JP2016125001A - Heat-conductive silicone composition, cured product, and composite seat - Google Patents

Heat-conductive silicone composition, cured product, and composite seat Download PDF

Info

Publication number
JP2016125001A
JP2016125001A JP2015000836A JP2015000836A JP2016125001A JP 2016125001 A JP2016125001 A JP 2016125001A JP 2015000836 A JP2015000836 A JP 2015000836A JP 2015000836 A JP2015000836 A JP 2015000836A JP 2016125001 A JP2016125001 A JP 2016125001A
Authority
JP
Japan
Prior art keywords
thermally conductive
conductive silicone
heat
cured product
silicone composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015000836A
Other languages
Japanese (ja)
Other versions
JP6269511B2 (en
Inventor
靖久 石原
Yasuhisa Ishihara
靖久 石原
晃洋 遠藤
Akihiro Endo
晃洋 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2015000836A priority Critical patent/JP6269511B2/en
Priority to TW104144486A priority patent/TWI683859B/en
Priority to KR1020150189657A priority patent/KR102132243B1/en
Priority to CN201610006625.8A priority patent/CN105754346B/en
Publication of JP2016125001A publication Critical patent/JP2016125001A/en
Application granted granted Critical
Publication of JP6269511B2 publication Critical patent/JP6269511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Abstract

SOLUTION: A heat-conductive silicone composition includes not less than 90% in a total mass part of heat conductive fillers of α-alumina having an α-transformation rate of not less than 90%, and has a weight reduction ratio of less than 1% when kept in atmospheric air at 250°C for 6 hours.EFFECT: The heat-conductive silicone composition obtained using not less than 90% in a total mass part of heat conductive fillers of α-alumina having an α-transformation rate of not less than 90% is little in weight reduction even under 250°C environment, and excellent in heat resistance. The heat-conductive silicone composition, a cured product, and a composite seat are adapted to application to places requiring heat resistance to about 250°C such as heat radiation usages of a semiconductor element using a silicon carbide substrate material, and a vehicle-mounted heater.SELECTED DRAWING: None

Description

本発明は、例えば電子機器内の発熱部品と放熱部品の間、特に250℃程度の高温環境下に晒される場合の放熱に用いられる熱伝導性シリコーン組成物、熱伝導性シリコーン硬化物及び熱伝導性シリコーン複合シートに関する。   The present invention relates to a thermally conductive silicone composition, a thermally conductive silicone cured product, and a thermally conductive material used for heat dissipation, for example, when exposed to a high temperature environment of about 250 ° C. between a heat generating component and a heat dissipation component in an electronic device. Relates to a functional silicone composite sheet.

コンバーターや、電源などの電子機器に使用されるトランジスタやダイオードなどの半導体は、高性能化・高速化・小型化・高集積化に伴い、それ自身が大量の熱を発生するようになり、その熱による機器の温度上昇は動作不良、破壊を引き起こす。そのため、動作中の半導体の温度上昇を抑制するための多くの熱放散方法及びそれに使用する熱放散部材が提案されている。一般的な熱放散部材は、ポリマーマトリックスに熱伝導性充填材を充填した組成物もしくはこれを硬化してなる硬化物、あるいは、硬化物と補強材とを積層した複合シートなど、様々な形態のものが挙げられる。熱放散部材は、発熱部材と放散部材の間に実装され、その形状は実装状態によって選択される。   Semiconductors such as transistors and diodes used in electronic equipment such as converters and power supplies themselves generate large amounts of heat as their performance, speed, size, and integration increase. The temperature rise of equipment due to heat causes malfunction and destruction. Therefore, many heat dissipating methods for suppressing the temperature rise of the semiconductor during operation and heat dissipating members used therefor have been proposed. A general heat dissipation member has various forms such as a composition in which a polymer matrix is filled with a heat conductive filler, a cured product obtained by curing the composition, or a composite sheet in which a cured product and a reinforcing material are laminated. Things. The heat dissipating member is mounted between the heat generating member and the dissipating member, and the shape thereof is selected according to the mounting state.

熱放散部材のポリマーマトリックスとしては、シリコーン、アクリル樹脂、オレフィン樹脂などが挙げられるが、耐熱性、耐寒性、長期信頼性の観点からシリコーンが最も適している。   Examples of the polymer matrix of the heat dissipation member include silicone, acrylic resin, and olefin resin. Silicone is most suitable from the viewpoint of heat resistance, cold resistance, and long-term reliability.

特に発熱量が多い半導体素子や長期信頼性が求められる車載分野での熱放散部材のポリマーマトリックスは、その耐熱性、耐寒性、長期信頼性の観点からシリコーンが多く用いられている。また、これまで半導体素子の基板材料はシリコンが一般的であったが、近年炭化ケイ素を原料とする基板材料が普及しつつある。炭化ケイ素系基板材料は、耐熱温度がシリコン系基板材料よりも高く、許容される動作環境温度も250℃近くまで上がる。また車載分野ではハイブリッド自動車、電気自動車などの普及が進み、これまでエンジンの発熱を利用していた暖房などもエンジンの発熱に頼ることが難しくなり、ヒーターの抵抗値を上げて発熱量を増やす必要性がある。例えばPTCヒーターは立ち上げ時には大電流が必要で、発熱も200℃を超えるようになっている。   Silicone is often used from the viewpoints of heat resistance, cold resistance, and long-term reliability in the polymer matrix of a heat dissipation member in the field of vehicles that require a particularly large amount of heat generation and long-term reliability. In addition, silicon has been generally used as a substrate material for semiconductor elements, but recently, a substrate material using silicon carbide as a raw material is spreading. The silicon carbide-based substrate material has a higher heat resistance temperature than the silicon-based substrate material, and the allowable operating environment temperature rises to nearly 250 ° C. Also, in the in-vehicle field, hybrid cars and electric cars are becoming more popular, and it has become difficult to rely on engine heat for heating that used heat generated by the engine, and it is necessary to increase the amount of heat generated by increasing the resistance of the heater. There is sex. For example, a PTC heater requires a large current at startup, and heat generation exceeds 200 ° C.

このような流れの中で、当然熱放散部材に求められる耐熱温度も上がっている。これまでの一般的なシリコーンをポリマーマトリックスとして用いる熱放散部材である熱伝導性シリコーン組成物及びその硬化物、あるいは複合シートの使用温度範囲は−40℃〜180℃であるため、上記状況には適していない。   In such a flow, the heat-resistant temperature required for the heat dissipating member naturally increases. Since the use temperature range of the heat conductive silicone composition and its cured product, or composite sheet, which is a heat dissipating member using conventional silicone as a polymer matrix, is -40 ° C to 180 ° C, Not suitable.

なお、本発明に関連する従来技術として特開2014−145024号公報が挙げられ、耐熱(250℃)性をうたっているが、熱安定化剤を加えなければならず、また低酸素加熱環境下に限られるという問題がある。   JP-A-2014-145042 is cited as a prior art related to the present invention, which is said to have heat resistance (250 ° C.). However, a heat stabilizer must be added, and in a low oxygen heating environment. There is a problem that it is limited to.

特開2014−145024号公報JP 2014-145042 A

本発明は上記事情に鑑みなされたもので、シリコーンをポリマーマトリックスとする250℃雰囲気下でも使用可能な熱伝導性シリコーン組成物及び硬化物並びに複合シートを提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the heat conductive silicone composition and hardened | cured material which can be used also in 250 degreeC atmosphere which uses silicone as a polymer matrix, and a composite sheet.

本発明者らは、鋭意検討した結果、アルミナの中でも特にα化率の高いαアルミナを用いることで、空気中250℃雰囲気下でも重量減少の少ない熱伝導性シリコーン組成物を与えることができることを知見した。   As a result of intensive studies, the present inventors have found that by using α alumina having a particularly high α conversion rate among alumina, it is possible to provide a thermally conductive silicone composition with little weight loss even in an atmosphere at 250 ° C. I found out.

