°에 대응하는 특이점이 검출되었는지 여부를 판정한다. 이 특이점이 검출된 경우에는, 피사체 각속도 설정부(603)는 스텝 S106로 진행하고, 그렇지 않으면 스텝 S107로 진행한다.
스텝 S106에서는, 피사체 각속도 설정부(603)는 식 (2)를 이용하여 노광기간중 상대 피사체 각속도 ω를 산출한다. 구체적으로, 피사체 각속도 설정부(603)는 먼저 노광기간전 각속도 이력에 있어서 최신의 2개의 산출 시간에서 산출된 노광기간전 상대 피사체 각속도의 차분(ωnn-1)을 구한다. 이어서, 피사체 각속도 설정부(603)는 피사체가 마지막 노광기간전 상대 피사체 각속도가 검출된 시점으로부터 노광 기간의 중간점까지 이동하는 데 걸리는 시간 tlag를 이용하여 상대 피사체 각속도 (ωnn - 1)tlag/tf를 구한다. 그 후, 피사체 각속도 설정부(603)는 산출된 상대 피사체 각속도 (ωnn - 1)tlag/tf에 대하여 1 이하의 가중치 W에 의해 가중치 부여를 행해서 최종 값인 노광기간중 상대 피사체 각속도 ω를 산출(설정)한다.
Figure pat00008
(2)
식 (2)에 있어서, ωn은 2개의 최신의 산출 시간 중 최신의 산출 시간에서 산출된 각속도를 나타내고, ωn -1은 최신의 산출 시간보다 하나 전의 산출 시간에서 산출된 각속도이다. 또한, tf는 ωn에 대응하는 최신의 산출 시간과 ωn -1에 대응하는 이전 산출 시간 사이의 시간 길이를 나타낸다.
스텝 S107에서는, 피사체 각속도 설정부(603)는 θ=0°에 대응하는 특이점이 검출되었는지 여부를 판정한다. 이 특이점이 검출된 경우에는, 피사체 각속도 설정부(603)는 스텝 S108로 진행하고, 그렇지 않으면 스텝 S111로 진행한다.
스텝 S108에서는, 피사체 각속도 설정부(603)는 노광기간전 각속도 이력이 대칭의 중심점으로서 θ=0°에 대하여, 노광 기간의 중간점에서의 상대 피사체 각속도와 대칭이 되는 상대 피사체 각속도(이하 "대칭 이력 각속도"라고 함)를 포함하는지 여부를 판정한다. 각속도 이력이 대칭 이력 각속도를 포함하는 경우에는, 피사체 각속도 설정부(603)는 스텝 S109로 진행하고, 그렇지 않으면 스텝 S110로 진행한다.
도 11은 대칭 이력 각속도를 나타내고 있다. 각속도 이력이 축적되는 기간은 "이력 축적 기간"이라고 한다. 도 11에 도시된 이력 축적 기간 1은 원점 A보다 더 우측에 있는 tlag+tc보다 짧기 때문에, 각속도 이력은 대칭 이력 각속도를 포함하지 않는다. 한편, 이력 축적 기간 2는 원점 A보다 더 우측에 있는 tlag+tc보다 길기 때문에, 각속도 이력은 대칭 이력 각속도를 포함한다.
스텝 S109에서는, 피사체 각속도 설정부(603)는 대칭 이력 각속도를 노광기간중 상대 피사체 각속도 ω로서 설정한다.
스텝 S110에서는, 피사체 각속도 설정부(603)는 가중치 W를 1 이상으로 한 식 (2)를 이용하여 노광기간중 상대 피사체 각속도 ω를 설정한다.
스텝 S111에서는, 피사체 각속도 설정부(603)는 θ=-30°에 대응하는 특이점이 검출되었는지 여부를 판정한다. 이 특이점이 검출된 경우에는, 피사체 각속도 설정부(603)는 스텝 S112로 진행하고, 그렇지 않으면 스텝 S113으로 진행한다.
스텝 S112에서는, 피사체 각속도 설정부(603)는 가중치 W를 1 이하로 한 식 (2)를 이용하여 노광기간중 상대 피사체 각속도 ω를 설정한다.
스텝 S113에서는, 피사체 각속도 설정부(603)는 가중치 W를 1로 한 식 (2)를 이용하여 노광기간중 상대 피사체 각속도 ω를 설정한다.
본 실시예에 의하면, 카메라(100)로부터 측정하는 피사체의 각속도가 변화하는 경우에도 피사체 상의 흔들림이 저감된 양호한 팔로우 샷을 가능하게 하는 팔로우 샷 보조를 실현할 수 있다.
[실시예 2]
이어서, 본 발명의 제2 실시예(실시예 2)인 촬상 장치로서의 카메라에 대해서 설명한다. 본 실시예의 카메라의 구성은 실시예 1의 카메라(100)와 공통이고, 이에 따라 본 실시예의 카메라의 구성 요소들은 실시예 1과 같은 부호로 표시한다.
실시예 1은 피사체 각속도 산출부(134)가 노광기간전 상대 피사체 각속도와 이것의 산출이 이루어진 산출 시간을 팔로우 샷 제어부(132)에 송신하고, 팔로우 샷 제어부(132)가 노광기간전 상대 피사체 각속도와 산출 시간의 세트들을 노광기간전 각속도 이력으로서 축적하는 경우에 대해서 설명하였다. 실시예 2는 피사체 각속도 산출부(134)가 노광기간전 상대 피사체 각속도와 산출 시간 외에, 해당 산출 시간에서의 피사체 거리(거리 정보)와 상대 피사체 각속도의 이전 산출 시간으로부터의 도 9에 나타낸 패닝 각도 θ의 변화량도 팔로우 샷 제어부(132)에 송신하고, 팔로우 샷 제어부(132)가 노광기간전 상대 피사체 각속도, 산출 시간, 피사체 거리 및 패닝 각도 θ의 변화량의 세트들을 노광기간전 각속도 이력으로서 축적하는 경우에 대해서 설명한다. 피사체 거리는, 예를 들어, 촬영 렌즈 유닛(101)에 있어서의 줌렌즈(103) 및 포커스 렌즈(도시하지 않음)의 위치들에 관한 정보로부터 산출될 수 있다. 패닝 각도 θ의 변화량은 각속도 데이터를 적분함으로써 산출될 수 있다. 본 실시예에서는, 피사체 거리를 취득하기 위해서 오토 포커스 동작을 행하고, 그에 의해 움직이는 피사체에 대하여 촬영 렌즈 유닛(101)의 정초점(in-focus) 상태를 유지함으로써 움직이는 피사체의 정확한 피사체 거리를 산출할 수 있다. 또한, 피사체와 카메라의 양쪽에 구비된 GPS로부터 취득된 위치 정보로부터 피사체 거리를 취득할 수도 있다.
