KR20160084808A - Thermal conductive silicone composition and cured product, and composite sheet - Google Patents

Thermal conductive silicone composition and cured product, and composite sheet Download PDF

Info

Publication number
KR20160084808A
KR20160084808A KR1020150189657A KR20150189657A KR20160084808A KR 20160084808 A KR20160084808 A KR 20160084808A KR 1020150189657 A KR1020150189657 A KR 1020150189657A KR 20150189657 A KR20150189657 A KR 20150189657A KR 20160084808 A KR20160084808 A KR 20160084808A
Authority
KR
South Korea
Prior art keywords
thermally conductive
silicone composition
thermoconductive
cured product
conductive silicone
Prior art date
Application number
KR1020150189657A
Other languages
Korean (ko)
Other versions
KR102132243B1 (en
Inventor
야스히사 이시하라
아키히로 엔도
Original Assignee
신에쓰 가가꾸 고교 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신에쓰 가가꾸 고교 가부시끼가이샤 filed Critical 신에쓰 가가꾸 고교 가부시끼가이샤
Publication of KR20160084808A publication Critical patent/KR20160084808A/en
Application granted granted Critical
Publication of KR102132243B1 publication Critical patent/KR102132243B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Abstract

Provided is a thermoconductive silicone composition which contains over 90% of alpha alumina alumina of which α rate is greater than or equal to 90%, with respect to the total parts by weight of a thermoconductive filler, and shows the weight reduction rate less than 1% when exposed to air under a condition involving a temperature of 250°C for six hours. According to the present invention, the thermoconductive silicone composition using over 90% of alpha alumina of which α rate is greater than or equal to 90%, with respect to the total parts by weight of a thermoconductive filler exhibits the low weight reduction rate and excellent heat resistance even at 250°C. Therefore, the thermoconductive silicone composition and a cured product and a composite sheet can be used to cope with a condition requiring heat resistance at approximately 250°C, such as semiconductor devices using silicon carbide-based substrate materials and automobile-mountable heaters for heat radiation.

Description

열전도성 실리콘 조성물 및 경화물, 및 복합 시트{THERMAL CONDUCTIVE SILICONE COMPOSITION AND CURED PRODUCT, AND COMPOSITE SHEET}TECHNICAL FIELD [0001] The present invention relates to a thermally conductive silicone composition, a thermally conductive silicone composition, a cured product thereof, and a composite sheet (THERMAL CONDUCTIVE SILICONE COMPOSITION AND CURED PRODUCT, AND COMPOSITE SHEET)

본 발명은, 예를 들어 전자 기기 내의 발열 부품과 방열 부품 사이, 특히 250℃ 정도의 고온 환경 하에 노출되는 경우의 방열에 사용되는 열전도성 실리콘 조성물, 열전도성 실리콘 경화물 및 열전도성 실리콘 복합 시트에 관한 것이다.The present invention relates to a thermally conductive silicone composition, a thermally conductive silicone cured product, and a thermally conductive silicone compound sheet used for heat dissipation when exposed, for example, between a heat-generating component and a heat-radiating component in an electronic device, .

컨버터나, 전원 등의 전자 기기에 사용되는 트랜지스터나 다이오드 등의 반도체는 고성능화·고속화·소형화·고집적화에 수반하여 그 자체가 대량의 열을 발생시키게 되고, 그 열에 의한 기기의 온도 상승은 동작 불량, 파괴를 야기한다. 그 때문에, 동작 중인 반도체의 온도 상승을 억제하기 위한 많은 열 방산 방법 및 그에 사용되는 열 방산 부재가 제안되어 있다. 일반적인 열 방산 부재는, 중합체 매트릭스에 열전도성 충전재를 충전한 조성물 혹은 이를 경화시켜 이루어지는 경화물, 또는 경화물과 보강재를 적층한 복합 시트 등, 다양한 형태의 것을 들 수 있다. 열 방산 부재는 발열 부재와 방산 부재 사이에 실장되며, 그의 형상은 실장 상태에 따라 선택된다.Semiconductors such as transistors and diodes used in electronic devices such as converters and power supplies are subject to a large amount of heat in association with high performance, high speed, miniaturization and high integration, It causes destruction. Therefore, many heat dissipating methods and a heat dissipating member used therefor for suppressing the temperature rise of an operating semiconductor have been proposed. Typical heat dissipating members include various forms such as a composition filled with a thermally conductive filler in a polymer matrix, a cured product obtained by curing the composition, or a composite sheet obtained by laminating a cured product and a reinforcing material. The heat-dissipating member is mounted between the heat-generating member and the dissipating member, and the shape thereof is selected according to the mounting state.

열 방산 부재의 중합체 매트릭스로서는 실리콘, 아크릴 수지, 올레핀 수지 등을 들 수 있지만, 내열성, 내한성, 장기 신뢰성의 관점에서 실리콘이 가장 적합하다.As the polymer matrix of the heat-dissipating member, silicon, acrylic resin, olefin resin and the like can be mentioned, but silicone is most suitable from the viewpoints of heat resistance, cold resistance and long-term reliability.

특히 발열량이 많은 반도체 소자나 장기 신뢰성이 요구되는 차량 탑재 분야에서의 열 방산 부재의 중합체 매트릭스는, 그의 내열성, 내한성, 장기 신뢰성의 관점에서 실리콘이 많이 사용되고 있다. 또한 지금까지 반도체 소자의 기판 재료는 실리콘이 일반적이었지만, 최근 들어 탄화규소를 원료로 하는 기판 재료가 보급되고 있다. 탄화규소계 기판 재료는, 내열 온도가 실리콘계 기판 재료보다도 높아, 허용되는 동작 환경 온도도 250℃ 부근까지 높아진다. 또한 차량 탑재 분야에서는 하이브리드 자동차, 전기 자동차 등의 보급이 진행되어, 지금까지 엔진의 발열을 이용하고 있던 난방 등도 엔진의 발열에 의존하는 것이 어려워져, 히터의 저항값을 높여 발열량을 증가시킬 필요성이 있다. 예를 들어 PTC 히터는 구동 시에는 대전류가 필요하며, 발열도 200℃를 초과하도록 되어 있다.Particularly, in view of heat resistance, cold resistance and long-term reliability, silicon is often used as a polymer matrix of a heat-dissipating member in a semiconductor device having a large amount of heat generation or a vehicle mounting field requiring long-term reliability. In addition, silicon has been generally used as a substrate material of a semiconductor device up to now, but substrate materials using silicon carbide as a raw material have been popular in recent years. The silicon carbide-based substrate material has a heat-resistant temperature higher than that of the silicon-based substrate material, and the allowable operating environmental temperature also increases to around 250 ° C. In addition, in the vehicle-mounted field, the spread of hybrid vehicles, electric vehicles, and the like is progressing, and it becomes difficult to depend on the heat generation of the engine, which has been using the heat of the engine until now. Therefore, it is necessary to increase the resistance value of the heater have. For example, a PTC heater requires a large current when it is driven, and its heat generation also exceeds 200 ° C.

이러한 흐름 가운데, 당연히 열 방산 부재에 요구되는 내열 온도도 높아지고 있다. 지금까지의 일반적인 실리콘을 중합체 매트릭스로서 사용하는 열 방산 부재인 열전도성 실리콘 조성물 및 그의 경화물, 또는 복합 시트의 사용 온도 범위는 -40℃ 내지 180℃이기 때문에 상기 상황에는 적합하지 않다.Among these flows, the heat-resistant temperature required for the heat-dissipating member naturally also increases. The use temperature range of the thermoconductive silicone composition and its cured product or composite sheet, which is a heat-dissipating member using conventional silicon as a polymer matrix, is not suitable for the above-described conditions.

또한 본 발명에 관련한 종래 기술로서 일본 특허 공개 제2014-145024호 공보를 들 수 있으며, 내열(250℃)성을 강조하고 있지만, 열 안정화제를 첨가해야만 하고, 또한 저산소 가열 환경 하에 한정된다는 문제가 있다.As a conventional technique related to the present invention, Japanese Patent Laid-Open Publication No. 2014-145024 discloses a heat-resistant (250 ° C) property. However, a problem that a heat stabilizer must be added and is limited to a low- have.

일본 특허 공개 제2014-145024호 공보Japanese Patent Application Laid-Open No. 2014-145024

본 발명은 상기 사정을 감안하여 이루어진 것으로, 실리콘을 중합체 매트릭스로 하는 250℃ 분위기 하에서도 사용 가능한 열전도성 실리콘 조성물 및 경화물, 및 복합 시트를 제공하는 것을 목적으로 한다.The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a thermally conductive silicone composition, a cured product, and a composite sheet which can be used even in an atmosphere of 250 캜 in which silicon is a polymer matrix.

