WO2022255004A1 - Thermally conductive silicone composition and cured product of same - Google Patents

Thermally conductive silicone composition and cured product of same Download PDF

Info

Publication number
WO2022255004A1
WO2022255004A1 PCT/JP2022/018791 JP2022018791W WO2022255004A1 WO 2022255004 A1 WO2022255004 A1 WO 2022255004A1 JP 2022018791 W JP2022018791 W JP 2022018791W WO 2022255004 A1 WO2022255004 A1 WO 2022255004A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
group
conductive silicone
silicone composition
component
Prior art date
Application number
PCT/JP2022/018791
Other languages
French (fr)
Japanese (ja)
Inventor
俊晴 森村
靖久 石原
崇則 伊藤
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2022255004A1 publication Critical patent/WO2022255004A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to a thermally conductive silicone composition and its cured product.
  • LSI chips such as CPUs, driver ICs, and memories used in electronic devices such as personal computers, digital video discs, and mobile phones are becoming more sophisticated, faster, smaller, and more highly integrated. Now produces heat. Since the temperature rise of the chip due to the heat causes malfunction and destruction of the chip, many heat dissipation methods and heat dissipation members used therefor have been proposed to suppress the temperature rise of the chip during operation.
  • heat sinks using metal plates with high thermal conductivity such as aluminum and copper are used in order to suppress the temperature rise of chips during operation.
  • the heat sink conducts the heat generated by the chip and dissipates the heat through the surface due to the temperature difference with the ambient air.
  • Thermally conductive sheets are easier to handle than grease, and thermally conductive sheets made of thermally conductive silicone rubber (thermally conductive silicone rubber sheets) are used in various fields.
  • an insulating composition in which at least one metal oxide selected from beryllium oxide, aluminum oxide, aluminum oxide hydrate, magnesium oxide, and zinc oxide is blended with 100 parts by mass of synthetic rubber such as silicone rubber. (Patent Document 1).
  • a method is used in which a natural cooling type or forced cooling type heat radiating component is installed near the integrated circuit element, and the heat generated in the element is transferred to the heat radiating component. If the element and the heat dissipation component are brought into direct contact with each other using this method, the heat transfer will be poor due to the unevenness of the surface. Furthermore, even if the element is attached via the heat radiation insulating sheet, the flexibility of the heat radiation insulating sheet is slightly inferior, so that stress is applied between the element and the substrate due to thermal expansion, and there is a risk of damage.
  • a sheet formed by mixing a thermally conductive material such as a metal oxide into a silicone resin in which an easily deformable silicone layer is laminated on a strong silicone resin layer.
  • Patent Document 2 Also disclosed is a thermally conductive composite sheet in which a silicone rubber layer containing a thermally conductive filler and having an Asker C hardness of 5 to 50 and a porous reinforcing material layer having pores with a diameter of 0.3 mm or more are combined.
  • Patent Document 3 Also proposed is a sheet in which the skeletal lattice surface of a flexible three-dimensional network or foam is coated with thermally conductive silicone rubber (Patent Document 4).
  • a thermally conductive composite silicone having an Asker C hardness of 5 to 50 and a thickness of 0.4 mm or less, which contains a reinforcing sheet or cloth and has adhesiveness on at least one surface.
  • a seat is disclosed (Patent Document 5).
  • a heat dissipating spacer containing an addition reaction type liquid silicone rubber and a thermally conductive insulating ceramic powder, the cured product of which has an Asker C hardness of 25 or less and a thermal resistance of 3.0° C./W or less.
  • thermally conductive silicone cured products are often required to have insulating properties, so aluminum oxide (alumina) is often used as a thermally conductive filler.
  • alumina aluminum oxide
  • amorphous alumina is more effective in improving thermal conductivity than spherical alumina.
  • silicone has a drawback that it has a poor filling property with silicone, and when the filling rate is increased, the viscosity of the material increases and the processability deteriorates.
  • Alumina has a Mohs hardness of 9, which is very hard. For this reason, a thermally conductive silicone composition using amorphous alumina with a particle size of 10 ⁇ m or more has the problem that the inner wall of the reactor and the stirring blades are scraped during production.
  • the components of the reaction vessel and stirring blades are mixed into the thermally conductive silicone composition, and the insulating properties of the thermally conductive silicone composition and the cured product using the same are lowered.
  • the stirring efficiency decreases, making it impossible to obtain a constant quality even if the product is manufactured under the same conditions.
  • thermally conductive filler with a high thermal conductivity, such as a thermally conductive filler such as aluminum nitride or boron nitride, but the cost is high, There was a problem that processing was also difficult.
  • the present invention has been made in view of the above circumstances, and aims to provide a thermally conductive silicone composition with excellent compressibility, insulation, thermal conductivity, and workability, and a cured product thereof.
  • a particular object of the present invention is to provide a thermally conductive silicone composition having a thermal conductivity of 6.5 W/m ⁇ K or more and a cured product thereof.
  • Such a thermally conductive silicone composition can be suitably used as a thermally conductive resin molding that is placed between a heat-generating component and a heat-radiating component in an electronic device and used for heat radiation.
  • the present invention provides a thermally conductive silicone composition
  • (A) Organopolysiloxane having two or more alkenyl groups in one molecule: 100 parts by mass
  • (B) Organohydrogenpolysiloxane having two or more hydrogen atoms directly bonded to silicon atoms: the number of moles of hydrogen atoms directly bonded to silicon atoms is 0.1 of the number of moles of alkenyl groups derived from component (A) ⁇ 5.0 times the amount
  • C a thermally conductive filler consisting of (C-1) to (C-3) below: 4,000 to 5,800 parts by mass; (C-1) spherical alumina filler having an average particle size of more than 70 ⁇ m and 135 ⁇ m or less: 1,400 to 3,000 parts by mass; (C-2) a spherical alumina filler having an average particle size of more than 8 ⁇ m and 40 ⁇ m or less: 500 to 2,300 parts by mass; (C
  • thermally conductive silicone composition provides a thermally conductive silicone composition with excellent compressibility, insulation, thermal conductivity, and workability, and a cured product thereof.
  • (F-1) an alkoxysilane compound represented by the following general formula (1), and R 1 a R 2 b Si(OR 3 ) 4-ab (1)
  • R 1 is independently an alkyl group having 6 to 15 carbon atoms
  • R 2 is independently an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a group selected from 7 to 12 aralkyl groups
  • R 3 is independently an alkyl group having 1 to 6 carbon atoms
  • a is an integer of 1 to 3
  • b is an integer of 0 to 2
  • the proviso that a+b is an integer from 1 to 3.
  • (F-2) a dimethylpolysiloxane having one molecular chain end blocked with a trialkoxysilyl group represented by the following general formula (2);
  • R 4 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.
  • Such a thermally conductive silicone composition does not induce oil separation.
  • component (G) it is preferable that 8.0 to 25.0 parts by mass of cerium oxide is contained as component (G) with respect to 100 parts by mass of component (A).
  • the hardness of the cured product of the thermally conductive silicone composition measured with an Asker C hardness tester after aging at 150° C. for 500 hours is - A score of 5 points or more and 40 points or less is preferable.
  • a cured product of such a thermally conductive silicone composition exhibits little decrease in hardness even when used at high temperatures for a long time.
  • an organopolysiloxane represented by the following general formula (3) and having a kinematic viscosity at 23° C. of 10 to 100,000 mm 2 /s (wherein R 5 is a group independently selected from an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms; d is an integer of 5 to 2,000; is.) is preferably contained in an amount of 0.1 to 100 parts by mass with respect to 100 parts by mass of the component (A).
  • Such a thermally conductive silicone composition has excellent flexibility, and the resulting cured product is less prone to oil bleeding.
  • the viscosity of the thermally conductive silicone composition measured with a flow tester viscometer at 23°C is 2,000 Pa ⁇ s or less.
  • Such a thermally conductive silicone composition is excellent in moldability (workability).
  • the thermal conductivity at 23°C of the cured product of the thermally conductive silicone composition measured by the hot disk method is 6.5 W/m ⁇ K or more.
  • a cured product of such a thermally conductive silicone composition has excellent thermal conductivity.
  • the cured product of the thermally conductive silicone composition has a dielectric breakdown voltage of 10 kV/mm or more at a thickness of 1 mm.
  • a cured product of such a thermally conductive silicone composition can ensure stable insulation during use.
  • the present invention also provides a cured thermally conductive silicone product, which is a cured product of the above thermally conductive silicone composition.
  • Such a thermally conductive silicone cured product has excellent compressibility, insulation, thermal conductivity, and workability.
  • the shape of the thermally conductive silicone cured product can be a sheet.
  • Such a thermally conductive silicone cured product is excellent in handleability.
  • the thermally conductive silicone composition of the present invention comprises amorphous alumina having an average particle size of more than 0.4 ⁇ m and not more than 4 ⁇ m, spherical alumina having an average particle size of more than 8 ⁇ m and not more than 40 ⁇ m, and alumina having an average particle size of more than 70 ⁇ m.
  • a thermally conductive silicone cured product having excellent compressibility, insulation, thermal conductivity, and workability, especially having a thermal conductivity of 6.5 W / m K or more, and a heat molded into a sheet Conductive silicone moldings can be provided.
  • cerium oxide it is possible to provide a thermally conductive silicone composition in which the decrease in hardness of the cured product is suppressed when stored at high temperature.
  • amorphous alumina having an average particle size of more than 0.4 ⁇ m and not more than 4 ⁇ m and spherical alumina having an average particle size of more than 8 ⁇ m and not more than 40 ⁇ m and spherical alumina having an average particle size of more than 70 ⁇ m and not more than 135 ⁇ m in a specific compounding amount can solve the above problems. That is, by blending a large amount of spherical alumina having a small specific surface area of more than 70 ⁇ m and 135 ⁇ m or less, it is possible to effectively improve the thermal conductivity, and the silicone composition has a low viscosity and excellent workability.
  • the cured product can be provided.
  • spherical alumina and amorphous alumina having an average particle size of 40 ⁇ m or less improves the fluidity of the composition and improves workability. Furthermore, since spherical alumina is used for particles exceeding 8 ⁇ m, abrasion of the reactor and stirring blades is suppressed, and insulation is improved.
  • the shortcomings of the spherical alumina with a small particle size are compensated for by the spherical alumina with a large particle size
  • the shortcomings of the spherical alumina with a large particle size are compensated for by the spherical alumina with a small particle size and the amorphous alumina.
  • the present invention is a thermally conductive silicone composition
  • (A) Organopolysiloxane having two or more alkenyl groups in one molecule: 100 parts by mass
  • (B) Organohydrogenpolysiloxane having two or more hydrogen atoms directly bonded to silicon atoms: the number of moles of hydrogen atoms directly bonded to silicon atoms is 0.1 of the number of moles of alkenyl groups derived from component (A) ⁇ 5.0 times the amount
  • C a thermally conductive filler consisting of (C-1) to (C-3) below: 4,000 to 5,800 parts by mass; (C-1) spherical alumina filler having an average particle size of more than 70 ⁇ m and 135 ⁇ m or less: 1,400 to 3,000 parts by mass; (C-2) a spherical alumina filler having an average particle size of more than 8 ⁇ m and 40 ⁇ m or less: 500 to 2,300 parts by mass; (C-3) Amorphous
  • the thermally conductive silicone composition of the present invention is (A) Organopolysiloxane having two or more alkenyl groups in one molecule: 100 parts by mass, (B) Organohydrogenpolysiloxane having two or more hydrogen atoms directly bonded to silicon atoms: the number of moles of hydrogen atoms directly bonded to silicon atoms is 0.1 of the number of moles of alkenyl groups derived from component (A) ⁇ 5.0 times the amount, (C) a thermally conductive filler consisting of (C-1) to (C-3) below: 4,000 to 5,800 parts by mass; (C-1) spherical alumina filler having an average particle size of more than 70 ⁇ m and 135 ⁇ m or less: 1,400 to 3,000 parts by mass; (C-2) a spherical alumina filler having an average particle size of more than 8 ⁇ m and 40 ⁇ m or less: 500 to 2,300 parts by mass; (C)
  • the organopolysiloxane having two or more alkenyl groups in one molecule which is the component (A), is an organopolysiloxane having two or more silicon-bonded alkenyl groups in one molecule. It is the main ingredient of cured silicone products. Generally, the main chain basically consists of repeating diorganosiloxane units, but this may include a branched structure as part of the molecular structure, or a cyclic structure. Although it may be a solid, linear diorganopolysiloxane is preferable from the viewpoint of physical properties such as mechanical strength of the cured product.
