JP3087403B2 - Method for producing spherical alumina - Google Patents
Method for producing spherical aluminaInfo
- Publication number
- JP3087403B2 JP3087403B2 JP03324962A JP32496291A JP3087403B2 JP 3087403 B2 JP3087403 B2 JP 3087403B2 JP 03324962 A JP03324962 A JP 03324962A JP 32496291 A JP32496291 A JP 32496291A JP 3087403 B2 JP3087403 B2 JP 3087403B2
- Authority
- JP
- Japan
- Prior art keywords
- alumina
- weight
- soda content
- less
- soda
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、バイヤー法水酸化アル
ミニウムを原料として解砕容易で微細な特に3μm以下
の球状アルミナの製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing finely divided spherical alumina having a size of 3 .mu.m or less, which is easily crushed, using a Bayer-processed aluminum hydroxide as a raw material.
【0002】[0002]
【従来の技術】アルミナ粉末は、各種セラミックス製品
の製造原料、研磨材、耐火物或いは各種充填材などの汎
用されている。そして、それらの用途の何れに於いても
原料アルミナに対する要求品質が年々厳しくなってい
る。例えば、IC基板などのアルミナ焼結体を製造する
に当たり、高密度で均一性に優れたものを得る為に微粒
で球状のアルミナが求められているし、研磨材では表面
欠陥(スクラッチ等)を少なくするために、同様な微粒
で球状のアルミナが求められている。しかし、従来、こ
れらの用途にはバイヤー法水酸化アルミニウムを一段で
連続焼成して得られたアルミナを微粉砕したものが適用
されていた。このようなアルミナは、数十μm〜百数十
μmレベルの状態から数μmレベルにするために、解砕
更に進んで粉砕操作を経て製造されている。しかし、解
砕及び粉砕操作に長時間必要として製造コストが嵩むと
共に不純物が混入したり、得られたアルミナ粒子の形状
及び大きさも不揃いなものであることが多いなどの問題
がある。そのため、析出段階で微粒状で得られた水酸化
アルミニウムを焼成する方法とか、大粒径の水酸化アル
ミニウムを一旦粉砕してから焼成する方法など各種の方
法が提案されているが、未だ経済的に製造する方法が確
立されていない状態である。本発明者らは、水酸化アル
ミニウムの焼成過程を検討した結果、熱分解速度を規制
した後、熱分解後の焼成過程を中間焼成アルミナを得る
段階とその中間焼成アルミナの結晶成長段階とに分ける
ことによって、ある程度アルミナの形状を制御出来るこ
と、更に、中間焼成アルミナ中の全ソーダ含有量によっ
て再焼成後のアルミナの粒径が影響されることの知見を
得て、本発明を想到するに至った。2. Description of the Related Art Alumina powder is widely used as a raw material for producing various ceramic products, an abrasive, a refractory or various fillers. In any of these applications, the required quality of the raw material alumina is becoming stricter year by year. For example, in manufacturing alumina sintered bodies such as IC substrates, fine-grained spherical alumina is required in order to obtain high-density and excellent uniformity, and abrasives have surface defects (such as scratches). To reduce the amount, similar fine and spherical alumina is required. However, heretofore, for these applications, finely pulverized alumina obtained by continuously firing the Bayer method aluminum hydroxide in one step has been applied. Such alumina is manufactured through a crushing operation and a crushing operation in order to change the state from several tens μm to one hundred and several tens μm to several μm. However, there are problems in that the pulverizing and pulverizing operations require a long time, so that the production cost increases, impurities are mixed, and the obtained alumina particles are often irregular in shape and size. Therefore, various methods have been proposed, such as a method of calcining aluminum hydroxide obtained in the form of fine particles at the precipitation stage, and a method of calcining aluminum hydroxide having a large particle size once and then calcining it. The manufacturing method has not been established yet. The present inventors have studied the calcination process of aluminum hydroxide, and after regulating the rate of thermal decomposition, divide the calcination process after pyrolysis into a step of obtaining intermediate calcined alumina and a crystal growth step of the intermediate calcined alumina. Thereby, the knowledge that the shape of alumina can be controlled to some extent and that the particle size of alumina after recalcination is affected by the total soda content in the intermediate calcined alumina have been obtained, leading to the present invention. Was.
【0003】[0003]
【発明が解決しようとする課題】本発明者らは、原料水
酸化アルミニウムの製造条件は適宜なものとし、焼成方
法の改善によって粒径制御し得る方法、特には3μm以
下の微粒で従来法と較べて粒度分布の狭い球状アルミナ
を製造する方法を提案しようとするものである。より詳
しくは、本発明は、原料水酸化アルミニウムから中間ア
ルミナへの熱分解を緩慢に行い、まずα化度90%以上
の中間焼成アルミナとする中間焼成段階とその前後に全
ソーダ含有量を制御された中間焼成アルミナをフッ素鉱
化剤の存在下で再焼成することによって粒径制御する再
焼成段階とに分け、その後は常法の解砕処理を行うこと
によって微細な球状アルミナを得ることが出来る製造方
法を提供するものである。そして、その場合、当初から
原料水酸化アルミニウム中の全ソーダ含有量を所定の範
囲に調整するか、又は熱分解後の焼成過程に於いて全ソ
ーダ含有量を脱ソーダ剤の添加効果により所定の範囲に
調整する手段、又は中間焼成アルミナを温水洗浄する手
段によって、中間焼成アルミナ中の全ソーダ含有量を制
御することを提案するものである。SUMMARY OF THE INVENTION The present inventors have determined that the conditions for producing the raw material aluminum hydroxide are appropriate and that the method of controlling the particle size can be controlled by improving the firing method. An object of the present invention is to propose a method for producing spherical alumina having a narrow particle size distribution. More specifically, the present invention performs the thermal decomposition of the raw material aluminum hydroxide to intermediate alumina slowly, and controls the total soda content before and after the intermediate calcination step of producing an intermediate calcination alumina having a degree of gelatinization of 90% or more. The intermediate calcined alumina is re-calcined in the presence of a fluorine mineralizer to divide it into a re-calcination stage in which the particle size is controlled, and then fine spherical alumina can be obtained by performing a conventional crushing treatment. It provides a possible manufacturing method. Then, in that case, the total soda content in the raw material aluminum hydroxide is adjusted to a predetermined range from the beginning, or the total soda content is adjusted to a predetermined value by the effect of adding the desolder agent in the firing process after thermal decomposition. It is proposed to control the total soda content in the intermediate calcined alumina by means for adjusting to a range or means for washing the intermediate calcined alumina with hot water.