即ち、従来より熱放散部材、特に車載分野では熱放散部材には絶縁性が求められており、多くのシリコーンをポリマーマトリックスとする熱放散部材の熱伝導性充填材としては、価格、熱伝導性、充填性、絶縁性の観点からアルミナが用いられているが、上述した目的を達成するためには、熱伝導性充填材としてαアルミナを主に用いたシリコーンをポリマーマトリックスとすることが、250℃環境下で使用可能な熱伝導性シリコーン組成物及び硬化物を得る点で有効であることを知見し、本発明をなすに至った。   In other words, insulation has been required for heat dissipating members, particularly in the automotive field, and as a heat conductive filler for heat dissipating members using many silicones as a polymer matrix, price, heat conductivity, etc. From the viewpoints of filling properties and insulating properties, alumina is used, but in order to achieve the above-described object, it is preferable to use silicone mainly using α-alumina as a heat conductive filler as a polymer matrix. The present inventors have found that the present invention is effective in obtaining a thermally conductive silicone composition and a cured product that can be used in an environment at 0 ° C., and have reached the present invention.

従って、本発明は、下記の熱伝導性シリコーン組成物及び硬化物並びに複合シートを提供する。
〔1〕
熱伝導性充填材の総質量部のうち90%以上がα化率が90%以上であるαアルミナであり、250℃環境下の空気中に6時間置いたときの重量減少率が1%未満であることを特徴とする熱伝導性シリコーン組成物。
〔2〕
熱伝導率が0.5W/mK以上であることを特徴とする〔1〕記載の熱伝導性シリコーン組成物。
〔3〕
オルガノポリシロキサン主材100質量部に対し、熱伝導性充填材250〜2,000質量部を含有することを特徴とする〔1〕又は〔2〕記載の熱伝導性シリコーン組成物。
〔4〕
熱伝導性充填材の総質量部のうち90%以上がα化率が90%以上であるαアルミナを含有する熱伝導性シリコーン組成物を硬化してなる硬化物を、250℃環境下の空気中に6時間置いたときの重量減少率が1%未満であることを特徴とする熱伝導性シリコーン硬化物。
〔5〕
熱伝導率が0.5W/mK以上であることを特徴とする〔4〕記載の熱伝導性シリコーン硬化物。
〔6〕
熱伝導性シリコーン組成物が、オルガノポリシロキサン主材100質量部と、熱伝導性充填材250〜2,000質量部と、上記オルガノポリシロキサン主材を硬化させる硬化剤の硬化有効量を含有することを特徴とする〔4〕又は〔5〕記載の熱伝導性シリコーン硬化物。
〔7〕
補強材の片側もしくは両側に〔4〕〜〔6〕のいずれかに記載の熱伝導性シリコーン硬化物を積層させてなることを特徴とする熱伝導性シリコーン複合シート。
〔8〕
補強材がポリイミドフィルムであることを特徴とする〔7〕記載の熱伝導性シリコーン複合シート。
〔9〕
補強材がガラスクロスであることを特徴とする〔7〕記載の熱伝導性シリコーン複合シート。
〔10〕
熱伝導性シリコーン硬化物の硬度がデューロメーターA硬度で80〜99であることを特徴とする〔4〕〜〔9〕のいずれかに記載の熱伝導性シリコーン複合シート。
Therefore, this invention provides the following heat conductive silicone composition and hardened | cured material, and a composite sheet.
[1]
90% or more of the total mass part of the thermally conductive filler is α-alumina having an α-izing rate of 90% or more, and the weight reduction rate when it is placed in air at 250 ° C. for 6 hours is less than 1%. A thermally conductive silicone composition characterized by the above.
[2]
The heat conductive silicone composition according to [1], wherein the heat conductivity is 0.5 W / mK or more.
[3]
The heat conductive silicone composition according to [1] or [2], which contains 250 to 2,000 parts by weight of a heat conductive filler with respect to 100 parts by weight of the organopolysiloxane main material.
[4]
A cured product obtained by curing a thermally conductive silicone composition containing α-alumina, in which 90% or more of the total mass part of the thermally conductive filler has an α conversion rate of 90% or more, is air in a 250 ° C. environment. A thermally conductive silicone cured product characterized by having a weight loss rate of less than 1% when placed therein for 6 hours.
[5]
The thermally conductive silicone cured product according to [4], wherein the thermal conductivity is 0.5 W / mK or more.
[6]
The thermally conductive silicone composition contains 100 parts by mass of an organopolysiloxane main material, 250 to 2,000 parts by mass of a thermally conductive filler, and a curing effective amount of a curing agent that cures the organopolysiloxane main material. The thermally conductive silicone cured product according to [4] or [5], wherein
[7]
A thermally conductive silicone composite sheet obtained by laminating the thermally conductive silicone cured product according to any one of [4] to [6] on one side or both sides of a reinforcing material.
[8]
The heat conductive silicone composite sheet according to [7], wherein the reinforcing material is a polyimide film.
[9]
The heat conductive silicone composite sheet according to [7], wherein the reinforcing material is a glass cloth.
[10]
The thermally conductive silicone composite sheet according to any one of [4] to [9], wherein the hardness of the thermally conductive silicone cured product is 80 to 99 in terms of durometer A hardness.

本発明に係る熱伝導性充填材の総質量部のうち90%以上がα化率が90%以上であるαアルミナを用いた熱伝導性シリコーン組成物は250℃環境下でも重量減少が少なく、耐熱性に優れる。この熱伝導性シリコーン組成物及び硬化物並びに複合シートは、炭化ケイ素系基板材料を用いた半導体素子、及び車載用ヒーターの放熱用途など250℃程度の耐熱性が求められる箇所に対応できる。   The thermally conductive silicone composition using α-alumina in which 90% or more of the total mass part of the thermally conductive filler according to the present invention has an α conversion rate of 90% or more has little weight loss even in an environment of 250 ° C., Excellent heat resistance. This thermally conductive silicone composition, cured product, and composite sheet can be applied to places where heat resistance of about 250 ° C. is required, such as a semiconductor element using a silicon carbide-based substrate material and a heat dissipation application for an in-vehicle heater.

本発明に係る熱伝導性シリコーン組成物は、オルガノポリシロキサン主材と熱伝導性充填材とを主成分とし、熱伝導性シリコーン硬化物は、オルガノポリシロキサン主材と熱伝導性充填材に該オルガノポリシロキサン主材を硬化させる硬化剤を加えた熱伝導性シリコーン組成物を硬化してなるものである。   The thermally conductive silicone composition according to the present invention comprises an organopolysiloxane main material and a thermally conductive filler as main components, and the thermally conductive silicone cured product comprises the organopolysiloxane main material and the thermally conductive filler. It is formed by curing a heat conductive silicone composition to which a curing agent for curing an organopolysiloxane main material is added.

以下、更に詳しく説明する。
[オルガノポリシロキサン主材]
本発明に用いるオルガノポリシロキサン主材は、主鎖部分が基本的にジオルガノシロキサン単位の繰り返しからなるのが一般的であるが、これは分子構造の一部に分枝状の構造を含んだものであってもよく、また環状体であってもよいが、直鎖状のジオルガノポリシロキサンが好ましい。
This will be described in more detail below.
[Organopolysiloxane main material]
The main part of the organopolysiloxane used in the present invention is generally composed of repeating diorganosiloxane units basically in the main chain part, but this includes a branched structure as part of the molecular structure. Although it may be a thing and a cyclic body, linear diorganopolysiloxane is preferable.