본 발명자들은 예의 검토한 결과, 알루미나 중에서도 특히 α화율이 높은 α 알루미나를 사용함으로써, 공기 중 250℃ 분위기 하에서도 중량 감소가 적은 열전도성 실리콘 조성물을 제공할 수 있음을 알아내었다.As a result of intensive studies, the present inventors have found that a thermally conductive silicone composition having a reduced weight loss even in an atmosphere at 250 캜 in the air can be provided by using a-alumina having a high α-alumina ratio among alumina.

즉, 종래부터 열 방산 부재, 특히 차량 탑재 분야에서는, 열 방산 부재에는 절연성이 요구되고 있으며, 많은 실리콘을 중합체 매트릭스로 하는 열 방산 부재의 열전도성 충전재로서는 가격, 열전도성, 충전성, 절연성의 관점에서 알루미나가 사용되고 있지만, 상술한 목적을 달성하기 위해서는, 열전도성 충전재로서 α 알루미나를 주로 사용한 실리콘을 중합체 매트릭스로 하는 것이, 250℃ 환경 하에서 사용 가능한 열전도성 실리콘 조성물 및 경화물을 얻는 점에서 유효한 것을 알아내어, 본 발명을 이루기에 이르렀다.In other words, conventionally, in the field of heat-dissipating members, particularly in vehicles, the heat-dissipating member is required to be insulative, and as the thermally conductive filler of a heat-dissipating member using a large number of silicon as a polymer matrix, Alumina is used. In order to achieve the above-mentioned object, it is effective to obtain a thermally conductive silicone composition and a cured product which can be used under a 250 占 폚 environment by using a polymer matrix mainly composed of? Alumina as a thermally conductive filler The present invention has been accomplished on the basis of these findings.

따라서, 본 발명은 하기의 열전도성 실리콘 조성물 및 경화물, 및 복합 시트를 제공한다.Accordingly, the present invention provides the following thermally conductive silicone composition, cured product, and composite sheet.

〔1〕열전도성 충전재의 총 질량부 중 90% 이상이 α화율이 90% 이상인 α 알루미나이고, 250℃ 환경 하의 공기 중에 6시간 방치하였을 때의 중량 감소율이 1% 미만인 것을 특징으로 하는 열전도성 실리콘 조성물.[1] A thermally conductive filler which is characterized in that at least 90% of the total mass parts of the thermally conductive filler is alpha alumina having an alpha conversion rate of 90% or more, and the weight reduction rate when left in air at 250 DEG C for 6 hours is less than 1% Composition.

〔2〕열전도율이 0.5W/mK 이상인 것을 특징으로 하는, 〔1〕에 기재된 열전도성 실리콘 조성물.[2] The thermally conductive silicone composition according to [1], wherein the thermal conductivity is 0.5 W / mK or more.

〔3〕오르가노폴리실록산 주재 100질량부에 대하여 열전도성 충전재 250 내지 2,000질량부를 함유하는 것을 특징으로 하는, 〔1〕 또는 〔2〕에 기재된 열전도성 실리콘 조성물.[3] The thermoconductive silicone composition according to [1] or [2], further comprising 250 to 2,000 parts by mass of a thermally conductive filler per 100 parts by mass of the organopolysiloxane.

〔4〕열전도성 충전재의 총 질량부 중 90% 이상이 α화율이 90% 이상인 α 알루미나를 함유하는 열전도성 실리콘 조성물을 경화시켜 이루어지는 경화물을 250℃ 환경 하의 공기 중에 6시간 방치하였을 때의 중량 감소율이 1% 미만인 것을 특징으로 하는 열전도성 실리콘 경화물.[4] A thermoconductive silicone composition comprising α alumina having 90% or more of 90% or more of the total mass parts of thermally conductive fillers, wherein the cured product is allowed to stand in air at 250 ° C. for 6 hours Wherein the reduction ratio is less than 1%.

〔5〕열전도율이 0.5W/mK 이상인 것을 특징으로 하는, 〔4〕에 기재된 열전도성 실리콘 경화물.[5] The thermally conductive silicone cured product according to [4], wherein the thermal conductivity is 0.5 W / mK or more.

〔6〕열전도성 실리콘 조성물이 오르가노폴리실록산 주재 100질량부와, 열전도성 충전재 250 내지 2,000질량부와, 상기 오르가노폴리실록산 주재를 경화시키는 경화제의 경화 유효량을 함유하는 것을 특징으로 하는, 〔4〕 또는 〔5〕에 기재된 열전도성 실리콘 경화물.[6] The thermosetting silicone composition as described in [4], wherein the thermoconductive silicone composition contains 100 parts by mass of the organopolysiloxane, 250 to 2,000 parts by mass of the thermally conductive filler, and a curing effective amount of the curing agent for curing the organopolysiloxane- Or the thermoconductive silicone cured product according to [5].

〔7〕보강재의 한쪽측 또는 양측에, 〔4〕 내지 〔6〕 중 어느 하나에 기재된 열전도성 실리콘 경화물을 적층시켜 이루어지는 것을 특징으로 하는 열전도성 실리콘 복합 시트.[7] A thermally conductive silicone composite sheet comprising a thermally conductive silicone cured product according to any one of [4] to [6] laminated on one side or both sides of a reinforcing material.

〔8〕보강재가 폴리이미드 필름인 것을 특징으로 하는, 〔7〕에 기재된 열전도성 실리콘 복합 시트.[8] The thermoconductive silicone composite sheet according to [7], wherein the reinforcing material is a polyimide film.

〔9〕보강재가 유리 클로스인 것을 특징으로 하는, 〔7〕에 기재된 열전도성 실리콘 복합 시트.[9] The thermally conductive silicone composite sheet according to [7], wherein the reinforcing material is glass cloth.

〔10〕열전도성 실리콘 경화물의 경도가 듀로미터 A 경도로 80 내지 99인 것을 특징으로 하는, 〔7〕 내지 〔9〕 중 어느 하나에 기재된 열전도성 실리콘 복합 시트.[10] The thermally conductive silicone composite sheet according to any one of [7] to [9], wherein the hardness of the thermally conductive silicone hardened product is 80 to 99 in durometer A hardness.

본 발명에 따른 열전도성 충전재의 총 질량부 중 90% 이상이 α화율이 90% 이상인 α 알루미나를 사용한 열전도성 실리콘 조성물은 250℃ 환경 하에서도 중량 감소가 적고 내열성이 우수하다. 이 열전도성 실리콘 조성물 및 경화물, 및 복합 시트는 탄화규소계 기판 재료를 사용한 반도체 소자, 및 차량 탑재용 히터의 방열 용도 등, 250℃ 정도의 내열성이 요구되는 개소에 대응할 수 있다.The thermoconductive silicone composition using? -Alumina having 90% or more of the total mass portion of the thermally conductive filler according to the present invention has an α-conversion rate of 90% or more and has a small weight loss and excellent heat resistance even at 250 ° C. The thermoconductive silicone composition, the cured product, and the composite sheet can be used for a part requiring heat resistance of about 250 캜, for example, a semiconductor device using a silicon carbide based substrate material and a heat radiation application for a vehicle-mounted heater.

본 발명에 따른 열전도성 실리콘 조성물은 오르가노폴리실록산 주재와 열전도성 충전재를 주성분으로 하고, 열전도성 실리콘 경화물은 오르가노폴리실록산 주재와 열전도성 충전재에 상기 오르가노폴리실록산 주재를 경화시키는 경화제를 첨가한 열전도성 실리콘 조성물을 경화시켜 이루어지는 것이다.The thermally conductive silicone composition according to the present invention comprises an organopolysiloxane host material and a thermally conductive filler as a main component and the thermally conductive silicone cured material is a thermally conductive silicone material containing an organopolysiloxane host material and a thermally conductive filler material with a curing agent for curing the organopolysiloxane material And is obtained by curing the conductive silicone composition.

이하, 더욱 상세히 설명한다.Hereinafter, this will be described in more detail.

[오르가노폴리실록산 주재][Presence of organopolysiloxane]

본 발명에 사용하는 오르가노폴리실록산 주재는, 주쇄 부분이 기본적으로 디오르가노실록산 단위의 반복을 포함하는 것이 일반적인데, 이는 분자 구조의 일부에 분지상의 구조를 포함한 것일 수도 있고, 또한 환상체일 수도 있지만, 직쇄상의 디오르가노폴리실록산이 바람직하다.In the organopolysiloxane used in the present invention, it is general that the main chain portion basically includes repetition of diorganosiloxane units, which may include a branched structure in a part of the molecular structure or may be a cyclic structure , And straight-chain diorganopolysiloxanes are preferred.