【0004】[0004]
【課題を解決するための手段】即ち、本発明は、中間焼
成アルミナにしたときに全ソーダ含有量が0.5重量%
以下になるようなソーダ含有量のバイヤー法水酸化アル
ミニウムを1分間当り20℃以下の昇温速度で700℃
以下にて脱水熱分解した後、昇温して1400℃以下で
中間焼成してα化度90%以上の中間焼成アルミナと
し、しかる後に該中間焼成アルミナをフッ素換算でアル
ミナ100重量部当たり0.05〜1.0重量部の割合
のフッ素鉱化剤の存在下で600〜1500℃で再焼成
して粒径制御することを特徴とする球状アルミナの製造
方法であり、その後は常法によって解砕するものであ
る。更に、特に中間焼成アルミナ中の全ソーダ含有量が
0.2重量%以下になるようにして、微粒で球状のアル
ミナを得たい場合には、再焼成段階でのソーダの影響を
軽減するために、第一の方法として、本発明は、中間焼
成処理に当たり、中間焼成後のアルミナにおける全ソー
ダ含有量を0.2重量%以下になるように脱ソーダ化剤
を添加して中間焼成を行い、中間焼成アルミナを得た
後、前述の再焼成を行うことを特徴とする球状アルミナ
の製造方法を採るものである。又、第二の方法として、
そのまま中間焼成処理後又は脱ソーダ化剤を添加した中
間焼成処理後に温水洗浄を行い、全ソーダ含有量を0.
2重量%以下に制御された中間焼成アルミナを得た後に
再焼成を行うことを特徴とする球状アルミナの製造方法
を採るものである。以下、本発明について、具体的に説
明する。なお、ここで、全ソーダ含有量(以下、単に
「ソーダ含有量」という)とはアルミナと結合している
ソーダ分と遊離状態に単に付着しているソーダ分との合
計であってアルミナ換算での割合を示し、α化度とは全
アルミナ中に占めるα−アルミナの割合を示すものであ
る。That is, the present invention provides an intermediate calcined alumina having a total soda content of 0.5% by weight.
A Bayer method aluminum hydroxide having a soda content of below 700 ° C. at a rate of 20 ° C. or less per minute.
After dehydration and pyrolysis, the mixture is heated and heated at an intermediate temperature of 1400 ° C. or lower to obtain an intermediate fired alumina having a degree of α of 90% or more. A method for producing spherical alumina, comprising recalcining at 600 to 1500 ° C. in the presence of a fluorine mineralizer in a proportion of from 0.5 to 1.0 part by weight to control the particle size, and thereafter dissolving by a conventional method. Crush. Further, particularly when it is desired to obtain fine and spherical alumina by controlling the total soda content in the intermediate calcined alumina to 0.2% by weight or less, it is necessary to reduce the influence of soda in the recalcining step. As a first method, in the present invention, in the intermediate calcination treatment, the intermediate calcination is performed by adding a soda removal agent so that the total soda content in alumina after the intermediate calcination becomes 0.2% by weight or less, After the intermediate calcined alumina is obtained, the above-described recalcination is performed, and a method for producing spherical alumina is employed. Also, as a second method,
After the intermediate calcination treatment as it is or after the intermediate calcination treatment with the addition of the soda removal agent, washing with warm water is performed to reduce the total soda content to 0.1.
A method for producing spherical alumina is characterized in that recalcining is performed after obtaining an intermediate calcined alumina controlled to 2% by weight or less. Hereinafter, the present invention will be described specifically. Here, the total soda content (hereinafter, simply referred to as “soda content”) is the sum of the soda component bonded to alumina and the soda component simply attached in a free state, and is calculated in terms of alumina. And the degree of α-formation indicates the proportion of α-alumina in the total alumina.
【0005】本発明において使用する原料水酸化アルミ
ニウムは、工業的に大量生産して安価に入手可能なバイ
ヤー法によって製造され三分子の結晶水を持ったギブサ
イト型水酸化アルミニウムであり、これによって安価な
球状アルミナを提供出来るようになる。特にその粒度は
限定しないが、通常に市販されている数十〜百数十μm
のものが汎用的に適用出来る。又、ソーダ含有量を制御
された中間焼成アルミナを得るために、当初からソーダ
含有量を0.5重量%以下(アルミナ換算)に調製され
た水酸化アルミニウムをそのまま使用するとか、ソーダ
含有量の異なる原料水酸化アルミニウムを混合して全体
として0.5重量%以下に調整したもの等が使用され
る。この場合、ソーダ含有量が0.5重量%を越える
と、本発明での焼成過程を経ても微粒な球状アルミナを
歩留りよく安定して得ることが困難となり好ましくな
い。このような水酸化アルミニウムを700℃以下、好
ましくは500〜600℃にて脱水熱分解させて中間ア
ルミナとするが、その際、本発明では低い昇温速度で行
う。即ち、水酸化アルミニウムが熱分解して中間アルミ
ナ、特にはγ−アルミナとなるまでの昇温速度を毎分2
0℃以下、望ましくは2〜15℃としてその上限を70
0℃以下とするものである。更に、その場合、所望によ
って、200℃程度までは毎分10〜20℃の昇温速度
でその後を毎分2〜10℃の昇温速度とするような二段
階乃至多段階の昇温カーブとしてもよい。これによっ
て、生成する中間アルミナの気孔径を大きくし、フッ素
鉱化剤の存在下で再焼成することによって球状粒子を容
易に得られるようになる。The raw material aluminum hydroxide used in the present invention is a gibbsite type aluminum hydroxide produced by the Bayer method which is industrially mass-produced and available at low cost and has three molecules of water of crystallization. Can provide a spherical alumina. The particle size is not particularly limited, but is usually several tens to one hundred and several tens μm
Can be applied for general purposes. Further, in order to obtain an intermediate calcined alumina having a controlled soda content, an aluminum hydroxide prepared from the beginning to have a soda content of 0.5% by weight or less (in terms of alumina) may be used as it is, or the soda content may be reduced. A mixture obtained by mixing different raw materials of aluminum hydroxide and adjusting the total to 0.5% by weight or less is used. In this case, if the soda content exceeds 0.5% by weight, it is difficult to obtain fine spherical alumina with good yield and stably even after the firing step in the present invention, which is not preferable. Such aluminum hydroxide is dehydrated and pyrolyzed at 700 ° C. or lower, preferably 500 to 600 ° C., to obtain an intermediate alumina. At this time, the present invention is carried out at a low heating rate. That is, the rate of temperature increase until the aluminum hydroxide is thermally decomposed into intermediate alumina, particularly γ-alumina, is set to 2 / min.