  • Examples of functional groups other than alkenyl groups bonded to silicon atoms include monovalent hydrocarbon groups exemplified below. For example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, etc.
  • these monovalent hydrocarbon groups those having 1 to 10 carbon atoms are preferred, and those having 1 to 6 carbon atoms are more preferred.
  • alkyl groups having 1 to 3 carbon atoms such as methyl group, ethyl group and propyl group, and phenyl group are preferably used.
  • the functional groups other than the alkenyl groups bonded to the silicon atoms are not limited to all being the same.
  • alkenyl group examples include those having usually about 2 to 8 carbon atoms such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group and cyclohexenyl group.
  • a lower alkenyl group such as an allyl group is preferred, and a vinyl group is particularly preferred.
  • Two or more alkenyl groups must be present in the molecule, but in order to improve the flexibility of the resulting cured product, the alkenyl group may be present bonded only to the silicon atom at the end of the molecular chain. preferable.
  • the kinematic viscosity of this organopolysiloxane at 23° C. is generally 10 to 100,000 mm 2 /s, preferably 500 to 50,000 mm 2 /s. When the kinematic viscosity is within this range, the obtained composition has good storage stability and does not deteriorate in spreadability.
  • kinematic viscosity is a value measured at 23° C. using a Canon-Fenske viscometer according to the method described in JIS Z 8803:2011.
  • the organopolysiloxane having at least two alkenyl groups in one molecule of component (A) may be used singly or in combination of two or more having different kinematic viscosities.
  • the organohydrogenpolysiloxane of component (B) is an organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms. That is, it is an organohydrogenpolysiloxane having at least two, preferably 2 to 100, hydrogen atoms (hydrosilyl groups) directly bonded to silicon atoms in one molecule, and acts as a cross-linking agent for component (A). is an ingredient.
  • the hydrosilyl groups in the component (B) and the alkenyl groups in the component (A) are added by a hydrosilylation reaction promoted by the platinum group metal-based curing catalyst of the component (D), which will be described later, to form a crosslinked structure. gives a three-dimensional network structure with In addition, when the number of hydrosilyl groups is less than 2, it does not cure.
  • organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms those represented by the following average structural formula (4) are used, but are not limited thereto.
  • R 6 is independently a hydrogen atom or a monovalent hydrocarbon group selected from an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms.
  • R 6 in one molecule are hydrogen atoms
  • e is an integer of 1 or more, preferably 10 to 200.
  • R 6 is independently a hydrogen atom or a monovalent hydrocarbon group selected from an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms. is. However, 2 or more, preferably 2 to 10 R 6 in one molecule are hydrogen atoms. Examples of monovalent hydrocarbon groups other than hydrogen atoms for R 6 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group and heptyl group.
  • Alkyl groups such as octyl group, nonyl group, decyl group and dodecyl group; cycloalkyl groups such as cyclopentyl group, cyclohexyl group and cycloheptyl group; aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and biphenylyl group and aralkyl groups such as a benzyl group, a phenylethyl group, a phenylpropyl group, and a methylbenzyl group.
  • monovalent hydrocarbon groups those having 1 to 10 carbon atoms are preferred, and those having 1 to 6 carbon atoms are particularly preferred.
  • An alkyl group having 1 to 3 carbon atoms and a phenyl group are preferably used.
  • R6 is not limited to being the same.
  • e is an integer of 1 or more, preferably an integer of 10-200.
  • the amount of component (B) to be added is such that the hydrosilyl groups derived from component (B) are 0.1 to 5.0 mol per 1 mol of alkenyl groups derived from component (A), that is, they are directly bonded to silicon atoms.
  • the amount is such that the number of moles of hydrogen atoms is 0.1 to 5.0 times the number of moles of alkenyl groups derived from component (A), preferably 0.3 to 2.0 moles, more preferably 0.3 to 2.0 times. is an amount that is 0.5 to 1.0 mol.
  • the amount of hydrosilyl groups derived from the component (B) is less than 0.1 mol per 1 mol of the alkenyl groups derived from the component (A), it will not be cured, or the strength of the cured product will be insufficient and the shape as a molded product will not be obtained. It may not be possible to hold and handle. On the other hand, if it exceeds 5.0 mol, the cured product loses flexibility and becomes brittle.
  • the thermally conductive filler which is the component (C), consists of the following components (C-1) to (C-3).
  • C-1) a spherical alumina filler having an average particle size of more than 70 ⁇ m and 135 ⁇ m or less;
  • C-2) a spherical alumina filler having an average particle size of more than 8 ⁇ m and 40 ⁇ m or less;
  • C-3) an amorphous alumina filler having an average particle size of more than 0.4 ⁇ m and 4 ⁇ m or less;
  • the average particle size is a volume-based cumulative average particle size (median diameter) value measured by a laser diffraction/scattering method using Microtrac MT3300EX, a particle size analyzer manufactured by Nikkiso Co., Ltd. is.
  • the (C-1) component spherical alumina filler can significantly improve the thermal conductivity.
  • the average particle diameter of the spherical alumina filler is more than 70 ⁇ m and 135 ⁇ m or less, preferably more than 70 ⁇ m and 120 ⁇ m or less, more preferably more than 70 ⁇ m and 100 ⁇ m or less. If the average particle diameter is 70 ⁇ m or less, the effect of improving the thermal conductivity is reduced, the viscosity of the composition is increased, and the processability is deteriorated. On the other hand, if the average particle size is larger than 135 ⁇ m, the abrasion of the reaction vessel and stirring blades becomes remarkable, and there is a concern that the insulating properties of the composition may be lowered.
  • the (C-1) component spherical alumina filler may be used singly or in combination of two or more. When two or more kinds are used in combination, each of them should satisfy the above average particle size range.
  • the spherical alumina filler of component (C-2) improves the thermal conductivity of the composition, suppresses contact between the amorphous alumina filler and the reaction vessel and stirring blades, and provides a barrier effect that suppresses wear.
  • the average particle size is more than 8 ⁇ m and 40 ⁇ m or less, preferably 10 to 40 ⁇ m. If the average particle size is 8 ⁇ m or less, the barrier effect is lowered, and the wear of the reactor and stirring blades due to the amorphous alumina filler becomes remarkable.
  • the (C-3) component amorphous alumina filler also plays a role in improving the thermal conductivity of the composition, but its main role is to adjust the viscosity of the composition, improve smoothness, and improve fillability.
  • the average particle size of the component (C-3) is more than 0.4 ⁇ m and 4 ⁇ m or less, and more preferably 0.6 to 3 ⁇ m in order to develop the properties described above.
  • the blending amount of component (C-1) is 1,400 to 3,000 parts by mass, preferably 1,600 to 2,500 parts by mass, per 100 parts by mass of component (A). If it is too small, it will be difficult to improve the thermal conductivity, and if it is too large, the wear of the reactor and stirring blades will be significant, and the insulating properties of the composition will be reduced.
  • the blending amount of component (C-2) is 500 to 2,300 parts by mass, preferably 1,000 to 1,800 parts by mass, per 100 parts by mass of component (A). If it is too small, it will be difficult to improve the thermal conductivity, and if it is too large, the fluidity of the composition will be lost and moldability will be impaired.
  • the blending amount of component (C-3) is 1,000 to 1,800 parts by mass, preferably 1,100 to 1,500 parts by mass, per 100 parts by mass of component (A). If it is too small, it will be difficult to improve the thermal conductivity, and if it is too large, the fluidity of the composition will be lost and moldability will be impaired.
  • the blending amount of component (C) (that is, the total blending amount of components (C-1) to (C-3) above) is 4,000 to 5,800 mass parts per 100 parts by mass of component (A). parts, preferably 4,500 to 5,000 parts by mass. If the amount is less than 4,000 parts by mass, the resulting composition will have poor thermal conductivity. If it exceeds 5,800 parts by mass, the fluidity of the composition is lost and moldability is impaired.
  • component (C) in the above compounding amount, the effects of the present invention described above can be achieved more advantageously and reliably.
  • the platinum group metal-based curing catalyst of the component (D) is a catalyst for promoting the addition reaction between the alkenyl group derived from the component (A) and the hydrosilyl group derived from the component (B), and is used for the hydrosilylation reaction.
  • well-known catalysts are well-known catalysts.
  • platinum including platinum black
  • rhodium, palladium, and other platinum group metal simple substances H 2 PtCl 4 ⁇ nH 2 O, H 2 PtCl 6 ⁇ nH 2 O, NaHPtCl 6 ⁇ nH 2 O , KaHPtCl6.nH2O , Na2PtCl6.nH2O , K2PtCl4.nH2O , PtCl4.nH2O , PtCl2 , Na2HPtCl4.nH2O ( wherein , n is an integer of 0 to 6, preferably 0 or 6.), platinum chloride, chloroplatinic acid and chloroplatinate, alcohol-modified chloroplatinic acid (US Pat.
  • the blending amount of component (D) is 0.1 to 2,000 ppm, preferably 50 to 1,000 ppm, based on the mass of the platinum group metal element relative to component (A). If the amount of component (D) is too small, the addition reaction will not proceed, and if it is too large, it will be economically disadvantageous.
  • Component (E) addition reaction control agent can be any of the known addition reaction inhibitors used in ordinary addition reaction curing silicone compositions. Examples thereof include acetylene compounds such as 1-ethynyl-1-hexanol, 3-butyn-1-ol and ethynylmethylidene carbinol, various nitrogen compounds, organic phosphorus compounds, oxime compounds and organic chloro compounds.
  • component (E) is blended, the amount used is desirably about 0.01 to 2.0 parts by mass, particularly about 0.1 to 1.2 parts by mass, per 100 parts by mass of component (A). If the amount of the component (E) is too small, the addition reaction may progress, resulting in poor handleability of the composition.
  • the thermally conductive filler which is component (C)
  • the thermally conductive filler which is component (C)
  • the thermally conductive filler is subjected to a hydrophobizing treatment when the composition is prepared, and wettability with the organopolysiloxane having an alkenyl group, which is component (A), is improved.
  • the surface treatment agent as component (F) can be blended.
  • the component (F) is not particularly limited, but is preferably one or more selected from the group consisting of components (F-1) and (F-2) shown below.
  • Component (F-1) is an alkoxysilane compound represented by the following general formula (1).
  • R 1 a R 2 b Si(OR 3 ) 4-ab (1) (wherein R 1 is independently an alkyl group having 6 to 15 carbon atoms, R 2 is independently an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a group selected from 7 to 12 aralkyl groups, R 3 is independently an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, with the proviso that a+b is an integer from 1 to 3.)
  • Examples of the alkyl group having 6 to 15 carbon atoms represented by R 1 in the general formula (1) include hexyl group, octyl group, nonyl group, decyl group, dodecyl group, tetradecyl group, and the like. be done.
  • the number of carbon atoms in the alkyl group represented by R 1 satisfies the range of 6 to 15, the wettability of the component (A) is sufficiently improved, the handleability is good, and the low-temperature properties of the composition are good. Become.
  • alkyl groups having 1 to 5 carbon atoms represented by R 2 include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group and neopentyl group. are mentioned.
  • aryl groups having 6 to 12 carbon atoms include phenyl group, tolyl group, xylyl group, naphthyl group, biphenylyl group and the like.
  • aralkyl groups having 7 to 12 carbon atoms include benzyl group, phenylethyl group, phenylpropyl group, methylbenzyl group and the like.