도 12는 피사체 각속도 설정부(603)가 행하는 각속도 결정 처리(제2 처리)을 나타내는 흐름도이다. 피사체 각속도 설정부(603)(즉, 카메라 마이크로컴퓨터(130))는 실시예 1에서 설명한 팔로우 샷 보조 제어 프로그램의 일부를 따라서 이 처리를 실행한다.
스텝 S601에 있어서, 카메라 마이크로컴퓨터(130)로부터 노광기간중 상대 피사체 각속도의 설정을 지시를 수신한 피사체 각속도 설정부(603)는 피사체 각속도 설정부(603)가 이전에 피사체 각속도 산출부(134)로부터 취득해서 축적한 노광기간전 각속도 이력을 판독한다.
스텝 S602에 있어서, 피사체 각속도 설정부(603)는 판독한 노광기간전 각속도 이력에 포함되는 노광기간전 상대 피사체 각속도와 산출 시간의 복수의 세트로부터, 피사체의 각속도 시간 변화율인 각가속도를 산출하고, 그 산출 결과로부터 피사체가 등속 직선 운동을 하고 있는지 여부를 판정한다. 구체적으로는, 피사체 각속도 설정부(603)는 각가속도의 시간 변화가 도 8에 나타낸 각가속도의 그래프와 동등한지 여부를 판정한다. 피사체가 등속 직선 운동을 하고 있는 경우에는, 피사체 각속도 설정부(603)는 스텝 S603으로 진행한다. 피사체가 등속 직선 운동을 하고 있지 않으면, 피사체 각속도 설정부(603)는 스텝 S604로 진행한다.
스텝 S603에서는, 피사체 각속도 설정부(603)는 노광기간전 각속도 이력에 있어서 최신의 2개의 산출 시간에서의 피사체 거리와 그 산출 시간들 간의 패닝 각도 θ의 변화량을 사용하여, 이하의 식 (3) 내지 (8)을 이용하여 노광기간중 상대 피사체 각속도 ω를 산출한다.
Figure pat00009
(3)
Figure pat00010
(4)
Figure pat00011
(5)
Figure pat00012
(6)
Figure pat00013
(7)
Figure pat00014
(8)
식 (3) 내지 (8) 내의 기호에 대해서는 도 13a 내지 13d를 이용하여 설명한다. L과 v는 각각, 도 9에도 나타낸 바와 같이, 본 실시예의 카메라(100')로부터 피사체의 등속 직선 운동의 이동 궤적까지의 최단 거리(즉, 원점 A까지의 거리) 및 피사체의 등속 직선 운동의 속도(피사체 속도)이다. 또한, t는 피사체가 원점 A를 통과한 시점부터 노광 기간의 중간점까지의 시간 길이이고, m은 특정 시점(즉, 노광기간전 상대 피사체 각속도가 산출되는 산출 시간)에서의 피사체 거리를 나타내고, n은 m보다 전의 시점(즉, 노광기간전 상대 피사체 각속도가 산출되는 이전 산출 시간)에서의 피사체 거리를 나타낸다. 또한, Δθ는 피사체 거리가 n인 시점(이하 "제1 시점"이라고 함)으로부터 피사체 거리가 m인 시점(이하 "제2 시점"이라고 함)까지의 패닝 각도 θ의 변화량을 나타낸다. D는 제1 시점부터 제2 시점까지의 이동 거리를 나타내며, tf는 제1 시점부터 제2 시점까지의 시간 길이이다. tlag는 제2 시점부터 노광 기간의 중간점까지의 시간 길이를 나타낸다.
도 13a는 식 (7)에 있어서
Figure pat00015
인 경우를 나타내며, 도 13b는 식 (7)에 있어서
Figure pat00016
인 경우를 나타낸다.
도 13c는 식 (8)에 있어서 m≤n의 경우를 나타내며, 도 13d는 식 (8)에 있어서 m>n인 경우를 나타내고 있다.
식 (4)에 의해 표현된 최단 거리 L은 도 13a 내지 13d의 모두에 있어서, 변 msinθ와 변 D를 가진 삼각형과 변 L과 변 n을 가진 삼각형의 유사 관계(msinθ:D=L:n)로부터 산출될 수 있다. 식 (6)에 의해 표현된 이동 거리 D는 도 13a 내지 13d 모두에 있어서, 변 msinθ와 변 D를 가진 삼각형의 피타고라스 정리에 의해 산출될 수 있다.
도 13a 내지 13c에서, 이동 거리 D는 다음으로부터 산출될 수 있다:
Figure pat00017
.
도 13d에서, 이동 거리 D는 다음으로부터 산출될 수 있다:
Figure pat00018
.
스텝 S604에서는, 피사체 각속도 설정부(603)는 실시예 1에서 설명한 식 (2)를 이용하여 가중치 W를 1로 하여 노광기간중 상대 피사체 각속도 ω를 설정한다.
본 실시예는 임의의 2개의 시점의 피사체 거리와 그 사이의 패닝 각도 θ의 변화량 Δθ를 취득함으로써 노광기간중 상대 피사체 각속도 ω를 산출할 수 있다. 이에 따라, 카메라(100')로부터 측정되는 피사체의 각속도가 변화하는 경우에도 피사체 상의 흔들림이 저감된 양호한 팔로우 샷을 가능하게 하는 팔로우 샷 보조를 실현할 수 있다.
[실시예 3]
이어서, 본 발명의 제3 실시예(실시예 3)인 촬상 장치로서의 카메라에 대해서 설명한다. 본 실시예의 카메라 구성은 실시예 1의 카메라(100)과 공통이고, 이에 따라, 본 실시예의 카메라의 구성 요소들은 실시예 1과 같은 부호로 표시한다.
실시예 1 및 2는 노광기간중 상대 피사체 각속도가 노광 전에 1회만 산출되고, 그 산출 결과에 기초하여 팔로우 샷 보조가 수행되는 경우에 대해서 설명하였다. 이 경우, 노광 기간이 짧으면 문제는 없지만, 노광 기간이 길어지면 그 노광 기간 동안의 상대 피사체 각속도의 변화 때문에 양호한 팔로우 샷 보조를 행하는 것이 불가능하게 된다. 따라서, 본 실시예는 해당 노광 기간 동안의 노광기간중 상대 피사체 각속도를 순차 산출(반복 갱신)하고, 최신의 산출 결과에 따라 시프트 렌즈(104)의 시프트 구동을 제어함으로써, 노광 기간이 긴 경우에도 양호한 팔로우 샷 보조를 수행하는 것을 가능하게 한다.