0 ° C. or lower, preferably 2 to 15 ° C. and the upper limit is 70 ° C.
The temperature is set to 0 ° C. or less. Further, in that case, if necessary, a two-stage or multi-stage heating curve is used such that a heating rate of 10 to 20 ° C. per minute up to about 200 ° C. and a heating rate of 2 to 10 ° C. per minute thereafter Is also good. As a result, the pore diameter of the generated intermediate alumina is increased, and the spherical particles can be easily obtained by recalcining in the presence of the fluorine mineralizer.
【0006】熱分解を終えた中間アルミナは、次いで昇
温して1400℃以下、好ましくは1100〜1300
℃で30分〜5時間中間焼成してα化度90%以上の中
間焼成アルミナとされる。この焼成は、熱分解処理と同
じ形式の加熱炉で連結した炉又は独立した炉で行われ、
その昇温速度については適宜なものでよい。この中間焼
成段階では、α化度90%以下であると再焼成において
粗大な板状粒子の成長が発生し勝ちとなるので好ましく
なく、より好ましくはα化度95%以上になるように焼
成することが適切である。また、その中間焼成では、次
工程での再焼成にて均一な結晶成長を発現させるため
に、α化度90%以上の中間焼成アルミナの形成のみに
止める必要があり、その焼成条件はα−アルミナが未成
長状態で止まる段階でのものとする必要があるので、加
熱温度が高い場合には短時間の焼成とするのが好まし
く、例えば1300℃で5時間以下が好ましい。The thermally decomposed intermediate alumina is then heated to 1400 ° C. or lower, preferably 1100 to 1300 ° C.
Intermediate firing at 30 ° C. for 30 minutes to 5 hours gives an intermediate fired alumina having a degree of gelatinization of 90% or more. This firing is carried out in a furnace connected with a heating furnace of the same type as the pyrolysis treatment or in an independent furnace,
The heating rate may be any appropriate one. In the intermediate baking step, if the degree of pregelatinization is 90% or less, the growth of coarse plate-like particles tends to occur in refiring, which is not preferable. That is appropriate. Further, in the intermediate firing, in order to develop uniform crystal growth by refiring in the next step, it is necessary to stop only the formation of intermediate fired alumina having a degree of gelatinization of 90% or more, and the firing condition is α- Since the alumina needs to be in a stage where it stops in an ungrown state, when the heating temperature is high, the calcination is preferably performed for a short time, for example, at 1300 ° C. for 5 hours or less.
【0007】このようにして得られた中間焼成アルミナ
は、次いでフッ素換算でアルミナ100重量部当たり
0.05〜1.0重量部の割合のフッ素鉱化剤の存在下
で600〜1500℃で再焼成し結晶成長させる。フッ
素鉱化剤としては、フッ化水素酸、フッ化アルミニウ
ム、フッ化ナトリウム、氷晶石等のフッ素化合物が好適
に使用される。なお、塩素ガス・塩化水素酸などの塩素
系鉱化剤も同等に適用可能であるが、固体添加による効
果の持続性などに問題があり劣る。フッ素鉱化剤の添加
量は、焼成炉内でのフッ素化合物の分解・揮発などによ
る系外への飛散或いはアルミナ中のソーダ分との濃度等
を勘案して、フッ素換算でアルミナ100重量部当たり
0.05〜1.0重量部、より好ましくは0.07〜
0.5重量部の割合で添加するのが好ましい。この場
合、0.05重量部未満では添加効果が無いし、1.0
重量部を越えて添加しても効果の向上は見られない。ま
た、フッ化水素酸を気相状で使用する場合には、炉内で
の雰囲気濃度で制御することになるが、アルミナ粒子近
傍でフッ化水素酸として0.5〜10容量%程度になる
ようにするのが好ましく、焼成温度が高ければ低めの濃
度に制御することができる。再焼成処理は、600〜1
500℃、より好ましくは1000〜1400℃で20
分〜2時間加熱処理する。この場合、1500℃以上に
加熱すると、結晶成長が著しくなって粒径制御が難しく
なり、3μm以下の微粒で球状のアルミナを得るために
は適当でなく、一方600℃以下では結晶化が進み難い
ので好ましくない。以上の各工程での焼成炉は、連続式
・流動式・バッチ式或いはバーナー炉・電気炉等の何れ
の方式の加熱炉でもその加熱条件を充足出来るものであ
ればよく、汎用的にはロータリーキルン、トンネルキル
ン、シャトルキルン等が適用される。また、再焼成後
は、適宜の粉砕機で解砕されるが、前述の工程を経て得
られたものは容易に解砕されるので、粉砕力の低い装置
で常法によって処理すればよく1例えばボールミル等に
よって処理される。以上の工程によって、得られる焼成
アルミナは、容易に短時間で解砕されて、微粒で粒度分
布の狭い球状のアルミナ粒子である。[0007] The intermediate calcined alumina thus obtained is then reprocessed at 600 to 1500 ° C in the presence of a fluorine mineralizer in a proportion of 0.05 to 1.0 parts by weight per 100 parts by weight of alumina in terms of fluorine. Baking and crystal growth. As the fluorine mineralizer, a fluorine compound such as hydrofluoric acid, aluminum fluoride, sodium fluoride and cryolite is preferably used. Although chlorine-based mineralizers such as chlorine gas and hydrochloric acid are equally applicable, they are inferior due to problems such as the persistence of the effect of solid addition. The amount of addition of the fluorine mineralizer is 100 parts by weight in terms of fluorine, taking into account the scattering of fluorine compounds in the firing furnace due to the decomposition and volatilization of the fluorine compounds, or the concentration with soda in alumina. 0.05 to 1.0 part by weight, more preferably 0.07 to
It is preferably added in a proportion of 0.5 parts by weight. In this case, if the amount is less than 0.05 parts by weight, there is no effect of addition,
Even if added in excess of parts by weight, no improvement in the effect is observed. When hydrofluoric acid is used in a gaseous state, the concentration is controlled by the atmosphere concentration in the furnace, but becomes about 0.5 to 10% by volume as hydrofluoric acid near the alumina particles. It is preferable to control the concentration so that the higher the firing temperature, the lower the concentration. Refiring treatment is 600-1
500 ° C., more preferably 1000 to 1400 ° C.