  • alkyl groups having 1 to 3 carbon atoms such as methyl group, ethyl group and propyl group, and phenyl group.
  • alkyl groups having 1 to 6 carbon atoms represented by R 3 include methyl, ethyl, propyl, butyl and hexyl groups.
  • Component (F-2) is a dimethylpolysiloxane having one molecular chain end blocked with a trialkoxysilyl group represented by the following general formula (2).
  • R 4 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.
  • Examples of the alkyl group having 1 to 6 carbon atoms represented by R 4 include the same alkyl groups exemplified for R 3 above.
  • c is an integer of 5-100, preferably 5-70, particularly preferably 10-50.
  • either one of the (F-1) component and the (F-2) component may be blended together.
  • the amount to be blended is preferably 0.01 to 300 parts by mass, particularly preferably 0.1 to 200 parts by mass, per 100 parts by mass of component (A).
  • the amount of component (F) is within the above range, oil separation is not induced.
  • the thermally conductive silicone composition of the present invention contains (G) cerium oxide as a thermal stabilizer for the purpose of improving heat resistance, particularly for suppressing deterioration due to softening of the cured product of the composition. good too.
  • cerium oxide When cerium oxide is blended, it is 8.0 to 25.0 parts by mass, more preferably 9.0 to 14.0 parts by mass, per 100 parts by mass of component (A). When the blending amount is within this range, even if stored at a high temperature of 150° C., no decrease in hardness is observed, which is preferable.
  • the cured product of the thermally conductive silicone composition has excellent heat resistance.
  • the hardness after aging at 150 ° C. for 500 hours is -5 points or more and +40 points or less with respect to the hardness before aging. It is preferable that there is, and it is more preferable that it is -3 points or more and +20 points or less.
  • the component (H) is a Organopolysiloxanes with viscosities of 10 to 100,000 mm 2 /s can be blended.
  • (H) component acts as a plasticizer.
  • (H) component may be used individually by 1 type, or may use 2 or more types together.
  • R 5 is a group independently selected from an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms, and d is an integer of 5 to 2,000. is.
  • R 5 is a group independently selected from an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms and an aralkyl group having 7 to 12 carbon atoms.
  • R 5 include alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group and pentyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and biphenylyl group; aralkyl groups such as benzyl group, phenylethyl group, phenylpropyl group and methylbenzyl group; Among them, alkyl groups having 1 to 3 carbon atoms such as methyl group, ethyl group and propy
  • d is preferably an integer of 5 to 2,000, particularly preferably an integer of 10 to 1,000.
  • the kinematic viscosity of component (H) at 23° C. is preferably 10 to 100,000 mm 2 /s, particularly preferably 100 to 10,000 mm 2 /s. If the kinematic viscosity is 10 mm 2 /s or more, the cured product of the obtained composition will not cause oil bleeding. If the kinematic viscosity is within the above range, the resulting thermally conductive silicone composition will be excellent in flexibility.
  • the amount of component (H) to be added is not particularly limited as long as the desired effect is obtained. , preferably 0.1 to 100 parts by mass, more preferably 1 to 50 parts by mass. When the amount is within this range, the thermally conductive silicone composition before curing can easily maintain good fluidity and workability, and the thermally conductive filler of component (C) is filled into the composition. is easy.
  • the thermally conductive silicone composition of the present invention may further contain other components depending on the purpose of the present invention.
  • optional components such as a heat resistance improver such as iron oxide; a viscosity modifier such as silica; a colorant; and a release agent can be blended.
  • thermally conductive silicone composition of the present invention can be prepared by uniformly mixing the components described above according to a conventional method.
  • the viscosity of the thermally conductive silicone composition of the present invention is preferably 2,000 Pa ⁇ s or less, more preferably 1,500 Pa ⁇ s or less at 23°C. Although the lower limit is not particularly limited, it can be, for example, 200 Pa ⁇ s or more. If the viscosity is within this range, moldability will not be impaired. In the present invention, this viscosity is based on measurement with a flow tester viscometer.
  • the thermally conductive silicone cured product of the present invention is obtained by curing the above-mentioned thermally conductive silicone composition of the present invention according to a conventional method.
  • the shape of the thermally conductive silicone cured product of the present invention is not particularly limited, it is preferably in the form of a sheet.
  • Curing conditions for molding the thermally conductive silicone composition may be the same as those for known addition reaction curing silicone rubber compositions. Addition curing is preferably carried out at 100 to 120° C. for 8 to 12 minutes. Such cured silicone products of the present invention are excellent in thermal conductivity.
  • the thermal conductivity of compact is 6.5 W/m ⁇ K or more, particularly 7.0 W/m ⁇ K or more at 23° C. measured by the hot disk method. It is desirable to have The higher the thermal conductivity, the better, and although the upper limit is not particularly limited, it can be, for example, 9.0 W/m ⁇ K or less.
  • the dielectric breakdown voltage of the molded body in the present invention is 10 kV/mm or more, more preferably 12 kV/mm or more, when the dielectric breakdown voltage of a 1 mm-thick molded body is measured in accordance with JIS K 6249:2003. is preferably Although the upper limit value is not particularly limited, it can be, for example, 20 kV/mm or less.
  • a compact having a dielectric breakdown voltage of 10 kV/mm or more can ensure stable insulation during use. Incidentally, such a dielectric breakdown voltage can be adjusted by adjusting the kind and purity of the filler.
  • the hardness of the molded article in the present invention is preferably 60 or less, preferably 40 or less, more preferably 30 or less, and preferably 5 or more at 23° C. measured with an Asker C hardness tester. If the hardness is within this range, it can deform so as to conform to the shape of the body to be heat dissipated, and can exhibit good heat dissipation characteristics without applying stress to the body to be heat dissipated. Such hardness can be adjusted by changing the ratio of the component (A) and the component (B) to adjust the crosslink density.
  • the viscosity of the composition was measured with a flow tester viscometer at 23°C. CFT-500EX manufactured by Shimadzu Corporation was used as a measuring device. A die hole diameter of ⁇ 2 mm, a die length of 2 mm, and a test load of 10 kg were plotted against time and stroke, and the viscosity was calculated from the slope.
  • the average particle diameter is a volume-based cumulative average particle diameter (median diameter) measured by a laser diffraction/scattering method using Microtrac MT3300EX, a particle size analyzer manufactured by Nikkiso Co., Ltd.
  • (A) Component Organopolysiloxane represented by the following formula (5). (Wherein, X is a vinyl group, and f is a number that gives the following viscosity.) (A-1) Kinematic viscosity: 600 mm 2 /s (A-2) Kinematic viscosity: 30,000 mm 2 /s
  • Component (B-1) Organohydrogenpolysiloxane represented by the following formula (6-1).
  • Component (B-2) Organohydrogenpolysiloxane represented by the following formula (6-2).
  • Component (C) spherical alumina filler and amorphous alumina filler having the following average particle diameters.
  • Component (C-1) A spherical alumina filler having an average particle size of 98.8 ⁇ m.
  • component spherical alumina filler with an average particle size of 23.4 ⁇ m.
  • Component (C-3) Component: Amorphous alumina filler having an average particle size of 1.7 ⁇ m.
  • Component (C-4) Spherical alumina filler with an average particle size of 143 ⁇ m (for comparative example).
  • Component (C-5) Spherical alumina filler with an average particle size of 3.2 ⁇ m (for comparative example).
  • (D) component 5 mass% chloroplatinic acid 2-ethylhexanol solution.
  • (E) component ethynylmethylidene carbinol.
  • Component (F) A dimethylpolysiloxane having an average degree of polymerization of 30 represented by the following formula (7) and having one end blocked with a trimethoxysilyl group.
  • (G) component cerium oxide.
  • Component (H) Dimethylpolysiloxane represented by the following formula (8).
  • Example 1 to 4 Comparative Examples 1 to 4
  • the above components (A) to (H) were used in the amounts shown in Table 1 below to prepare thermally conductive silicone compositions, which were molded and cured. Then, measure the viscosity of the thermally conductive silicone composition, the thermal conductivity, hardness, dielectric breakdown voltage of the cured thermally conductive silicone composition, and the air bubbles on the surface of the cured sheet and the embrittlement of the sheet edges according to the following methods. Observed. The results are also shown in Table 1.
  • Viscosity of thermally conductive silicone composition The viscosities of the thermally conductive silicone compositions obtained in Examples 1-4 and Comparative Examples 1-4 were measured at 23° C. using a flow tester viscometer.
  • Formability The thermally conductive silicone compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were molded and cured into sheets of 1 mm thickness using a press molding machine at 120° C. for 10 minutes to form sheets with a thickness of 1 mm. A sheet was molded using the mold of No. 2, and the presence or absence of bubbles on the surface of the sheet and the presence or absence of embrittlement at the edge of the sheet were visually and finger-touched.
  • Thermal conductivity The thermally conductive silicone compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were molded and cured into sheets of 6 mm thickness at 120° C. for 10 minutes using a press molding machine. The thermal conductivity of the sheet was measured with a thermal conductivity meter (trade name: TPS-2500S, manufactured by Kyoto Electronics Industry Co., Ltd.).
  • Dielectric breakdown voltage The thermally conductive silicone compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were molded and cured into sheets of 1 mm thickness at 120° C. for 10 minutes using a press molding machine. The dielectric breakdown voltage was measured according to 6249.
  • thermally conductive silicone compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were molded and cured into sheets of 6 mm thickness in the same manner as described above, and the sheets were stacked in two and measured with an Asker C hardness tester. .
  • Hardness after aging at 150°C for 500 hours The thermally conductive silicone compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were molded and cured into a 6 mm thick sheet using a press molding machine at 120° C. for 10 minutes. After aging (storing) the cured silicone material in a high-temperature furnace at 150° C. for 500 hours, two sheets were stacked and measured with an Asker C hardness tester.
  • H/Vi is the amount of hydrogen atoms directly bonded to all silicon atoms in the organohydrogenpolysiloxane relative to the total amount of alkenyl groups in the organopolysiloxane having alkenyl groups.
  • Example 1 the viscosity and moldability of the thermally conductive silicone composition, the thermal conductivity of the cured thermally conductive silicone, the dielectric breakdown voltage, and the hardness were all good results. Further, when cerium oxide was added (Examples 2 to 4), even when stored at a high temperature of 150°C, no decrease in hardness due to softening deterioration was observed.
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. is included in the technical scope of

Abstract

The present invention is a thermally conductive silicone composition characterized by comprising: (A) an organopolysiloxane that has at least two alkenyl groups in each molecule thereof; (B) an organohydrogen polysiloxane that has at least two hydrogen atoms, each of which is directly bonded to a silicon atom; (C) a thermally conductive filler material comprising (C-1) a spherical alumina filler which has an average particle diameter of more than 70 μm but not more than 135 μm, (C-2) a spherical alumina filler which has an average particle diameter of more than 8 μm but not more than 40 μm, and (C-3) an amorphous alumina filler which has an average particle diameter of more than 0.4 μm but not more than 4 μm; (D) a platinum group metal-based curing catalyst; and (E) an addition reaction control agent. As a result of this configuration, the present invention provides: a thermally conductive silicone composition which has excellent compressibility, insulation properties, thermal conductivity, and workability; and a cured product thereof.

Description

熱伝導性シリコーン組成物及びその硬化物Thermally conductive silicone composition and cured product thereof
 本発明は、熱伝導性シリコーン組成物及びその硬化物に関する。 The present invention relates to a thermally conductive silicone composition and its cured product.
 パーソナルコンピューター、デジタルビデオディスク、携帯電話等の電子機器に使用されるCPU、ドライバICやメモリー等のLSIチップは、高性能化・高速化・小型化・高集積化に伴い、それ自身が大量の熱を発生するようになった。その熱によるチップの温度上昇はチップの動作不良、破壊を引き起こすため、動作中のチップの温度上昇を抑制するための多くの熱放散方法及びそれに使用する熱放散部材が提案されている。 LSI chips such as CPUs, driver ICs, and memories used in electronic devices such as personal computers, digital video discs, and mobile phones are becoming more sophisticated, faster, smaller, and more highly integrated. Now produces heat. Since the temperature rise of the chip due to the heat causes malfunction and destruction of the chip, many heat dissipation methods and heat dissipation members used therefor have been proposed to suppress the temperature rise of the chip during operation.