도 14는 본 실시예에 있어서 카메라 마이크로컴퓨터(130)가 팔로우 샷 보조 모드에서 행하는 팔로우 샷 보조 처리를 나타내는 흐름도이다. 카메라 마이크로컴퓨터(130)은 컴퓨터 프로그램인 팔로우 샷 보조 제어 프로그램에 따라 이 처리를 실행한다. 도 14에 있어서, 실시예 1에서 도 2의 흐름도에 있는 것들과 공통인 스텝들은 도 2와 동일한 스텝 번호로 예시되고, 그 설명은 생략된다.
본 실시예에서는, 카메라 마이크로컴퓨터(130)는, 실시예 1과 마찬가지로, 스텝 S206에 있어서, 피사체 각속도 산출부(134)가 노광기간전 상대 피사체 각속도를 산출하게 한다. 이 처리(제1 처리) 후에, 카메라 마이크로컴퓨터(130)는, 다음 스텝 S701에서, 피사체 각속도 설정부(603)가, 스텝 S206에서 산출된 노광기간전 상대 피사체 각속도와 그 산출 시간을 각속도 이력으로서 유지하게 한다. 실시예 2에 설명된 방법에 의해 노광기간중 상대 피사체 각속도가 산출되는 경우에, 카메라 마이크로컴퓨터(130)는 피사체 각속도 설정부(603)가, 산출된 노광기간전 상대 피사체 각속도와 그 산출 시간 외에, 그 산출 시간에서의 피사체 거리와 노광기간전 상대 피사체 각속도의 이전 산출 시간으로부터의 패닝 각도 θ의 변화량도 유지하게 한다.
스텝 S209에서 노광을 개시한 후에 노광 기간 동안(기록용 촬영 중)의 스텝 S702에 있어서, 카메라 마이크로컴퓨터(130)는 피사체 각속도 설정부(603)가 새로운 노광기간중 상대 피사체 각속도를 산출(설정)하게 한다. 이 처리는 제2 처리에 대응한다. 카메라 마이크로컴퓨터(130)는 스텝 S702의 처리를 스텝 S211에서 노광이 완료할 때까지 반복해서 노광기간중 상대 피사체 각속도를 반복 갱신한다. 그리고, 카메라 마이크로컴퓨터(130)는, 스텝 S210에 있어서, 스텝 S702에서 노광기간중 상대 피사체 각속도가 갱신될 때마다, 팔로우 샷 제어부(132)가 갱신된 노광기간중 상대 피사체 각속도에 따라 시프트 렌즈(104)의 시프트 구동을 제어하게 한다.
본 실시예는 노광 기간 중에도 노광기간중 상대 피사체 각속도를 반복해 산출하고, 이 새로이 산출된 노광기간중 상대 피사체 각속도에 기초하여 팔로우 샷 보조를 행한다. 즉, 노광 기간이 미리 결정된 기간보다도 긴 경우에는, 산출하는 노광기간중 상대 피사체 각속도의 수를 증가시킨다(즉, 예측 정보를 산출하는 횟수를 증가시킨다. 이에 따라, 노광 기간이 긴 경우에도 피사체 상의 흔들림이 저감된 양호한 팔로우 샷을 가능하게 하는 팔로우 샷 보조를 행할 수 있다.
[실시예 4]
이어서, 도 15에 관련하여, 본 발명의 제4 실시예(실시예 4)인 촬상 장치로서 렌즈 교환식 카메라 시스템에 대해서 설명한다. 교환 가능 렌즈(140)는 렌즈 교환식 카메라(141)에 대하여 제거 가능하게 장착된다. 도 15에 있어서, 도 3에 도시한 실시예 1의 카메라(100)와 공통되는 구성 요소들은 실시예 1과 같은 부호로 표시하고, 그것들의 설명은 생략한다.
본 실시예에서는, 카메라(141) 내의 카메라 마이크로컴퓨터(144)와 교환 가능 렌즈(140) 내의 렌즈 마이크로컴퓨터(142)가 실시예 1에 있어서 카메라 마이크로컴퓨터(130)에 의해 수행되는 처리들을 분담해서 행한다. 렌즈 마이크로컴퓨터(142)와 카메라 마이크로컴퓨터(144)는 교환 가능 렌즈(140)에 설치된 마운트 접점부(146)와 카메라(141)에 설치된 마운트 접점부(147)를 통해서 정보 송수신을 위한 시리얼 통신을 행한다. 카메라 마이크로컴퓨터(144)는 셔터 제어부(133)와 피사체 각속도 산출부(134)을 포함한다. 렌즈 마이크로컴퓨터(142)는 상 안정화 제어부(131)와 팔로우 샷 제어부(132')를 포함한다. 팔로우 샷 제어부(132')는 카메라 마이크로컴퓨터(144)(피사체 각속도 산출부(134))로부터 시리얼 통신에 의해 정보를 수신하는 점에서 실시예 1의 팔로우 샷 제어부(132)와 상이하다. 본 실시예에서는, 교환 가능 렌즈(140)에 포함된 렌즈 마이크로컴퓨터(142)가 제어기에 상당하고, 산출기로서의 피사체 각속도 산출부(134)는 카메라 마이크로컴퓨터(144)에 포함된다.
도 16은 교환 가능 렌즈(140)에 설치된 시프트 구동 제어 시스템의 구성을 나타내고; 이 시스템은 본 실시예에 있어서 팔로우 샷 보조 모드에서의 시프트 렌즈(104)의 시프트 구동 제어를 행한다. 도 16에 있어서, 실시예 1의 도 6에 나타낸 구성 요소와 공통되는 구성 요소들은 실시예 1에서와 같은 부호로 표시하고, 그것들의 설명은 생략한다.
팔로우 샷 제어부(132')는 카메라 정보 취득부(611)와, 각속도 데이터 출력부(612)와, 피사체 각속도 설정부(613)와, 제2 가산기(604)와, 제2 적분기(605)를 포함한다.
카메라 정보 취득부(611)는, 통신 제어부(614)을 통해 카메라 마이크로컴퓨터(144)로부터 실시예 1에서 설명한 팔로우 샷 설정 정보와 릴리즈 정보를 취득한다. 각속도 데이터 출력부(612)는 미리 정해진 시간들에서 실시예 1에서 설명한 각속도 데이터를 샘플링하고, 샘플링된 각속도 데이터를 통신 제어부(614)를 통해 카메라 마이크로컴퓨터(144) 내의 피사체 각속도 산출부(134)에 송신한다.