ケイ素原子に結合する官能基としては、非置換又は置換の1価炭化水素基であり、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基に炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基などで置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1〜10、特に代表的なものは炭素原子数が1〜6のものである。好ましくはメチル基、エチル基、プロピル基、クロロメチル基、2−ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。そのほかにはアルケニル基のような不飽和結合を有していてもよく、例えばビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等の通常炭素原子数2〜8程度のものが挙げられる。   The functional group bonded to the silicon atom is an unsubstituted or substituted monovalent hydrocarbon group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, Neopentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl and other alkyl groups, cyclopentyl, cyclohexyl, cycloheptyl and other cycloalkyl groups, phenyl, tolyl, xylyl, naphthyl Group, aryl group such as biphenylyl group, aralkyl group such as benzyl group, phenylethyl group, phenylpropyl group, methylbenzyl group, and a part or all of hydrogen atoms in which carbon atoms are bonded to these groups are fluorine , Groups substituted by halogen atoms such as chlorine and bromine, cyano groups, etc., for example, chloromethyl 2-bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5,6,6,6 -Nonafluorohexyl group etc. are mentioned, A typical thing is 1-10 carbon atoms, and especially a thing with 1-6 carbon atoms is typical. Preferably, an unsubstituted or substituted alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, a propyl group, a chloromethyl group, a 2-bromoethyl group, a 3,3,3-trifluoropropyl group, a cyanoethyl group, and the like An unsubstituted or substituted phenyl group such as a phenyl group, a chlorophenyl group, and a fluorophenyl group. In addition, it may have an unsaturated bond such as an alkenyl group, for example, a normal carbon number of 2 to 2 such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group, cyclohexenyl group, etc. There are about 8.

主鎖のシロキサンの繰り返し単位は特に限定はなく、繰り返し単位の数によって得られるポリシロキサンの性状が変わるので、それに合わせて熱伝導性シリコーン組成物の調製方法を適切に選択すればよい。オイル状であればプラネタリーミキサーのような撹拌装置が適しているし、生ゴム状であれば二本ロールやニーダーなどのよりせん断力の掛かる撹拌装置が適している。   The repeating unit of the main chain siloxane is not particularly limited, and the property of the polysiloxane obtained varies depending on the number of repeating units. Therefore, the preparation method of the heat conductive silicone composition may be appropriately selected according to the property. A stirrer such as a planetary mixer is suitable if it is oily, and a stirrer that applies more shearing force, such as a two-roll or kneader, is suitable if it is raw rubber.

この場合、オルガノポリシロキサン主材として、25℃の動粘度が100〜40,000mm2/s、特に100〜10,000mm2/sのものを用いることが、取り扱いの点で好ましい。なお、動粘度はオストワルド粘度計にて測定し得る。 In this case, as the organopolysiloxane main material, the use of kinematic viscosity of 25 ° C. is 100~40,000mm 2 / s, particularly 100~10,000mm 2 / s, preferably in terms of handling. The kinematic viscosity can be measured with an Ostwald viscometer.

[熱伝導性充填材]
本発明においては、熱伝導性充填材として、熱伝導性充填材の総質量部のうち90質量%以上、好ましくは95質量%以上がα化率が90%以上であるαアルミナを使用する。
[Thermal conductive filler]
In the present invention, α-alumina having 90% by mass or more, preferably 95% by mass or more of which is 90% or more of the total mass part of the thermally conductive filler is used as the thermally conductive filler.

(アルミナの結晶相)
アルミナはα、β、θ、γなど焼結する温度の違いで様々な結晶相を持つ。焼結する温度が最も高いαアルミナが、250℃環境下でシリコーンポリマーの重量減少を最も抑えることを見出した。また、一般的なアルミナは結晶相が単一で存在することはほとんどないが、できるだけα相の占める割合が高い方がよく、α化率が90%以上、好ましくは95%以上のものを用いる。
(Alumina crystal phase)
Alumina has various crystal phases depending on the sintering temperature such as α, β, θ, and γ. It has been found that α-alumina having the highest sintering temperature suppresses the weight loss of the silicone polymer most in a 250 ° C. environment. In general alumina, there is almost no single crystal phase, but it is better that the proportion of α phase is as high as possible, and the α-formation rate is 90% or more, preferably 95% or more. .

α化率は、試料をX線回折装置を用いて得た微粒αアルミナの回折スペクトルから、2θ=25.6°の位置に現れるアルミナα相(012面)のピーク高さ(I25.6)と、2θ=46°の位置に現れるγ相、η相、χ相、κ相、θ相及びδ相のピーク高さ(I46)とから、下記式
α化率(%)=I25.6/(I25.6+I46)×100
により算出した値である。
The α conversion rate is determined by the peak height (I 25.6 ) of the alumina α phase (012 plane) appearing at 2θ = 25.6 ° from the diffraction spectrum of fine α-alumina obtained by using an X-ray diffractometer for the sample. From the peak heights (I 46 ) of the γ phase, η phase, χ phase, κ phase, θ phase and δ phase appearing at the position of 2θ = 46 °, the following formula: α conversion rate (%) = I 25.6 / ( I 25.6 + I 46 ) × 100
The value calculated by

(アルミナの粒径)
アルミナの中心粒径は0.1〜200μmが好ましく、より好ましくは1〜100μm、更に好ましくは1〜50μmである。中心粒径が0.1μm未満になるとオルガノポリシロキサン主材への充填性が低下してしまうし、中心粒径が200μmを超えると組成物としたときの流動性や硬化物としたときの強度が得られにくい。また、熱伝導性シリコーン組成物を実装する際の厚み、硬化させるときの厚みを鑑みて粒径を選択することが重要である。実装するとき、硬化させるときの厚みよりも粒径の大きなアルミナが含まれていたら、熱伝導性シリコーン組成物及び硬化物からアルミナが突出してしまうことになるためである。
アルミナの平均粒径は、日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより測定した累積平均径(メディアン径)の値である。
(Alumina particle size)
The center particle size of alumina is preferably 0.1 to 200 μm, more preferably 1 to 100 μm, and still more preferably 1 to 50 μm. When the center particle size is less than 0.1 μm, the filling property to the organopolysiloxane main material is lowered, and when the center particle size is more than 200 μm, the fluidity when the composition is used and the strength when the cured product is used. Is difficult to obtain. In addition, it is important to select the particle size in consideration of the thickness when the thermally conductive silicone composition is mounted and the thickness when it is cured. This is because if alumina having a particle size larger than the thickness at the time of curing is included when mounting, the alumina will protrude from the thermally conductive silicone composition and the cured product.
The average particle diameter of alumina is a cumulative average diameter (median diameter) measured by Microtrac MT3300EX, which is a particle size analyzer manufactured by Nikkiso Co., Ltd.

(アルミナの粒状)
アルミナには製法により球状、丸み状、破砕状など様々な粒状がある。一般的に破砕状アルミナはα化率が高いので破砕状アルミナが好ましいが、α化率を満たしていれば粒状は問わない。
(Alumina granular)
Alumina has various granular shapes such as spherical, round, and crushed depending on the production method. In general, crushed alumina has a high alpha conversion rate, so crushed alumina is preferable. However, the granular form is not limited as long as the alpha conversion ratio is satisfied.

(その他の熱伝導性充填材)
その他の熱伝導性充填材としては、非磁性の銅やアルミニウム等の金属、アルミナ、シリカ、マグネシア、ベンガラ、ベリリア、チタニア、ジルコニア等の金属酸化物、窒化アルミニウム、窒化ケイ素、窒化硼素等の金属窒化物、水酸化マグネシウム等の金属水酸化物、人工ダイヤモンドあるいは炭化ケイ素等一般に熱伝導性充填材とされる物質を用いることができる。また中心粒径は0.1〜200μmを用いることができ、1種又は2種以上複合して用いてもよい。ただ、本発明の用途として250℃環境下で使用することが想定されるため、少なくとも300℃付近までは、溶融、酸化、脱水などの反応が起きない、またオルガノポリシロキサン主材のクラッキングを促進しないものを用いる必要がある。
(Other thermally conductive fillers)
Other thermally conductive fillers include non-magnetic metals such as copper and aluminum, metal oxides such as alumina, silica, magnesia, bengara, beryllia, titania and zirconia, metals such as aluminum nitride, silicon nitride and boron nitride. A material generally used as a heat conductive filler such as a metal hydroxide such as nitride or magnesium hydroxide, artificial diamond or silicon carbide can be used. The center particle diameter may be 0.1 to 200 μm, and one or more kinds may be used in combination. However, since it is assumed to be used in an environment of 250 ° C. as an application of the present invention, reactions such as melting, oxidation and dehydration do not occur at least up to about 300 ° C., and the cracking of the organopolysiloxane main material is promoted. It is necessary to use something that does not.