 従来、電子機器等においては、動作中のチップの温度上昇を抑えるために、アルミニウムや銅等の熱伝導率の高い金属板を用いたヒートシンクが使用されている。このヒートシンクは、そのチップが発生する熱を伝導し、その熱を外気との温度差によって表面から放出する。 Conventionally, in electronic devices, etc., heat sinks using metal plates with high thermal conductivity such as aluminum and copper are used in order to suppress the temperature rise of chips during operation. The heat sink conducts the heat generated by the chip and dissipates the heat through the surface due to the temperature difference with the ambient air.
 チップから発生する熱をヒートシンクに効率よく伝えるために、ヒートシンクをチップに密着させる必要がある。しかし、各チップの高さの違いや組み付け加工による公差があるため、柔軟性を有するシートや、グリースをチップとヒートシンクとの間に介装させ、これらの部材を介してチップからヒートシンクへの熱伝導を実現している。 In order to efficiently transfer the heat generated from the chip to the heat sink, it is necessary to adhere the heat sink to the chip. However, since there are differences in the height of each chip and tolerances due to assembly processing, a flexible sheet or grease is interposed between the chip and the heat sink, and heat is transferred from the chip to the heat sink via these materials. Conduction is achieved.
 シートはグリースに比べ、取り扱い性に優れており、熱伝導性シリコーンゴム等で形成された熱伝導性シート(熱伝導性シリコーンゴムシート)は様々な分野に用いられている。 Sheets are easier to handle than grease, and thermally conductive sheets made of thermally conductive silicone rubber (thermally conductive silicone rubber sheets) are used in various fields.
 例えば、シリコーンゴム等の合成ゴム100質量部に酸化ベリリウム、酸化アルミニウム、水和酸化アルミニウム、酸化マグネシウム、酸化亜鉛から選ばれる少なくとも1種以上の金属酸化物を配合した絶縁性組成物が開示されている(特許文献1)。 For example, an insulating composition is disclosed in which at least one metal oxide selected from beryllium oxide, aluminum oxide, aluminum oxide hydrate, magnesium oxide, and zinc oxide is blended with 100 parts by mass of synthetic rubber such as silicone rubber. (Patent Document 1).
 一方、電子機器の高集積化が進み、装置内の集積回路素子の発熱量が増加したため、従来の冷却方法では不十分な場合がある。特に、モバイルノートパソコンやタブレットの場合、機器内部の空間が狭いため大きなヒートシンクや冷却ファンを取り付けることができない。更に、これらの機器では、プリント基板上に集積回路素子が搭載されており、基板の材質に熱伝導性の悪いガラス補強エポキシ樹脂やポリイミド樹脂が用いられているので、従来のように放熱絶縁シートを介して基板に熱を逃がすことができない。 On the other hand, as electronic equipment becomes more highly integrated, the amount of heat generated by the integrated circuit elements in the equipment increases, so conventional cooling methods may not be sufficient. Especially in the case of mobile laptops and tablets, the space inside the device is narrow, so it is not possible to install a large heat sink or cooling fan. Furthermore, in these devices, integrated circuit elements are mounted on printed circuit boards, and glass-reinforced epoxy resins and polyimide resins, which have poor thermal conductivity, are used as the material for the boards. heat cannot escape to the substrate through
 そこで、このような場合には、集積回路素子の近傍に自然冷却タイプあるいは強制冷却タイプの放熱部品を設置し、素子で発生した熱を放熱部品に伝える方式が用いられる。この方式で素子と放熱部品を直接接触させると、表面の凹凸のため熱の伝わりが悪くなる。更に、放熱絶縁シートを介して取り付けても放熱絶縁シートの柔軟性がやや劣るため、熱膨張により素子と基板との間に応力がかかり、破損するおそれがある。 Therefore, in such a case, a method is used in which a natural cooling type or forced cooling type heat radiating component is installed near the integrated circuit element, and the heat generated in the element is transferred to the heat radiating component. If the element and the heat dissipation component are brought into direct contact with each other using this method, the heat transfer will be poor due to the unevenness of the surface. Furthermore, even if the element is attached via the heat radiation insulating sheet, the flexibility of the heat radiation insulating sheet is slightly inferior, so that stress is applied between the element and the substrate due to thermal expansion, and there is a risk of damage.
 また、各回路素子に放熱部品を取り付けるには、広いスペースが必要となり、機器の小型化が難しくなる。そこで、いくつかの素子を1つの放熱部品に組み合わせて冷却する方式が採られることもある。 Also, mounting heat dissipation components on each circuit element requires a large space, making it difficult to miniaturize the device. Therefore, in some cases, a system is adopted in which several elements are combined into one heat radiating component for cooling.
 そこで、素子ごとに高さが異なることにより生じる種々の隙間を埋めることができる低硬度の高熱伝導性材が必要になる。このような課題に対して、熱伝導性に優れ、柔軟性があり、種々の隙間に対応できる熱伝導性シートが要望される。 Therefore, there is a need for a low-hardness, high-thermal-conductivity material that can fill various gaps caused by the different heights of the elements. In order to solve such problems, there is a demand for a thermally conductive sheet that is excellent in thermal conductivity, flexible, and capable of coping with various gaps.
 この場合、シリコーン樹脂に金属酸化物等の熱伝導性材料を混入したものを成形したシートで、強度を持たせたシリコーン樹脂層の上に、変形し易いシリコーン層が積層されたシートが開示されている(特許文献2)。また、熱伝導性充填材を含有し、アスカーC硬度が5~50であるシリコーンゴム層と、直径0.3mm以上の孔を有する多孔性補強材層を組み合わせた熱伝導性複合シートが開示されている(特許文献3)。また、可とう性の三次元網状体又はフォーム体の骨格格子表面を熱伝導性シリコーンゴムで被覆したシートも提案されている(特許文献4)。さらに、補強性を有したシートあるいはクロスを内蔵し、少なくとも一方の面が粘着性を有しているような、アスカーC硬度が5~50で、厚さ0.4mm以下の熱伝導性複合シリコーンシートが開示されている(特許文献5)。そして、付加反応型液状シリコーンゴムと熱伝導性絶縁性セラミック粉末を含有し、その硬化物のアスカーC硬度が25以下で熱抵抗が3.0℃/W以下である放熱スペーサーも開示されている(特許文献6)。 In this case, a sheet formed by mixing a thermally conductive material such as a metal oxide into a silicone resin is disclosed, in which an easily deformable silicone layer is laminated on a strong silicone resin layer. (Patent Document 2). Also disclosed is a thermally conductive composite sheet in which a silicone rubber layer containing a thermally conductive filler and having an Asker C hardness of 5 to 50 and a porous reinforcing material layer having pores with a diameter of 0.3 mm or more are combined. (Patent Document 3). Also proposed is a sheet in which the skeletal lattice surface of a flexible three-dimensional network or foam is coated with thermally conductive silicone rubber (Patent Document 4). Furthermore, a thermally conductive composite silicone having an Asker C hardness of 5 to 50 and a thickness of 0.4 mm or less, which contains a reinforcing sheet or cloth and has adhesiveness on at least one surface. A seat is disclosed (Patent Document 5). Also disclosed is a heat dissipating spacer containing an addition reaction type liquid silicone rubber and a thermally conductive insulating ceramic powder, the cured product of which has an Asker C hardness of 25 or less and a thermal resistance of 3.0° C./W or less. (Patent Document 6).
 これら熱伝導性シリコーン硬化物は、絶縁性も要求されることが多いため、熱伝導性充填材として酸化アルミニウム(アルミナ)が用いられることが多い。一般的に、不定形のアルミナは球状のアルミナに比べ、熱伝導率を向上させる効果が高い。しかし、シリコーンに対する充填性が悪く、充填率を上げると材料粘度が上昇し、加工性が悪くなるという欠点がある。また、アルミナはモース硬度が9と非常に硬い。そのために、特に粒子径が10μm以上である不定形アルミナを用いた熱伝導性シリコーン組成物は、製造時に反応釜の内壁や撹拌羽根を削ってしまうという問題があった。それにより、熱伝導性シリコーン組成物に反応釜や撹拌羽根の成分が混入し、熱伝導性シリコーン組成物、及びこれを用いた硬化物の絶縁性が低下する。また、反応釜と撹拌羽根のクリアランスが広がるため、撹拌効率が落ちてしまい、同条件で製造しても一定の品質が得られなくなる。また、それを防ぐためには部品を頻繁に交換する必要がある、というような問題があった。 These thermally conductive silicone cured products are often required to have insulating properties, so aluminum oxide (alumina) is often used as a thermally conductive filler. In general, amorphous alumina is more effective in improving thermal conductivity than spherical alumina. However, it has a drawback that it has a poor filling property with silicone, and when the filling rate is increased, the viscosity of the material increases and the processability deteriorates. Alumina has a Mohs hardness of 9, which is very hard. For this reason, a thermally conductive silicone composition using amorphous alumina with a particle size of 10 μm or more has the problem that the inner wall of the reactor and the stirring blades are scraped during production. As a result, the components of the reaction vessel and stirring blades are mixed into the thermally conductive silicone composition, and the insulating properties of the thermally conductive silicone composition and the cured product using the same are lowered. In addition, since the clearance between the reaction vessel and the stirring blades widens, the stirring efficiency decreases, making it impossible to obtain a constant quality even if the product is manufactured under the same conditions. Moreover, in order to prevent this, there is a problem that it is necessary to frequently replace the parts.
 この問題を解決するために、球状アルミナ粉のみを使用する方法もあるが、高熱伝導化のためには、不定形アルミナに比べ、大量に充填する必要があり、組成物の粘度が上昇し、加工性が悪化する。また、相対的に組成物及びその硬化物におけるシリコーンの存在量が減少するため、硬度が上昇してしまい、圧縮性に劣るものになる。大粒径の球状アルミナを用いることで、充填量に対する熱伝導率向上効果を改善する方法もあるが、球状アルミナの粒子径が大きすぎると、プレス成形時に球状アルミナと樹脂の分離が発生し、シート端部がフィラーリッチ部となり脆化してしまう問題があった。この場合、シート成形における材料収率が大きく低下してしまう。 In order to solve this problem, there is a method of using only spherical alumina powder, but in order to achieve high thermal conductivity, it is necessary to fill a large amount compared to amorphous alumina powder, which increases the viscosity of the composition, Machinability deteriorates. In addition, since the amount of silicone present in the composition and its cured product is relatively reduced, the hardness increases and the compressibility becomes poor. There is also a method of improving the thermal conductivity improvement effect with respect to the filling amount by using spherical alumina with a large particle size. There is a problem that the edge of the sheet becomes a filler-rich portion and becomes embrittled. In this case, the material yield in sheet molding is greatly reduced.
 また、熱伝導率を上げるためには、一般的に熱伝導率の高い熱伝導性充填材、例えば窒化アルミニウムや窒化ホウ素等の熱伝導性充填材を使用する方法があるが、コストが高く、加工も難しい、というような問題があった。 In addition, in order to increase the thermal conductivity, there is generally a method of using a thermally conductive filler with a high thermal conductivity, such as a thermally conductive filler such as aluminum nitride or boron nitride, but the cost is high, There was a problem that processing was also difficult.
 また、シリコーン硬化物中のアルミナ粉の充填量が高くなると、高温で長時間使用した時に、硬化物の硬度が顕著に低下する傾向があり、振動が強いモジュール等、用途によっては復元性が不足することで密着不良が発生し、経時で熱抵抗が上昇する問題があった。 In addition, when the amount of alumina powder in the cured silicone product increases, the hardness of the cured product tends to decrease significantly when used at high temperatures for a long time. As a result, poor adhesion occurs, and there is a problem that thermal resistance increases over time.
