JPH07101723A - Production of alpha alumina powder - Google Patents

Production of alpha alumina powder

Info

Publication number
JPH07101723A
JPH07101723A JP5247727A JP24772793A JPH07101723A JP H07101723 A JPH07101723 A JP H07101723A JP 5247727 A JP5247727 A JP 5247727A JP 24772793 A JP24772793 A JP 24772793A JP H07101723 A JPH07101723 A JP H07101723A
Authority
JP
Japan
Prior art keywords
alumina
firing
particle size
aluminum hydroxide
alumina powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5247727A
Other languages
Japanese (ja)
Inventor
Isao Kameda
績 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP5247727A priority Critical patent/JPH07101723A/en
Publication of JPH07101723A publication Critical patent/JPH07101723A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To obtain an alpha alumina powder excellent in disaggregating property less in the number of coarse particles and sharp in particle size distribution in a high yield by exposing aluminum hydroxide obtained by Bayer method to an atmosphere of temp. under a specific condition and firing the obtained transition alumina under a specific condition. CONSTITUTION:The aluminum hydroxide obtained by Bayer method is exposed to the atmosphere of 400-1200 deg.C for 0.1sec to 5min and instantaneously calcining to form the transition alumina. This alumina is fired until the ratio of converting into alpha becomes >=80%. And the instantaneous calcining is usually executed by using an air flow type kiln so as to be <=5% in the alumina content occupied in the crystal phase in the obtained alumina. By this way, the objective alphaalumina is obtained with a relatively simple operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はαアルミナ粉末の製造方
法に関するものである。更に詳細には解砕性に優れ、粗
大粒子が少なく、かつ粒度分布がシャープなαアルミナ
粉末の製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing α-alumina powder. More specifically, the present invention relates to a method for producing α-alumina powder having excellent crushability, few coarse particles and a sharp particle size distribution.

【0002】[0002]

【従来の技術】平均一次粒子径(α晶の大きさ)が2〜
3μm以下のαアルミナ粉末は、ファインセラミック用
途を始め微粒の研磨材或いは耐火物用途に使用されてい
る。これらαアルミナ粉末は一般的にはバイヤー法で製
造される水酸化アルミニウムをロータリーキルン或いは
トンネルキルン等の連続焼成炉やバッチ式の焼成炉で焼
成して製造される。通常、バイヤー法で製造される水酸
化アルミニウムは約0.数μm〜約30μmの一次粒子
が凝集した約10〜約100μmの二次凝集粒子であ
り、α化時強固な粒子間結合を生じる。それゆえ焼成後
2〜3μm以下のαアルミナ粉末とするためにはボール
ミル等で解砕或いは粉砕し粒度調整されているが、かか
る操作は多大のエネルギーを消費し製造コストが高くな
る欠点があった。加えて該方法により得られたαアルミ
ナ粉末は粗大粒子を含み、粒度分布も広いため、これを
用いて得た成形体は焼結時、成形体中よりの脱バインダ
ー性や脱ガス性に劣り、また粗大粒子は焼結体の欠陥と
なり、機械的強度を低下させる等の問題を有していた。
2. Description of the Related Art The average primary particle diameter (size of α crystal) is 2 to
The α-alumina powder having a particle size of 3 μm or less is used for fine ceramics, fine abrasives, and refractories. These α-alumina powders are generally produced by firing aluminum hydroxide produced by the Bayer method in a continuous firing furnace such as a rotary kiln or a tunnel kiln or a batch firing furnace. Generally, aluminum hydroxide produced by the Bayer process has a density of about 0. It is a secondary agglomerated particle of about 10 to about 100 μm in which primary particles of a few μm to about 30 μm are agglomerated, and a strong interparticle bond is generated at the time of α conversion. Therefore, in order to obtain α-alumina powder having a particle size of 2 to 3 μm or less after firing, the particle size is adjusted by crushing or crushing with a ball mill or the like, but such an operation consumes a large amount of energy and has a drawback of increasing manufacturing cost. . In addition, since the α-alumina powder obtained by this method contains coarse particles and has a wide particle size distribution, the molded product obtained using this is inferior in debinding property and degassing property in the molded product during sintering. Further, the coarse particles cause defects in the sintered body, and have a problem of lowering mechanical strength.

【0003】このため従来より焼結後のアルミナの解砕
性を改良する努力がなされてきた。例えばアルミナ粉末
にポリエチレングリコール、アルミニウムアルコキサイ
ド等を粉砕助剤として添加する方法が知られている。し
かしながらこの方法は粉砕時間が短縮されるものの、ア
ルミナ表面に吸着した粉砕助剤が、スラリー化に際し分
散性等に悪影響を及ぼすとの欠点を有する。
Therefore, efforts have conventionally been made to improve the crushability of alumina after sintering. For example, a method is known in which polyethylene glycol, aluminum alkoxide, or the like is added to alumina powder as a grinding aid. However, although this method shortens the pulverization time, it has a drawback that the pulverization aid adsorbed on the alumina surface adversely affects the dispersibility and the like in forming a slurry.