(熱伝導性充填材の配合量)
熱伝導性充填材の配合量は、オルガノポリシロキサン主材100質量部に対し、250〜2,000質量部が好ましく、より好ましくは250〜1,000質量部、更に好ましくは250〜600質量部である。熱伝導性充填材の配合量が少なすぎると、十分な熱伝導性を得られないおそれがあり、多すぎると組成物自体の調製が困難になるおそれがある。
(Amount of heat conductive filler)
The blending amount of the heat conductive filler is preferably 250 to 2,000 parts by mass, more preferably 250 to 1,000 parts by mass, and still more preferably 250 to 600 parts by mass with respect to 100 parts by mass of the organopolysiloxane main material. It is. If the blending amount of the heat conductive filler is too small, sufficient thermal conductivity may not be obtained, and if it is too large, preparation of the composition itself may be difficult.

[熱伝導性シリコーン組成物]
熱伝導性シリコーン組成物は、上述したように、オルガノポリシロキサン主材と熱伝導性充填材とを主成分とするが、その他の成分として、必要に応じ、熱伝導性充填材の分散性を向上する等の目的で、アルコキシ基含有オルガノポリシロキサンを配合することができる。このアルコキシ基含有オルガノポリシロキサンとしては、特に下記式

Figure 2016125001
(式中、Rは非置換又は置換の炭素原子数1〜30、特に1〜10のアルキル基、アリール基、アラルキル基、ハロゲン化アルキル基等の1価炭化水素基、R’は炭素原子数1〜6、特に1〜3のアルキル基を示す。qは0〜2の整数であり、好ましくは0である。pは0〜100、特に1〜50の整数である。)
で示される片末端アルコキシ基含有ジオルガノポリシロキサンが好ましい。 [Heat conductive silicone composition]
As described above, the thermally conductive silicone composition is mainly composed of an organopolysiloxane main material and a thermally conductive filler, but as other components, the dispersibility of the thermally conductive filler can be increased as necessary. For the purpose of improving, an alkoxy group-containing organopolysiloxane can be blended. As the alkoxy group-containing organopolysiloxane, in particular, the following formula
Figure 2016125001
(In the formula, R is an unsubstituted or substituted carbon atom having 1 to 30, particularly 1 to 10 monovalent hydrocarbon groups such as an alkyl group, aryl group, aralkyl group, halogenated alkyl group, etc., and R ′ is the number of carbon atoms. An alkyl group of 1-6, especially 1-3, q is an integer of 0-2, preferably 0. p is an integer of 0-100, especially 1-50.)
The one end alkoxy group containing diorganopolysiloxane shown by these is preferable.

上記アルコキシ基含有オルガノポリシロキサンの配合量は、オルガノポリシロキサン主材100質量部に対し、1〜30質量部が好ましく、特に3〜20質量部であることが好ましい。   1-30 mass parts is preferable with respect to 100 mass parts of organopolysiloxane main materials, and, as for the compounding quantity of the said alkoxy group containing organopolysiloxane, it is especially preferable that it is 3-20 mass parts.

更に、必要に応じ、有機顔料や無機顔料等の着色剤、酸化鉄や酸化セリウム等の耐熱性向上剤、及び内添離型剤等を配合することもできる。   Furthermore, if necessary, a colorant such as an organic pigment or an inorganic pigment, a heat resistance improver such as iron oxide or cerium oxide, and an internal release agent can be blended.

(熱伝導性シリコーン組成物の流動性)
本発明において、熱伝導性シリコーン組成物は、硬化せず、そのまま使用に供することができ、この場合、熱伝導性シリコーン組成物の流動性は特に規定しないが、放熱グリースや硬化型放熱グリースと呼ばれるディスペンサーやメタルマスクを用いたスクリーン印刷で実装するような場合の粘度は25℃において10〜900Pa・sが好ましく、より好ましくは10〜400Pa・sである。粘度が900Pa・sを超える場合、流動性が悪くディスペンサーでの吐出が困難になったり、スクリーン印刷で掠れが出る可能性がある。なお、上記粘度はマルコム粘度計による値である。
(Flowability of thermally conductive silicone composition)
In the present invention, the thermally conductive silicone composition is not cured and can be used as it is. In this case, the fluidity of the thermally conductive silicone composition is not particularly specified, When mounted by screen printing using a so-called dispenser or metal mask, the viscosity is preferably 10 to 900 Pa · s at 25 ° C., more preferably 10 to 400 Pa · s. When the viscosity exceeds 900 Pa · s, there is a possibility that the fluidity is poor and it becomes difficult to discharge with a dispenser, and the screen printing may be curled. In addition, the said viscosity is a value by a Malcolm viscometer.

(空気中250℃環境下での重量減少率)
本発明に係る熱伝導性シリコーン組成物において、空気中250℃環境下に6時間置いた場合の重量減少率は1%未満であり、好ましくは0.8%以下である。重量減少の原因は、オルガノポリシロキサン主材が熱によりクラッキングを起こし、低分子化して揮発してしまうためであるので、重量減少率が大きいとポリマー分が減少し、熱伝導性シリコーン組成物が脆くなったり硬くなったりする。そうした場合、熱伝導性シリコーン組成物の熱伝導性が失われてしまう。
(Weight reduction rate in air at 250 ° C)
In the thermally conductive silicone composition according to the present invention, the weight loss rate when it is placed in an air atmosphere at 250 ° C. for 6 hours is less than 1%, preferably 0.8% or less. The reason for the weight reduction is that the organopolysiloxane main material is cracked by heat and becomes low molecular weight and volatilizes. Therefore, if the weight reduction rate is large, the polymer content decreases and the thermally conductive silicone composition becomes It becomes brittle or hard. In such a case, the thermal conductivity of the thermally conductive silicone composition is lost.

また、アルミナの結晶相によって、シリコーンのクラッキングの程度が変わることを見出している。γ相やθ相など焼結温度の低い結晶相のアルミナはシリコーンのクラッキングを促進し、最も焼結温度の高いα相のアルミナはシリコーンのクラッキングを促進しないため、重量減少率が抑えられる。   It has also been found that the degree of silicone cracking varies depending on the crystalline phase of alumina. Alumina in a crystalline phase having a low sintering temperature such as a γ phase or a θ phase promotes silicone cracking, and an α phase alumina having the highest sintering temperature does not promote silicone cracking.

重量減少率は、直径20mmの耐熱性ガラスシャーレに熱伝導性シリコーン組成物を2g秤量し、250℃のオーブンに投入する。オーブン中の雰囲気は空気である。6時間経過後取り出し、室温に戻し、秤量し投入前と投入後の重量変化から算出した値である。   For the weight reduction rate, 2 g of the thermally conductive silicone composition is weighed in a heat-resistant glass petri dish having a diameter of 20 mm and put into an oven at 250 ° C. The atmosphere in the oven is air. It is a value calculated from the change in weight before and after charging after taking out after 6 hours, returning to room temperature, weighing.