特開昭47-032400号公報JP-A-47-032400 特開平02-196453号公報JP-A-02-196453 特開平07-266356号公報JP-A-07-266356 特開平08-238707号公報JP-A-08-238707 特開平09-001738号公報JP-A-09-001738 特開平09-296114号公報JP-A-09-296114
 本発明は、上記事情に鑑みなされたもので、圧縮性、絶縁性、熱伝導性、加工性に優れた熱伝導性シリコーン組成物及びその硬化物を提供することを目的とする。特に、6.5W/m・K以上の熱伝導率を有する熱伝導性シリコーン組成物及びその硬化物を提供することを目的とする。このような熱伝導性シリコーン組成物であれば、例えば電子機器内の発熱部品と放熱部品の間に設置されて放熱に用いられる熱伝導性樹脂成形体として好適に用いられる。 The present invention has been made in view of the above circumstances, and aims to provide a thermally conductive silicone composition with excellent compressibility, insulation, thermal conductivity, and workability, and a cured product thereof. A particular object of the present invention is to provide a thermally conductive silicone composition having a thermal conductivity of 6.5 W/m·K or more and a cured product thereof. Such a thermally conductive silicone composition can be suitably used as a thermally conductive resin molding that is placed between a heat-generating component and a heat-radiating component in an electronic device and used for heat radiation.
 上記課題を解決するために、本発明では、熱伝導性シリコーン組成物であって、
(A)1分子中に2個以上のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)ケイ素原子に直接結合した水素原子を2個以上有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍量となる量、
(C)下記(C-1)~(C-3)からなる熱伝導性充填材:4,000~5,800質量部、
(C-1)平均粒径が70μmを超えて135μm以下である球状アルミナフィラー:1,400~3,000質量部、
(C-2)平均粒径が8μmを超えて40μm以下である球状アルミナフィラー:500~2,300質量部、
(C-3)平均粒径が0.4μmを超えて4μm以下である不定形アルミナフィラー:1,000~1,800質量部、
(D)白金族金属系硬化触媒:前記(A)成分に対して白金族金属元素質量換算で0.1~2,000ppm、及び
(E)付加反応制御剤:0.01~2.0質量部
を含むものである熱伝導性シリコーン組成物を提供する。
In order to solve the above problems, the present invention provides a thermally conductive silicone composition,
(A) Organopolysiloxane having two or more alkenyl groups in one molecule: 100 parts by mass,
(B) Organohydrogenpolysiloxane having two or more hydrogen atoms directly bonded to silicon atoms: the number of moles of hydrogen atoms directly bonded to silicon atoms is 0.1 of the number of moles of alkenyl groups derived from component (A) ~ 5.0 times the amount,
(C) a thermally conductive filler consisting of (C-1) to (C-3) below: 4,000 to 5,800 parts by mass;
(C-1) spherical alumina filler having an average particle size of more than 70 μm and 135 μm or less: 1,400 to 3,000 parts by mass;
(C-2) a spherical alumina filler having an average particle size of more than 8 μm and 40 μm or less: 500 to 2,300 parts by mass;
(C-3) Amorphous alumina filler having an average particle size of more than 0.4 μm and 4 μm or less: 1,000 to 1,800 parts by mass,
(D) platinum group metal-based curing catalyst: 0.1 to 2,000 ppm in terms of platinum group metal element mass with respect to component (A), and (E) addition reaction controller: 0.01 to 2.0 mass A thermally conductive silicone composition is provided comprising:
 このような熱伝導性シリコーン組成物であれば、圧縮性、絶縁性、熱伝導性、加工性に優れた熱伝導性シリコーン組成物及びその硬化物を与えるものとなる。 Such a thermally conductive silicone composition provides a thermally conductive silicone composition with excellent compressibility, insulation, thermal conductivity, and workability, and a cured product thereof.
 また、本発明では、更に、(F)成分として、
(F-1)下記一般式(1)で表されるアルコキシシラン化合物、及び
  R Si(OR4-a-b     (1)
(式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に炭素原子数1~5のアルキル基、炭素原子数6~12のアリール基、及び炭素原子数7~12のアラルキル基から選ばれる基であり、Rは独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
(F-2)下記一般式(2)で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサン、
Figure JPOXMLDOC01-appb-C000003
(式中、Rは独立に炭素原子数1~6のアルキル基であり、cは5~100の整数である。)
からなる群から選ばれる1種以上を前記(A)成分の100質量部に対して、0.01~300質量部で含有するものであることが好ましい。
Further, in the present invention, as the component (F),
(F-1) an alkoxysilane compound represented by the following general formula (1), and R 1 a R 2 b Si(OR 3 ) 4-ab (1)
(wherein R 1 is independently an alkyl group having 6 to 15 carbon atoms, R 2 is independently an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a group selected from 7 to 12 aralkyl groups, R 3 is independently an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, with the proviso that a+b is an integer from 1 to 3.)
(F-2) a dimethylpolysiloxane having one molecular chain end blocked with a trialkoxysilyl group represented by the following general formula (2);
Figure JPOXMLDOC01-appb-C000003
(Wherein, R 4 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.)
0.01 to 300 parts by mass of one or more selected from the group consisting of component (A) per 100 parts by mass of component (A).
 このような熱伝導シリコーン組成物であれば、オイル分離を誘発しない。 Such a thermally conductive silicone composition does not induce oil separation.
 また、本発明では、更に、(G)成分として、酸化セリウムを前記(A)成分の100質量部に対して、8.0~25.0質量部で含有するものであることが好ましい。 Further, in the present invention, it is preferable that 8.0 to 25.0 parts by mass of cerium oxide is contained as component (G) with respect to 100 parts by mass of component (A).
 このような熱伝導シリコーン組成物であれば、耐熱性が向上する。 With such a thermally conductive silicone composition, heat resistance is improved.
 また、本発明では、前記熱伝導性シリコーン組成物の硬化物のアスカーC硬度計で測定した硬さにおいて、150℃×500時間エージング後の硬さが、エージング前の硬さに対して、-5ポイント以上、40ポイント以下のものであることが好ましい。 In addition, in the present invention, the hardness of the cured product of the thermally conductive silicone composition measured with an Asker C hardness tester after aging at 150° C. for 500 hours is - A score of 5 points or more and 40 points or less is preferable.
 このような熱伝導性シリコーン組成物の硬化物であれば、高温で長時間使用しても硬度の低下が小さいものとなる。 A cured product of such a thermally conductive silicone composition exhibits little decrease in hardness even when used at high temperatures for a long time.
 また、本発明では、更に、(H)成分として、下記一般式(3)で表される23℃における動粘度が10~100,000mm/sのオルガノポリシロキサン
Figure JPOXMLDOC01-appb-C000004
(式中、Rは独立に炭素数1~6のアルキル基、炭素数6~12のアリール基、及び炭素数7~12のアラルキル基から選ばれる基、dは5~2,000の整数である。)
を前記(A)成分の100質量部に対して、0.1~100質量部で含有するものであることが好ましい。
Further, in the present invention, as the component (H), an organopolysiloxane represented by the following general formula (3) and having a kinematic viscosity at 23° C. of 10 to 100,000 mm 2 /s
Figure JPOXMLDOC01-appb-C000004
(wherein R 5 is a group independently selected from an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms; d is an integer of 5 to 2,000; is.)
is preferably contained in an amount of 0.1 to 100 parts by mass with respect to 100 parts by mass of the component (A).
 このような熱伝導シリコーン組成物であれば、柔軟性に優れ、得られる硬化物のオイルブリードが発生しづらくなる。 Such a thermally conductive silicone composition has excellent flexibility, and the resulting cured product is less prone to oil bleeding.
 また、本発明では、23℃におけるフローテスタ粘度計で測定した前記熱伝導性シリコーン組成物の粘度が2,000Pa・s以下のものであることが好ましい。 Further, in the present invention, it is preferable that the viscosity of the thermally conductive silicone composition measured with a flow tester viscometer at 23°C is 2,000 Pa·s or less.
 このような熱伝導シリコーン組成物であれば、成形性(加工性)に優れる。 Such a thermally conductive silicone composition is excellent in moldability (workability).
 また、本発明では、前記熱伝導性シリコーン組成物の硬化物のホットディスク法により測定した23℃における熱伝導率が、6.5W/m・K以上のものであることが好ましい。 In addition, in the present invention, it is preferable that the thermal conductivity at 23°C of the cured product of the thermally conductive silicone composition measured by the hot disk method is 6.5 W/m·K or more.
 このような熱伝導性シリコーン組成物の硬化物であれば、熱伝導性に優れる。 A cured product of such a thermally conductive silicone composition has excellent thermal conductivity.
 前記熱伝導性シリコーン組成物の硬化物の1mm厚における絶縁破壊電圧が10kV/mm以上のものであることが好ましい。 It is preferable that the cured product of the thermally conductive silicone composition has a dielectric breakdown voltage of 10 kV/mm or more at a thickness of 1 mm.
 このような熱伝導性シリコーン組成物の硬化物であれば、使用時に安定的に絶縁を確保することができる。 A cured product of such a thermally conductive silicone composition can ensure stable insulation during use.
 また、本発明では、上記熱伝導性シリコーン組成物の硬化物である熱伝導性シリコーン硬化物を提供する。 The present invention also provides a cured thermally conductive silicone product, which is a cured product of the above thermally conductive silicone composition.
 このような熱伝導性シリコーン硬化物であれば、圧縮性、絶縁性、熱伝導性、加工性に優れたものとなる。 Such a thermally conductive silicone cured product has excellent compressibility, insulation, thermal conductivity, and workability.
 また、本発明では、前記熱伝導性シリコーン硬化物の形状がシート状のものであることができる。 In addition, in the present invention, the shape of the thermally conductive silicone cured product can be a sheet.
 このような熱伝導性シリコーン硬化物であれば、取り扱い性に優れる。 Such a thermally conductive silicone cured product is excellent in handleability.
 本発明の熱伝導性シリコーン組成物は、平均粒径が0.4μmを超えて4μm以下の不定形アルミナ及び平均粒径が8μmを超えて40μm以下の球状アルミナと、平均粒径が70μmを超えて135μm以下の球状アルミナとを特定の配合量で併用することで、粒径が小さい球状アルミナの欠点を大粒径球状アルミナが補い、大粒径球状アルミナの欠点を粒径が小さい球状アルミナが補うことで、圧縮性、絶縁性、熱伝導性、加工性に優れた、特に6.5W/m・K以上の熱伝導率を有する熱伝導性シリコーン硬化物、及びシート状に成型させた熱伝導性シリコーン成型物を提供することができる。また、酸化セリウムの添加により、高温保存時における硬化物の硬度低下を抑制した熱伝導性シリコーン組成物を提供することもできる。 The thermally conductive silicone composition of the present invention comprises amorphous alumina having an average particle size of more than 0.4 μm and not more than 4 μm, spherical alumina having an average particle size of more than 8 μm and not more than 40 μm, and alumina having an average particle size of more than 70 μm. By using together a spherical alumina of 135 μm or less in a specific blending amount, the drawback of the spherical alumina with a small particle size is compensated for by the spherical alumina with a large particle size, and the drawback of the spherical alumina with a large particle size is compensated by the spherical alumina with a small particle size. By supplementing it, a thermally conductive silicone cured product having excellent compressibility, insulation, thermal conductivity, and workability, especially having a thermal conductivity of 6.5 W / m K or more, and a heat molded into a sheet Conductive silicone moldings can be provided. Moreover, by adding cerium oxide, it is possible to provide a thermally conductive silicone composition in which the decrease in hardness of the cured product is suppressed when stored at high temperature.
 上述のように、圧縮性、絶縁性、熱伝導性、加工性に優れた熱伝導性シリコーン組成物及びその硬化物の開発が求められていた。 As described above, there has been a demand for the development of a thermally conductive silicone composition with excellent compressibility, insulation, thermal conductivity, and workability, and a cured product thereof.