규소 원자에 결합하는 관능기로서는 비치환 또는 치환된 1가 탄화수소기이며, 예를 들어 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, tert-부틸기, 펜틸기, 네오펜틸기, 헥실기, 헵틸기, 옥틸기, 노닐기, 데실기, 도데실기 등의 알킬기, 시클로펜틸기, 시클로헥실기, 시클로헵틸기 등의 시클로알킬기, 페닐기, 톨릴기, 크실릴기, 나프틸기, 비페닐릴기 등의 아릴기, 벤질기, 페닐에틸기, 페닐프로필기, 메틸벤질기 등의 아르알킬기, 및 이들 기에 탄소 원자가 결합하고 있는 수소 원자의 일부 또는 전부가 불소, 염소, 브롬 등의 할로겐 원자, 시아노기 등으로 치환된 기, 예를 들어 클로로메틸기, 2-브로모에틸기, 3-클로로프로필기, 3,3,3-트리플루오로프로필기, 클로로페닐기, 플루오로페닐기, 시아노에틸기, 3,3,4,4,5,5,6,6,6-노나플루오로헥실기 등을 들 수 있고, 대표적인 것은 탄소 원자수가 1 내지 10, 특히 대표적인 것은 탄소 원자수가 1 내지 6인 것이다. 바람직하게는 메틸기, 에틸기, 프로필기, 클로로메틸기, 2-브로모에틸기, 3,3,3-트리플루오로프로필기, 시아노에틸기 등의, 탄소 원자수 1 내지 3의 비치환 또는 치환된 알킬기, 및 페닐기, 클로로페닐기, 플루오로페닐기 등의 비치환 또는 치환된 페닐기이다. 그 외에는 알케닐기와 같은 불포화 결합을 갖고 있을 수도 있으며, 예를 들어 비닐기, 알릴기, 프로페닐기, 이소프로페닐기, 부테닐기, 헥세닐기, 시클로헥세닐기 등의, 통상 탄소 원자수 2 내지 8 정도의 것을 들 수 있다.Examples of the functional group bonding to the silicon atom include an unsubstituted or substituted monovalent hydrocarbon group, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert- A cycloalkyl group such as a cyclopentyl group, a cyclohexyl group and a cycloheptyl group, a phenyl group, a tolyl group, a xylyl group, a naphthyl group, a naphthyl group, an isobutyl group, A phenyl group, a phenyl group, an aralkyl group such as a phenyl group, a phenylpropyl group and a methylbenzyl group, and a part or all of a hydrogen atom to which a carbon atom is bonded to these groups are substituted with a halogen atom such as fluorine, , A cyano group and the like, for example, a chloromethyl group, a 2-bromoethyl group, a 3-chloropropyl group, a 3,3,3-trifluoropropyl group, a chlorophenyl group, a fluorophenyl group, 3,3,4,4,5,5,6,6,6-nonafluorohexyl group Typical examples thereof are those having 1 to 10 carbon atoms, and more particularly, those having 1 to 6 carbon atoms. An unsubstituted or substituted alkyl group having 1 to 3 carbon atoms such as methyl group, ethyl group, propyl group, chloromethyl group, 2-bromoethyl group, 3,3,3-trifluoropropyl group, , And an unsubstituted or substituted phenyl group such as phenyl group, chlorophenyl group, fluorophenyl group and the like. In addition, it may have an unsaturated bond such as an alkenyl group, and may have an unsaturated bond such as an alkenyl group, and may have an unsaturated bond such as a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, a hexenyl group, a cyclohexenyl group, 8.

주쇄의 실록산 반복 단위는 특별히 한정은 없으며, 반복 단위의 수에 따라 얻어지는 폴리실록산의 성상이 변화되므로, 그에 맞추어 열전도성 실리콘 조성물의 조제 방법을 적절히 선택하면 된다. 오일상이면 플라네터리 믹서와 같은 교반 장치가 적합하고, 생고무상이면 2축 롤이나 니더 등의, 보다 전단력이 걸리는 교반 장치가 적합하다.The siloxane repeating unit in the main chain is not particularly limited, and the properties of the polysiloxane obtained vary depending on the number of repeating units, and accordingly, a method for preparing the thermally conductive silicone composition may be appropriately selected. A stirrer such as a planetary mixer which is an oil phase is suitable, and a stirrer in which a shear force is applied, such as a biaxial roll or a kneader, is suitable if it is raw.

이 경우, 오르가노폴리실록산 주재로서, 25℃의 동점도가 100 내지 40,000㎟/s, 특히 100 내지 10,000㎟/s인 것을 사용하는 것이 취급의 관점에서 바람직하다. 또한 동점도는 오스트발트(Ostwald) 점도계로 측정할 수 있다.In this case, it is preferable from the viewpoint of handling to use an organopolysiloxane having a kinematic viscosity at 25 캜 of 100 to 40,000 mm 2 / s, particularly 100 to 10,000 mm 2 / s. The kinematic viscosity can also be measured with an Ostwald viscometer.

[열전도성 충전재][Thermally conductive filler]

본 발명에 있어서는, 열전도성 충전재로서 열전도성 충전재의 총 질량부 중 90질량% 이상, 바람직하게는 95질량% 이상이 α화율이 90% 이상인 α 알루미나를 사용한다.In the present invention, as the thermally conductive filler,? Alumina having 90% or more, preferably 95% or more, of the total percentage of the total mass of the thermally conductive filler is used.

(알루미나의 결정상)(Crystalline phase of alumina)

알루미나는 α, β, θ, γ 등 소결되는 온도의 차이로 다양한 결정상을 갖는다. 소결되는 온도가 가장 높은 α 알루미나가 250℃ 환경 하에서 실리콘 중합체의 중량 감소를 가장 억제하는 것을 알아내었다. 또한, 일반적인 알루미나는 결정상이 단일로 존재하는 것은 거의 없지만, 가능한 한 α상이 차지하는 비율이 높은 편이 좋으며, α화율이 90% 이상, 바람직하게는 95% 이상인 것을 사용한다.Alumina has various crystal phases due to differences in sintering temperature such as?,?,?, And?. We found that α alumina with the highest sintering temperature suppressed the weight loss of the silicone polymer most at 250 ° C. In general alumina, the crystal phase is rarely present singly, but it is preferable that the ratio of α phase is as high as possible, and the α phase rate is 90% or more, preferably 95% or more.

α화율은, 시료를 X선 회절 장치를 사용하여 얻은 미립 α 알루미나의 회절 스펙트럼으로부터, 2θ=25.6°의 위치에 나타나는 알루미나 α상(012면)의 피크 높이(I25.6)와, 2θ=46°의 위치에 나타나는 γ상, η상, χ상, κ상, θ상 및 δ상의 피크 높이(I46)로부터, 하기 식The α conversion rate was calculated from the peak height (I 25.6 ) of the alumina α phase (012 plane) appearing at the position of 2θ = 25.6 ° and the peak height (I 25.6 ) of the sample from the diffraction spectrum of the fine α alumina obtained using the X- γ-phase of the position shown, η-phase, χ-phase, κ phase, the following formula from the phase θ and the peak height (I 46) on the δ

α화율(%)=I25.6/(I25.6+I46)×100(%) = I 25.6 / (I 25.6 + I 46 ) x 100

에 의하여 산출한 값이다..

(알루미나의 입경)(Particle diameter of alumina)

알루미나의 중심 입경은 0.1 내지 200㎛가 바람직하고, 보다 바람직하게는 1 내지 100㎛, 더욱 바람직하게는 1 내지 50㎛이다. 중심 입경이 0.1㎛ 미만으로 되면 오르가노폴리실록산 주재에의 충전성이 저하되어 버리고, 중심 입경이 200㎛를 초과하면 조성물로 했을 때의 유동성이나 경화물로 했을 때의 강도가 얻어지기 어렵다. 또한 열전도성 실리콘 조성물을 실장할 때의 두께, 경화시킬 때의 두께를 감안하여 입경을 선택하는 것이 중요하다. 실장할 때, 경화시킬 때의 두께보다도 입경이 큰 알루미나가 포함되어 있으면, 열전도성 실리콘 조성물 및 경화물로부터 알루미나가 돌출되어 버리게 되기 때문이다.The center particle diameter of alumina is preferably 0.1 to 200 mu m, more preferably 1 to 100 mu m, further preferably 1 to 50 mu m. When the median particle diameter is less than 0.1 탆, the filling property of the organopolysiloxane is deteriorated. When the median particle diameter is more than 200 탆, the fluidity when the composition is used and the strength when the composition is made into a cured product are difficult to obtain. It is also important to select the particle size in consideration of the thickness when the thermally conductive silicone composition is mounted and the thickness at which the thermally conductive silicone composition is cured. If alumina having a particle diameter larger than that at the time of curing is included in the mounting, alumina will protrude from the thermally conductive silicone composition and the cured product.