피사체 각속도 설정부(613)는 카메라 마이크로컴퓨터(144) 내의 피사체 각속도 산출부(134)로부터 송신되는 정보를 통신 제어부(614)을 통해 수신한다. 송신되는 정보는 노광 전에 피사체 각속도 산출부(134)가 산출한 노광기간전 상대 피사체 각속도와 그 산출 시간(취득 시간)으로부터 이 정보가 피사체 각속도 설정부(613)에 송신되는 통신 시간까지의 지연 시간의 세트(또는 복수의 세트)를 포함한다. 피사체 각속도 설정부(613)는 수신한 지연 시간을 렌즈 마이크로컴퓨터(142)의 내부 시간으로서의 렌즈 측 산출 시간으로 변환하고, 이 산출 시간과 수신한 노광기간전 상대 피사체 각속도의 복수의 세트를 포함하는 정보를 노광기간전 각속도 이력으로서 유지(축적)한다. 그리고, 피사체 각속도 설정부(613)는 그 노광기간전 각속도 이력을 이용하여 노광기간중 상대 피사체 각속도를 설정(추정)한다.
도 17은 카메라 마이크로컴퓨터(144)가 팔로우 샷 보조 모드에서 행하는 팔로우 샷 보조 처리를 나타내는 흐름도이다. 카메라 마이크로컴퓨터(144)은 컴퓨터 프로그램인 카메라 측 팔로우 샷 보조 제어 프로그램에 따라 이 처리를 실행한다. 도 17에 있어서, 실시예 1에서 도 2의 흐름도의 것들과 공통인 스텝들은 도 2와 동 스텝 번호로 예시하고, 그것들의 설명은 생략한다.
스텝 S206에서는, 카메라 마이크로컴퓨터(144)는 피사체 각속도 산출부(134)가 노광기간전 상대 피사체 각속도를 산출하게 한다. 이 처리(제1 처리) 후에, 카메라 마이크로컴퓨터(144)는 스텝 S801에 있어서, 산출된 노광기간전 상대 피사체 각속도와 그 산출 시간으로부터 통신 시간인 현시점까지의 지연 시간의 세트들을 포함하는 정보를 렌즈 마이크로컴퓨터(142)에 송신한다.
그 후, 스텝 S208에서 SW2ON이 수행되면, 카메라 마이크로컴퓨터(144)는 스텝 S802에 있어서, 노광 개시의 시간 정보를 렌즈 마이크로컴퓨터(142)에 송신하고 이미지 센서(112)의 노광을 행한다. 또한, 노광이 종료된 후에, 카메라 마이크로컴퓨터(144)는 스텝 S803에서 노광 종료의 시간 정보를 렌즈 마이크로컴퓨터(142)에 송신한다. 이 후, 카메라 마이크로컴퓨터(144)는 스텝 S212로 진행한다.
도 18은 렌즈 마이크로컴퓨터(142)가 팔로우 샷 보조 모드에서 행하는 팔로우 샷 보조 처리를 나타내는 흐름도이다. 렌즈 마이크로컴퓨터(142)는 컴퓨터 프로그램인 렌즈 측 팔로우 샷 보조 제어 프로그램에 따라 이 처리를 실행한다.
스텝 S901에 있어서, 렌즈 마이크로컴퓨터(142)는 카메라 마이크로컴퓨터(144)로부터 노광기간전 상대 피사체 각속도와 지연 시간의 세트들을 포함하는 정보를 수신했는지의 여부를 결정한다. 정보를 수신한 경우에는, 렌즈 마이크로컴퓨터(142)는 스텝 S902로 진행하고, 그렇지 않은 경우에는 본 스텝의 처리를 반복한다.
스텝 S902에서는, 렌즈 마이크로컴퓨터(142)는 수신한 노광기간전 상대 피사체 각속도를 유지한다.
이어서, 스텝 S903에서는, 렌즈 마이크로컴퓨터(142)는, 스텝 S901에서 수신한 지연 시간으로부터, 노광기간전 상대 피사체 각속도의 렌즈 측 산출 시간을 계산하고, 그 산출 시간과 노광기간전 상대 피사체 각속도의 세트들을 포함하는 정보를 노광기간전 각속도 이력으로서 유지한다.
스텝 S904에서는, 렌즈 마이크로컴퓨터(142)는 노광 기간의 중간점에서의 상대 피사체 각속도(노광기간중 상대 피사체 각속도)를 설정한다. 렌즈 마이크로컴퓨터(142)는 이 설정을 실시예 1에서 도 1에 도시된 흐름도를 이용하여 설명한 각속도 설정 처리(제2 처리)에 의해 행한다. 또한, 렌즈 마이크로컴퓨터(142)는 상기 설정을 카메라 마이크로컴퓨터(144)로부터 피사체 거리와 패닝 각도 θ의 변화량에 관한 정보를 수신함으로써, 실시예 2에서 도 12를 이용하여 설명한 각속도 결정 처리에 의해 행할 수도 있다.
다음으로 스텝 S905에서는, 렌즈 마이크로컴퓨터(142)는 카메라 마이크로컴퓨터(144)로부터 노광 개시 시간 정보를 수신했는지의 여부를 판정한다. 노광 개시 시간 정보를 수신한 경우에는, 렌즈 마이크로컴퓨터(142)는 스텝 S906로 진행하고, 그렇지 않은 경우에는 스텝 S901로 복귀한다.
스텝 S906에서는, 렌즈 마이크로컴퓨터(142)는 실시예 1에서 도 2에 도시한 스텝 S210과 마찬가지로, 피사체 상의 상면 상에서의 변위량을 보정하도록, 팔로우 샷 제어부(132)를 통해서 시프트 렌즈(104)의 시프트 구동을 제어한다. 이와 동시에, 실시예 1에서 도 5에 도시한 스텝 S502와 마찬가지로 고속 패닝이 수행되고 있다고 판정된 경우에는, 렌즈 마이크로컴퓨터(142)는 상 안정화 제어부(131)를 통해서 카메라 요동에 기인하는 상 흔들림을 보정하기 위해서 시프트 렌즈(104)의 시프트 구동을 제어한다.
그리고, 스텝 S907에서는, 렌즈 마이크로컴퓨터(142)는 카메라 마이크로컴퓨터(144)로부터 노광 종료 시간 정보를 수신했는지의 여부를 판정한다. 노광 종료 시간 정보를 수신한 경우에는, 렌즈 마이크로컴퓨터(142)는 스텝 S901로 복귀하고, 그렇지 않은 경우에는 스텝 S906으로 복귀하여 팔로우 샷 보조 처리를 계속한다.