【0004】また特開昭61−26554号公報には
「セラミック前駆体または準安定相物質を出発原料とし
て、成形及び焼成するセラミック焼結体の製造方法にお
いて、セラミックス前駆体または準安定相物質を加熱す
ることによって得られるより安定な相になる物質を、前
記出発原料の粒子数に対して0.1〜100%の粒子数
だけ、前記出発原料に添加した後、成形、焼成すること
を特徴とするセラミック焼結体の製造方法」が開示され
ている。更に特開昭62−128918号公報には「大
きさが1μmより小さいαアルミナ結晶を含むアルミナ
粉末の製法であって、αアルミナプリカーサーに1μm
より小さいαアルミナ粒子を種結晶として添加し、種晶
を添加したプリカーサーを900〜1350℃で、非α
アルミナの少なくとも一部分をαアルミナに変えるのに
十分な時間焼結し、かつこの焼結生成物を1μmより小
さい粒子の粉末に粉砕する工程を含むことを特徴とする
アルミナ粉末の製法」が開示されている。しかしながら
これら種入れ法は、実質的に解砕性の向上は期待される
ものの、水酸化アルミニウムの析出速度や成長速度が低
下し生産コスト的が高くなる欠点を有する。
Further, in Japanese Patent Laid-Open No. 61-26554, "A ceramic precursor or a metastable phase material is used in a method for producing a ceramic sintered body which is formed and fired by using a ceramic precursor or a metastable phase material as a starting material. A substance which forms a more stable phase obtained by heating is added to the starting raw material in an amount of 0.1 to 100% of the number of particles of the starting raw material, followed by molding and firing. A method of manufacturing a ceramic sintered body is disclosed. Further, Japanese Patent Application Laid-Open No. 62-128918 discloses "a method for producing an alumina powder containing α-alumina crystals having a size smaller than 1 μm, in which α-alumina precursor is 1 μm.
Smaller α-alumina particles were added as seed crystals, and the seeded precursor was added at 900-1350 ° C.
A method of making an alumina powder is disclosed which comprises the steps of sintering at least a portion of the alumina for a time sufficient to convert it to alpha alumina and grinding the sintered product into a powder of particles smaller than 1 μm. ing. However, although these seeding methods are expected to substantially improve the disintegration property, they have a drawback that the precipitation rate and growth rate of aluminum hydroxide are reduced and the production cost is increased.

【0005】特開平3−93617号公報には「アルミ
ン酸アルカリを加水分解して得られる水酸化アルミニウ
ムを焼成してアルミナを製造するプロセスにおいて水酸
化アルミニウムがアルミナに相転移する際、ベーマイト
相を経由するアルミナが全体の10%以下となるように
焼成する事を特徴とする易焼結アルミナの製造方法」が
開示されている。しかしながら、ベ−マイト含有率を1
0%以下にするためには、(1)一次粒子の小さい水酸
化アルミナを使用するか、(2)高真空下で焼成するこ
とが必要であり、よりコストの高い水酸化アルミニウム
を使用するか、極めて特殊な焼成条件で焼成する必要が
あるため経済的でない欠点があった。
Japanese Unexamined Patent Publication (Kokai) No. 3-93617 discloses that "boehmite phase is generated when aluminum hydroxide undergoes a phase transition in the process of baking aluminum hydroxide obtained by hydrolyzing alkali aluminate to produce alumina. A method for producing easily sinterable alumina is disclosed, which comprises firing so that the amount of alumina passing through becomes 10% or less of the whole. However, the content rate of beammite is 1
In order to reduce the content to 0% or less, (1) it is necessary to use alumina hydroxide having small primary particles, or (2) it is necessary to use high-aluminum hydroxide, which requires firing under high vacuum. However, there is a drawback that it is not economical because it is necessary to fire under extremely special firing conditions.

【0006】さらに特開平5−43224号公報には
「中間焼成アルミナにしたときに全ソーダ含有量が0.
5重量%以下になるようなソーダ含有量のバイヤー法水
酸化アルミニウムを1分間当たり20℃以下の昇温速度
で700℃以下にて脱水熱分解した後、昇温して140
0℃以下で中間焼成してα化度90%以上の中間焼成ア
ルミナとし、しかる後に該中間焼成アルミナをフッ素換
算でアルミナ100重量部当たり0.05〜1.0重量
部の割合のフッ素鉱化剤の存在化で600〜1500℃
で再焼成して粒径制御することを特徴とする球状アルミ
ナの製造方法」が開示されている。しかし、この方法は
一段目の焼成時の昇温速度が遅く効率的でない欠点があ
る。
Further, Japanese Unexamined Patent Publication (Kokai) No. 5-43224 discloses that "when the intermediate-sintered alumina is used, the total soda content is 0.
Bayer aluminum hydroxide having a soda content of 5% by weight or less was dehydrated and pyrolyzed at 700 ° C. or less at a heating rate of 20 ° C. or less per minute, and then heated to 140.
Intermediate calcining is performed at 0 ° C. or lower to give intermediate calcined alumina having a degree of α conversion of 90% or more, and thereafter, the intermediate calcined alumina is fluorine-mineralized at a ratio of 0.05 to 1.0 part by weight based on 100 parts by weight of alumina in terms of fluorine. 600 to 1500 ° C in the presence of the agent
The method for producing spherical alumina is characterized in that the particle size is controlled by re-baking. However, this method has a drawback that the temperature rising rate during the first-stage firing is slow and it is not efficient.

【0007】[0007]

【発明が解決しようとする課題】かかる事情下に鑑み、
本発明者等は解砕性に優れ、粗大粒子が少なく、粒度分
布がシャープなαアルミナを歩留まり良く、かつ安価に
製造する方法を見いだすことを目的として鋭意検討した
結果、原料水酸化アルミニウムを特定条件で焼成する場
合には、上記特性を満足するαアルミナ粉末が得られる
ことを見いだし、本発明を完成するに至った。
In view of such circumstances, in view of the above circumstances,
The present inventors have conducted extensive studies for the purpose of finding a method for producing α-alumina, which has excellent disintegration properties, has few coarse particles, and has a sharp particle size distribution with good yield, and is inexpensive. When firing under the conditions, it was found that α-alumina powder satisfying the above characteristics was obtained, and the present invention was completed.