(熱伝導率)
熱伝導性シリコーン組成物の熱伝導率は0.5W/mK以上が好ましい。より好ましくは0.8〜8.0W/mKである。0.5W/mK未満であると十分な放熱効果が得られない。熱伝導率の上限は特に規定はしないが、8.0W/mKを超えて得ようとするとシリコーンへの充填自体が困難になる。熱伝導率は、ホットディスク法により測定した値である。
(Thermal conductivity)
The thermal conductivity of the thermally conductive silicone composition is preferably 0.5 W / mK or more. More preferably, it is 0.8-8.0 W / mK. If it is less than 0.5 W / mK, a sufficient heat dissipation effect cannot be obtained. The upper limit of the thermal conductivity is not particularly specified, but if it exceeds 8.0 W / mK, it is difficult to fill the silicone itself. The thermal conductivity is a value measured by a hot disk method.

[熱伝導性シリコーン硬化物]
熱伝導性シリコーン硬化物は、上述したオルガノポリシロキサン主材と熱伝導性充填材を主成分とする上記熱伝導性シリコーン組成物に対し、硬化剤を配合して硬化したものである。
[Heat conductive silicone cured product]
The thermally conductive silicone cured product is obtained by blending a curing agent with the above-mentioned thermally conductive silicone composition containing the above-described organopolysiloxane main material and a thermally conductive filler as the main components and curing it.

熱伝導性シリコーン組成物の硬化方法は、白金触媒を用いた付加硬化反応、有機過酸化物を触媒として用いたラジカル反応、紫外線照射や電子線照射を用いたラジカル反応などが挙げられる。ただ、硬化方法はこれらに限定されるものではない。
この場合、白金触媒を用いた付加硬化反応を用いて熱伝導性シリコーン組成物を硬化させるようとする場合には、オルガノポリシロキサン主材として、分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンと、硬化剤としてケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン及び白金族金属系硬化触媒が必須成分となる。
また、有機過酸化物で硬化させる場合、オルガノポリシロキサン主材としては、アルケニル基を含有するものでもよいが、アルケニル基を含まないオルガノポリシロキサン主材を用いても硬化する。
なお、このようなオルガノポリシロキサン主材を硬化させる硬化剤の配合量や硬化方法、硬化条件等は、公知技術を採用することができる。
Examples of the curing method of the thermally conductive silicone composition include an addition curing reaction using a platinum catalyst, a radical reaction using an organic peroxide as a catalyst, and a radical reaction using ultraviolet irradiation or electron beam irradiation. However, the curing method is not limited to these.
In this case, when the thermally conductive silicone composition is to be cured using an addition curing reaction using a platinum catalyst, an organopolysiloxane having at least two alkenyl groups in the molecule is used as the organopolysiloxane main material. Siloxane, organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms as a curing agent, and a platinum group metal curing catalyst are essential components.
Further, when curing with an organic peroxide, the organopolysiloxane main material may contain an alkenyl group, but the organopolysiloxane main material containing no alkenyl group can also be cured.
In addition, a well-known technique can be employ | adopted for the compounding quantity of the hardening | curing agent which hardens such an organopolysiloxane main material, a hardening method, hardening conditions, etc.

(熱伝導性シリコーン硬化物の硬度)
熱伝導性シリコーン硬化物の硬度は、デューロメーターA硬度で80〜99が好ましい。より好ましくは90〜96である。80未満であると硬化物が実装の際に変形しやすくなったり、硬化物表面に傷が付きやすくなる場合がある。
(Hardness of thermally conductive silicone cured product)
The hardness of the thermally conductive silicone cured product is preferably 80 to 99 in terms of durometer A hardness. More preferably, it is 90-96. If it is less than 80, the cured product may be easily deformed during mounting, or the surface of the cured product may be easily damaged.

(熱伝導性シリコーン硬化物の重量減少率及び熱伝導率)
熱伝導性シリコーン硬化物の重量減少率及び熱伝導率は、熱伝導性シリコーン組成物自体ではなく、これを硬化させた硬化物が測定対象となるだけで、測定方法は上述した熱伝導性シリコーン組成物の場合と同様である。
(Weight reduction rate and thermal conductivity of thermally conductive silicone cured product)
The weight reduction rate and the thermal conductivity of the thermally conductive silicone cured product are not the thermally conductive silicone composition itself, but only the cured product obtained by curing the composition. The same as in the case of the composition.

[熱伝導性シリコーン複合シート]
熱伝導性シリコーン複合シートは、補強材の片側もしくは両側に上記熱伝導性シリコーン硬化物を積層したものである。
この場合、熱伝導性シリコーン複合シートの補強材は、実用性や加工性を考えてポリイミドフィルムもしくはガラスクロスが好ましい。ただ、補強材はこれらに限定されるものではなく、十分な強度と耐熱性を有しているのであれば問題なく用いることができる。例えばポリテトラフルオロエチレンシートでもよい。
[Thermal conductive silicone composite sheet]
The thermally conductive silicone composite sheet is obtained by laminating the thermally conductive silicone cured product on one side or both sides of a reinforcing material.
In this case, the reinforcing material of the thermally conductive silicone composite sheet is preferably a polyimide film or glass cloth in view of practicality and workability. However, the reinforcing material is not limited to these, and can be used without any problem as long as it has sufficient strength and heat resistance. For example, a polytetrafluoroethylene sheet may be used.

(ポリイミドフィルム)
ポリイミドフィルムの厚みは5〜100μmが好ましい。より好ましくは7〜50μm、更に好ましくは7〜25μmである。ポリイミドフィルムが薄すぎると十分な強度や絶縁性が得られず、逆に厚すぎると熱伝導性の妨げになる。またポリイミドフィルム表面はプラズマ処理を施していると熱伝導性シリコーン硬化物との接着が向上してよい。
(Polyimide film)
The thickness of the polyimide film is preferably 5 to 100 μm. More preferably, it is 7-50 micrometers, More preferably, it is 7-25 micrometers. If the polyimide film is too thin, sufficient strength and insulating properties cannot be obtained. Conversely, if the polyimide film is too thick, thermal conductivity is hindered. Moreover, when the polyimide film surface is subjected to plasma treatment, adhesion to the thermally conductive silicone cured product may be improved.

(ガラスクロス)
ガラスクロスの厚みは20〜100μmが好ましい。より好ましくは30〜60μmである。20μm未満であると十分な強度が得られないし、100μmを超えると熱伝導性の妨げになるおそれがある。ガラスクロスの織り方は特に限定しない。ガラスクロスはシラン処理したものが好ましい。処理するシランカップリング剤や処理方法は限定しない。
(Glass cloth)
The thickness of the glass cloth is preferably 20 to 100 μm. More preferably, it is 30-60 micrometers. If it is less than 20 μm, sufficient strength cannot be obtained, and if it exceeds 100 μm, thermal conductivity may be hindered. The method of weaving the glass cloth is not particularly limited. The glass cloth is preferably silane-treated. The silane coupling agent to be treated and the treatment method are not limited.

(熱伝導性シリコーン硬化物の厚さ)
熱伝導性シリコーン硬化物の厚さは、50〜10,000μm、特に200〜800μmが好ましい。なお、この厚さは、熱伝導性シリコーン複合シートの場合に限られず、熱伝導性シリコーン組成物やその硬化物を補強材なしにそのまま使用する場合にも妥当する。
(Thickness of thermally conductive silicone cured product)
The thickness of the thermally conductive silicone cured product is preferably 50 to 10,000 μm, particularly preferably 200 to 800 μm. This thickness is not limited to the case of the heat conductive silicone composite sheet, and is also applicable to the case where the heat conductive silicone composition or its cured product is used as it is without a reinforcing material.