알루미나의 평균 입경은, 닛키소 가부시키가이샤 제조의 입도 분석계인 마이크로트랙 MT3300EX에 의하여 측정한 누적 평균 직경(메디안 직경)의 값이다.The average particle diameter of alumina is a value of cumulative mean diameter (median diameter) measured by Microtrac MT3300EX, a particle size analyzer manufactured by Nikkiso Co., Ltd.

(알루미나의 입상)(Granular phase of alumina)

알루미나에는 제법에 따라 구상, 라운드상, 파쇄상 등 다양한 입상이 있다. 일반적으로 파쇄상 알루미나는 α화율이 높으므로 파쇄상 알루미나가 바람직하지만, α화율을 만족시키고 있으면 입상은 불문한다.Alumina has various forms such as spherical, round, and crushed according to the production method. In general, the crushed alumina is preferably crushed alumina because the crushed alumina has a high α conversion rate, but the crushed alumina does not matter if the α conversion rate is satisfied.

(그 외의 열전도성 충전재)(Other thermally conductive filler)

그 외의 열전도성 충전재로서는, 비자성의 구리나 알루미늄 등의 금속, 알루미나, 실리카, 마그네시아, 벵갈라, 베릴리아, 티타니아, 지르코니아 등의 금속 산화물, 질화알루미늄, 질화규소, 질화붕소 등의 금속 질화물, 수산화마그네슘 등의 금속 수산화물, 인공 다이아몬드 또는 탄화규소 등, 일반적으로 열전도성 충전재로 되는 물질을 사용할 수 있다. 또한 중심 입경은 0.1 내지 200㎛를 이용할 수 있으며, 1종 또는 2종 이상 복합하여 사용할 수도 있다. 단, 본 발명의 용도로서 250℃ 환경 하에서 사용하는 것이 상정되기 때문에, 적어도 300℃ 부근까지는 용융, 산화, 탈수 등의 반응이 일어나지 않거나, 또한 오르가노폴리실록산 주재의 크래킹을 촉진하지 않는 것을 사용할 필요가 있다.Examples of other thermally conductive fillers include non-magnetic metals such as copper and aluminum, metal oxides such as alumina, silica, magnesia, Bengala, beryllium, titania and zirconia, metal nitrides such as aluminum nitride, silicon nitride and boron nitride, Metal hydroxide, artificial diamond, or silicon carbide, can be used as the filler. The center particle size may be 0.1 to 200 占 퐉, and they may be used alone or in combination of two or more. However, since the use of the present invention is assumed to be carried out at 250 캜 environment, it is necessary to use a material which does not cause a reaction such as melting, oxidation, dehydration or the like and does not promote cracking of the organopolysiloxane to at least around 300 캜 have.

(열전도성 충전재의 배합량)(Blending amount of thermally conductive filler)

열전도성 충전재의 배합량은 오르가노폴리실록산 주재 100질량부에 대하여 250 내지 2,000질량부가 바람직하고, 보다 바람직하게는 250 내지 1,000질량부, 더욱 바람직하게는 250 내지 600질량부이다. 열전도성 충전재의 배합량이 지나치게 적으면 충분한 열전도성을 얻지 못할 우려가 있고, 지나치게 많으면 조성물 자체의 조제가 곤란해질 우려가 있다.The blending amount of the thermally conductive filler is preferably 250 to 2,000 parts by mass, more preferably 250 to 1,000 parts by mass, and still more preferably 250 to 600 parts by mass based on 100 parts by mass of the organopolysiloxane. If the blending amount of the thermally conductive filler is too small, there is a fear that sufficient thermal conductivity may not be obtained, and if it is too much, preparation of the composition itself may become difficult.

[열전도성 실리콘 조성물][Thermoconductive silicone composition]

열전도성 실리콘 조성물은 상술한 바와 같이 오르가노폴리실록산 주재와 열전도성 충전재를 주성분으로 하지만 그 외의 성분으로서, 필요에 따라, 열전도성 충전재의 분산성을 향상시키는 등의 목적으로 알콕시기 함유 오르가노폴리실록산을 배합할 수 있다. 이 알콕시기 함유 오르가노폴리실록산으로서는, 특히 하기 식Although the thermoconductive silicone composition contains the organopolysiloxane host material and the thermally conductive filler as main components, as the other components, if necessary, an alkoxy group-containing organopolysiloxane may be added for the purpose of improving the dispersibility of the thermally conductive filler Can be compounded. As the alkoxy group-containing organopolysiloxane,

Figure pat00001
Figure pat00001

(식 중, R은 비치환 또는 치환된 탄소 원자수 1 내지 30, 특히 1 내지 10의 알킬기, 아릴기, 아르알킬기, 할로겐화알킬기 등의 1가 탄화수소기, R'은 탄소 원자수 1 내지 6, 특히 1 내지 3의 알킬기를 나타낸다. q는 0 내지 2의 정수이고, 바람직하게는 0이다. p는 0 내지 100, 특히 1 내지 50의 정수이다.)(Wherein R is a monovalent hydrocarbon group of an unsubstituted or substituted alkyl group having 1 to 30 carbon atoms, especially 1 to 10 carbon atoms, an aryl group, an aralkyl group, a halogenated alkyl group, etc., R ' Q is an integer of 0 to 2, preferably 0, and p is an integer of 0 to 100, especially 1 to 50.)

으로 표시되는 한쪽 말단 알콕시기 함유 디오르가노폴리실록산이 바람직하다.Is preferably a diorganopolysiloxane containing an alkoxy group at one end.

상기 알콕시기 함유 오르가노폴리실록산의 배합량은 오르가노폴리실록산 주재 100질량부에 대하여 1 내지 30질량부가 바람직하고, 특히 3 내지 20질량부인 것이 바람직하다.The blending amount of the alkoxy group-containing organopolysiloxane is preferably 1 to 30 parts by mass, more preferably 3 to 20 parts by mass, per 100 parts by mass of the organopolysiloxane.

또한, 필요에 따라 유기 안료나 무기 안료 등의 착색제, 산화철이나 산화세륨 등의 내열성 향상제 및 내첨 이형제 등을 배합할 수도 있다.If necessary, a coloring agent such as an organic pigment or an inorganic pigment, a heat resistance improving agent such as iron oxide or cerium oxide, and an internal release agent may be added.

(열전도성 실리콘 조성물의 유동성)(Flowability of thermoconductive silicone composition)

본 발명에 있어서, 열전도성 실리콘 조성물은 경화시키지 않고 그대로 사용에 제공할 수 있으며, 이 경우, 열전도성 실리콘 조성물의 유동성은 특별히 규정하지 않지만, 방열 그리스나 경화형 방열 그리스라고 불리는 디스펜서나 메탈 마스크를 사용한 스크린 인쇄에서 실장하는 경우의 점도는 25℃에서 10 내지 900㎩·s가 바람직하고, 보다 바람직하게는 10 내지 400㎩·s이다. 점도가 900㎩·s를 초과하는 경우, 유동성이 나빠 디스펜서에서의 토출이 곤란해지거나, 스크린 인쇄에서 스크래치가 발생할 가능성이 있다. 또한 상기 점도는 말콤 점도계에 의한 값이다.In the present invention, the thermally conductive silicone composition can be used as it is without being cured. In this case, the fluidity of the thermally conductive silicone composition is not particularly specified, but a dispenser or a metal mask called heat- In the case of mounting in screen printing, the viscosity is preferably from 10 to 900 Pa · s at 25 ° C, more preferably from 10 to 400 Pa · s. If the viscosity exceeds 900 Pa · s, there is a possibility that discharge in the dispenser becomes difficult or scratches may occur in screen printing due to poor fluidity. Also, the viscosity is a value by a Malcolm viscometer.

(공기 중 250℃ 환경 하에서의 중량 감소율)(Weight reduction rate in air at 250 캜)

본 발명에 따른 열전도성 실리콘 조성물에 있어서, 공기 중 250℃ 환경 하에 6시간 방치했을 경우의 중량 감소율은 1% 미만이고, 바람직하게는 0.8% 이하이다. 중량 감소의 원인은, 오르가노폴리실록산 주재가 열에 의하여 크래킹을 일으켜 저분자화되어 휘발되어 버리기 때문이므로, 중량 감소율이 크면 중합체 분이 감소하여 열전도성 실리콘 조성물이 물러지거나 단단해지거나 한다. 그러한 경우, 열전도성 실리콘 조성물의 열전도성이 상실되어 버린다.In the thermoconductive silicone composition according to the present invention, the weight reduction rate when left in an atmosphere at 250 캜 for 6 hours in air is less than 1%, preferably not more than 0.8%. The reason for the decrease in weight is that the organopolysiloxane-based material is cracked due to heat to become low molecular weight and volatilized. Therefore, if the weight reduction rate is large, the polymer content decreases and the thermoconductive silicone composition may be decomposed or hardened. In such a case, the thermal conductivity of the thermally conductive silicone composition is lost.