【0008】[0008]

【課題を解決するための手段】即ち、本発明はバイヤー
法より得られた水酸化アルミニウムを400℃〜120
0℃の温度雰囲気に0.1秒〜5分接触させ瞬間仮焼し
遷移アルミナとした後、次いで該遷移アルミナをα化率
が80%以上となるまで焼成することを特徴とするαア
ルミナ粉末の製造方法を提供するにある。
That is, according to the present invention, aluminum hydroxide obtained by the Bayer method is used at 400 ° C to 120 ° C.
An α-alumina powder, which is obtained by contacting an atmosphere at a temperature of 0 ° C. for 0.1 second to 5 minutes to perform a temporary calcination to obtain a transition alumina, and then calcining the transition alumina until the α conversion rate becomes 80% or more. In order to provide the manufacturing method of.

【0009】以下、本発明をさらに詳細に説明する。本
発明の実施に際し、原料水酸化アルミニウムはバイヤー
法により得られた水酸化アルミニウム(ギブサイト)が
使用される。原料水酸化アルミニウムの粒子形状、粒子
サイズは特に制限されないが、通常、約0.数μm〜約
30μmの一次粒子が凝集した、約10〜約100μm
の二次凝集粒子よりなるバイヤー法水酸化アルミニウム
が使用される。
The present invention will be described in more detail below. In carrying out the present invention, aluminum hydroxide (gibbsite) obtained by the Bayer method is used as the raw material aluminum hydroxide. The particle shape and particle size of the raw material aluminum hydroxide are not particularly limited, but usually about 0.1. Primary particles of several μm to about 30 μm are aggregated, about 10 to about 100 μm
A Bayer process aluminum hydroxide comprising secondary agglomerated particles of is used.

【0010】本発明に於いて、原料水酸化アルミニウム
は先ず瞬間仮焼により脱水熱分解を行う。ここで瞬間仮
焼とは、原料水酸化アルミニウムを400℃〜1200
℃の温度雰囲気下に0.1秒〜5分接触させ、普通には
約500℃〜約1200℃、線速度約5m/秒〜約50
m/秒の熱風気流中に原料水酸化アルミニウムを同伴さ
せて、接触時間約0.1秒〜約10秒焼成する。かかる
焼成後のアルミナは100℃以下で再水和能(100℃
以下の温度で、かつ水との共存下で反応域に存在するア
ルミナの約5%以上が水酸化アルミニウムに転移するも
のを再水和能を有するという)を有する遷移アルミナで
あればよく、一般的には得られた焼成後のアルミナ中の
結晶相は実質的にはχ(カイ)、ρ(ロー)、或いは無
定形アルミナでありαアルミナを実質的に含有しない
(約5%以下)もので、BET表面積が約150〜約3
50m2 /g、普通には約200〜約350m2 /gの
範囲の遷移アルミナであればよい。
In the present invention, the raw material aluminum hydroxide is first subjected to dehydration pyrolysis by instantaneous calcination. The term "instantaneous calcination" as used herein means that aluminum hydroxide as a raw material is 400 ° C to 1200
Contact for 0.1 seconds to 5 minutes under a temperature atmosphere of ℃, usually about 500 ℃ to about 1200 ℃, linear velocity of about 5 m / s to about 50
The raw material aluminum hydroxide is entrained in a hot air flow of m / sec and the firing is performed for a contact time of about 0.1 seconds to about 10 seconds. Alumina after such firing has a rehydration capacity (100 ° C or lower) at 100 ° C or lower.
Any transitional alumina having a rehydration ability of about 5% or more of the alumina present in the reaction zone at the following temperature and being coexistent with water is said to have rehydration ability, In general, the crystal phase in the obtained alumina after firing is substantially χ (kai), ρ (low), or amorphous alumina and does not substantially contain α-alumina (about 5% or less). And the BET surface area is about 150 to about 3
It may be 50 m 2 / g, usually in the range of about 200 to about 350 m 2 / g of transition alumina.

【0011】焼成は上記条件での焼成が可能な焼成炉で
あれば特にその構造を限定されるものではないが、通
常、熱風中に水酸化アルミニウムを投入し焼成する気流
式焼成炉が使用される。また火炎中に水酸化アルミニウ
ムを投入し焼成する方法であってもよい。該熱風は燃料
直焚き、或いは間接加熱のいずれでもよい。
The structure of the firing is not particularly limited as long as it is a firing furnace capable of firing under the above-mentioned conditions. Normally, an airflow type firing furnace is used in which aluminum hydroxide is introduced into hot air for firing. It Alternatively, a method may be used in which aluminum hydroxide is charged into the flame and fired. The hot air may be directly heated by fuel or indirectly heated.

【0012】瞬間仮焼後の遷移アルミナ粉末は通常サイ
クロン、バグフィルター、電気集塵機等の公知の方法で
気流中より分離、回収される。気流中からの分離温度
は、原料粉末の入口温度、焼成部分の放熱、分離部分の
材質等から決まるが、本発明方法の実施に於いては瞬間
仮焼後のアルミナが再水和能を有する遷移アルミナ粉末
であればよく特に分離温度は制限されない。
The transition alumina powder after the instantaneous calcination is usually separated and recovered from the air stream by a known method such as a cyclone, a bag filter and an electrostatic precipitator. The separation temperature from the air flow is determined by the inlet temperature of the raw material powder, the heat radiation of the calcined portion, the material of the separated portion, etc., but in the practice of the method of the present invention, the alumina after the instantaneous calcination has rehydration ability. The transition temperature is not particularly limited as long as it is a transition alumina powder.