 本発明者らは、上記目的を達成するため鋭意検討を行った結果、平均粒径が0.4μmを超えて4μm以下の不定形アルミナ及び平均粒径が8μmを超えて40μm以下の球状アルミナと、平均粒径が70μmを超えて135μm以下の球状アルミナとを特定の配合量で併用することで上記問題を解決することができることを見出した。即ち、比表面積が小さい70μmを超えて135μm以下の球状アルミナを多く配合することで、効果的に熱伝導性を向上させることが可能であり、かつ粘度が低く加工性に優れたシリコーン組成物及びその硬化物を提供できる。 The inventors of the present invention have made intensive studies to achieve the above object, and found that amorphous alumina having an average particle size of more than 0.4 μm and not more than 4 μm and spherical alumina having an average particle size of more than 8 μm and not more than 40 μm and spherical alumina having an average particle size of more than 70 μm and not more than 135 μm in a specific compounding amount can solve the above problems. That is, by blending a large amount of spherical alumina having a small specific surface area of more than 70 μm and 135 μm or less, it is possible to effectively improve the thermal conductivity, and the silicone composition has a low viscosity and excellent workability. The cured product can be provided.
 また40μm以下の平均粒径を有する球状アルミナ及び不定形アルミナを併用することにより、組成物の流動性が向上し、加工性が改善する。更に8μmを超えた粒子には球状アルミナを使用するため、反応釜や撹拌羽根の磨耗が抑えられ、絶縁性が向上する。 In addition, the combined use of spherical alumina and amorphous alumina having an average particle size of 40 μm or less improves the fluidity of the composition and improves workability. Furthermore, since spherical alumina is used for particles exceeding 8 μm, abrasion of the reactor and stirring blades is suppressed, and insulation is improved.
 つまり、粒径が小さい球状アルミナの欠点を大粒径球状アルミナが補い、大粒径球状アルミナの欠点を粒径が小さい球状アルミナ及び不定形アルミナが補うことで、圧縮性、絶縁性、熱伝導性、加工性に優れた、特に6.5W/m・K以上の熱伝導率を有するコストの低い熱伝導性シリコーン組成物及び硬化物を与えることができることを見出した。
 また上記熱伝導性シリコーン組成物に酸化セリウムを添加することにより、高温保存時における硬化物の硬度低下を抑制できることも見出した。
In other words, the shortcomings of the spherical alumina with a small particle size are compensated for by the spherical alumina with a large particle size, and the shortcomings of the spherical alumina with a large particle size are compensated for by the spherical alumina with a small particle size and the amorphous alumina. It has been found that a low-cost thermally conductive silicone composition and a cured product having excellent properties and workability, particularly having a thermal conductivity of 6.5 W/m·K or more can be obtained.
The inventors have also found that by adding cerium oxide to the thermally conductive silicone composition, it is possible to suppress the decrease in hardness of the cured product during high-temperature storage.
 即ち、本発明は、熱伝導性シリコーン組成物であって、
(A)1分子中に2個以上のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)ケイ素原子に直接結合した水素原子を2個以上有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍量となる量、
(C)下記(C-1)~(C-3)からなる熱伝導性充填材:4,000~5,800質量部、
(C-1)平均粒径が70μmを超えて135μm以下である球状アルミナフィラー:1,400~3,000質量部、
(C-2)平均粒径が8μmを超えて40μm以下である球状アルミナフィラー:500~2,300質量部、
(C-3)平均粒径が0.4μmを超えて4μm以下である不定形アルミナフィラー:1,000~1,800質量部、
(D)白金族金属系硬化触媒:前記(A)成分に対して白金族金属元素質量換算で0.1~2,000ppm、及び
(E)付加反応制御剤:0.01~2.0質量部
を含むものである熱伝導性シリコーン組成物である。
That is, the present invention is a thermally conductive silicone composition,
(A) Organopolysiloxane having two or more alkenyl groups in one molecule: 100 parts by mass,
(B) Organohydrogenpolysiloxane having two or more hydrogen atoms directly bonded to silicon atoms: the number of moles of hydrogen atoms directly bonded to silicon atoms is 0.1 of the number of moles of alkenyl groups derived from component (A) ~ 5.0 times the amount,
(C) a thermally conductive filler consisting of (C-1) to (C-3) below: 4,000 to 5,800 parts by mass;
(C-1) spherical alumina filler having an average particle size of more than 70 μm and 135 μm or less: 1,400 to 3,000 parts by mass;
(C-2) a spherical alumina filler having an average particle size of more than 8 μm and 40 μm or less: 500 to 2,300 parts by mass;
(C-3) Amorphous alumina filler having an average particle size of more than 0.4 μm and 4 μm or less: 1,000 to 1,800 parts by mass,
(D) platinum group metal curing catalyst: 0.1 to 2,000 ppm in terms of platinum group metal element mass relative to component (A), and (E) addition reaction controller: 0.01 to 2.0 mass A thermally conductive silicone composition comprising:
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。 Although the present invention will be described in detail below, the present invention is not limited to these.
[熱伝導性シリコーン組成物]
 本発明の熱伝導性シリコーン組成物は、
(A)1分子中に2個以上のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)ケイ素原子に直接結合した水素原子を2個以上有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍量となる量、
(C)下記(C-1)~(C-3)からなる熱伝導性充填材:4,000~5,800質量部、
(C-1)平均粒径が70μmを超えて135μm以下である球状アルミナフィラー:1,400~3,000質量部、
(C-2)平均粒径が8μmを超えて40μm以下である球状アルミナフィラー:500~2,300質量部、
(C-3)平均粒径が0.4μmを超えて4μm以下である不定形アルミナフィラー:1,000~1,800質量部、
(D)白金族金属系硬化触媒:前記(A)成分に対して白金族金属元素質量換算で0.1~2,000ppm、及び
(E)付加反応制御剤:0.01~2.0質量部
を必須成分として含有する。以下、各成分について詳述する。
[Thermal conductive silicone composition]
The thermally conductive silicone composition of the present invention is
(A) Organopolysiloxane having two or more alkenyl groups in one molecule: 100 parts by mass,
(B) Organohydrogenpolysiloxane having two or more hydrogen atoms directly bonded to silicon atoms: the number of moles of hydrogen atoms directly bonded to silicon atoms is 0.1 of the number of moles of alkenyl groups derived from component (A) ~ 5.0 times the amount,
(C) a thermally conductive filler consisting of (C-1) to (C-3) below: 4,000 to 5,800 parts by mass;
(C-1) spherical alumina filler having an average particle size of more than 70 μm and 135 μm or less: 1,400 to 3,000 parts by mass;
(C-2) a spherical alumina filler having an average particle size of more than 8 μm and 40 μm or less: 500 to 2,300 parts by mass;
(C-3) Amorphous alumina filler having an average particle size of more than 0.4 μm and 4 μm or less: 1,000 to 1,800 parts by mass,
(D) platinum group metal-based curing catalyst: 0.1 to 2,000 ppm in terms of platinum group metal element mass with respect to component (A), and (E) addition reaction controller: 0.01 to 2.0 mass part as an essential component. Each component will be described in detail below.
[(A)アルケニル基を有するオルガノポリシロキサン]
 (A)成分である1分子中に2個以上のアルケニル基を有するオルガノポリシロキサンは、ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサンであり、本発明の熱伝導性シリコーン硬化物の主剤となるものである。通常は主鎖部分が基本的にジオルガノシロキサン単位の繰り返しからなるのが一般的であるが、これは分子構造の一部に分枝状の構造を含んだものであってもよく、また環状体であってもよいが、硬化物の機械的強度等、物性の点から直鎖状のジオルガノポリシロキサンが好ましい。
[(A) Organopolysiloxane having an alkenyl group]
The organopolysiloxane having two or more alkenyl groups in one molecule, which is the component (A), is an organopolysiloxane having two or more silicon-bonded alkenyl groups in one molecule. It is the main ingredient of cured silicone products. Generally, the main chain basically consists of repeating diorganosiloxane units, but this may include a branched structure as part of the molecular structure, or a cyclic structure. Although it may be a solid, linear diorganopolysiloxane is preferable from the viewpoint of physical properties such as mechanical strength of the cured product.
 ケイ素原子に結合するアルケニル基以外の官能基としては、以下に例示する1価炭化水素基が挙げられる。例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基等が挙げられる。これらの1価炭化水素基の中で、好ましくは炭素原子数が1~10、より好ましくは炭素原子数が1~6のものである。中でも、メチル基、エチル基、プロピル基等の炭素原子数1~3のアルキル基、及びフェニル基が好適に用いられる。また、ケイ素原子に結合したアルケニル基以外の官能基は全てが同一であることに限定するものではない。 Examples of functional groups other than alkenyl groups bonded to silicon atoms include monovalent hydrocarbon groups exemplified below. For example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, etc. Alkyl group; cycloalkyl group such as cyclopentyl group, cyclohexyl group, cycloheptyl group; aryl group such as phenyl group, tolyl group, xylyl group, naphthyl group, biphenylyl group; benzyl group, phenylethyl group, phenylpropyl group, methylbenzyl and aralkyl groups such as groups. Among these monovalent hydrocarbon groups, those having 1 to 10 carbon atoms are preferred, and those having 1 to 6 carbon atoms are more preferred. Among them, alkyl groups having 1 to 3 carbon atoms such as methyl group, ethyl group and propyl group, and phenyl group are preferably used. Moreover, the functional groups other than the alkenyl groups bonded to the silicon atoms are not limited to all being the same.
 また、アルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等の通常炭素原子数が2~8程度のものが挙げられ、中でもビニル基、アリル基等の低級アルケニル基が好ましく、特に好ましくはビニル基である。なお、アルケニル基は、分子中に2個以上存在することが必要であるが、得られる硬化物の柔軟性がよいものとするため、分子鎖末端のケイ素原子にのみ結合して存在することが好ましい。 Examples of the alkenyl group include those having usually about 2 to 8 carbon atoms such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group and cyclohexenyl group. A lower alkenyl group such as an allyl group is preferred, and a vinyl group is particularly preferred. Two or more alkenyl groups must be present in the molecule, but in order to improve the flexibility of the resulting cured product, the alkenyl group may be present bonded only to the silicon atom at the end of the molecular chain. preferable.
 このオルガノポリシロキサンの23℃における動粘度は、通常、10~100,000mm/s、特に好ましくは500~50,000mm/sの範囲である。前記動粘度がこの範囲内であれば、得られる組成物の保存安定性が良く、伸展性が悪くならない。なお、本明細書において、動粘度はJIS Z 8803:2011に記載の方法でキャノン-フェンスケ型粘度計を用いて23℃で測定した場合の値である。 The kinematic viscosity of this organopolysiloxane at 23° C. is generally 10 to 100,000 mm 2 /s, preferably 500 to 50,000 mm 2 /s. When the kinematic viscosity is within this range, the obtained composition has good storage stability and does not deteriorate in spreadability. In this specification, kinematic viscosity is a value measured at 23° C. using a Canon-Fenske viscometer according to the method described in JIS Z 8803:2011.
 この(A)成分の1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンは、1種単独でも、動粘度が異なる2種以上を組み合わせて用いてもよい。 The organopolysiloxane having at least two alkenyl groups in one molecule of component (A) may be used singly or in combination of two or more having different kinematic viscosities.