또한 알루미나의 결정상에 따라 실리콘의 크래킹의 정도가 변화되는 것을 알아내었다. γ상이나 θ상 등 소결 온도가 낮은 결정상의 알루미나는 실리콘의 크래킹을 촉진하고, 가장 소결 온도가 높은 α상의 알루미나는 실리콘의 크래킹을 촉진하지 않기 때문에 중량 감소율이 억제된다.It was also found that the degree of cracking of silicon varies depending on the crystal phase of alumina. The crystal phase alumina having a low sintering temperature such as the? phase or the? phase promotes the cracking of the silicon, and the α phase alumina having the highest sintering temperature does not promote the cracking of the silicon.

중량 감소율은, 직경 20㎜의 내열성 유리 샬레에 열전도성 실리콘 조성물을 2g 칭량하여 250℃의 오븐에 투입한다. 오븐 내의 분위기는 공기이다. 6시간 경과 후 취출하여 실온으로 복귀시키고 칭량하여, 투입 전과 투입 후의 중량 변화로부터 산출한 값이다.The weight reduction rate was measured by weighing 2 g of the thermally conductive silicone composition in a heat resistant glass chalet having a diameter of 20 mm and putting it in an oven at 250 캜. The atmosphere in the oven is air. Taken out after 6 hours, returned to room temperature, weighed, and calculated from the change in weight before and after the addition.

(열전도율)(Thermal conductivity)

열전도성 실리콘 조성물의 열전도율은 0.5W/mK 이상이 바람직하다. 보다 바람직하게는 0.8 내지 8.0W/mK이다. 0.5W/mK 미만이면 충분한 방열 효과가 얻어지지 않는다. 열전도율의 상한은 특별히 규정하지는 않지만, 8.0W/mK를 초과하여 얻고자 하면 실리콘에의 충전 자체가 곤란해진다. 열전도율은 핫 디스크법에 의하여 측정한 값이다.The thermal conductivity of the thermoconductive silicone composition is preferably 0.5 W / mK or more. And more preferably 0.8 to 8.0 W / mK. If it is less than 0.5 W / mK, a sufficient heat radiation effect can not be obtained. Although the upper limit of the thermal conductivity is not specifically defined, if it is attempted to obtain a heat conductivity exceeding 8.0 W / mK, charging into silicon itself becomes difficult. The thermal conductivity is a value measured by a hot disk method.

[열전도성 실리콘 경화물][Heat-conductive silicone cured product]

열전도성 실리콘 경화물은, 상술한 오르가노폴리실록산 주재와 열전도성 충전재를 주성분으로 하는 상기 열전도성 실리콘 조성물에 대하여 경화제를 배합하여 경화시킨 것이다.The thermally conductive silicone cured product is obtained by blending and curing a curing agent with respect to the above-mentioned thermoconductive silicone composition containing the organopolysiloxane-based material and the thermally conductive filler as a main component.

열전도성 실리콘 조성물의 경화 방법은, 백금 촉매를 사용한 부가 경화 반응, 유기 과산화물을 촉매로서 사용한 라디칼 반응, 자외선 조사나 전자선 조사를 사용한 라디칼 반응 등을 들 수 있다. 단, 경화 방법은 이들에 한정되는 것은 아니다.The curing method of the thermoconductive silicone composition may include addition curing reaction using a platinum catalyst, radical reaction using an organic peroxide as a catalyst, and radical reaction using ultraviolet irradiation or electron beam irradiation. However, the curing method is not limited to these.

이 경우, 백금 촉매를 사용한 부가 경화 반응을 이용하여 열전도성 실리콘 조성물을 경화시키고자 하는 경우에는, 오르가노폴리실록산 주재로서, 분자 중에 적어도 2개의 알케닐기를 갖는 오르가노폴리실록산과, 경화제로서 규소 원자에 직접 결합한 수소 원자를 적어도 2개 갖는 오르가노히드로겐폴리실록산 및 백금족 금속계 경화 촉매가 필수 성분으로 된다.In this case, when the thermosetting silicone composition is to be cured by using the addition curing reaction using a platinum catalyst, organopolysiloxane having at least two alkenyl groups in the molecule as the organopolysiloxane-based material and organopolysiloxane having at least two silicon- An organohydrogenpolysiloxane having at least two directly bonded hydrogen atoms and a platinum group metal-based curing catalyst become essential components.

또한 유기 과산화물로 경화시켰을 경우, 오르가노폴리실록산 주재로서는 알케닐기를 함유하는 것일 수도 있지만, 알케닐기를 포함하지 않는 오르가노폴리실록산 주재를 사용하더라도 경화된다.When curing is carried out with an organic peroxide, the organopolysiloxane may be an alkenyl group or an organopolysiloxane containing no alkenyl group.

또한 이러한 오르가노폴리실록산 주재를 경화시키는 경화제의 배합량이나 경화 방법, 경화 조건 등은 공지 기술을 채용할 수 있다.The compounding amount of the curing agent for curing the organopolysiloxane host material, the curing method, the curing condition, and the like can be well known techniques.

(열전도성 실리콘 경화물의 경도)(Hardness of the thermally conductive silicone hardened product)

열전도성 실리콘 경화물의 경도는 듀로미터 A 경도로 80 내지 99가 바람직하다. 보다 바람직하게는 90 내지 96이다. 80 미만이면 경화물이 실장 시에 변형되기 쉬워지거나, 경화물 표면에 흠집이 나기 쉬워지는 경우가 있다.The hardness of the thermally conductive silicone cured product is preferably 80 to 99 in durometer A hardness. And more preferably 90 to 96. [ If it is less than 80, the cured product tends to be deformed at the time of mounting, or the surface of the cured product may be easily scratched.

(열전도성 실리콘 경화물의 중량 감소율 및 열전도율)(Weight Reduction Rate and Thermal Conductivity of Thermally Conductive Silicone Cured Product)

열전도성 실리콘 경화물의 중량 감소율 및 열전도율은, 열전도성 실리콘 조성물 자체가 아니라 이를 경화시킨 경화물이 측정 대상으로 될 뿐, 측정 방법은 상술한 열전도성 실리콘 조성물의 경우와 마찬가지이다.The weight reduction ratio and the thermal conductivity of the thermally conductive silicone cured product are not the thermally conductive silicone composition itself but merely the cured product obtained by curing the thermally conductive silicone composition itself. The measurement method is similar to that of the above-described thermally conductive silicone composition.

[열전도성 실리콘 복합 시트][Heat-conductive silicone composite sheet]

열전도성 실리콘 복합 시트는 보강재의 한쪽측 또는 양측에 상기 열전도성 실리콘 경화물을 적층한 것이다.The thermally conductive silicone composite sheet is obtained by laminating the thermally conductive silicone cured material on one side or both sides of a reinforcing material.

이 경우, 열전도성 실리콘 복합 시트의 보강재는, 실용성이나 가공성을 생각하면 폴리이미드 필름 또는 유리 클로스가 바람직하다. 단, 보강재는 이들에 한정되는 것은 아니며, 충분한 강도와 내열성을 갖고 있는 것이면 문제없이 사용할 수 있다. 예를 들어 폴리테트라플루오로에틸렌 시트일 수도 있다.In this case, the reinforcing material of the thermally conductive silicone composite sheet is preferably a polyimide film or glass cloth considering practicality and processability. However, the reinforcing material is not limited to these, and any material having sufficient strength and heat resistance can be used without any problem. For example, a polytetrafluoroethylene sheet.

(폴리이미드 필름)(Polyimide film)

폴리이미드 필름의 두께는 5 내지 100㎛가 바람직하다. 보다 바람직하게는 7 내지 50㎛, 더욱 바람직하게는 7 내지 25㎛이다. 폴리이미드 필름이 지나치게 얇으면 충분한 강도나 절연성이 얻어지지 않고, 반대로 지나치게 두꺼우면 열전도성에 방해가 된다. 또한 폴리이미드 필름 표면은 플라즈마 처리를 실시하고 있으면 열전도성 실리콘 경화물과의 접착이 향상되어 바람직하다.The thickness of the polyimide film is preferably 5 to 100 mu m. More preferably 7 to 50 占 퐉, and still more preferably 7 to 25 占 퐉. If the polyimide film is too thin, sufficient strength or insulation can not be obtained. Conversely, if the polyimide film is too thick, it hinders thermal conductivity. Further, the surface of the polyimide film is preferably subjected to a plasma treatment because adhesion with the thermally conductive silicone cured product is improved.