【0013】瞬間仮焼後の遷移アルミナ粉末は次いでα
化率が80%以上、好ましくは90%以上となるまで焼
成する。該焼成は遷移アルミナ粉末をα化し得る焼成で
あればよく、焼成装置としてはロータリーキルンやトン
ネルキルン等の連続焼成炉やバッチ式焼成炉、或いは気
流式焼成炉等が挙げられる。また、焼成温度、時間も特
に制限されないが一般的には焼成温度約900〜約15
00℃、好ましくは約1000〜約1300℃で約1時
間〜約5時間の範囲で実施される。焼成後のアルミナの
α化率が80%未満の場合には焼結用アルミナ原料粉末
として用いる場合、成形体の焼結時の収縮により、気孔
が生成し易くなり、焼結体特性が悪くなる。焼成後のア
ルミナ粉末は焼成過程で一次粒子が各粒子間で軽く固着
し凝集粒を形成しているのでボールミル、振動ミル、媒
体攪拌ミル等の公知の粉砕機により凝集を解砕すること
が好ましい。
The transitional alumina powder after the instant calcination is then α
Baking is performed until the conversion rate becomes 80% or more, preferably 90% or more. The calcination may be any calcination that can convert the transition alumina powder into α, and examples of the calcination device include a continuous calcination furnace such as a rotary kiln and a tunnel kiln, a batch calcination furnace, and an airflow calcination furnace. The firing temperature and time are not particularly limited, but generally the firing temperature is about 900 to about 15.
It is carried out at 00 ° C., preferably about 1000 to about 1300 ° C. for a period of about 1 hour to about 5 hours. When the α-conversion rate of the alumina after firing is less than 80%, when used as an alumina raw material powder for sintering, shrinkage during sintering of the molded body facilitates the generation of pores and deteriorates the sintered body characteristics. . In the alumina powder after firing, the primary particles are lightly fixed between the particles in the firing process to form agglomerated particles, so it is preferable to crush the agglomerates with a known pulverizer such as a ball mill, a vibration mill, or a media stirring mill. .

【0014】このように焼成して得られた本発明のアル
ミナ粉末は、α化率が約80%以上、通常約90%以上
であり、平均二次粒子径が約1μm以下で、+1μm以
上の粗粒の占める割合が10重量%以下で、かつロジン
−ラムラ−の勾配が2.5以上の解砕性に優れ、粗大粒
子が少なく、かつ粒度分布がシャープなαアルミナ粉末
である。
The alumina powder of the present invention obtained by firing in this manner has an α-conversion rate of about 80% or more, usually about 90% or more, and an average secondary particle diameter of about 1 μm or less, and +1 μm or more. The α-alumina powder has a coarse particle content of 10% by weight or less, a rosin-lamellar gradient of 2.5 or more, excellent crushability, few coarse particles, and a sharp particle size distribution.

【0015】また、更に得られるαアルミナ粉末の粒子
形状や結晶の成長したαアルミナ粉末を所望する場合に
は、瞬間仮焼後の焼成時に目的に合致した効果を発揮す
る鉱化剤を添加し焼成することが推奨される。このよう
な鉱化剤としてはフッ素化合物、ホウ素化合物および塩
素化合物が挙げられ、これらは単独、或いは同時に使用
される。これら鉱化剤の添加量は原料アルミナに対して
フッ素化合物の場合Fとして0.01重量%〜約0.5
重量%、ホウ素化合物の場合はBとして0.01重量%
〜約0.5重量%、塩素化合物の場合Clとして0.0
5重量%〜2重量%が適当である。これらの鉱化剤の添
加形態は、原料の水酸化アルミニウムに予め含有させて
いても良いし、焼成時添加しても良い。また、ソーダ含
有量の低いαアルミナ粉末が望まれる場合は,従来から
の公知の方法、例えば、原料として低ソーダの水酸化ア
ルミニウムを使用したり、或いは一次焼成後及び/又は
二次焼成後のアルミナ粉末を水洗や酸洗することも可能
である。該、鉱化剤の存在下の焼成により得られたαア
ルミナ粉末も、α化率が約80%以上、通常約90%以
上であり、ロジン−ラムラ−の勾配が2.5以上の解砕
性に優れ、粗大粒子が少なく、かつ粒度分布がシャープ
なαアルミナ粉末である。
Further, when the particle shape of the α-alumina powder obtained or the α-alumina powder with grown crystals is desired, a mineralizing agent which exerts an effect matching the purpose at the time of firing after the instantaneous calcination is added. Baking is recommended. Examples of such a mineralizer include a fluorine compound, a boron compound and a chlorine compound, which are used alone or simultaneously. The amount of these mineralizers added is 0.01% by weight to about 0.5% as F in the case of a fluorine compound with respect to the raw material alumina.
% By weight, 0.01% by weight as B for boron compounds
~ About 0.5% by weight, 0.0 in the case of chlorine compounds as Cl
5% to 2% by weight is suitable. The form of addition of these mineralizers may be contained in the starting aluminum hydroxide in advance, or may be added during firing. When α-alumina powder having a low soda content is desired, a conventionally known method, for example, using low-soda aluminum hydroxide as a raw material, or after primary firing and / or secondary firing It is also possible to wash the alumina powder with water or pickle. The α-alumina powder obtained by calcination in the presence of the mineralizing agent also has an α-conversion rate of about 80% or more, usually about 90% or more, and a rosin-Ramura-gradient of crushing of 2.5 or more. Α-alumina powder with excellent properties, few coarse particles and sharp particle size distribution.