Heat treatment for minutes to 2 hours. In this case, when heated to 1500 ° C. or more, crystal growth becomes remarkable and it is difficult to control the particle size, and it is not appropriate to obtain spherical alumina having fine particles of 3 μm or less, while crystallization hardly proceeds at 600 ° C. or less. It is not preferable. The firing furnace in each of the above steps may be any type of heating furnace, such as a continuous type, a flow type, a batch type, or a burner furnace or an electric furnace, as long as the heating conditions can be satisfied. , Tunnel kiln, shuttle kiln, etc. are applied. After re-firing, the powder is crushed by a suitable crusher, but the crushed material obtained through the above-mentioned steps can be easily crushed. For example, it is processed by a ball mill or the like. The calcined alumina obtained by the above steps is fine alumina particles having a narrow particle size distribution which are easily crushed in a short time.
【0008】上記フッ素鉱化剤濃度で処理する場合、焼
成条件によって異なるが、汎用的条件で処理する時に
は、中間焼成アルミナ中のソーダ含有量が0.15重量
%以下に制御すれば、容易に0.5〜2.0μmの球状
アルミナを得ることが出来るし、ソーダ含有量が0.1
5〜0.3重量%に制御する場合には1.5〜2.5μ
mの球状アルミナを、また0.3〜0.5重量%に制御
する場合には2.0〜3.0μmの球状アルミナをそれ
ぞれ容易に得ることが出来る。従って、ソーダ含有量の
高い水酸化アルミニウムを使用して2.0μm以下の球
状アルミナを安定的に得る為には、中間焼成アルミナ中
のソーダ含有量が0.2重量%以下に制御するのが適切
であり、そのため、第一の方法として、本発明は、中間
焼成処理に当たり、中間焼成後のアルミナにおけるソー
ダ含有量を0.2重量%以下になるように、脱ソーダ化
剤を添加して前述と同様に中間焼成を行い、再焼成処理
を行う。脱ソーダ化剤は、シリカ源としてムライト・シ
ャモット・アルミナシリケート・ケイ砂等のシリカ系物
質の粒や成形ボールを使用する方法が簡便であり、例え
ば、アルミナに対して5〜10重量%の割合でムライト
粒が添加される。また、別法として熱分解段階で塩酸を
0.5〜2重量%の割合で含浸させてソーダを揮散し易
くした後で同様に中間焼成前にムライト粒等を添加する
方法も好適である。これによって、例えばムライト粒に
ソーダ分が移行して、アルミナ中の脱ソーダ処理を行う
ことが出来る。そして、中間焼成終了後又は再焼成後に
篩分手段によって、ムライト粒は除去される。また、安
定的に2.0μm以下の球状アルミナを得る第二の方法
として、通常の中間焼成処理後に温水洗浄によって脱ソ
ーダ処理を行い、その後に乾燥段階を経て再焼成を行う
方法を採るものである。この場合、温水洗浄は、中間焼
成アルミナを70〜100℃の温水でリパルプ洗浄する
ことによって行う。これらの方法によって、通常、0.
1重量%以下のソーダ含有量とすることも可能で、再焼
成時に微粒で球状のアルミナ生成を容易とする。When the treatment is carried out at the above-mentioned concentration of the fluorine mineralizer, it varies depending on the calcination conditions. However, when the treatment is carried out under general-purpose conditions, if the soda content in the intermediate calcination alumina is controlled to 0.15% by weight or less, it is easy. It is possible to obtain spherical alumina having a particle size of 0.5 to 2.0 μm and a soda content of 0.1 to 2.0 μm.
1.5 to 2.5 μm when controlling to 5 to 0.3% by weight
When the spherical alumina of m is controlled to 0.3 to 0.5% by weight, the spherical alumina of 2.0 to 3.0 μm can be easily obtained. Therefore, in order to stably obtain spherical alumina of 2.0 μm or less using aluminum hydroxide having a high soda content, it is necessary to control the soda content in the intermediate calcined alumina to 0.2% by weight or less. Therefore, as a first method, according to the present invention, in the intermediate calcination treatment, a soda removal agent is added so that the soda content in alumina after the intermediate calcination becomes 0.2% by weight or less. Intermediate firing is performed in the same manner as described above, and re-firing is performed. The method of using a silica-based material such as mullite, chamotte, alumina silicate, or silica sand or a molded ball as a silica source is a simple method for removing the soda. The mullite grains are added. As another method, it is also preferable to add impregnated hydrochloric acid at a rate of 0.5 to 2% by weight in the thermal decomposition step so that the soda can be easily volatilized and then add mullite grains or the like before the intermediate firing. As a result, for example, the soda content is transferred to the mullite grains, so that the soda treatment in the alumina can be performed. Then, after the completion of the intermediate firing or after the refiring, the mullite grains are removed by the sieving means. As a second method for obtaining spherical alumina having a diameter of 2.0 μm or less stably, a method of performing soda treatment by washing with warm water after a normal intermediate calcination treatment, and then performing re-calcination through a drying step is adopted. is there. In this case, the hot water washing is performed by repulping the intermediate calcined alumina with hot water at 70 to 100 ° C. By these methods, it is usually the case that
The content of soda can be 1% by weight or less, which facilitates generation of fine and spherical alumina at the time of refiring.