(유리 클로스)(Glass cloth)

유리 클로스의 두께는 20 내지 100㎛가 바람직하다. 보다 바람직하게는 30 내지 60㎛이다. 20㎛ 미만이면 충분한 강도가 얻어지지 않고, 100㎛를 초과하면 열전도성에 방해가 될 우려가 있다. 유리 클로스의 직조 방법은 특별히 한정되지 않는다. 유리 클로스는 실란 처리한 것이 바람직하다. 처리하는 실란 커플링제나 처리 방법은 한정되지 않는다.The thickness of the glass cloth is preferably 20 to 100 mu m. More preferably 30 to 60 占 퐉. If it is less than 20 mu m, sufficient strength can not be obtained, and if it is more than 100 mu m, there is a fear of hindering thermal conductivity. The weaving method of the glass cloth is not particularly limited. The glass cloth is preferably treated with silane. The silane coupling agent to be treated and the treatment method are not limited.

(열전도성 실리콘 경화물의 두께)(Thickness of thermally conductive silicone cured product)

열전도성 실리콘 경화물의 두께는 50 내지 10,000㎛, 특히 200 내지 800㎛가 바람직하다. 또한 이 두께는 열전도성 실리콘 복합 시트의 경우에 한정되지 않으며, 열전도성 실리콘 조성물이나 그의 경화물을 보강재 없이 그대로 사용하는 경우에도 타당하다.The thickness of the thermally conductive silicone cured product is preferably 50 to 10,000 탆, more preferably 200 to 800 탆. This thickness is not limited to the case of the thermally conductive silicone composite sheet, and is also appropriate when the thermally conductive silicone composition or its cured product is directly used without a reinforcing material.

[열전도성 실리콘 복합 시트의 성형 방법][Molding method of thermoconductive silicone composite sheet]

열전도성 실리콘 복합 시트의 성형 방법은 경화제, 예를 들어 분해 온도가 120℃인 유기 과산화물을 촉매로서 포함하는 열전도성 실리콘 조성물을 조제하고, 톨루엔으로 임의로 희석하여 도공액으로 한다. 보강재 상에 임의의 스페이서를 사용하여 도공액을 도공하고, 80℃의 오븐에 10분 간 투입하여 톨루엔을 휘발시키고, 계속해서 150℃의 오븐에 10분 간 투입하여 경화시킨다. 이것으로 기재의 한쪽면에 열전도성 실리콘 경화물을 적층시킬 수 있다. 다른 한쪽 면에도 적층시키고자 하는 경우에는 상기 방법으로 마찬가지로 도공하고 건조 경화시킨다. 단, 열전도성 실리콘 복합 시트의 성형 방법은 이에 한정되는 것은 아니다.In the method of forming a thermally conductive silicone composite sheet, a thermally conductive silicone composition containing a curing agent such as an organic peroxide having a decomposition temperature of 120 캜 as a catalyst is prepared and optionally diluted with toluene to prepare a coating solution. The coating liquid is coated on the reinforcing material by using an arbitrary spacer. The coating liquid is put into an oven at 80 ° C for 10 minutes to volatilize the toluene, and then cured in an oven at 150 ° C for 10 minutes. As a result, a thermally conductive silicone cured product can be laminated on one side of the substrate. When it is desired to laminate on the other side, it is similarly coated by the above method and dried and cured. However, the method of forming the thermally conductive silicone composite sheet is not limited thereto.

[실시예][Example]

이하, 실시예 및 비교예를 나타내어 본 발명을 구체적으로 설명하지만, 본 발명은 하기의 실시예에 제한되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.

[조성물의 조제][Preparation of composition]

(A) 성분: 하기 식 (1)로 표시되는 디메틸폴리실록산Component (A): Dimethylpolysiloxane represented by the following formula (1)

Figure pat00002
Figure pat00002

(X는 유기 관능기이고, n은 하기 점도를 부여하는 수이다.)(X is an organic functional group, and n is a number giving the following viscosity)

(A-1) X=메틸기이고, 동점도 10,000㎟/s(25℃)(A-1) X = a methyl group and a kinematic viscosity of 10,000 mm < 2 > / s (25 DEG C)

(A-2) X=메틸기이고, 동점도 30,000㎟/s(25℃)(A-2) X = a methyl group and a kinematic viscosity of 30,000 mm < 2 > / s (25 DEG C)

(B) 성분: 평균 입경이 하기와 같은 알루미나Component (B): alumina having an average particle diameter of

(B-1) α화율이 99%이고, 평균 입경 5㎛의 파쇄상 α 알루미나(B-1) crushed α alumina having an α conversion of 99% and an average particle diameter of 5 μm

(B-2) α화율이 95%이고, 평균 입경 10㎛의 파쇄상 α 알루미나(B-2) a crushed α-alumina having an α conversion of 95% and an average particle size of 10 μm

(B-3) α화율이 92%이고, 평균 입경 20㎛의 구상 α 알루미나(B-3) Spherical α-alumina having an α conversion of 92% and an average particle diameter of 20 μm

(B-4) 평균 입경이 10㎛인 파쇄상 γ 알루미나(B-4) Crushed-phase γ-alumina having an average particle diameter of 10 μm

(B-5) 평균 입경이 10㎛인 파쇄상 θ 알루미나(B-5) Crushed phase [theta] alumina having an average particle diameter of 10 mu m

(C) 성분: 열전도성 충전재(C) Component: thermally conductive filler

(C-1) 평균 입경 1.0㎛의 수산화알루미늄(C-1) Aluminum hydroxide having an average particle diameter of 1.0 mu m

(D) 성분: 하기 식 (2)로 표시되는, 평균 중합도가 30인 한쪽 말단이 트리메톡시기로 봉쇄된 디메틸폴리실록산(D): Dimethylpolysiloxane having an average degree of polymerization of 30 represented by the following formula (2) and one end blocked with a trimethoxy group

Figure pat00003
Figure pat00003

(E) 성분: C-23N(유기 과산화물계 경화제: 신에쓰 가가꾸 고교 가부시키가이샤 제조)Component (E): C-23N (organic peroxide-based curing agent: Shin-Etsu Chemical Co., Ltd.)

[실시예, 비교예][Examples, Comparative Examples]

표 1, 2에 나타낸 성분을 표에 나타내는 소정량으로 사용하여 플라네터리 믹서로 60분 간 혼련하여, 표 1, 2에 나타내는 실시예 1 내지 7, 비교예 1 내지 7의 열전도성 실리콘 조성물을 조제하고, 하기 방법으로 중량 감소율, 열전도율을 측정하였다. 결과를 표 1, 2에 나타낸다.The components shown in Tables 1 and 2 were kneaded for 60 minutes by using a planetary mixer in the predetermined amounts shown in the table to obtain thermoconductive silicone compositions of Examples 1 to 7 and Comparative Examples 1 to 7 shown in Tables 1 and 2, And the weight loss rate and thermal conductivity were measured by the following method. The results are shown in Tables 1 and 2.

[측정 방법][How to measure]

·중량 감소율· Weight reduction rate

조제한 열전도성 실리콘 조성물을 직경 20㎜의 내열 용기에 2g 칭량하여, 250℃로 설정된 오븐에 투입한다. 오븐 내 분위기는 공기로 한다. 6시간 후 취출하여 실온으로 복귀된 시점에서 칭량한다. 감소 분을 투입 전의 중량으로 나누고 100을 곱한 값으로 한다.The thermally conductive silicone composition thus prepared was weighed into a heat-resistant container having a diameter of 20 mm and weighed in an oven set at 250 캜. The atmosphere in the oven is air. After 6 hours, it is removed and weighed at the time of returning to room temperature. The reduction is divided by the weight before injection and multiplied by 100.

또한 실시예 7 및 비교예 7에 대해서는, 조제한 열전도성 실리콘 조성물을 150℃로 설정된 오븐에 10분 간 투입하여 경화시킨 후에 중량 감소율의 측정을 행하였다.For Example 7 and Comparative Example 7, the prepared thermoconductive silicone composition was placed in an oven set at 150 캜 for 10 minutes to cure, and the weight reduction rate was measured.

·열전도율· Thermal conductivity

핫 디스크법에 의하여, 각 열전도성 실리콘 조성물의 25℃에서의 열전도율을 TPA-501(교토 덴시 고교 가부시키가이샤 제조)로 측정하였다.The thermal conductivity at 25 캜 of each thermoconductive silicone composition was measured by a hot-disk method using TPA-501 (manufactured by Kyoto Denshi Kogyo K.K.).