【0016】以上詳述したように、本発明に於いてはバ
イヤー法により得られた原料水酸化アルミニウムを瞬間
焼成により遷移アルミナとした後、更に焼成しαアルミ
ナ粉末とすることを必須とする。瞬間焼成による脱水熱
分解を経由しないで、通常の電気炉やロータリーキルン
等の比較的加熱速度の遅い(約100℃/分以下)焼成
条件下で焼成しても、粒度分布のシャープな易焼結アル
ミナは得られない。またサスペンジョンプレヒーター付
きロータリーキルン等を用いてαアルミナ粉末を得る場
合にも粗大粒子が少なく、かつ粒度分布のシャープなα
アルミナ粉末を得ることができない。本製造方法におい
て、何故、易解砕性で、粗大粒子が少なく、かつ粒度分
布がシャープなαアルミナ粉末が得られるのかその理由
は明かではないが、瞬間焼成により、急速加熱脱水した
遷移アルミナは、アルミナのC軸に垂直な方向に無数の
クラックが生成することから、かかる遷移アルミナを経
緯してα化されたアルミナは、簡単な解砕処理により容
易に解砕し得るものと推察される。またサスペンジョン
プレヒーター付きロータリーキルンの場合には装置構造
上、微粒アルミナが系内を循環しているためロータリー
キルンで焼成されるアルミナは遷移アルミナから既にα
化されたアルミナまで焼成程度の異なるアルミナよりな
るため、焼成後得られたαアルミナは本発明方法のよう
な粗大粒子が少なく粒度分布がシャープなαアルミナ粉
末が得られないものと考える。
As described in detail above, in the present invention, it is essential that the raw material aluminum hydroxide obtained by the Bayer method is instantaneously calcined to give transitional alumina and then further calcined to obtain α-alumina powder. Easy to sinter with a sharp particle size distribution, even without firing through dehydration pyrolysis by instantaneous firing, even when fired under firing conditions with a relatively slow heating rate (about 100 ° C / min or less), such as in ordinary electric furnaces and rotary kilns. Alumina cannot be obtained. Also, when α-alumina powder is obtained by using a rotary kiln equipped with a suspension preheater, there are few coarse particles and the α-particle has a sharp particle size distribution.
Alumina powder cannot be obtained. In the present production method, it is not clear why the α-alumina powder is easily disintegratable, has few coarse particles, and has a sharp particle size distribution. Since a myriad of cracks are generated in the direction perpendicular to the C axis of alumina, it is presumed that the α-aluminized alumina that has passed through such transition alumina can be easily crushed by a simple crushing treatment. . Also, in the case of a rotary kiln with a suspension preheater, because of the structure of the equipment, the fine alumina circulates in the system, so that the alumina burned in the rotary kiln is already α
It is considered that α-alumina obtained after firing does not have α-alumina powder having a large number of coarse particles and a sharp particle size distribution, as in the method of the present invention, because the converted alumina is made of alumina having a different degree of firing.

【0017】[0017]

【発明の効果】以上詳述した本発明方法によれば、水酸
化アルミニウムを瞬間焼成し、ついで通常の条件下で焼
成すると言う比較的簡単な操作により、易解砕性で、粗
大粒子が少なく、かつ粒度分布がシャープなαアルミナ
粉末が得られるもので、ファインセラミック用途、さら
に特殊研磨剤用途或いは不定形耐火物用途等に最適であ
り、その産業的価値は頗る大である。
EFFECT OF THE INVENTION According to the method of the present invention described in detail above, it is easy to disintegrate and the number of coarse particles is small by the relatively simple operation of instantaneously firing aluminum hydroxide and then firing it under normal conditions. In addition, α-alumina powder having a sharp particle size distribution can be obtained, and it is most suitable for fine ceramics, special abrasives, amorphous refractories, etc., and its industrial value is enormous.

【0018】[0018]

【実施例】以下に本発明方法を更に詳細に説明するが、
実施例は本発明方法の一実施形態であり、これにより本
発明方法を限定されるものではない。尚、本発明方法に
おいて水酸化アルミニウムの焼成後のα化率、BET比
表面積、中心粒子径、粒度分布は以下の方法により測定
した。
EXAMPLES The method of the present invention will be described in more detail below.
The examples are one embodiment of the method of the present invention and are not intended to limit the method of the present invention. In the method of the present invention, the α-ized rate, BET specific surface area, central particle size, and particle size distribution of aluminum hydroxide after firing were measured by the following methods.

【0019】α化率;粉末X線回折法(理学電機株式会
社製ローターフレックスRAD−BCuKα線の(11
6)回折線から求めた)による
Α-factor; powder X-ray diffraction method (Rigaku Denki Co., Ltd. rotor flex RAD-BCuK α-ray (11
6) Obtained from the diffraction line)

【0020】BET比表面積;窒素ガス吸着法(日機装
株式会社製ベーターソーブ自動表面積計モデル420
0)により測定した。
BET specific surface area; nitrogen gas adsorption method (Betasorb automatic surface area meter model 420 manufactured by Nikkiso Co., Ltd.)
0).

【0021】中心粒子径;X線透過法(マイクロメリテ
ィックス社製 粒度分布測定器セディグラフ5100)
により測定した。
Central particle diameter: X-ray transmission method (Semigraph 5100, particle size distribution analyzer manufactured by Micromeritics)
It was measured by.

【0022】+1μm;X線透過法(マイクロメリティ
ックス社製 粒度分布測定器セディグラフ5100)に
より測定した粒度分布における1μm以上の粒子が占め
る累積重量%。
+1 μm: Cumulative weight% of particles having a particle size of 1 μm or more in the particle size distribution measured by the X-ray transmission method (manufactured by Micromeritics Co., Ltd., particle size distribution analyzer SEDIGRAPH 5100).