【0009】[0009]
【作用】本発明の方法によった場合、何故に解砕容易な
焼成アルミナが得られるか、その理由は未だ十分に解明
されていないが、つぎのように考えられる。即ち、緩慢
な昇温速度で熱分解されたバイヤー法水酸化アルミニウ
ムは、元の水酸化アルミニウムの形骸を保ちながら大き
なミクロポアを持った中間アルミナ粒子となる。次い
で、中間焼成によってα化すると粗な構造のまゆ型鎖状
の中間焼成アルミナの未結晶成長体が得られる。この未
結晶成長体を鉱化剤の存在で再焼成すると、気相を介し
た物質移動によって一次粒子間の連結部分が切れ、独立
性の高い比較的粒径の揃った球状アルミナ粒子の集合結
晶成長体になるため、容易に解砕されるものになると推
察される。また、その再焼成過程に於いてソーダ含有量
の高い中間焼成アルミナを使用すると、それから揮散す
るソーダが鉱化剤からのフッ素イオンを捕捉して高温雰
囲気中に滞留しフッ素イオンによるアルミナ結晶面に対
する成長作用の違いを促進させアルミナの形状や粒径を
変化させるが、本発明での量的関係の領域で処理すると
結晶成長の方向性がなく均等に行われるので球状のアル
ミナ結晶が成長するものと推察される。尚、本発明法に
よれば、原料水酸化アルミニウムに含有されるソーダ分
が中間の脱ソーダ過程及び再焼成過程において除去され
るため、ソーダ含有量の少ない球状アルミナが得られる
効果も併せて発現される。The reason why the method of the present invention produces calcined alumina which can be easily crushed has not been sufficiently elucidated yet, but is considered as follows. That is, the Bayer aluminum hydroxide thermally decomposed at a slow heating rate becomes intermediate alumina particles having large micropores while maintaining the original aluminum hydroxide. Then, when the material is turned into α by intermediate firing, an uncrystallized growth of intermediate fired alumina having a rough structure in the form of a cocoon is obtained. When this uncrystallized growth is recalcined in the presence of a mineralizer, the connection between primary particles is broken by mass transfer through the gas phase, and aggregate crystals of highly independent spherical alumina particles with relatively uniform particle size are obtained. It is presumed that it will be easily broken up because it grows. In addition, if the intermediate calcined alumina having a high soda content is used in the recalcining process, the soda volatilized there captures the fluorine ions from the mineralizer and stays in the high-temperature atmosphere, and the fluorine ions react with the alumina crystal surface by the fluorine ions. It promotes the difference in growth action and changes the shape and particle size of alumina. However, when the treatment is performed in the quantitative region in the present invention, the crystal growth is performed uniformly without the directionality of the crystal growth, so that spherical alumina crystals grow. It is inferred. According to the method of the present invention, since the soda component contained in the raw material aluminum hydroxide is removed in the intermediate de-soda process and re-sintering process, the effect of obtaining a spherical alumina having a low soda content is also exhibited. Is done.
【0010】[0010]
【実施例】以下に実施例・比較例により本発明をより具
体的に説明するが、これに限定されるものでない。ま
た、以下の実施例・比較例においては、共通して下記の
条件で処理及び測定を行った。即ち、焼成アルミナのα
化度は、X線回折法(理学電機製ガイガーフレックスR
AD−IIIA CuKa線)で(104)・(11
3)・(116)面の回折線から求めた。また、解砕は
卓上型遊星ボールミル(フリッチ・ジャパン製P−7)
を用い、 粉砕容器: 焼結アルミナ製で12ml ボール : 径5mmのアルミナボール12g 試料 : ピロリン酸ソーダ0.0005mol/l
水溶液2.5gに試料2.5gを入れた 回転数 : 容器470rpm,底板1900rpm の条件で40分間湿式解砕した。解砕後の粒度分布をセ
ディグラフ法で測定し、その平均粒径を求め、その粒子
形状は走査型電子顕微鏡で観察した。The present invention will be described in more detail with reference to the following Examples and Comparative Examples, but it should not be construed that the invention is limited thereto. Further, in the following Examples and Comparative Examples, processing and measurement were performed in common under the following conditions. That is, α of calcined alumina
The degree of conversion is determined by the X-ray diffraction method (Geigerflex R manufactured by Rigaku Denki).
(104) ・ (11) with AD-IIIA CuKa wire)
3) It was determined from the diffraction line of the (116) plane. In addition, the disintegration is performed by a table type planetary ball mill (P-7 manufactured by Flitch Japan).
Pulverizing container: 12 ml made of sintered alumina Ball: 12 g of alumina ball having a diameter of 5 mm Sample: 0.0005 mol / l of sodium pyrophosphate
2.5 g of the sample was placed in 2.5 g of the aqueous solution. Rotation speed: Wet crushing was performed for 40 minutes under the conditions of a container of 470 rpm and a bottom plate of 1900 rpm. The particle size distribution after crushing was measured by a sedigraph method, the average particle size was determined, and the particle shape was observed with a scanning electron microscope.
【0011】実施例1 バイヤー法で得られたギブサイト型水酸化アルミニウム
(日本軽金属製商品名BLU72・全ソーダ含有量0.