[熱伝導性シリコーン複合シートの成型方法]
熱伝導性シリコーン複合シートの成型方法は、硬化剤、例えば分解温度が120℃の有機過酸化物を触媒として含む熱伝導性シリコーン組成物を調製し、トルエンで任意に希釈し塗工液とする。補強材上に任意のスペーサーを用いて塗工液を塗工し、80℃のオーブンに10分間投入し、トルエンを揮発させ、続いて150℃のオーブンに10分間投入し硬化させる。これで基材の片面に熱伝導性シリコーン硬化物を積層させることができる。もう一方の面にも積層させたい場合は上記方法で同様に塗工し乾燥硬化させる。但し、熱伝導性シリコーン複合シートの成型方法はこれに限定されるものではない。
[Method of forming thermally conductive silicone composite sheet]
The heat conductive silicone composite sheet is molded by preparing a heat conductive silicone composition containing a curing agent, for example, an organic peroxide having a decomposition temperature of 120 ° C. as a catalyst, and optionally diluting with toluene to obtain a coating solution. . A coating solution is applied onto the reinforcing material using an optional spacer, and is placed in an oven at 80 ° C. for 10 minutes to volatilize toluene, and then is placed in an oven at 150 ° C. for 10 minutes to be cured. Thereby, the heat conductive silicone hardened | cured material can be laminated | stacked on the single side | surface of a base material. When it is desired to laminate on the other side, the same method is applied, followed by drying and curing. However, the molding method of the heat conductive silicone composite sheet is not limited to this.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[組成物の調製]
(A)成分:下記式(1)で表されるジメチルポリシロキサン

Figure 2016125001
(Xは有機官能基であり、nは下記粘度を与える数である。)
(A−1)X=メチル基で、動粘度10,000mm2/s(25℃)
(A−2)X=メチル基で、動粘度30,000mm2/s(25℃) [Preparation of composition]
(A) Component: Dimethylpolysiloxane represented by the following formula (1)
Figure 2016125001
(X is an organic functional group, and n is a number giving the following viscosity.)
(A-1) X = methyl group, kinematic viscosity 10,000 mm 2 / s (25 ° C.)
(A-2) X = methyl group, kinematic viscosity 30,000 mm 2 / s (25 ° C.)

(B)成分:平均粒径が下記の通りであるアルミナ
(B−1)α化率が99%で、平均粒径5μmの破砕状αアルミナ
(B−2)α化率が95%で、平均粒径10μmの破砕状αアルミナ
(B−3)α化率が92%で、平均粒径20μmの球状αアルミナ
(B−4)平均粒径が10μmの破砕状γアルミナ
(B−5)平均粒径が10μmの破砕状θアルミナ
Component (B): Alumina (B-1) having a mean particle size as shown below is 99%, and crushed α-alumina (B-2) having a mean particle size of 5 μm is 95%. Crushed α-alumina (B-3) having an average particle diameter of 10 μm and spherical α-alumina (B-4) having an average particle size of 20 μm and an α conversion of 92%, and a crushed γ-alumina (B-5) having an average particle diameter of 10 μm Crushed θ-alumina with an average particle size of 10 μm

(C)成分:熱伝導性充填材
(C−1)平均粒径1.0μmの水酸化アルミニウム
(C) Component: Thermally conductive filler (C-1) Aluminum hydroxide having an average particle size of 1.0 μm

(D)成分:下記式(2)で表される平均重合度が30の片末端がトリメトキシ基で封鎖されたジメチルポリシロキサン

Figure 2016125001
Component (D): Dimethylpolysiloxane having an average degree of polymerization represented by the following formula (2) of 30 and having one end blocked with a trimethoxy group
Figure 2016125001

(E)成分:C−23N(有機過酸化物系硬化剤:信越化学工業(株)製) (E) Component: C-23N (Organic peroxide type curing agent: manufactured by Shin-Etsu Chemical Co., Ltd.)

[実施例、比較例]
表1,2に示した成分を表に示す所定量で用い、プラネタリーミキサーで60分間混練して、表1,2に示す実施例1〜7、比較例1〜7の熱伝導性シリコーン組成物を調製し、下記方法で重量減少率、熱伝導率を測定した。結果を表1,2に示す。
[Examples and Comparative Examples]
The components shown in Tables 1 and 2 were used in predetermined amounts shown in the table, and kneaded for 60 minutes with a planetary mixer, and the thermally conductive silicone compositions of Examples 1 to 7 and Comparative Examples 1 to 7 shown in Tables 1 and 2 A product was prepared, and the weight loss rate and thermal conductivity were measured by the following methods. The results are shown in Tables 1 and 2.

[測定方法]
・重量減少率
調製した熱伝導性シリコーン組成物を直径20mmの耐熱容器に2g秤量し、250℃に設定されたオーブンに投入する。オーブン中雰囲気は空気とする。6時間後取り出し、室温に戻ったところで秤量する。減少分を投入前の重量で割り、100を掛けた値とする。
なお、実施例7及び比較例7に関しては、調製した熱伝導性シリコーン組成物を150℃に設定されたオーブンに10分間投入し、硬化させたのちに重量減少率の測定を行った。
・熱伝導率
ホットディスク法により、各熱伝導性シリコーン組成物の25℃における熱伝導率をTPA−501(京都電子工業(株)製)で測定した。
なお、実施例7及び比較例7に関しては、調製した熱伝導性シリコーン組成物を150℃に設定されたオーブンに10分間投入し、硬化させたものについて熱伝導率を測定した。
[Measuring method]
Weight reduction rate 2 g of the prepared thermally conductive silicone composition is weighed in a heat-resistant container having a diameter of 20 mm and put into an oven set at 250 ° C. The atmosphere in the oven is air. Remove after 6 hours and weigh after returning to room temperature. Divide the decrease by the weight before charging and multiply by 100.
Regarding Example 7 and Comparative Example 7, the prepared thermally conductive silicone composition was put into an oven set at 150 ° C. for 10 minutes and cured, and then the weight loss rate was measured.
-Thermal conductivity The thermal conductivity in 25 degreeC of each heat conductive silicone composition was measured by TPA-501 (made by Kyoto Electronics Industry Co., Ltd.) with the hot disk method.
In addition, regarding Example 7 and Comparative Example 7, the prepared thermal conductive silicone composition was put into an oven set at 150 ° C. for 10 minutes, and the thermal conductivity of the cured product was measured.

Figure 2016125001
Figure 2016125001

Figure 2016125001
Figure 2016125001

実施例1〜7に示すように、α化率が90%以上のαアルミナ[(B−1)〜(B−3)]を用いた熱伝導性シリコーン組成物は、250℃雰囲気中に6時間投入しても、重量減少率が1%未満に抑えられている。
一方、比較例1に示すように、γアルミナを用いた場合、重量減少率が1%以上になってしまい、耐熱性を付与することができない。比較例2に示すように、θアルミナを用いた場合も重量減少率が1%以上になってしまい、耐熱性を付与することができない。比較例3に示すように、熱伝導性充填材の総質量部のうちのαアルミナの占める割合が90%未満であると重量減少率が1%以上になり、十分な耐熱性を得られない。比較例4に示すように、熱伝導性充填材の総質量部のうちのαアルミナの占める割合が90%未満で、更に併用する熱伝導性充填材として水酸化アルミニウムを用いると、更に重量減少率が大きくなる。これは、水酸化アルミニウムが脱水反応を起こし、水酸化アルミニウム自体の重量が減少したためである。比較例5は、比較例1に比べて充填するγアルミナの量を減らしたが、逆に重量減少率が多くなった。これは相対的にシリコーンポリマーの占める割合が多くなったためである。比較例6に示すように、熱伝導性充填材として水酸化アルミニウムを用いた場合、シリコーンの重量減少というよりも水酸化アルミニウムの脱水反応による水酸化アルミニウム自体の重量減少が起こり、重量減少率が特に大きくなる。比較例7に示すように、熱伝導性シリコーン組成物を硬化させた場合でも、γアルミナを用いた場合は重量減少率が大きくなる。
As shown in Examples 1 to 7, the thermally conductive silicone composition using α-alumina [(B-1) to (B-3)] having an α conversion rate of 90% or more is 6 in a 250 ° C. atmosphere. Even if time is added, the weight reduction rate is suppressed to less than 1%.
On the other hand, as shown in Comparative Example 1, when γ alumina is used, the weight reduction rate becomes 1% or more, and heat resistance cannot be imparted. As shown in Comparative Example 2, when θ alumina is used, the weight reduction rate is 1% or more, and heat resistance cannot be imparted. As shown in Comparative Example 3, when the proportion of α-alumina in the total mass part of the thermally conductive filler is less than 90%, the weight reduction rate becomes 1% or more, and sufficient heat resistance cannot be obtained. . As shown in Comparative Example 4, the proportion of α-alumina in the total mass part of the heat conductive filler is less than 90%, and when aluminum hydroxide is used as the heat conductive filler to be further used, the weight is further reduced. The rate increases. This is because aluminum hydroxide caused a dehydration reaction and the weight of aluminum hydroxide itself decreased. In Comparative Example 5, the amount of γ alumina to be filled was reduced as compared with Comparative Example 1, but the weight reduction rate was increased. This is because the proportion of the silicone polymer is relatively increased. As shown in Comparative Example 6, when aluminum hydroxide was used as the thermally conductive filler, the weight reduction of the aluminum hydroxide itself due to the dehydration reaction of the aluminum hydroxide occurred rather than the weight reduction of the silicone, and the weight reduction rate was Especially big. As shown in Comparative Example 7, even when the thermally conductive silicone composition is cured, the weight reduction rate increases when γ-alumina is used.