또한 실시예 7 및 비교예 7에 대해서는, 조제한 열전도성 실리콘 조성물을 150℃로 설정된 오븐에 10분 간 투입하여 경화시킨 것에 대하여 열전도율을 측정하였다.For Example 7 and Comparative Example 7, the prepared thermoconductive silicone composition was placed in an oven set at 150 캜 for 10 minutes to cure the thermoconductive silicone composition, and the thermal conductivity was measured.

Figure pat00004
Figure pat00004

Figure pat00005
Figure pat00005

실시예 1 내지 7에 나타낸 바와 같이, α화율이 90% 이상인 α 알루미나 [(B-1) 내지 (B-3)]을 사용한 열전도성 실리콘 조성물은 250℃ 분위기 중에 6시간 투입하더라도 중량 감소율이 1% 미만으로 억제되어 있다.As shown in Examples 1 to 7, a thermally conductive silicone composition using alpha alumina [(B-1) to (B-3)] having an α conversion rate of 90% or more had a weight reduction rate of 1 % ≪ / RTI >

한편, 비교예 1에 나타낸 바와 같이, γ 알루미나를 사용했을 경우, 중량 감소율이 1% 이상으로 되어 버려 내열성을 부여할 수 없다. 비교예 2에 나타낸 바와 같이, θ 알루미나를 사용했을 경우에도 중량 감소율이 1% 이상으로 되어 버려 내열성을 부여할 수 없다. 비교예 3에 나타낸 바와 같이, 열전도성 충전재의 총 질량부 중 α 알루미나가 차지하는 비율이 90% 미만이면 중량 감소율이 1% 이상으로 되어 충분한 내열성이 얻어지지 않는다. 비교예 4에 나타낸 바와 같이, 열전도성 충전재의 총 질량부 중 α 알루미나가 차지하는 비율이 90% 미만이고, 추가로 병용하는 열전도성 충전재로서 수산화알루미늄을 사용하면 중량 감소율이 더 커진다. 이는, 수산화알루미늄이 탈수 반응을 일으켜 수산화알루미늄 자체의 중량이 감소했기 때문이다. 비교예 5는, 비교예 1에 비하여 충전하는 γ 알루미나의 양을 저감시켰지만, 반대로 중량 감소율이 많아졌다. 이는 상대적으로 실리콘 중합체가 차지하는 비율이 많아졌기 때문이다. 비교예 6에 나타낸 바와 같이, 열전도성 충전재로서 수산화알루미늄을 사용했을 경우, 실리콘의 중량 감소라기보다도 수산화알루미늄의 탈수 반응에 의한 수산화알루미늄 자체의 중량 감소가 일어나, 중량 감소율이 특히 커진다. 비교예 7에 나타낸 바와 같이, 열전도성 실리콘 조성물을 경화시켰을 경우에도, γ 알루미나를 사용했을 경우에는 중량 감소율이 커진다.On the other hand, as shown in Comparative Example 1, when? Alumina is used, the weight loss rate becomes 1% or more and heat resistance can not be imparted. As shown in Comparative Example 2, even when? Alumina is used, the weight reduction rate becomes 1% or more, and heat resistance can not be imparted. As shown in Comparative Example 3, if the ratio of the total amount of the alumina in the total mass parts of the thermally conductive filler is less than 90%, the weight reduction rate becomes 1% or more, and sufficient heat resistance can not be obtained. As shown in Comparative Example 4, when the ratio of? Alumina in the total mass portion of the thermally conductive filler is less than 90%, and the use of aluminum hydroxide as the thermally conductive filler to be used in combination further increases the weight reduction rate. This is because the aluminum hydroxide caused a dehydration reaction and the weight of the aluminum hydroxide itself decreased. In Comparative Example 5, the amount of? -Alumina to be charged was reduced as compared with Comparative Example 1, but the weight reduction rate was increased. This is because the ratio of silicone polymer is relatively high. As shown in Comparative Example 6, when aluminum hydroxide is used as the thermally conductive filler, the weight of the aluminum hydroxide itself decreases due to the dehydration reaction of aluminum hydroxide rather than the weight reduction of silicon, and the weight reduction rate becomes particularly large. As shown in Comparative Example 7, when the thermally conductive silicone composition is cured, the weight reduction rate is increased when? Alumina is used.

Claims (10)

열전도성 충전재의 총 질량부 중 90% 이상이 α화율이 90% 이상인 α 알루미나이고, 250℃ 환경 하의 공기 중에 6시간 방치하였을 때의 중량 감소율이 1% 미만인 것을 특징으로 하는 열전도성 실리콘 조성물.Wherein 90% or more of the total mass parts of the thermally conductive filler is alpha alumina having an alpha value of 90% or more, and the weight reduction rate when left in air at 250 DEG C for 6 hours is less than 1%. 제1항에 있어서, 열전도율이 0.5W/mK 이상인 것을 특징으로 하는 열전도성 실리콘 조성물.The thermally conductive silicone composition according to claim 1, wherein the thermal conductivity is 0.5 W / mK or more. 제1항에 또는 제2항에 있어서, 오르가노폴리실록산 주재 100질량부에 대하여 열전도성 충전재 250 내지 2,000질량부를 함유하는 것을 특징으로 하는 열전도성 실리콘 조성물.The thermally conductive silicone composition according to claim 1 or 2, wherein the thermoconductive silicone composition contains 250 to 2,000 parts by mass of a thermally conductive filler per 100 parts by mass of the organopolysiloxane. 열전도성 충전재의 총 질량부 중 90% 이상이 α화율이 90% 이상인 α 알루미나를 함유하는 열전도성 실리콘 조성물을 경화시켜 이루어지는 경화물을 250℃ 환경 하의 공기 중에 6시간 방치하였을 때의 중량 감소율이 1% 미만인 것을 특징으로 하는 열전도성 실리콘 경화물.When the cured product obtained by curing the thermoconductive silicone composition containing? Alumina having 90% or more of? Total conversion of 90% or more of the total mass parts of the thermally conductive filler is allowed to stand in the air at 250 占 폚 for 6 hours, %. ≪ / RTI > 제4항에 있어서, 열전도율이 0.5W/mK 이상인 것을 특징으로 하는 열전도성 실리콘 경화물.The thermally conductive silicone cured product according to claim 4, wherein the thermal conductivity is 0.5 W / mK or more. 제4항 또는 제5항에 있어서, 열전도성 실리콘 조성물이 오르가노폴리실록산 주재 100질량부와, 열전도성 충전재 250 내지 2,000질량부와, 상기 오르가노폴리실록산 주재를 경화시키는 경화제의 경화 유효량을 함유하는 것을 특징으로 하는 열전도성 실리콘 경화물.The thermoconductive silicone composition according to claim 4 or 5, wherein the thermoconductive silicone composition contains 100 parts by mass of the organopolysiloxane, 250 to 2,000 parts by mass of the thermally conductive filler, and a curing effective amount of the curing agent for curing the organopolysiloxane Characterized by a thermally conductive silicone cured product. 보강재의 한쪽측 또는 양측에, 제4항 또는 제5항에 기재된 열전도성 실리콘 경화물을 적층시켜 이루어지는 것을 특징으로 하는 열전도성 실리콘 복합 시트.A thermally conductive silicone composite sheet characterized by comprising the thermally conductive silicone cured product according to claim 4 or 5 laminated on one side or both sides of a reinforcing material. 제7항에 있어서, 보강재가 폴리이미드 필름인 것을 특징으로 하는 열전도성 실리콘 복합 시트.The thermoconductive silicone composite sheet according to claim 7, wherein the reinforcing material is a polyimide film. 제7항에 있어서, 보강재가 유리 클로스인 것을 특징으로 하는 열전도성 실리콘 복합 시트.The thermoconductive silicone composite sheet according to claim 7, wherein the reinforcing material is glass cloth. 제7항에 있어서, 열전도성 실리콘 경화물의 경도가 듀로미터 A 경도로 80 내지 99인 것을 특징으로 하는 열전도성 실리콘 복합 시트.The thermoconductive silicone composite sheet according to claim 7, wherein the hardness of the thermally conductive silicone hardened product is 80 to 99 in durometer A hardness.
KR1020150189657A 2015-01-06 2015-12-30 Thermal conductive silicone composition and cured product, and composite sheet KR102132243B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015000836A JP6269511B2 (en) 2015-01-06 2015-01-06 Thermally conductive silicone composition, cured product and composite sheet
JPJP-P-2015-000836 2015-01-06

Publications (2)