[(B)オルガノハイドロジェンポリシロキサン]
 (B)成分のオルガノハイドロジェンポリシロキサンは、ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサンである。即ち、1分子中に少なくとも2個以上、好ましくは2~100個のケイ素原子に直接結合する水素原子(ヒドロシリル基)を有するオルガノハイドロジェンポリシロキサンであり、(A)成分の架橋剤として作用する成分である。即ち、(B)成分中のヒドロシリル基と(A)成分中のアルケニル基とが、後述する(D)成分の白金族金属系硬化触媒により促進されるヒドロシリル化反応により付加して、架橋構造を有する3次元網目構造を与える。なお、ヒドロシリル基の数が2個未満の場合、硬化しない。
[(B) Organohydrogenpolysiloxane]
The organohydrogenpolysiloxane of component (B) is an organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms. That is, it is an organohydrogenpolysiloxane having at least two, preferably 2 to 100, hydrogen atoms (hydrosilyl groups) directly bonded to silicon atoms in one molecule, and acts as a cross-linking agent for component (A). is an ingredient. That is, the hydrosilyl groups in the component (B) and the alkenyl groups in the component (A) are added by a hydrosilylation reaction promoted by the platinum group metal-based curing catalyst of the component (D), which will be described later, to form a crosslinked structure. gives a three-dimensional network structure with In addition, when the number of hydrosilyl groups is less than 2, it does not cure.
 ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサンとしては、下記平均構造式(4)で示されるものが用いられるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000005
(式中、Rは独立に水素原子、又は炭素数1~12のアルキル基、炭素数6~12のアリール基、及び炭素数7~12のアラルキル基から選ばれる1価炭化水素基である。ただし、1分子中の2個以上、好ましくは2~10個のRは水素原子である。また、eは1以上の整数、好ましくは10~200の整数である。)
As the organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms, those represented by the following average structural formula (4) are used, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000005
(wherein R 6 is independently a hydrogen atom or a monovalent hydrocarbon group selected from an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms. However, 2 or more, preferably 2 to 10, R 6 in one molecule are hydrogen atoms, and e is an integer of 1 or more, preferably 10 to 200.)
 式(4)中、Rは独立に水素原子、又は炭素数1~12のアルキル基、炭素数6~12のアリール基、及び炭素数7~12のアラルキル基から選ばれる1価炭化水素基である。ただし、1分子中の2個以上、好ましくは2~10個のRは水素原子である。Rの水素原子以外の1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基が挙げられる。これらの1価炭化水素基の中で、好ましくは炭素原子数が1~10、特に好ましくは炭素原子数が1~6のものであり、中でも、好ましくはメチル基、エチル基、プロピル基等の炭素原子数1~3のアルキル基、及びフェニル基が好適に用いられる。また、Rは全てが同一であることに限定するものではない。また、eは1以上の整数、好ましくは10~200の整数である。 In formula (4), R 6 is independently a hydrogen atom or a monovalent hydrocarbon group selected from an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms. is. However, 2 or more, preferably 2 to 10 R 6 in one molecule are hydrogen atoms. Examples of monovalent hydrocarbon groups other than hydrogen atoms for R 6 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group and heptyl group. Alkyl groups such as octyl group, nonyl group, decyl group and dodecyl group; cycloalkyl groups such as cyclopentyl group, cyclohexyl group and cycloheptyl group; aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and biphenylyl group and aralkyl groups such as a benzyl group, a phenylethyl group, a phenylpropyl group, and a methylbenzyl group. Among these monovalent hydrocarbon groups, those having 1 to 10 carbon atoms are preferred, and those having 1 to 6 carbon atoms are particularly preferred. An alkyl group having 1 to 3 carbon atoms and a phenyl group are preferably used. Also, R6 is not limited to being the same. Also, e is an integer of 1 or more, preferably an integer of 10-200.
 (B)成分の添加量は、(B)成分由来のヒドロシリル基が(A)成分由来のアルケニル基1モルに対して0.1~5.0モルとなる量、即ちケイ素原子に直接結合した水素原子のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍量となる量であり、好ましくは0.3~2.0モルとなる量、更に好ましくは0.5~1.0モルとなる量である。(B)成分由来のヒドロシリル基の量が(A)成分由来のアルケニル基1モルに対して0.1モル未満であると硬化しない、又は硬化物の強度が不十分で成形体としての形状を保持できず取り扱えない場合がある。また5.0モルを超えると硬化物の柔軟性がなくなり、硬化物が脆くなる。 The amount of component (B) to be added is such that the hydrosilyl groups derived from component (B) are 0.1 to 5.0 mol per 1 mol of alkenyl groups derived from component (A), that is, they are directly bonded to silicon atoms. The amount is such that the number of moles of hydrogen atoms is 0.1 to 5.0 times the number of moles of alkenyl groups derived from component (A), preferably 0.3 to 2.0 moles, more preferably 0.3 to 2.0 times. is an amount that is 0.5 to 1.0 mol. If the amount of hydrosilyl groups derived from the component (B) is less than 0.1 mol per 1 mol of the alkenyl groups derived from the component (A), it will not be cured, or the strength of the cured product will be insufficient and the shape as a molded product will not be obtained. It may not be possible to hold and handle. On the other hand, if it exceeds 5.0 mol, the cured product loses flexibility and becomes brittle.
[(C)熱伝導性充填材]
 (C)成分である熱伝導性充填材は、下記(C-1)~(C-3)成分からなるものである。
(C-1)平均粒径が70μmを超えて135μm以下である球状アルミナフィラー、
(C-2)平均粒径が8μmを超えて40μm以下である球状アルミナフィラー、
(C-3)平均粒径が0.4μmを超えて4μm以下である不定形アルミナフィラー、
 なお、本発明において、上記平均粒径は、日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより、レーザ回折・散乱法にて測定した体積基準の累積平均粒径(メディアン径)の値である。
[(C) Thermally conductive filler]
The thermally conductive filler, which is the component (C), consists of the following components (C-1) to (C-3).
(C-1) a spherical alumina filler having an average particle size of more than 70 μm and 135 μm or less;
(C-2) a spherical alumina filler having an average particle size of more than 8 μm and 40 μm or less;
(C-3) an amorphous alumina filler having an average particle size of more than 0.4 μm and 4 μm or less;
In the present invention, the average particle size is a volume-based cumulative average particle size (median diameter) value measured by a laser diffraction/scattering method using Microtrac MT3300EX, a particle size analyzer manufactured by Nikkiso Co., Ltd. is.
 (C-1)成分の球状アルミナフィラーは、熱伝導率を優位に向上させることができる。球状アルミナフィラーの平均粒径は70μmを超えて135μm以下であり、70μmを超えて120μm以下であることが好ましく、さらに70μmを超えて100μm以下であることがより好ましい。平均粒径が70μm以下であると、熱伝導性を向上させる効果が低くなり、また、組成物の粘度が上昇し、加工性が悪くなる。また、平均粒径が135μmより大きいと、反応釜や撹拌羽根の磨耗が顕著となり、組成物の絶縁性が低下する懸念がある。さらに、プレス成形時に球状アルミナと樹脂の分離が発生し、シート端部がフィラーリッチ部となり脆化してしまう問題があった。この場合、シート成形における材料収率が大きく低下してしまう。(C-1)成分の球状アルミナフィラーとしては1種又は2種以上を複合して用いてもよい。2種以上を複合して用いる場合は、それぞれ上記平均粒径の範囲を満たせばよい。 The (C-1) component spherical alumina filler can significantly improve the thermal conductivity. The average particle diameter of the spherical alumina filler is more than 70 μm and 135 μm or less, preferably more than 70 μm and 120 μm or less, more preferably more than 70 μm and 100 μm or less. If the average particle diameter is 70 μm or less, the effect of improving the thermal conductivity is reduced, the viscosity of the composition is increased, and the processability is deteriorated. On the other hand, if the average particle size is larger than 135 μm, the abrasion of the reaction vessel and stirring blades becomes remarkable, and there is a concern that the insulating properties of the composition may be lowered. Furthermore, there is a problem that the spherical alumina and the resin are separated from each other during press molding, and the edge of the sheet becomes a filler-rich area and becomes embrittled. In this case, the material yield in sheet molding is greatly reduced. The (C-1) component spherical alumina filler may be used singly or in combination of two or more. When two or more kinds are used in combination, each of them should satisfy the above average particle size range.
 (C-2)成分の球状アルミナフィラーは、組成物の熱伝導率を向上させるとともに、不定形アルミナフィラーと反応釜や撹拌羽根の接触を抑制し、磨耗を抑えるバリア効果を提供する。平均粒径は8μmを超えて40μm以下であり、10~40μmであることが好ましい。平均粒径が8μm以下であると、バリア効果が低下し、不定形アルミナフィラーによる反応釜や撹拌羽根の磨耗が顕著となる。 The spherical alumina filler of component (C-2) improves the thermal conductivity of the composition, suppresses contact between the amorphous alumina filler and the reaction vessel and stirring blades, and provides a barrier effect that suppresses wear. The average particle size is more than 8 μm and 40 μm or less, preferably 10 to 40 μm. If the average particle size is 8 μm or less, the barrier effect is lowered, and the wear of the reactor and stirring blades due to the amorphous alumina filler becomes remarkable.
 (C-3)成分の不定形アルミナフィラーは、組成物の熱伝導率を向上させる役割も担うが、その主な役割は組成物の粘度調整、滑らかさ向上、充填性向上である。(C-3)成分の平均粒径は0.4μmを超えて4μm以下であり、0.6~3μmであることが、上記した特性発現のためにより好ましい。 The (C-3) component amorphous alumina filler also plays a role in improving the thermal conductivity of the composition, but its main role is to adjust the viscosity of the composition, improve smoothness, and improve fillability. The average particle size of the component (C-3) is more than 0.4 μm and 4 μm or less, and more preferably 0.6 to 3 μm in order to develop the properties described above.
 (C-1)成分の配合量は、(A)成分100質量部に対して1,400~3,000質量部であり、好ましくは1,600~2,500質量部である。少なすぎると熱伝導率の向上が困難であり、多すぎると反応釜や撹拌羽根の磨耗が顕著となり、組成物の絶縁性が低下する。 The blending amount of component (C-1) is 1,400 to 3,000 parts by mass, preferably 1,600 to 2,500 parts by mass, per 100 parts by mass of component (A). If it is too small, it will be difficult to improve the thermal conductivity, and if it is too large, the wear of the reactor and stirring blades will be significant, and the insulating properties of the composition will be reduced.
 (C-2)成分の配合量は、(A)成分100質量部に対して500~2,300質量部であり、好ましくは1,000~1,800質量部である。少なすぎると熱伝導率の向上が困難であり、多すぎると組成物の流動性が失われ、成形性が損なわれる。 The blending amount of component (C-2) is 500 to 2,300 parts by mass, preferably 1,000 to 1,800 parts by mass, per 100 parts by mass of component (A). If it is too small, it will be difficult to improve the thermal conductivity, and if it is too large, the fluidity of the composition will be lost and moldability will be impaired.
 (C-3)成分の配合量は、(A)成分100質量部に対して1,000~1,800質量部であり、好ましくは1,100~1,500質量部である。少なすぎると熱伝導率の向上が困難であり、多すぎると組成物の流動性が失われ、成形性が損なわれる。 The blending amount of component (C-3) is 1,000 to 1,800 parts by mass, preferably 1,100 to 1,500 parts by mass, per 100 parts by mass of component (A). If it is too small, it will be difficult to improve the thermal conductivity, and if it is too large, the fluidity of the composition will be lost and moldability will be impaired.
 更に、(C)成分の配合量(即ち、上記(C-1)~(C-3)成分の合計配合量)は、(A)成分100質量部に対して4,000~5,800質量部であることが必要であり、好ましくは4,500~5,000質量部である。この配合量が4,000質量部未満の場合には、得られる組成物の熱伝導率が悪くなる。5,800質量部を超える場合には、組成物の流動性が失われ、成形性が損なわれる。 Furthermore, the blending amount of component (C) (that is, the total blending amount of components (C-1) to (C-3) above) is 4,000 to 5,800 mass parts per 100 parts by mass of component (A). parts, preferably 4,500 to 5,000 parts by mass. If the amount is less than 4,000 parts by mass, the resulting composition will have poor thermal conductivity. If it exceeds 5,800 parts by mass, the fluidity of the composition is lost and moldability is impaired.
 上記配合量で(C)成分を用いることで、上記した本発明の効果がより有利にかつ確実に達成できる。 By using component (C) in the above compounding amount, the effects of the present invention described above can be achieved more advantageously and reliably.