Claims (10)

熱伝導性充填材の総質量部のうち90%以上がα化率が90%以上であるαアルミナであり、250℃環境下の空気中に6時間置いたときの重量減少率が1%未満であることを特徴とする熱伝導性シリコーン組成物。   90% or more of the total mass part of the thermally conductive filler is α-alumina having an α-izing rate of 90% or more, and the weight reduction rate when it is placed in air at 250 ° C. for 6 hours is less than 1%. A thermally conductive silicone composition characterized by the above. 熱伝導率が0.5W/mK以上であることを特徴とする請求項1記載の熱伝導性シリコーン組成物。   The heat conductive silicone composition according to claim 1, wherein the heat conductivity is 0.5 W / mK or more. オルガノポリシロキサン主材100質量部に対し、熱伝導性充填材250〜2,000質量部を含有することを特徴とする請求項1又は2記載の熱伝導性シリコーン組成物。   The thermally conductive silicone composition according to claim 1 or 2, comprising 250 to 2,000 parts by mass of a thermally conductive filler with respect to 100 parts by mass of the organopolysiloxane main material. 熱伝導性充填材の総質量部のうち90%以上がα化率が90%以上であるαアルミナを含有する熱伝導性シリコーン組成物を硬化してなる硬化物を、250℃環境下の空気中に6時間置いたときの重量減少率が1%未満であることを特徴とする熱伝導性シリコーン硬化物。   A cured product obtained by curing a thermally conductive silicone composition containing α-alumina, in which 90% or more of the total mass part of the thermally conductive filler has an α conversion rate of 90% or more, is air in a 250 ° C. environment. A thermally conductive silicone cured product characterized by having a weight loss rate of less than 1% when placed therein for 6 hours. 熱伝導率が0.5W/mK以上であることを特徴とする請求項4記載の熱伝導性シリコーン硬化物。   The thermally conductive silicone cured product according to claim 4, wherein the thermal conductivity is 0.5 W / mK or more. 熱伝導性シリコーン組成物が、オルガノポリシロキサン主材100質量部と、熱伝導性充填材250〜2,000質量部と、上記オルガノポリシロキサン主材を硬化させる硬化剤の硬化有効量を含有することを特徴とする請求項4又は5記載の熱伝導性シリコーン硬化物。   The thermally conductive silicone composition contains 100 parts by mass of an organopolysiloxane main material, 250 to 2,000 parts by mass of a thermally conductive filler, and a curing effective amount of a curing agent that cures the organopolysiloxane main material. The thermally conductive silicone cured product according to claim 4 or 5, wherein: 補強材の片側もしくは両側に請求項4〜6のいずれか1項に記載の熱伝導性シリコーン硬化物を積層させてなることを特徴とする熱伝導性シリコーン複合シート。   A thermally conductive silicone composite sheet obtained by laminating the thermally conductive silicone cured product according to any one of claims 4 to 6 on one side or both sides of a reinforcing material. 補強材がポリイミドフィルムであることを特徴とする請求項7記載の熱伝導性シリコーン複合シート。   The thermally conductive silicone composite sheet according to claim 7, wherein the reinforcing material is a polyimide film. 補強材がガラスクロスであることを特徴とする請求項7記載の熱伝導性シリコーン複合シート。   The thermally conductive silicone composite sheet according to claim 7, wherein the reinforcing material is a glass cloth. 熱伝導性シリコーン硬化物の硬度がデューロメーターA硬度で80〜99であることを特徴とする請求項4〜9のいずれか1項に記載の熱伝導性シリコーン複合シート。   The thermally conductive silicone composite sheet according to any one of claims 4 to 9, wherein the hardness of the thermally conductive silicone cured product is 80 to 99 in terms of durometer A hardness.
JP2015000836A 2015-01-06 2015-01-06 Thermally conductive silicone composition, cured product and composite sheet Active JP6269511B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015000836A JP6269511B2 (en) 2015-01-06 2015-01-06 Thermally conductive silicone composition, cured product and composite sheet
TW104144486A TWI683859B (en) 2015-01-06 2015-12-30 Thermally conductive polysiloxane composition and hardened material and composite sheet
KR1020150189657A KR102132243B1 (en) 2015-01-06 2015-12-30 Thermal conductive silicone composition and cured product, and composite sheet
CN201610006625.8A CN105754346B (en) 2015-01-06 2016-01-05 Heat-conductive silicone composition, cured product, and composite sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015000836A JP6269511B2 (en) 2015-01-06 2015-01-06 Thermally conductive silicone composition, cured product and composite sheet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017245239A Division JP2018053260A (en) 2017-12-21 2017-12-21 Thermal conductive silicone composition, cured article and composite sheet

Publications (2)

Publication Number Publication Date
JP2016125001A true JP2016125001A (en) 2016-07-11
JP6269511B2 JP6269511B2 (en) 2018-01-31

Family

ID=56342334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015000836A Active JP6269511B2 (en) 2015-01-06 2015-01-06 Thermally conductive silicone composition, cured product and composite sheet

Country Status (4)

Country Link
JP (1) JP6269511B2 (en)
KR (1) KR102132243B1 (en)
CN (1) CN105754346B (en)
TW (1) TWI683859B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016710A (en) * 2016-07-27 2018-02-01 信越化学工業株式会社 Thermally conductive composite sheet for thermal compression bonding and method for producing the same
JP2020011509A (en) * 2019-08-14 2020-01-23 信越化学工業株式会社 Method for selecting heat-conductive composite sheet for heat press bonding
EP3493254A4 (en) * 2016-07-26 2020-04-01 Shin-Etsu Chemical Co., Ltd. Heat conductive sheet
WO2021171970A1 (en) * 2020-02-26 2021-09-02 パナソニックIpマネジメント株式会社 Thermally conductive silicone composition and thermally conductive silicone material
JPWO2020111180A1 (en) * 2018-11-30 2021-10-14 デンカ株式会社 Laminate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031280A1 (en) * 2017-08-10 2019-02-14 デンカ株式会社 Heat dissipation sheet having high thermal conductivity and high electric insulation property
KR102601088B1 (en) * 2017-11-09 2023-11-13 신에쓰 가가꾸 고교 가부시끼가이샤 Thermal conductive silicone grease composition
JP6866877B2 (en) * 2018-05-31 2021-04-28 信越化学工業株式会社 Low heat resistance silicone composition
KR102175916B1 (en) 2018-08-29 2020-11-06 (주)웹스 A Light Sheet Having Insulation and Heat Dissipation for Secondary Cell Battery Pack and A Sheet Manufacturing Method
CN109880541A (en) * 2019-01-28 2019-06-14 东莞市博恩复合材料有限公司 Can rapid curing and have high-adhesive-strength Heat Conduction Material