Publication Number Publication Date
KR20160084808A true KR20160084808A (en) 2016-07-14
KR102132243B1 KR102132243B1 (en) 2020-07-10

Family

ID=56342334

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150189657A KR102132243B1 (en) 2015-01-06 2015-12-30 Thermal conductive silicone composition and cured product, and composite sheet

Country Status (4)

Country Link
JP (1) JP6269511B2 (en)
KR (1) KR102132243B1 (en)
CN (1) CN105754346B (en)
TW (1) TWI683859B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190034562A (en) * 2016-07-26 2019-04-02 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally conductive sheet
KR20200025061A (en) 2018-08-29 2020-03-10 (주) 웹스 A Light Sheet Having Insulation and Heat Dissipation for Secondary Cell Battery Pack and A Sheet Manufacturing Method
KR20200086307A (en) * 2017-11-09 2020-07-16 신에쓰 가가꾸 고교 가부시끼가이샤 Thermal conductive silicone grease composition

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6627681B2 (en) * 2016-07-27 2020-01-08 信越化学工業株式会社 Thermal conductive composite sheet for thermocompression bonding and method for producing the same
JP7164527B2 (en) * 2017-08-10 2022-11-01 デンカ株式会社 Heat dissipation sheet with high thermal conductivity and high insulation
JP6866877B2 (en) * 2018-05-31 2021-04-28 信越化学工業株式会社 Low heat resistance silicone composition
JP7300464B2 (en) * 2018-11-30 2023-06-29 デンカ株式会社 laminate
CN109880541A (en) * 2019-01-28 2019-06-14 东莞市博恩复合材料有限公司 Can rapid curing and have high-adhesive-strength Heat Conduction Material
JP2020011509A (en) * 2019-08-14 2020-01-23 信越化学工業株式会社 Method for selecting heat-conductive composite sheet for heat press bonding
JP7357287B2 (en) * 2020-02-26 2023-10-06 パナソニックIpマネジメント株式会社 Thermal conductive silicone compositions and thermally conductive silicone materials

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219034A (en) * 1982-06-14 1983-12-20 Toray Silicone Co Ltd Manufacture of electrical insulating heat dissipation rubber sheet
KR20010049722A (en) * 1999-07-07 2001-06-15 카나가와 치히로 Heat-Resistant, Thermal-Conductive Silicone Rubber Composite Sheets and Process for Preparing the Same
JP2003192339A (en) * 2001-12-27 2003-07-09 Showa Denko Kk Alumina particle, manufacturing method for the same and composition containing the same
JP2003201116A (en) * 2001-10-10 2003-07-15 Showa Denko Kk Granular alumina, manufacturing method of granular alumina and composition containing granular alumina
WO2008053536A1 (en) * 2006-10-31 2008-05-08 Denki Kagaku Kogyo Kabushiki Kaisha Alumina powder, process for producing the same, and use thereof
JP2011025676A (en) * 2009-06-29 2011-02-10 Shin-Etsu Chemical Co Ltd Heat-conductive silicone rubber composite sheet
JP2014145024A (en) 2013-01-29 2014-08-14 Taika:Kk Thermally conductive resin composition excellent in heat resistance and heat dissipation component using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3087403B2 (en) * 1991-08-07 2000-09-11 日本軽金属株式会社 Method for producing spherical alumina
JPH07101723A (en) * 1993-10-04 1995-04-18 Sumitomo Chem Co Ltd Production of alpha alumina powder
JP3444199B2 (en) * 1998-06-17 2003-09-08 信越化学工業株式会社 Thermal conductive silicone rubber composition and method for producing the same
JP3543663B2 (en) * 1999-03-11 2004-07-14 信越化学工業株式会社 Thermal conductive silicone rubber composition and method for producing the same
JP2002047009A (en) * 2000-05-23 2002-02-12 Sumitomo Chem Co Ltd alpha ALUMINA POWDER AND HEAT CONDUCTIVE SHEET USING IT
US20030125418A1 (en) * 2001-10-10 2003-07-03 Show A Denko K.K. Particulate alumina, method for producing particulate alumina, and composition containing particulate alumina
WO2003055803A2 (en) * 2001-12-27 2003-07-10 Showa Denko K.K. Particulate alumina, method for producing particulate alumina and composition containing particulate alumina
JP4526064B2 (en) * 2003-06-04 2010-08-18 昭和電工株式会社 Corundum for resin filling and resin composition
JP2014009140A (en) * 2012-07-02 2014-01-20 Hitachi Chemical Co Ltd Spherical type alumina filler, and resin composition for high heat conduction insulation material, prepreg, and laminate sheet including the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219034A (en) * 1982-06-14 1983-12-20 Toray Silicone Co Ltd Manufacture of electrical insulating heat dissipation rubber sheet
KR20010049722A (en) * 1999-07-07 2001-06-15 카나가와 치히로 Heat-Resistant, Thermal-Conductive Silicone Rubber Composite Sheets and Process for Preparing the Same
JP2003201116A (en) * 2001-10-10 2003-07-15 Showa Denko Kk Granular alumina, manufacturing method of granular alumina and composition containing granular alumina
JP2003192339A (en) * 2001-12-27 2003-07-09 Showa Denko Kk Alumina particle, manufacturing method for the same and composition containing the same
WO2008053536A1 (en) * 2006-10-31 2008-05-08 Denki Kagaku Kogyo Kabushiki Kaisha Alumina powder, process for producing the same, and use thereof
JP2011025676A (en) * 2009-06-29 2011-02-10 Shin-Etsu Chemical Co Ltd Heat-conductive silicone rubber composite sheet
JP2014145024A (en) 2013-01-29 2014-08-14 Taika:Kk Thermally conductive resin composition excellent in heat resistance and heat dissipation component using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190034562A (en) * 2016-07-26 2019-04-02 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally conductive sheet
CN109564906A (en) * 2016-07-26 2019-04-02 信越化学工业株式会社 Heat conductive sheet
CN109564906B (en) * 2016-07-26 2023-08-15 信越化学工业株式会社 Heat conductive sheet
KR20200086307A (en) * 2017-11-09 2020-07-16 신에쓰 가가꾸 고교 가부시끼가이샤 Thermal conductive silicone grease composition
KR20200025061A (en) 2018-08-29 2020-03-10 (주) 웹스 A Light Sheet Having Insulation and Heat Dissipation for Secondary Cell Battery Pack and A Sheet Manufacturing Method

Also Published As

Publication number Publication date
JP6269511B2 (en) 2018-01-31
JP2016125001A (en) 2016-07-11
CN105754346B (en) 2020-10-23
TW201700616A (en) 2017-01-01
TWI683859B (en) 2020-02-01
CN105754346A (en) 2016-07-13
KR102132243B1 (en) 2020-07-10

Similar Documents

Publication Publication Date Title
KR102132243B1 (en) Thermal conductive silicone composition and cured product, and composite sheet
US9745498B2 (en) Heat-storage composition
JP5233325B2 (en) Thermally conductive cured product and method for producing the same
WO2017203924A1 (en) Thermally conductive silicone composition and cured product thereof
JP5664563B2 (en) Thermally conductive silicone composition and cured product thereof
JP6194861B2 (en) Thermally conductive silicone composition and thermally conductive silicone molding
TWI635169B (en) Thermally conductive composite sheet
TW201823362A (en) Thermoconductive silicone composition
JP5154010B2 (en) Thermally conductive silicone rubber composition
JP2004352947A (en) Room temperature-curing type of thermally conductive silicone rubber composition
JPH08208993A (en) Heat-conductive silicone composition
JP6202475B2 (en) Thermally conductive composite silicone rubber sheet
CN112867765B (en) Heat-conductive silicone composition and cured product thereof
JP2020002236A (en) Heat-conductive silicone composition, heat-conductive silicone sheet, and method of manufacturing the same
JP2018053260A (en) Thermal conductive silicone composition, cured article and composite sheet
JP7303159B2 (en) Silicone composition and cured thermally conductive silicone having high thermal conductivity
JP2009235279A (en) Heat-conductive molding and manufacturing method therefor
JP2007119589A (en) Thermoconductive silicone rubber composition
JP5131648B2 (en) Thermally conductive silicone composition and thermally conductive silicone molding using the same
CN114729193B (en) Thermally conductive silicone composition and thermally conductive silicone sheet
EP3310142A1 (en) Device heat dissipation method
WO2023053760A1 (en) Thermally conductive silicone composition and method for producing gap filler using said composition
CN112714784B (en) Heat-conductive silicone composition and cured product thereof
TWI757112B (en) Thermally conductive composition and method for producing the same
WO2024004242A1 (en) Thermally conductive composition, thermally conductive grease and thermally conductive sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right