본 실시예는 렌즈 교환식 카메라 시스템이 실시예 1 또는 실시예 2에서 설명한 것과 유사한 팔로우 샷 보조를 행하는 것을 가능하게 한다.
교환 가능 렌즈(140)이 실시예 3에서 설명한 것이라고 유사한 팔로우 샷 보조를 행하게 하는 경우에는, 렌즈 마이크로컴퓨터(142)는 도 18의 스텝 S904에서의 처리를 스텝 S906 전에 행하고, 스텝 S907에서 노광 종료 시간 정보를 수신하지 않은 경우에는 스텝 S904로 복귀한다.
본 실시예는 카메라 마이크로컴퓨터(144)가 렌즈 마이크로컴퓨터(142)에 노광기간전 상대 피사체 각속도의 산출 시간으로부터 그것의 통신 시간까지의 지연 시간을 송신하고, 렌즈 마이크로컴퓨터(142)이 해당 지연 시간으로부터 렌즈 측 산출 시간을 계산하는 경우에 대해서 설명하였다. 그러나, 렌즈 마이크로컴퓨터(142)의 내부 시간과 카메라 마이크로컴퓨터(144)의 내부 시간을 미리 일치시키고, 카메라 마이크로컴퓨터(144)가 렌즈 마이크로컴퓨터(142)에 노광기간전 상대 피사체 각속도와 그 산출 시간을 송신하는 구성이 이용될 수도 있다.
[실시예 5]
이어서, 본 발명의 제5 실시예(실시예 5)인 촬상 장치로서의 렌즈 교환식 카메라 시스템에 대해서 설명한다. 도 15 및 도 16에 나타낸 실시예 4의 교환 가능 렌즈(140) 및 카메라(141)과 공통되는 구성 요소들은 실시예 4와 같은 부호로 표시하고, 그것들의 설명은 생략한다.
실시예 4는 렌즈 마이크로컴퓨터(142)가 노광기간중 상대 피사체 각속도를 산출하는 경우에 대해서 설명했지만, 실시예 5는 카메라 마이크로컴퓨터(144)가 노광기간중 상대 피사체 각속도를 산출하는 경우에 대해 설명한다. 구체적으로는, 카메라 마이크로컴퓨터(144)는 노광의 개시 시간까지의 타임 래그를 고려한 노광기간중의 상대 피사체 각속도들의 리스트를 작성하고 그 수는 시프트 렌즈(104)의 시프트 구동 시간들의 수에 대응한다. 카메라 마이크로컴퓨터(144)는 해당 리스트를 렌즈 마이크로컴퓨터(142)에 송신한다.
도 19는 카메라 마이크로컴퓨터(144)가 이 실시예에서 팔로우 샷 보조 모드에서 행하는 팔로우 샷 보조 처리를 나타내는 흐름도이다. 카메라 마이크로컴퓨터(144)는 컴퓨터 프로그램인 카메라 측 팔로우 샷 보조 제어 프로그램에 따라 이 처리를 실행한다. 도 19에 있어서, 실시예 4에서 도 17의 흐름도에 있는 것들과 공통인 스텝들은 도 17의 것들과 동일한 스텝 번호로 예시하고, 그것의 설명은 생략한다.
스텝 S1001에서는, 카메라 마이크로컴퓨터(144)는 스텝 S206(제1 처리)에 있어서 산출된 노광기간전 상대 피사체 각속도를 유지한다.
다음으로 스텝 S1002에서는, 카메라 마이크로컴퓨터(144)는 실시예 1에서 도 2를 이용하여 설명한 스텝 S207과 마찬가지의 처리(제2 처리)를 행해서 노광기간중 상대 피사체 각속도를 산출한다. 그러나, 본 스텝에서는, 카메라 마이크로컴퓨터(144)는 시프트 렌즈(104)의 시프트 구동의 미리 결정된 주기적 시간들에 대한 복수의 노광기간중 상대 피사체 각속도를 포함하는 리스트를 작성하고, 이 리스트를 렌즈 마이크로컴퓨터(142)에 송신한다.
예를 들어, 노광 기간이 1/100초이고, 시프트 렌즈(104)의 시프트 구동 주기가 1 kHz인 경우에는, 시프트 렌즈(104)는 노광 기간 내에서 10회 구동된다. 이에 따라, 카메라 마이크로컴퓨터(144)는 이 10회의 시프트 구동 시간들 각각에 대한 노광기간중 상대 피사체 각속도를 산출하고 산출한 10개의 노광기간중 상대 피사체 각속도를 포함하는 리스트를 렌즈 마이크로컴퓨터(142)에 송신한다.
본 실시예에서는, 카메라 마이크로컴퓨터(144) 내의 피사체 각속도 산출부(134)가 노광기간중 상대 피사체 각속도들을 산출하고 그것들의 리스트를 작성한다. 즉, 카메라 마이크로컴퓨터(144)이 산출기에 상당하고, 렌즈 마이크로컴퓨터(142)은 제어기에 상당한다.
도 20은 렌즈 마이크로컴퓨터(142)가 팔로우 샷 보조 모드에서 행하는 팔로우 샷 보조 처리를 나타내는 흐름도이다. 렌즈 마이크로컴퓨터(142)은 컴퓨터 프로그램인 팔로우 샷 보조 제어 프로그램에 따라 이 처리를 실행한다. 도 20에 있어서, 실시예 4에서 도 18의 흐름도에 있는 것들과 공통인 스텝들은 도 18과 동일한 스텝 번호로 예시되고, 그들에 대한 설명을 생략한다.
스텝 S1101에서는, 렌즈 마이크로컴퓨터(142)는 카메라 마이크로컴퓨터(144)로부터 노광기간중 상대 피사체 각속도의 리스트를 수신했는지의 여부를 판정한다. 리스트를 수신한 경우에는, 렌즈 마이크로컴퓨터(142)는 스텝 S905로 진행하고, 그렇지 않은 경우에는 본 스텝의 처리를 반복한다.
스텝 S905에서 카메라 마이크로컴퓨터(144)로부터 노광 개시 시간 정보를 수신한 렌즈 마이크로컴퓨터(142)는 스텝 S1102에 있어서, 스텝 S1101에서 수신한 리스트로부터, 시프트 렌즈(104)의 각각의 시프트 구동 시간들에 대한 노광기간중 상대 피사체 각속도를 판독한다. 그리고, 렌즈 마이크로컴퓨터(142)는 가장 이른 시프트 구동 시간으로부터 순서대로, 각각의 시프트 구동 시간들에 대해 사용될 노광기간중 상대 피사체 각속도들을 설정한다.