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219034A (en) * 1982-06-14 1983-12-20 Toray Silicone Co Ltd Manufacture of electrical insulating heat dissipation rubber sheet
JPH0543224A (en) * 1991-08-07 1993-02-23 Nippon Light Metal Co Ltd Production of spherical alumina
JPH07101723A (en) * 1993-10-04 1995-04-18 Sumitomo Chem Co Ltd Production of alpha alumina powder
JP2000001616A (en) * 1998-06-17 2000-01-07 Shin Etsu Chem Co Ltd Silicone rubber composition having thermal conductivity and its production
JP2000256558A (en) * 1999-03-11 2000-09-19 Shin Etsu Chem Co Ltd Thermoconductive silicone rubber composition and its production
JP2002047009A (en) * 2000-05-23 2002-02-12 Sumitomo Chem Co Ltd alpha ALUMINA POWDER AND HEAT CONDUCTIVE SHEET USING IT
JP2003192339A (en) * 2001-12-27 2003-07-09 Showa Denko Kk Alumina particle, manufacturing method for the same and composition containing the same
JP2003201116A (en) * 2001-10-10 2003-07-15 Showa Denko Kk Granular alumina, manufacturing method of granular alumina and composition containing granular alumina
JP2005015788A (en) * 2003-06-04 2005-01-20 Showa Denko Kk Resin filling corundum and resin composition
WO2008053536A1 (en) * 2006-10-31 2008-05-08 Denki Kagaku Kogyo Kabushiki Kaisha Alumina powder, process for producing the same, and use thereof
JP2011025676A (en) * 2009-06-29 2011-02-10 Shin-Etsu Chemical Co Ltd Heat-conductive silicone rubber composite sheet
JP2014009140A (en) * 2012-07-02 2014-01-20 Hitachi Chemical Co Ltd Spherical type alumina filler, and resin composition for high heat conduction insulation material, prepreg, and laminate sheet including the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4301468B2 (en) * 1999-07-07 2009-07-22 信越化学工業株式会社 Heat-resistant and heat-conductive silicone rubber composite sheet and method for producing the same
US20030125418A1 (en) * 2001-10-10 2003-07-03 Show A Denko K.K. Particulate alumina, method for producing particulate alumina, and composition containing particulate alumina
DE10297611T5 (en) * 2001-12-27 2005-01-13 Showa Denko K.K. Particulate alumina, process for producing particulate alumina and composition containing particulate alumina
JP6006649B2 (en) 2013-01-29 2016-10-12 株式会社タイカ Thermally conductive resin composition with excellent heat resistance and heat dissipation component using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219034A (en) * 1982-06-14 1983-12-20 Toray Silicone Co Ltd Manufacture of electrical insulating heat dissipation rubber sheet
JPH0543224A (en) * 1991-08-07 1993-02-23 Nippon Light Metal Co Ltd Production of spherical alumina
JPH07101723A (en) * 1993-10-04 1995-04-18 Sumitomo Chem Co Ltd Production of alpha alumina powder
JP2000001616A (en) * 1998-06-17 2000-01-07 Shin Etsu Chem Co Ltd Silicone rubber composition having thermal conductivity and its production
JP2000256558A (en) * 1999-03-11 2000-09-19 Shin Etsu Chem Co Ltd Thermoconductive silicone rubber composition and its production
JP2002047009A (en) * 2000-05-23 2002-02-12 Sumitomo Chem Co Ltd alpha ALUMINA POWDER AND HEAT CONDUCTIVE SHEET USING IT
JP2003201116A (en) * 2001-10-10 2003-07-15 Showa Denko Kk Granular alumina, manufacturing method of granular alumina and composition containing granular alumina
JP2003192339A (en) * 2001-12-27 2003-07-09 Showa Denko Kk Alumina particle, manufacturing method for the same and composition containing the same
JP2005015788A (en) * 2003-06-04 2005-01-20 Showa Denko Kk Resin filling corundum and resin composition
WO2008053536A1 (en) * 2006-10-31 2008-05-08 Denki Kagaku Kogyo Kabushiki Kaisha Alumina powder, process for producing the same, and use thereof
JP2011025676A (en) * 2009-06-29 2011-02-10 Shin-Etsu Chemical Co Ltd Heat-conductive silicone rubber composite sheet
JP2014009140A (en) * 2012-07-02 2014-01-20 Hitachi Chemical Co Ltd Spherical type alumina filler, and resin composition for high heat conduction insulation material, prepreg, and laminate sheet including the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3493254A4 (en) * 2016-07-26 2020-04-01 Shin-Etsu Chemical Co., Ltd. Heat conductive sheet
JP2018016710A (en) * 2016-07-27 2018-02-01 信越化学工業株式会社 Thermally conductive composite sheet for thermal compression bonding and method for producing the same
TWI715790B (en) * 2016-07-27 2021-01-11 日商信越化學工業股份有限公司 Thermally conductive composite sheet for hot pressing and its manufacturing method
JPWO2020111180A1 (en) * 2018-11-30 2021-10-14 デンカ株式会社 Laminate
JP7300464B2 (en) 2018-11-30 2023-06-29 デンカ株式会社 laminate
JP2020011509A (en) * 2019-08-14 2020-01-23 信越化学工業株式会社 Method for selecting heat-conductive composite sheet for heat press bonding
WO2021171970A1 (en) * 2020-02-26 2021-09-02 パナソニックIpマネジメント株式会社 Thermally conductive silicone composition and thermally conductive silicone material

Also Published As

Publication number Publication date
CN105754346B (en) 2020-10-23
CN105754346A (en) 2016-07-13
TW201700616A (en) 2017-01-01
TWI683859B (en) 2020-02-01
JP6269511B2 (en) 2018-01-31
KR20160084808A (en) 2016-07-14
KR102132243B1 (en) 2020-07-10

Similar Documents

Publication Publication Date Title
JP6269511B2 (en) Thermally conductive silicone composition, cured product and composite sheet
JP5664563B2 (en) Thermally conductive silicone composition and cured product thereof
JP6194861B2 (en) Thermally conductive silicone composition and thermally conductive silicone molding
JP5304588B2 (en) Thermally conductive silicone composition and cured product thereof
JP5472055B2 (en) Thermally conductive silicone grease composition
JP2009203373A (en) Thermoconductive silicone composition
JP2011178821A (en) Heat conductive silicone composition and cured product of the same
JP5155033B2 (en) Thermally conductive silicone composition
JP2009138036A (en) Thermally-conductive silicone grease composition
JP2018053260A (en) Thermal conductive silicone composition, cured article and composite sheet
JP7285231B2 (en) Thermally conductive silicone composition and cured product thereof
WO2020217634A1 (en) Thermally conductive silicone composition, method for producing same and thermally conductive silicone cured product
JP7303159B2 (en) Silicone composition and cured thermally conductive silicone having high thermal conductivity
WO2020116057A1 (en) Cured product of thermally conductive silicone composition
JPWO2018020862A1 (en) Thermally conductive sheet
TWI813738B (en) Thermally conductive silicon oxide composition and its hardened product
WO2020213348A1 (en) Thermally conductive resin composition and thermally conductive resin cured product
WO2022255004A1 (en) Thermally conductive silicone composition and cured product of same
TW202235579A (en) Thermally conductive composition and method for producing the same allowing the thermal conductivity to be higher, the compression resilience to be higher, and the interface peeling caused by stress to be reduced
JP2022174600A (en) Thermally conductive silicone composition and cured product of the same
JP2024051534A (en) Thermally conductive silicone composition, thermally conductive silicone cured product, and electrical parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R150 Certificate of patent or registration of utility model

Ref document number: 6269511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150