【0023】粒度分布(n値);X線透過式粒度分布測
定機にて測定した粒度分布をロジン−ラムラ−(Rosin-
Rammler )線図にプロットした時の勾配で、tanθで
表示される。
Particle size distribution (n value): The particle size distribution measured by an X-ray transmission type particle size distribution analyzer is Rosin-Ramura-
Rammler) This is the slope when plotted on the diagram and is displayed in tan θ.

【0024】実施例1 バイヤー法より得られた水酸化アルミニウム〔中心粒子
径(平均二次粒子径)50μm、Na2 O含有量0.2
重量%〕を気流炉で瞬間焼成した。気流炉での入口温度
は800℃、出口温度が500℃で水酸化アルミニウム
の滞留時間は約0.5秒(燃焼ガス線速度15m/秒)
であった。瞬間焼成により得られた一次焼成アルミナ
は、BET比表面積が300m2 /g、結晶相はαアル
ミナはなく、実質的にχ及びρアルミナであった。次い
で、このようにして得られた一次焼成アルミナ(遷移ア
ルミナ)を高アルミナ質のサヤに入れ小型電気炉にて、
1250℃で2時間焼成(二次焼成)を行った。得られ
たアルミナのα化率は90%、BET比表面積は5.5
2 /gであった。このようにして得られたアルミナ3
50gと15mmφアルミナ製ボール2950gを3.
3リットルのアルミナ製ポットに封入し、回転数80r
pmで24時間、乾式粉砕した。粉砕後得られたアルミ
ナを測定したところ、中心粒径(D 50)は0.30μ
m、D90/D50は1.9、粒度分布(n値)は2.7、
+1μm以上の粗大粒子の割合は4.0重量%であっ
た。
Example 1 Aluminum hydroxide obtained by the Bayer method [central particles
Diameter (average secondary particle diameter) 50 μm, Na2O content 0.2
% By weight] was instantly fired in a gas stream furnace. Inlet temperature in air flow furnace
Is 800 ° C, outlet temperature is 500 ° C, aluminum hydroxide
Retention time of about 0.5 seconds (combustion gas linear velocity 15m / second)
Met. Primary calcined alumina obtained by flash calcining
Has a BET specific surface area of 300 m2/ G, crystalline phase is α
There was no mina and was essentially χ and ρ alumina. Next
The primary calcined alumina (transition
Lumina) into a high-alumina sheath, and in a small electric furnace,
Firing (secondary firing) was performed at 1250 ° C. for 2 hours. Obtained
The alpha conversion of alumina is 90%, and the BET specific surface area is 5.5.
m2/ G. Alumina 3 thus obtained
50 g and 2950 g of 15 mmφ alumina balls 3.
Enclosed in a 3 liter alumina pot, rotation speed 80r
Dry milled at pm for 24 hours. Aluminum obtained after crushing
As a result, the central particle size (D 50) Is 0.30μ
m, D90/ D50Is 1.9, the particle size distribution (n value) is 2.7,
The ratio of coarse particles of +1 μm or more was 4.0% by weight.
It was

【0025】実施例2 実施例1と同様にして得られた瞬間焼成アルミナ(BE
T比表面積が300m 2 /g、結晶相はχ及びρアルミ
ナ)を、小型電気炉にて焼成温度を1300℃に代えた
他は実施例1と同様にして2時間焼成した。得られたア
ルミナのα化率は98%、BET比表面積は3.5m2
/gであった。また、実施例1と同様に粉砕処理した後
得られたアルミナを測定したところ、中心粒径(D50
は0.45μm、D90/D50は1.7、粒度分布(n
値)は2.8、+1μm以上の粗大粒子の割合は3.0
重量%であった。
Example 2 Instantly fired alumina (BE obtained in the same manner as in Example 1)
T specific surface area is 300m 2/ G, crystalline phase is χ and ρ aluminum
The heating temperature was changed to 1300 ° C in a small electric furnace.
Others were the same as in Example 1 and fired for 2 hours. Obtained a
Lumina alpha conversion is 98%, BET specific surface area is 3.5m2
/ G. In addition, after crushing treatment in the same manner as in Example 1,
When the obtained alumina was measured, the median particle diameter (D50)
Is 0.45 μm, D90/ D50Is 1.7 and the particle size distribution (n
Value) is 2.8, and the ratio of coarse particles of +1 μm or more is 3.0
% By weight.

【0026】比較例1 実施例1で使用したものと同じ水酸化アルミニウムを高
アルミナ質のサヤに入れ、小型電気炉で1.5℃/分の
昇温速度で500℃まで昇温し、2Hr保持後、室温ま
で冷却した。得られたアルミナはBET比表面積が10
0m2 /g、結晶相はχアルミナが約50%、γアルミ
ナが約40%で残部はベーマイトであり、100℃以下
の温度で再水和能を有さないものであった。次いでこの
一次焼成アルミナを実施例1と同様に高アルミナ質のサ
ヤに入れ小型電気炉にて、1200℃で2時間二次焼成
を行った。得られたアルミナのα化率は90%、BET
比表面積は6.0m2 /gであった。また、実施例1と
同様に粉砕処理した後得られたアルミナを測定したとこ
ろ、中心粒径(D50)は0.29μm、D90/D50
3.4、粒度分布(n値)は1.2、+1μm以上の粗
大粒子の割合は10.0重量%であった。
Comparative Example 1 The same aluminum hydroxide as used in Example 1 was placed in a high alumina sheath and heated to 500 ° C. at a heating rate of 1.5 ° C./min in a small electric furnace and heated for 2 hours. After holding, it was cooled to room temperature. The obtained alumina has a BET specific surface area of 10
0 m 2 / g, the crystal phase was about 50% χ alumina, about 40% γ alumina, and the balance was boehmite, which had no rehydration ability at a temperature of 100 ° C. or lower. Then, this primary calcined alumina was put into a high alumina-like sheath as in Example 1 and secondarily calcined at 1200 ° C. for 2 hours in a small electric furnace. The alpha conversion of the obtained alumina is 90%, BET
The specific surface area was 6.0 m 2 / g. Further, when the alumina obtained after pulverization was measured in the same manner as in Example 1, the central particle size (D 50 ) was 0.29 μm, the D 90 / D 50 was 3.4, and the particle size distribution (n value) was The ratio of coarse particles of 1.2 or +1 μm or more was 10.0% by weight.