다음으로 스텝 S1103에서는, 렌즈 마이크로컴퓨터(142)는 팔로우 샷 제어부(132')가 스텝 S1102에서 결정된 노광기간중 상대 피사체 각속도에 따라 시프트 렌즈(104)의 시프트 구동을 제어하게 한다. 시프트 구동의 제어에서, 렌즈 마이크로컴퓨터(142)는 스텝 S1102에서 설정된 순서로, 시프트 렌즈(104)의 각각의 시프트 구동 시간들에서 사용되는 노광기간중 상대 피사체 각속도를 변경한다. 즉, 노광기간중 상대 피사체 각속도가 순차 갱신된다.
또한, 시프트 구동의 제어에서, 실시예 1에서 도 5에 도시한 스텝 S502와 마찬가지로 고속 패닝이 수행되고 있다고 판정된 경우에는, 렌즈 마이크로컴퓨터(142)는 상 안정화 제어부(131)을 통해서 카메라 요동으로 인한 상 흔들림을 보정하기 위해서 시프트 렌즈(104)을 시프트 구동을 행한다. 렌즈 마이크로컴퓨터(142)는 이상의 처리들을 노광의 종료(스텝 S907)까지 반복한다. 이에 의해, 이 실시예는 노광 중의 피사체 각속도의 변화에 대응할 수 있다.
또한, 본 실시예에서는 카메라와 렌즈 마이크로컴퓨터들(144 및 142)이 노광기간중 피사체 각속도들의 리스트를 데이터로서 송수신하지만, 노광 개시 시의 상대 피사체 각속도와 상대 피사체 각가속도를 송수신하는 것도 노광기간중 상대 피사체 각속도의 변화에 대응할 수 있다. 도 21은 본 실시예의 변형예로서, 카메라 마이크로컴퓨터(144)이 팔로우 샷 보조 모드에서 행하는 팔로우 샷 보조 처리를 나타내는 흐름도이다. 도 21에 있어서, 도 19의 흐름도의 것들과 공통인 스텝들은 도 19와 동일한 스텝 번호로 예시되고, 그것들의 설명은 생략한다.
스텝 S206에서 산출한 노광기간전 상대 피사체 각속도를 스텝 S1001에서 유지한 카메라 마이크로컴퓨터(144)는 스텝 S1202에 있어서, 도 19의 스텝 S1002와 마찬가지로 복수의 노광기간중 상대 피사체 각속도를 산출한다. 그리고, 카메라 마이크로컴퓨터(144)는 해당 복수의 노광기간중 상대 피사체 각속도를 이용하여 노광 개시 시의 상대 피사체 각속도와 카메라에 대한 피사체의 움직임의 예측 정보로서의 추정 가속도인 상대 피사체 각가속도를 산출한다. 카메라 마이크로컴퓨터(144)는 노광 개시 시의 상대 피사체 각속도와 상대 피사체 각가속도를 포함하는 정보를 카메라 마이크로컴퓨터(144)에 송신한다. 그 후, 카메라 마이크로컴퓨터(144)는 스텝 S208과 이후의 스텝으로 진행한다.
도 22는 본 변형예에 있어서 렌즈 마이크로컴퓨터(142)가 팔로우 샷 보조 모드에서 행하는 팔로우 샷 보조 처리를 나타내는 흐름도이다. 도 22에 있어서, 도 20의 흐름도의 것들과 공통인 스텝들은 도 20과 동일한 스텝 번호로 예시되고, 그것들의 설명은 생략한다.
스텝 S1301에서는, 렌즈 마이크로컴퓨터(142)는 카메라 마이크로컴퓨터(144)로부터 노광 개시 시의 상대 피사체 각속도와 상대 피사체 각가속도를 포함하는 정보를 수신했는지의 여부를 판정한다. 그 정보를 수신한 경우에는, 렌즈 마이크로컴퓨터(142)는 스텝 S905로 진행하고, 그렇지 않은 경우에는 본 스텝의 처리를 반복한다.
스텝 S905에서 노광이 개시되었다고 판정한 렌즈 마이크로컴퓨터(142)는 스텝 S1302로 진행한다. 스텝 S1302에서는, 카메라 마이크로컴퓨터(144)는 수신한 노광 개시 시의 상대 피사체 각속도와, 수신한 상대 피사체 각가속도 및 노광 개시 시간 이후의 경과 시간을 사용하여, 시프트 렌즈(104)의 시프트 구동의 각각의 미리 결정된 주기적 시간들(보정 시간들)에 대한 노광기간중 상대 피사체 각속도를 설정한다.
그리고, 스텝 S1103에서는, 렌즈 마이크로컴퓨터(142)는, 팔로우 샷 제어부(132')가, 스텝 S1302에서 설정된 각각의 보정 시간들에 대한 상대 피사체 각속도에 따라, 각각의 보정 시간들에서, 시프트 렌즈(104)의 시프트 구동을 제어하게 한다. 이렇게 해서, 노광기간중 상대 피사체 각속도가 순차 갱신된다.
시프트 구동의 이 제어에서, 실시예 1에서 도 5에 도시한 스텝 S502와 마찬가지로 고속 패닝이 수행되고 있다고 판정된 경우에는, 렌즈 마이크로컴퓨터(142)는 상 안정화 제어부(131)를 통해서 카메라 요동에 기인하는 상 흔들림을 보정하기 위해서 시프트 렌즈(104)의 시프트 구동을 행한다. 렌즈 마이크로컴퓨터(142)는 이상의 처리를 노광 종료(스텝 S907)까지 반복한다. 이에 의해, 이 실시예는 노광 중의 피사체 각속도의 변화에 대응할 수 있다.
본 실시예는 렌즈 교환식 카메라 시스템이 노광 기간 중에 상대 피사체 각속도가 변화해도 피사체 상의 흔들림이 저감된 양호한 팔로우 샷 보조를 수행하는 것을 가능하게 한다.
상술한 각 실시예는 팔로우 샷 보조 및 카메라 요동에 대한 상 흔들림의 보정을 촬영 렌즈 유닛(101)의 일부를 구성하는 시프트 렌즈(104)를 시프트시킴으로써 행하는 경우에 대해서 설명하였지만, 팔로우 샷 보조 및 상 흔들림 보정은 촬영 렌즈 유닛의 전체를 시프트시키는 것에 의해 또는 이미지 센서(112)를 광학 소자(시프트 가능 소자)로서 시프트시키는 것에 의해 행할 수도 있다.