13重量%で平均粒子径DP50100μm)をシリコ
ニット型電気炉で毎分5℃の昇温速度で600℃まで昇
温し、該温度で60分間保持加熱して熱分解した。引き
続いて1250℃まで昇温してその温度で1時間保持し
中間焼成し、中間焼成アルミナ(α化度は100%)を
得た。この中間焼成アルミナ100重量部に対してフッ
化アルミニウムをフッ素換算で0,10重量部の割合で
添加混合して、再度シリコニット型電気炉で1250℃
で1時間再焼成した。得られた焼成アルミナの解砕後の
ものは平均粒径DP501.6μmの球状アルミナで、
ソーダ含有量は0.03重量%であった。 実施例2 バイヤー法で得られたギブサイト型水酸化アルミニウム
(日本軽金属製商品名BN52・全ソーダ含有量0.2
5重量%で平均粒子径DP5035μm)を用い、再焼
成温度を1300℃とした以外は実施例1と同一の条件
で処理した。得られた焼成アルミナの解砕後のものは平
均粒径DP502.2μmの球状アルミナで、ソーダ含
有量が0.08重量%であった。Example 1 Gibbsite type aluminum hydroxide obtained by the Bayer method (BLU72, trade name, manufactured by Nippon Light Metal Co., Ltd., total soda content: 0.1%).
13% by weight and an average particle diameter D P50 of 100 μm) was heated to 600 ° C. at a rate of 5 ° C./min in a siliconite-type electric furnace, and was thermally decomposed by holding at that temperature for 60 minutes. Subsequently, the temperature was raised to 1250 ° C., maintained at that temperature for 1 hour, and intermediately calcined to obtain intermediate calcined alumina (having a degree of pregelatinization of 100%). Aluminum fluoride was added and mixed at a rate of 0.10 part by weight in terms of fluorine with respect to 100 parts by weight of the intermediate calcined alumina, and again heated at 1250 ° C. in a siliconite type electric furnace.
For 1 hour. The obtained calcined alumina after crushing is spherical alumina having an average particle diameter D P50 of 1.6 μm.
The soda content was 0.03% by weight. Example 2 Gibbsite type aluminum hydroxide obtained by the Bayer method (trade name BN52, manufactured by Nippon Light Metal Co., Ltd .; total soda content: 0.2)
The treatment was carried out under the same conditions as in Example 1 except that the average particle diameter D P50 was 5 μ% and the refiring temperature was 1300 ° C. Those of disintegrated obtained calcined alumina in spherical alumina having an average particle diameter D P50 2.2 .mu.m, soda content was 0.08 wt%.
【0012】実施例3 バイヤー法で得られたギブサイト型水酸化アルミニウム
(日本軽金属製商品名B52・全ソーダ含有量0.35
重量%で平均粒子径DP5040μm)を用い、再焼成
温度を1300℃とした以外は実施例1と同一の条件で
処理した。得られた焼成アルミナの解砕後のものは平均
粒径DP502.6μmの球状アルミナで、ソーダ含有
量が0.10重量%であった。 実施例4 バイヤー法で得られたギブサイト型水酸化アルミニウム
(日本軽金属製商品名B52・全ソーダ含有量0.35
重量%で平均粒子径DP5040μm)に塩酸をアルミ
ナ換算に対して1重量%添加した後、シリコニット型電
気炉で毎分7℃の昇温速度で600℃まで昇温し、該温
度で60分間保持加熱して熱分解した。そして、ムライ
ト粒をアルミナに対して8重量%添加した後、シリコニ
ット型電気炉で1250℃で1時間保持して中間焼成
し、中間焼成アルミナ(α化度は100%)を得た。ム
ライト粒を篩分した後、中間焼成アルミナ100重量部
に対してフッ化アルミニウムをフッ素換算で0,10重
量部を添加混合して、再度シリコニット型電気炉で13
00℃で45分間保持し再焼成した。得られた焼成アル
ミナの解砕後のものは平均粒径DP501.3μmの球
状アルミナで、ソーダ含有量は0.07重量%であっ
た。Example 3 Gibbsite-type aluminum hydroxide obtained by the Bayer method (trade name B52, manufactured by Nippon Light Metal Co., Ltd .; total soda content: 0.35)
(Average particle diameter DP50 40 μm in weight%) and the same conditions as in Example 1 except that the refiring temperature was 1300 ° C. The obtained calcined alumina after crushing was spherical alumina having an average particle diameter D P50 of 2.6 μm and a soda content of 0.10% by weight. Example 4 Gibbsite type aluminum hydroxide obtained by the Bayer method (trade name B52, manufactured by Nippon Light Metal Co., Ltd .; total soda content: 0.35)
After adding 1% by weight of hydrochloric acid to the average particle diameter D P50 ( 40 μm in terms of% by weight) in terms of alumina, the temperature was raised to 600 ° C. at a rate of 7 ° C./minute in a siliconite type electric furnace. It was thermally decomposed by holding and heating for 1 minute. Then, after adding 8% by weight of the mullite grains to the alumina, the mixture was held at 1250 ° C. for 1 hour in a siliconite-type electric furnace and was subjected to intermediate firing to obtain intermediate fired alumina (having a degree of α of 100%). After sieving the mullite grains, 0.10 parts by weight of aluminum fluoride was added and mixed with 100 parts by weight of the intermediate calcined alumina in terms of fluorine, and the mixture was again placed in a siliconite-type electric furnace.
It was kept at 00 ° C. for 45 minutes and fired again. The obtained calcined alumina after crushing was spherical alumina having an average particle diameter D P50 of 1.3 μm and a soda content of 0.07% by weight.
【0013】実施例5 実施例3において得られた中間焼成アルミナ100重量
部を90℃の温水300重量部でリパルプ洗浄した後、
ろ過分離し更に200重量部の温水で置換洗浄し風乾し
た後、実施例3と同様な再焼成処理をした。得られた焼
成アルミナの解砕後のものは平均粒径DP501.5μ
mの球状アルミナで、ソーダ含有量が0.08重量%で
あった。Example 5 100 parts by weight of the intermediate calcined alumina obtained in Example 3 was repulped and washed with 300 parts by weight of hot water at 90 ° C.