【0027】比較例2 二次焼成温度を1300℃、2Hrとした以外は比較例
1と同様にしてアルミナを得た。得られたアルミナのα
化率は94%、BET比表面積は4.5m2 /gであっ
た。また、実施例1と同様に粉砕処理した後得られたア
ルミナを測定したところ、中心粒径(D50)は0.36
μm、D90/D50は2.8、粒度分布(n値)は2.
0、+1μm以上の粗大粒子の割合は9.0重量%であ
った。
Comparative Example 2 Alumina was obtained in the same manner as Comparative Example 1 except that the secondary firing temperature was 1300 ° C. and 2 Hr. Α of the obtained alumina
The conversion was 94% and the BET specific surface area was 4.5 m 2 / g. Further, when the alumina obtained after pulverization was measured in the same manner as in Example 1, the median particle diameter (D 50 ) was 0.36.
μm, D 90 / D 50 is 2.8, and the particle size distribution (n value) is 2.
The proportion of coarse particles of 0, +1 μm or more was 9.0% by weight.

【0028】比較例3 二次焼成温度が1100℃とした以外、実施例1と同様
にしてアルミナを得た。得られたアルミナのα化率は7
0%、BET比表面積は8.9m2 /gであった。ま
た、実施例1と同様に粉砕処理した後得られたアルミナ
を測定したところ、中心粒径(D50)は0.25μm、
90/D50は2.2、粒度分布(n値)は2.3、+1
μm以上の粗大粒子の割合は8.0重量%であった。
Comparative Example 3 Alumina was obtained in the same manner as in Example 1 except that the secondary firing temperature was 1100 ° C. The alpha conversion of the obtained alumina is 7
The BET specific surface area was 0% and was 8.9 m 2 / g. Further, when the alumina obtained after pulverization was measured in the same manner as in Example 1, the median particle diameter (D 50 ) was 0.25 μm,
D 90 / D 50 is 2.2, particle size distribution (n value) is 2.3, +1
The proportion of coarse particles of μm or larger was 8.0% by weight.

【0029】比較例4 サスペンジョンプレヒーター付きロータリーキルンで、
中心粒子径50μm、Na2 O含有量0.2重量%の水
酸化アルミニウムを焼成した。 サスペンジョンプレヒ
ーター部は3個のサイクロン熱交換機とこれを接続する
ダクトより構成されており、ガス温度1100℃(最高
部)、ダクト部線速度10m/秒のロータリーキルンよ
りの燃焼ガスを用い加熱し、次いで雰囲気温度1300
℃のロータリーキルンを用い二次焼成しαアルミナを製
造した。サスペンジョンプレヒーター部よりロータリー
キルン入口部で採集したアルミナは、BET比表面積が
130m2 /g、結晶相はαアルミナを約30%含有し
残部はχ及びρアルミナであった。またロータリーキル
ンで焼成して得られたアルミナのα化率は90%、BE
T比表面積は4.0m2 /gであった。また、実施例1
と同様に粉砕処理した後得られたアルミナを測定したと
ころ、中心粒径(D50)は0.60μm、D90/D50
4.2、粒度分布(n値)は2.2、+1μm以上の粗
大粒子の割合は25.0重量%であった。
Comparative Example 4 A rotary kiln with a suspension preheater,
Aluminum hydroxide having a central particle diameter of 50 μm and a Na 2 O content of 0.2 wt% was fired. The suspension pre-heater section consists of three cyclone heat exchangers and a duct connecting them, and uses combustion gas from a rotary kiln with a gas temperature of 1100 ° C (maximum) and a duct section linear velocity of 10 m / sec to heat it. Then ambient temperature 1300
Secondary firing was performed using a rotary kiln at ℃ to produce α-alumina. The alumina collected from the suspension preheater at the inlet of the rotary kiln had a BET specific surface area of 130 m 2 / g, the crystal phase contained about 30% α-alumina, and the balance was χ and ρ alumina. The alpha conversion rate of alumina obtained by firing in a rotary kiln is 90%, BE
The T specific surface area was 4.0 m 2 / g. In addition, Example 1
When the alumina obtained after pulverizing in the same manner as above was measured, the central particle size (D 50 ) was 0.60 μm, the D 90 / D 50 was 4.2, and the particle size distribution (n value) was 2.2, +1 μm. The ratio of the above coarse particles was 25.0% by weight.