다른 실시예들
본 발명의 실시예들은 또한 상술한 본 발명의 실시예들 중 하나 이상의 실시예의 기능들을 수행하기 위해 저장 매체(예를 들어, 비일시적 컴퓨터 판독 가능 저장 매체)에 기록된 컴퓨터 실행가능 명령어를 판독하여 실행하는 시스템 또는 장치의 컴퓨터에 의해, 그리고 예를 들어 상술한 실시예(들) 중 하나 이상의 실시예의 기능들을 수행하기 위해 저장 매체로부터 컴퓨터 실행 가능 명령어를 판독하여 실행하는 것에 의해, 상기 시스템 또는 장치의 컴퓨터에 의해 수행되는 방법에 의해 구현될 수도 있다. 컴퓨터는 중앙 처리 유닛(CPU), 마이크로 처리 유닛(MPU), 또는 기타 회로 중 하나 이상을 포함할 수 있고, 개별 컴퓨터들 또는 개별 컴퓨터 프로세서들의 네트워크를 포함할 수 있다. 컴퓨터 실행가능 명령어는 예를 들어, 네트워크 또는 저장 매체로부터 컴퓨터에 제공될 수 있다. 저장 매체는 예를 들어, 하드 디스크, 랜덤 액세스 메모리(RAM), 판독 전용 메모리(ROM), 분산형 컴퓨팅 시스템의 저장 장치, 광학 디스크(예를 들어, 콤팩트 디스크(CD), 디지털 다기능 디스크(DVD), 또는 블루레이 디스크(BD™)), 플래시 메모리 디바이스, 메모리 카드 등 중에서 하나 이상을 포함할 수 있다.
본 발명을 예시적인 실시예들에 관련하여 설명하였지만, 본 발명은 개시된 예시적인 실시예들로 제한되지 않는다는 것을 이해해야 한다. 이하의 청구항들의 범위는 이러한 모든 변형 및 동등한 구조 및 기능을 포함하도록 최광의로 해석되어야 한다.

Claims (10)

  1. 피사체의 촬상을 수행하도록 구성된 촬상 장치로서,
    상기 촬상 장치의 움직임이 상기 피사체의 움직임을 추종할 때, (a) 상기 촬상 장치의 움직임을 검출하는 제1 검출기로부터 얻어지는 제1 움직임 정보 및 (b) 상기 피사체의 움직임을 검출하는 제2 검출기로부터 얻어지는 제2 움직임 정보를 이용하여 광학 소자를 제어하도록 구성된 제어부; 및
    노광 기간 전의 복수의 시간에서 검출된 상기 제2 움직임 정보를 이용하여 상기 노광 기간 중의 상기 피사체의 움직임에 대한 예측 정보를 산출하도록 구성된 산출부를 포함하고,
    상기 제어부는 상기 노광 기간 중에 상기 예측 정보를 이용하여 상기 광학 소자를 제어하도록 구성되는 것을 특징으로 하는, 촬상 장치.
  2. 제1항에 있어서,
    상기 산출부는,
    상기 노광 기간 전의 상기 피사체의 각속도 정보;
    상기 노광 기간 전의 상기 피사체의 각가속도 정보;
    상기 각속도 정보와 상기 각가속도 정보가 산출되는 산출 시간; 및
    상기 노광 기간이 개시되는 개시 시간
    을 이용하여 상기 예측 정보를 산출하도록 구성되는, 촬상 장치.
  3. 제1항에 있어서,
    상기 산출부는 상기 촬상 장치의 위치에 대한 상기 피사체의 위치에 따른 각가속도의 변화를 이용하여 상기 예측 정보를 산출하도록 구성되는, 촬상 장치.
  4. 제3항에 있어서,
    상기 산출부는 상기 촬상 장치로부터 상기 피사체까지의 거리에 기초한 거리 정보를 이용하여, 상기 촬상 장치의 위치에 대한 상기 피사체의 위치를 산출하도록 구성되는, 촬상 장치.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 산출부는 상기 노광 기간이 미리 결정된 시간보다 긴 경우 상기 광학 소자를 제어하는 데 이용되는 상기 예측 정보를 산출하는 횟수를 증가시키도록 구성되는, 촬상 장치.
  6. 제1항에 있어서,
    상기 제어부는, 상기 노광 기간 중에 (a) 상기 예측 정보와 (b) 상기 노광 기간 중에 얻어지는 상기 제1 움직임 정보를 이용하여 상기 광학 소자를 제어하도록 구성되는, 촬상 장치.
  7. 피사체의 촬상을 수행하도록 구성된 촬상 장치의 제어 방법으로서,
    상기 촬상 장치의 움직임이 상기 피사체의 움직임을 추종할 때, (a) 상기 촬상 장치의 움직임을 검출하는 제1 검출기로부터 얻어지는 제1 움직임 정보 및 (b) 상기 피사체의 움직임을 검출하는 제2 검출기로부터 얻어지는 제2 움직임 정보를 이용하여 광학 소자를 제어하는 단계; 및
    노광 기간 전의 복수의 시간에서 검출된 상기 제2 움직임 정보를 이용하여 상기 노광 기간 중의 상기 피사체의 움직임에 대한 예측 정보를 산출하는 단계를 포함하고,
    상기 방법은 상기 노광 기간 중에 상기 예측 정보를 이용하여 상기 광학 소자를 제어하는 것을 특징으로 하는, 촬상 장치의 제어 방법.
  8. 제7항에 있어서,
    상기 방법은 상기 노광 기간 중에 (a) 상기 예측 정보와 (b) 상기 노광 기간 중에 얻어지는 상기 제1 움직임 정보를 이용하여 상기 광학 소자를 제어하는 것인, 촬상 장치의 제어 방법.
  9. 촬상 장치의 컴퓨터를 동작하게 하는 제어 프로그램인, 컴퓨터 판독가능 기록 매체에 기록된 컴퓨터 프로그램에 있어서,
    상기 촬상 장치는 피사체의 촬상을 수행하도록 구성되고, 상기 제어 프로그램은, 상기 컴퓨터가,
    상기 촬상 장치의 움직임이 상기 피사체의 움직임을 추종할 때, (a) 상기 촬상 장치의 움직임을 검출하는 제1 검출기로부터 얻어지는 제1 움직임 정보 및 (b) 상기 피사체의 움직임을 검출하는 제2 검출기로부터 얻어지는 제2 움직임 정보를 이용하여 광학 소자를 제어하고,
    노광 기간 전의 복수의 시간에서 검출된 상기 제2 움직임 정보를 이용하여 상기 노광 기간 중의 상기 피사체의 움직임에 대한 예측 정보를 산출하게 하고,
    상기 제어 프로그램은 상기 컴퓨터가 상기 노광 기간 중에 상기 예측 정보를 이용하여 상기 광학 소자를 제어하게 하는 것을 특징으로 하는, 컴퓨터 프로그램.