After filtration and separation, further substituting and washing with 200 parts by weight of warm water and air-drying, the same re-firing treatment as in Example 3 was performed. The obtained calcined alumina after crushing has an average particle diameter D P50 of 1.5 μm.
m spherical alumina having a soda content of 0.08% by weight.
【0014】比較例1 バイヤー法で得られたギブサイト型水酸化アルミニウム
(日本軽金属製商品名BLU72・全ソーダ含有量0.
13重量%で平均粒子径DP50100μm)をシリコ
ニット型電気炉で毎分5℃の昇温速度で600℃まで昇
温し、該温度で60分間保持加熱して熱分解した。引き
続いてα化度が30%になるように中間焼成し、中間焼
成アルミナを得た。この中間焼成アルミナ100重量部
に対してフッ化アルミニウムをフッ素換算で0,10重
量部を添加混合して、再度シリコニット型電気炉で12
50℃で1時間保持し再焼成した。得られた焼成アルミ
ナの解砕後のものは平均粒径DP502.5μmのアル
ミナで、殆どが六角板状粒子で球状アルミナはきわて少
量であり、そのソーダ含有量は0.05重量%であっ
た。 比較例2 バイヤー法で得られたギブサイト型水酸化アルミニウム
(日本軽金属製商品名BN52・全ソーダ含有量0.2
5重量%で平均粒子径DP5035μm)を用い、比較
例1と同一条件で熱分解した。引き続いてα化度が30
%になるように中間焼成し、中間焼成アルミナを得た
後、比較例1と同一条件で再焼成した。得られた焼成ア
ルミナの解砕後のものは平均粒径3.2μmのアルミナ
で、殆どが六角板状粒子で球状アルミナはきわて少量で
あり、そのソーダ含有量は0.08重量%であった。 比較例3 バイヤー法で得られたギブサイト型水酸化アルミニウム
(日本軽金属製商品名B52・全ソーダ含有量0.35
重量%で平均粒子径DP5040μm)を用い、比較例
1と同一条件で熱分解した。引き続いてα化度が30%
になるように中間焼成し、中間焼成アルミナを得た後、
比較例1と同一条件で再焼成した。得られた焼成アルミ
ナの解砕後のものは平均粒径3.8μmのアルミナで、
殆どが六角板状粒子で球状アルミナはきわて少量であ
り、そのソーダ含有量は0.12重量%であった。Comparative Example 1 Gibbsite type aluminum hydroxide obtained by the Bayer method (BLU72, trade name, manufactured by Nippon Light Metal Co., Ltd., total soda content: 0.1%).
13% by weight and an average particle diameter D P50 of 100 μm) was heated to 600 ° C. at a rate of 5 ° C./min in a siliconite-type electric furnace, and was thermally decomposed by holding at that temperature for 60 minutes. Subsequently, intermediate calcination was carried out so that the degree of pregelatinization became 30%, to obtain an intermediate calcined alumina. To 100 parts by weight of this intermediate calcined alumina, 0.10 parts by weight of aluminum fluoride was added and mixed in terms of fluorine, and then mixed again in a siliconite type electric furnace.
It was kept at 50 ° C. for 1 hour and fired again. The obtained calcined alumina after crushing is alumina having an average particle diameter D P50 of 2.5 μm, most of which are hexagonal plate-like particles, spherical alumina is extremely small, and its soda content is 0.05% by weight. Met. Comparative Example 2 Gibbsite type aluminum hydroxide obtained by the Bayer method (trade name BN52, manufactured by Nippon Light Metal Co., Ltd .; total soda content: 0.2
Thermal decomposition was carried out under the same conditions as in Comparative Example 1 using an average particle diameter ( DP50 of 35 μm at 5% by weight). Subsequently, the degree of alpha conversion is 30
%, To obtain an intermediate calcined alumina, and then recalcined under the same conditions as in Comparative Example 1. The resulting calcined alumina after crushing was alumina having an average particle size of 3.2 μm, most of which were hexagonal plate-like particles, the amount of spherical alumina was extremely small, and the soda content was 0.08% by weight. Was. Comparative Example 3 Gibbsite-type aluminum hydroxide obtained by the Bayer method (trade name: B52, manufactured by Nippon Light Metal Co., Ltd .; total soda content: 0.35)
Using an average particle diameter ( DP50 of 40 μm in weight%), thermal decomposition was performed under the same conditions as in Comparative Example 1. Subsequently, the degree of pregelatinization is 30%
After intermediate firing to obtain intermediate fired alumina,
It was refired under the same conditions as in Comparative Example 1. After crushing of the obtained calcined alumina, alumina having an average particle size of 3.8 μm,
Most of the particles were hexagonal plate-like particles, the amount of spherical alumina was extremely small, and the soda content was 0.12% by weight.
【0015】[0015]
【発明の効果】本発明によれば、焼成過程の改善という
簡単な手段によって、容易に解砕して粒度分布が狭く,
例えば平均粒径が0.5〜3μmレベルでソーダ含有量
の低い球状アルミナを得ることが出来るし、それは各種
用途に汎用的に用いることが出来るので工業的に優れた
経済的効果をもたらすことが出来る。また、例えば、そ
れを使用して焼結体とするときには、焼結性に優れて高
密度で均一なものを得ることが出来る。According to the present invention, the particle size distribution is narrowed by a simple means of improving the firing process, and the particle size distribution is narrow.