【0030】実施例3 実施例1及び比較例1に於いて、二次焼成後のアルミナ
の物性測定に際し、ボールミルでの粉砕時間をいずれも
10時間に短縮し、得られたアルミナを測定したとこ
ろ、実施例1は中心粒径(D50)は0.53μm、D90
/D50は1.8、粒度分布(n値)は2.9、+1μm
以上の粗大粒子の割合は8重量%であり、比較例1は中
心粒径(D50)は0.41μm、D90/D50は3.2、
粒度分布(n値)は2.4、+1μm以上の粗大粒子の
割合は15重量%であった。この結果より本発明方法に
より得られたアルミナ粉末は易解砕であることがわか
る。
Example 3 In Example 1 and Comparative Example 1, when measuring the physical properties of alumina after the secondary calcination, the grinding time in a ball mill was shortened to 10 hours, and the obtained alumina was measured. In Example 1, the central particle size (D 50 ) is 0.53 μm, and D 90 is
/ D 50 is 1.8, particle size distribution (n value) is 2.9, +1 μm
The ratio of the above coarse particles was 8% by weight, Comparative Example 1 had a median particle diameter (D 50 ) of 0.41 μm, and D 90 / D 50 of 3.2.
The particle size distribution (n value) was 2.4, and the ratio of coarse particles of +1 μm or more was 15% by weight. The results show that the alumina powder obtained by the method of the present invention is easily disintegrated.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】バイヤー法により得られた水酸化アルミニ
ウムを400℃〜1200℃の温度雰囲気に0.1秒〜
5分接触させ瞬間仮焼し遷移アルミナとした後、次いで
該遷移アルミナをα化率が80%以上となるまで焼成す
ることを特徴とするαアルミナ粉末の製造方法。
1. Aluminum hydroxide obtained by the Bayer method is exposed to an atmosphere of a temperature of 400 ° C. to 1200 ° C. for 0.1 seconds to.
A method for producing α-alumina powder, which comprises contacting for 5 minutes to perform instantaneous calcination to obtain transition alumina, and then firing the transition alumina until the α-conversion rate becomes 80% or more.
【請求項2】瞬間仮焼に気流式焼成炉を用い、得られた
アルミナ中の結晶相に占めるαアルミナ含有率が5%以
下となるよう瞬間仮焼することを特徴とする請求項1記
載のαアルミナ粉末の製造方法。
2. The instantaneous calcination is performed by using a gas stream type kiln, and the instantaneous calcination is performed so that the α-alumina content in the crystal phase in the obtained alumina is 5% or less. 1. A method for producing α-alumina powder.
JP5247727A 1993-10-04 1993-10-04 Production of alpha alumina powder Pending JPH07101723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5247727A JPH07101723A (en) 1993-10-04 1993-10-04 Production of alpha alumina powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5247727A JPH07101723A (en) 1993-10-04 1993-10-04 Production of alpha alumina powder

Publications (1)

Publication Number Publication Date
JPH07101723A true JPH07101723A (en) 1995-04-18

Family

ID=17167778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5247727A Pending JPH07101723A (en) 1993-10-04 1993-10-04 Production of alpha alumina powder

Country Status (1)

Country Link
JP (1) JPH07101723A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1275617A1 (en) * 2001-07-11 2003-01-15 Sumitomo Chemical Company, Limited Method for producing aluminum hydroxide
JP2009528972A (en) * 2006-03-07 2009-08-13 ケルネオ Binder for refractory concrete, adjustment of refractory concrete, refractory concrete and method for producing the same
JP2016125001A (en) * 2015-01-06 2016-07-11 信越化学工業株式会社 Heat-conductive silicone composition, cured product, and composite seat
JP2018053260A (en) * 2017-12-21 2018-04-05 信越化学工業株式会社 Thermal conductive silicone composition, cured article and composite sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1275617A1 (en) * 2001-07-11 2003-01-15 Sumitomo Chemical Company, Limited Method for producing aluminum hydroxide
KR100938765B1 (en) * 2001-07-11 2010-01-27 스미또모 가가꾸 가부시키가이샤 Method for producing aluminum hydroxide
JP2009528972A (en) * 2006-03-07 2009-08-13 ケルネオ Binder for refractory concrete, adjustment of refractory concrete, refractory concrete and method for producing the same
JP2016125001A (en) * 2015-01-06 2016-07-11 信越化学工業株式会社 Heat-conductive silicone composition, cured product, and composite seat
JP2018053260A (en) * 2017-12-21 2018-04-05 信越化学工業株式会社 Thermal conductive silicone composition, cured article and composite sheet

Similar Documents

Publication Publication Date Title
EP0384603B1 (en) Process for the production of magnesium oxide
US4657754A (en) Aluminum oxide powders and process
JP2944839B2 (en) Nano-sized α-alumina particles and method for producing the same
US7993445B2 (en) Nanoparticles of alumina and oxides of elements of main groups I and II of the periodic table, and their preparation
JP5412109B2 (en) Nanoparticles comprising aluminum oxide and oxides of elements of first and second main groups of periodic table of elements and method for producing the same
KR102158893B1 (en) Method for producing potassium titanate
JPH05194026A (en) Method for producing sintered material consisting of alpha-aluminum oxide particularly for use in polishing material
US5284809A (en) Method for the preparation of α-aluminum oxide powder
JP2007055888A (en) FINE alpha-ALUMINA PARTICLE
JPH10101329A (en) Alpha-alumina and its production
JPH07101723A (en) Production of alpha alumina powder
JP3389642B2 (en) Method for producing low soda alumina
JP3569969B2 (en) Method for producing flaky rehydratable alumina
JPS61132513A (en) Alpha-alumina powder and its production
JP3436024B2 (en) Continuous production method of alumina
JP2790951B2 (en) Method for producing plate-like alumina particles
EP0582644B1 (en) Process for preparing mixed oxides
JPH04238856A (en) Production of light transmitting alumina raw material powder
JP2007161560A (en) Method for producing particulate alpha-alumina
JPS61201619A (en) Easily sintering alumina powder and its production
JPH06144830A (en) Production of extremely easily sinterable alumina
JP2791596B2 (en) A method for producing alumina that is easy to grind.
JPS61281013A (en) Production of mullite powder of high purity
JPH06144831A (en) Production of easily sinterable alumina fine particle
JPH0712927B2 (en) Method for producing easily sinterable alumina powder