  10. 제9항에 있어서,
    상기 제어 프로그램은, 상기 컴퓨터가, 상기 노광 기간 중에 (a) 상기 예측 정보와 (b) 상기 노광 기간 중에 얻어지는 상기 제1 움직임 정보를 이용하여 상기 광학 소자를 제어하게 하는, 컴퓨터 프로그램.
KR1020160021083A 2015-03-03 2016-02-23 촬상 장치, 그 제어 방법 및 그 컴퓨터 프로그램 KR101951076B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015041436 2015-03-03
JPJP-P-2015-041436 2015-03-03
JPJP-P-2015-250675 2015-12-22
JP2015250675A JP6529430B2 (ja) 2015-03-03 2015-12-22 撮像装置、制御方法、制御プログラム、および記憶媒体

Publications (2)

Publication Number Publication Date
KR20160107098A true KR20160107098A (ko) 2016-09-13
KR101951076B1 KR101951076B1 (ko) 2019-02-21

Family

ID=56898873

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160021083A KR101951076B1 (ko) 2015-03-03 2016-02-23 촬상 장치, 그 제어 방법 및 그 컴퓨터 프로그램

Country Status (3)

Country Link
JP (1) JP6529430B2 (ko)
KR (1) KR101951076B1 (ko)
CN (1) CN105939454B (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10218906B2 (en) * 2017-03-22 2019-02-26 Htc Corporation Camera device and method for camera device
JP6887858B2 (ja) * 2017-04-14 2021-06-16 キヤノン株式会社 像ブレ補正装置、撮像装置および制御方法
JP2019008221A (ja) * 2017-06-27 2019-01-17 キヤノン株式会社 撮像装置およびその制御方法
JP7073078B2 (ja) * 2017-11-14 2022-05-23 キヤノン株式会社 撮像装置およびその制御方法
JP6904843B2 (ja) * 2017-08-03 2021-07-21 キヤノン株式会社 撮像装置およびその制御方法
CN108540725A (zh) * 2018-05-14 2018-09-14 Oppo广东移动通信有限公司 防抖方法、电子装置、成像系统、存储介质和计算机设备
CN108848305B (zh) * 2018-06-20 2020-09-01 维沃移动通信有限公司 一种拍照方法及终端设备
US11265480B2 (en) * 2019-06-11 2022-03-01 Qualcomm Incorporated Systems and methods for controlling exposure settings based on motion characteristics associated with an image sensor
JP7451152B2 (ja) 2019-11-26 2024-03-18 キヤノン株式会社 撮像装置、制御方法及びコンピュータプログラム
CN112235514A (zh) * 2020-10-13 2021-01-15 余波 一种基于人工智能的相机快门速度调节方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798471A (ja) * 1993-09-28 1995-04-11 Canon Inc カメラ
JP2008136174A (ja) * 2006-10-24 2008-06-12 Sanyo Electric Co Ltd 撮像装置及び撮影制御方法
KR20080059462A (ko) * 2005-10-25 2008-06-27 조란 코포레이션 카메라 및 장면 동작을 고려한 카메라 노출 최적화 기술
JP2013006174A (ja) * 2011-05-24 2013-01-10 Hakki Sangyo Kk 染色排水を浄化処理するための凝集剤組成物および凝集方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5065060B2 (ja) * 2008-01-16 2012-10-31 キヤノン株式会社 撮像装置及びその制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798471A (ja) * 1993-09-28 1995-04-11 Canon Inc カメラ
KR20080059462A (ko) * 2005-10-25 2008-06-27 조란 코포레이션 카메라 및 장면 동작을 고려한 카메라 노출 최적화 기술
JP2008136174A (ja) * 2006-10-24 2008-06-12 Sanyo Electric Co Ltd 撮像装置及び撮影制御方法
JP2013006174A (ja) * 2011-05-24 2013-01-10 Hakki Sangyo Kk 染色排水を浄化処理するための凝集剤組成物および凝集方法

Also Published As

Publication number Publication date
KR101951076B1 (ko) 2019-02-21
CN105939454A (zh) 2016-09-14
JP6529430B2 (ja) 2019-06-12
CN105939454B (zh) 2019-06-25
JP2016167798A (ja) 2016-09-15

Similar Documents

Publication Publication Date Title
KR101951076B1 (ko) 촬상 장치, 그 제어 방법 및 그 컴퓨터 프로그램
US10362236B2 (en) Image capturing apparatus, control method thereof and storage medium storing control program therefor
CN106375656B (zh) 图像处理设备及其控制方法和摄像装置及其控制方法
JP6341691B2 (ja) 像振れ補正装置およびその制御方法、光学機器、撮像装置
JP7058945B2 (ja) 像ブレ補正装置およびその制御方法、撮像装置
CN107786809B (zh) 摄像和配件设备及其通信控制方法、摄像系统及存储介质
US10250808B2 (en) Imaging apparatus and control method therefor
JP6995561B2 (ja) 像ブレ補正装置およびその制御方法、撮像装置
JP6821358B2 (ja) 制御装置、撮像装置、レンズ装置、制御方法、プログラム、および、記憶媒体
CN107040711B (zh) 图像稳定设备及其控制方法
CN109698912B (zh) 摄像设备及其控制方法
CN107231513B (zh) 摄像系统、摄像设备、镜头装置及其控制方法
CN108668074B (zh) 图像模糊校正装置及其控制方法、摄像设备和存储介质
JP2016170285A (ja) 像ブレ補正装置、光学機器、撮像装置および制御方法
JP2017116924A (ja) ズーム制御装置およびズーム制御方法、撮像装置
JP6990985B2 (ja) 像振れ補正装置及び方法、撮像装置及び撮像システム
US20110157382A1 (en) Image capturing apparatus and method of controlling image capturing apparatus
US10812715B2 (en) Imaging apparatus and method of controlling imaging apparatus
JP2015145901A (ja) 撮像装置
JP7073078B2 (ja) 撮像装置およびその制御方法
JP2017112456A (ja) ズーム制御装置およびズーム制御方法、撮像装置
JP6703789B2 (ja) 像ブレ補正装置及び方法、及び撮像装置
JP7451152B2 (ja) 撮像装置、制御方法及びコンピュータプログラム
JP6800642B2 (ja) アクセサリ装置、制御装置、これらの制御方法
JP2019036828A (ja) 像ブレ補正装置およびその制御方法、撮像装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right