For example, spherical alumina having an average particle size of 0.5 to 3 μm and having a low soda content can be obtained. Since it can be used for various purposes, it is possible to obtain industrially excellent economic effects. I can do it. Further, for example, when it is used as a sintered body, it is possible to obtain a high-density and uniform body having excellent sinterability.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−97528(JP,A) 特開 昭62−46922(JP,A) 特開 平3−232719(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01F 7/44 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-59-97528 (JP, A) JP-A-62-46922 (JP, A) JP-A-3-232719 (JP, A) (58) Field (Int.Cl. 7 , DB name) C01F 7/44
Claims (3)
含有量が0.5重量%以下になるようなソーダ含有量の
バイヤー法水酸化アルミニウムを1分間当り20℃以下
の昇温速度で700℃以下にて脱水熱分解した後、昇温
して1400℃以下で中間焼成してα化度90%以上の
中間焼成アルミナとし、しかる後に該中間焼成アルミナ
をフッ素換算でアルミナ100重量部当たり0.05〜
1.0重量部の割合のフッ素鉱化剤の存在下で600〜
1500℃で再焼成して粒径制御することを特徴とする
球状アルミナの製造方法。1. A Bayer-processed aluminum hydroxide having a soda content such that the total soda content becomes 0.5% by weight or less when converted into an intermediate calcined alumina at a temperature rising rate of 20 ° C. or less per minute at 700 ° C. After dehydration and pyrolysis, the mixture is heated and heated at an intermediate temperature of 1400 ° C. or lower to obtain an intermediate fired alumina having a degree of α of 90% or more. 05-
600 to 600 parts by weight in the presence of 1.0 part by weight of a fluorine mineralizer
A method for producing spherical alumina, wherein the particle size is controlled by refiring at 1500 ° C.
ナにおける全ソーダ含有量を0.2重量%以下になるよ
うに脱ソーダ化剤を添加して中間焼成を行い、全ソーダ
含有量を制御された中間焼成アルミナを得ることを特徴
とする請求項1に記載の球状アルミナの製造方法。2. In the intermediate calcination treatment, an intermediate calcination was performed by adding a soda removal agent so that the total soda content in the intermediate calcination alumina was 0.2% by weight or less, and the total soda content was controlled. The method for producing spherical alumina according to claim 1, wherein an intermediate calcined alumina is obtained.
ーダ含有量を0.2重量%以下に制御された中間焼成ア
ルミナを得た後に再焼成を行うことを特徴とする請求項
1又は2に記載の球状アルミナの製造方法。3. The method according to claim 1, wherein after the intermediate calcination treatment, washing with warm water is performed, and after the intermediate calcination alumina whose total soda content is controlled to 0.2% by weight or less is obtained, recalcination is performed. 3. The method for producing spherical alumina according to 1.).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03324962A JP3087403B2 (en) | 1991-08-07 | 1991-08-07 | Method for producing spherical alumina |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03324962A JP3087403B2 (en) | 1991-08-07 | 1991-08-07 | Method for producing spherical alumina |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0543224A JPH0543224A (en) | 1993-02-23 |
JP3087403B2 true JP3087403B2 (en) | 2000-09-11 |
Family
ID=18171571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03324962A Expired - Lifetime JP3087403B2 (en) | 1991-08-07 | 1991-08-07 | Method for producing spherical alumina |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3087403B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4209041B2 (en) * | 1999-07-06 | 2009-01-14 | 電気化学工業株式会社 | Method for producing spherical alumina powder |
KR101643361B1 (en) * | 2013-12-26 | 2016-07-28 | 주식회사 씨아이에스 | Method for preparing easy sintering super-fine alumina of low viscosity |
JP6269511B2 (en) * | 2015-01-06 | 2018-01-31 | 信越化学工業株式会社 | Thermally conductive silicone composition, cured product and composite sheet |
KR101694975B1 (en) * | 2015-07-03 | 2017-01-11 | 한국알루미나 주식회사 | Method for preparing low-temperature sinterable alumina and low-soda alumina |
JP2018053260A (en) * | 2017-12-21 | 2018-04-05 | 信越化学工業株式会社 | Thermal conductive silicone composition, cured article and composite sheet |
CN112341994A (en) * | 2020-12-20 | 2021-02-09 | 长沙县新光特种陶瓷有限公司 | Production method of ultra-precise polishing abrasive |
KR102517803B1 (en) * | 2022-02-03 | 2023-04-05 | 주식회사 씨아이에스케미칼 | High purity alumina, preparation thereof and slurry for coating a separator of a secondary battery comprising the same |
-
1991
- 1991-08-07 JP JP03324962A patent/JP3087403B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0543224A (en) | 1993-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4308088A (en) | Macrocrystalline aluminum oxide and method for its manufacture | |
US4657754A (en) | Aluminum oxide powders and process | |
Ciftci et al. | Hydrothermal precipitation and characterization of nanocrystalline BaTiO3 particles | |
US5514631A (en) | Alumina sol-gel fiber | |
US5114891A (en) | Sintered material based on aluminum oxide | |
JP2523776B2 (en) | Composition for zirconia ceramic material | |
US5009876A (en) | Method of manufacturing barium titanate BaTiO3 | |
JP2638873B2 (en) | Method for producing alumina powder with narrow particle size distribution | |
JPH04500947A (en) | Small α-alumina particles and plates | |
US5284809A (en) | Method for the preparation of α-aluminum oxide powder | |
JP3087403B2 (en) | Method for producing spherical alumina | |
JPH05117636A (en) | Polycrystalline sintered abrasive particle based on alpha-aluminum trioxide, abrasive comprising the abrasive particle, preparation of the abrasive particle and preparation of fire-resistant ceramic product | |
JP3389642B2 (en) | Method for producing low soda alumina | |
US3336108A (en) | Mullite production | |
JPH06305726A (en) | Production of powdery oxide of rare earth element | |
US10301222B2 (en) | Ceramic powders with controlled size distribution | |
JP2890866B2 (en) | Method for producing fine α-alumina powder | |
JPH09315865A (en) | Production of transparent yttrium oxide sintered compact | |
JPS6360106A (en) | Spinel powder and its production | |
JPH0789759A (en) | Alumina for tape cast, alumina composition, alumina green sheet, alumina sintered plate and its production | |
JPH04238856A (en) | Production of light transmitting alumina raw material powder | |
JP2791596B2 (en) | A method for producing alumina that is easy to grind. | |
JPH06144830A (en) | Production of extremely easily sinterable alumina | |
JPH06219828A (en) | Production of mullite-silicon carbide combined ceramics | |
JPH06100358A (en) | Production of mullite sintered compact |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080714 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090714 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090714 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100714 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110714 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110714 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120714 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120714 Year of fee payment: 12 |