[(D)白金族金属系硬化触媒]
 (D)成分の白金族金属系硬化触媒は、(A)成分由来のアルケニル基と、(B)成分由来のヒドロシリル基の付加反応を促進するための触媒であり、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられる。その具体例としては、例えば、白金(白金黒を含む)、ロジウム、パラジウム等の白金族金属単体、HPtCl・nHO、HPtCl・nHO、NaHPtCl・nHO、KaHPtCl・nHO、NaPtCl・nHO、KPtCl・nHO、PtCl・nHO、PtCl、NaHPtCl・nHO(但し、式中、nは0~6の整数であり、好ましくは0又は6である。)等の塩化白金、塩化白金酸及び塩化白金酸塩、アルコール変性塩化白金酸(米国特許第3,220,972号明細書参照)、塩化白金酸とオレフィンとのコンプレックス(米国特許第3,159,601号明細書、同第3,159,662号明細書、同第3,775,452号明細書参照)、白金黒、パラジウム等の白金族金属をアルミナ、シリカ、カーボン等の担体に担持させたもの、ロジウム-オレフィンコンプレックス、クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒)、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサン、特にビニル基含有環状シロキサンとのコンプレックス等が挙げられる。
[(D) Platinum Group Metal Curing Catalyst]
The platinum group metal-based curing catalyst of the component (D) is a catalyst for promoting the addition reaction between the alkenyl group derived from the component (A) and the hydrosilyl group derived from the component (B), and is used for the hydrosilylation reaction. well-known catalysts. Specific examples thereof include, for example, platinum (including platinum black), rhodium, palladium, and other platinum group metal simple substances, H 2 PtCl 4 ·nH 2 O, H 2 PtCl 6 ·nH 2 O, NaHPtCl 6 ·nH 2 O , KaHPtCl6.nH2O , Na2PtCl6.nH2O , K2PtCl4.nH2O , PtCl4.nH2O , PtCl2 , Na2HPtCl4.nH2O ( wherein , n is an integer of 0 to 6, preferably 0 or 6.), platinum chloride, chloroplatinic acid and chloroplatinate, alcohol-modified chloroplatinic acid (US Pat. See), a complex of chloroplatinic acid and an olefin (see U.S. Pat. Nos. 3,159,601, 3,159,662 and 3,775,452), platinum black , platinum group metal such as palladium supported on a carrier such as alumina, silica, carbon, etc., rhodium-olefin complex, chlorotris (triphenylphosphine) rhodium (Wilkinson catalyst), platinum chloride, chloroplatinic acid or chloroplatinic acid A complex of a salt and a vinyl group-containing siloxane, particularly a vinyl group-containing cyclic siloxane, and the like can be mentioned.
 (D)成分の配合量は、(A)成分に対して白金族金属元素質量換算で0.1~2,000ppmであり、好ましくは50~1,000ppmである。(D)成分の配合量が少なすぎると付加反応が進まず、多すぎると経済的に不利であるため好ましくない。 The blending amount of component (D) is 0.1 to 2,000 ppm, preferably 50 to 1,000 ppm, based on the mass of the platinum group metal element relative to component (A). If the amount of component (D) is too small, the addition reaction will not proceed, and if it is too large, it will be economically disadvantageous.
[(E)付加反応制御剤]
 (E)成分の付加反応制御剤は、通常の付加反応硬化型シリコーン組成物に用いられる公知の付加反応制御剤を全て用いることができる。例えば、1-エチニル-1-ヘキサノール、3-ブチン-1-オール、エチニルメチリデンカルビノール等のアセチレン化合物や各種窒素化合物、有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。(E)成分を配合する場合の使用量としては、(A)成分100質量部に対して0.01~2.0質量部、特に0.1~1.2質量部程度が望ましい。(E)成分の配合量が少なすぎると付加反応の進行により組成物の取り扱い性に劣る場合があり、多すぎると硬化反応が進まず、成形効率が損なわれる場合がある。
[(E) addition reaction control agent]
Component (E), the addition reaction inhibitor, can be any of the known addition reaction inhibitors used in ordinary addition reaction curing silicone compositions. Examples thereof include acetylene compounds such as 1-ethynyl-1-hexanol, 3-butyn-1-ol and ethynylmethylidene carbinol, various nitrogen compounds, organic phosphorus compounds, oxime compounds and organic chloro compounds. When component (E) is blended, the amount used is desirably about 0.01 to 2.0 parts by mass, particularly about 0.1 to 1.2 parts by mass, per 100 parts by mass of component (A). If the amount of the component (E) is too small, the addition reaction may progress, resulting in poor handleability of the composition.
[(F)表面処理剤]
 本発明の熱伝導性シリコーン組成物には、組成物調製時に(C)成分である熱伝導性充填材を疎水化処理し、(A)成分であるアルケニル基を有するオルガノポリシロキサンとの濡れ性を向上させ、(C)成分である熱伝導性充填材を(A)成分からなるマトリックス中に均一に分散させることを目的として、(F)成分の表面処理剤を配合することができる。該(F)成分としては、特に限定されないが、特に下記に示す(F-1)成分及び(F-2)成分からなる群から選択される1種以上が好ましい。
[(F) Surface treatment agent]
In the thermally conductive silicone composition of the present invention, the thermally conductive filler, which is component (C), is subjected to a hydrophobizing treatment when the composition is prepared, and wettability with the organopolysiloxane having an alkenyl group, which is component (A), is improved. For the purpose of improving and uniformly dispersing the thermally conductive filler as component (C) in the matrix consisting of component (A), the surface treatment agent as component (F) can be blended. The component (F) is not particularly limited, but is preferably one or more selected from the group consisting of components (F-1) and (F-2) shown below.
 (F-1)成分は、下記一般式(1)で表されるアルコキシシラン化合物である。
  R Si(OR4-a-b          (1)
(式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に炭素原子数1~5のアルキル基、炭素原子数6~12のアリール基、及び炭素原子数7~12のアラルキル基から選ばれる基であり、Rは独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
Component (F-1) is an alkoxysilane compound represented by the following general formula (1).
R 1 a R 2 b Si(OR 3 ) 4-ab (1)
(wherein R 1 is independently an alkyl group having 6 to 15 carbon atoms, R 2 is independently an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a group selected from 7 to 12 aralkyl groups, R 3 is independently an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, with the proviso that a+b is an integer from 1 to 3.)
 上記一般式(1)において、Rで表される炭素原子数6~15のアルキル基の例としては、例えば、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。このRで表されるアルキル基の炭素原子数が6~15の範囲を満たすと(A)成分の濡れ性が十分に向上し、取り扱い性がよく、組成物の低温特性が良好なものとなる。 Examples of the alkyl group having 6 to 15 carbon atoms represented by R 1 in the general formula (1) include hexyl group, octyl group, nonyl group, decyl group, dodecyl group, tetradecyl group, and the like. be done. When the number of carbon atoms in the alkyl group represented by R 1 satisfies the range of 6 to 15, the wettability of the component (A) is sufficiently improved, the handleability is good, and the low-temperature properties of the composition are good. Become.
 Rで表される炭素原子数1~5のアルキル基の例としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基が挙げられる。炭素原子数6~12のアリール基の例としては、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等が挙げられる。そして、炭素原子数7~12のアラルキル基の例としては、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等が挙げられる。中でも、好ましくはメチル基、エチル基、プロピル基等の炭素原子数1~3のアルキル基、及びフェニル基が挙げられる。Rで表される炭素原子数1~6のアルキル基の例としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基等が挙げられる。 Examples of alkyl groups having 1 to 5 carbon atoms represented by R 2 include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group and neopentyl group. are mentioned. Examples of aryl groups having 6 to 12 carbon atoms include phenyl group, tolyl group, xylyl group, naphthyl group, biphenylyl group and the like. Examples of aralkyl groups having 7 to 12 carbon atoms include benzyl group, phenylethyl group, phenylpropyl group, methylbenzyl group and the like. Among them, preferred are alkyl groups having 1 to 3 carbon atoms such as methyl group, ethyl group and propyl group, and phenyl group. Examples of alkyl groups having 1 to 6 carbon atoms represented by R 3 include methyl, ethyl, propyl, butyl and hexyl groups.
 (F-2)成分は、下記一般式(2)で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンである。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは独立に炭素原子数1~6のアルキル基であり、cは5~100の整数である。)
Component (F-2) is a dimethylpolysiloxane having one molecular chain end blocked with a trialkoxysilyl group represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000006
(Wherein, R 4 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.)
 Rで表される炭素原子数1~6のアルキル基としては、例えば、前記Rで例示されたアルキル基と同じものが例示できる。cは5~100、好ましくは5~70、特に好ましくは10~50の整数である。 Examples of the alkyl group having 1 to 6 carbon atoms represented by R 4 include the same alkyl groups exemplified for R 3 above. c is an integer of 5-100, preferably 5-70, particularly preferably 10-50.
 (F)成分の表面処理剤としては、(F-1)成分と(F-2)成分のいずれか一方でも両者を組み合わせて配合しても差し支えない。 As the (F) component surface treatment agent, either one of the (F-1) component and the (F-2) component may be blended together.
 (F)成分を配合する場合の配合量としては、(A)成分100質量部に対して0.01~300質量部、特に0.1~200質量部であることが好ましい。(F)成分の配合量が前記範囲内であるとオイル分離を誘発しない。 When component (F) is blended, the amount to be blended is preferably 0.01 to 300 parts by mass, particularly preferably 0.1 to 200 parts by mass, per 100 parts by mass of component (A). When the amount of component (F) is within the above range, oil separation is not induced.
[(G)酸化セリウム]
 本発明の熱伝導性シリコーン組成物には、耐熱性の改善、特には、前記組成物の硬化物の軟化劣化を抑制することを目的として、熱安定剤として(G)酸化セリウムを配合してもよい。酸化セリウムを配合する場合は、(A)成分100質量部に対して、8.0~25.0質量部、より好ましくは9.0~14.0質量部である。配合量がこの範囲にあると、150℃の高温で保存しても、硬度の低下が見られないので好ましい。
[(G) cerium oxide]
The thermally conductive silicone composition of the present invention contains (G) cerium oxide as a thermal stabilizer for the purpose of improving heat resistance, particularly for suppressing deterioration due to softening of the cured product of the composition. good too. When cerium oxide is blended, it is 8.0 to 25.0 parts by mass, more preferably 9.0 to 14.0 parts by mass, per 100 parts by mass of component (A). When the blending amount is within this range, even if stored at a high temperature of 150° C., no decrease in hardness is observed, which is preferable.
 酸化セリウムを添加した場合、前記熱伝導性シリコーン組成物の硬化物は、耐熱性に優れたものとなる。具体的には、前記硬化物のアスカーC硬度計で測定した硬さにおいて、150℃×500時間エージング後の硬さが、エージング前の硬さに対して、-5ポイント以上、+40ポイント以下であることが好ましく、-3ポイント以上+20ポイント以下であることがより好ましい。 When cerium oxide is added, the cured product of the thermally conductive silicone composition has excellent heat resistance. Specifically, in the hardness measured with an Asker C hardness tester of the cured product, the hardness after aging at 150 ° C. for 500 hours is -5 points or more and +40 points or less with respect to the hardness before aging. It is preferable that there is, and it is more preferable that it is -3 points or more and +20 points or less.
[(H)オルガノポリシロキサン]
 本発明の熱伝導性シリコーン組成物には、熱伝導性シリコーン組成物の粘度調整剤等の特性付与を目的として、(H)成分として、下記一般式(3)で表される23℃における動粘度が10~100,000mm/sのオルガノポリシロキサンを配合することができる。(H)成分は、可塑剤として作用する。(H)成分は、1種単独で用いても、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000007
(式中、Rは独立に炭素数1~6のアルキル基、炭素数6~12のアリール基、及び炭素数7~12のアラルキル基から選ばれる基、dは5~2,000の整数である。)
[(H) Organopolysiloxane]
In the thermally conductive silicone composition of the present invention, for the purpose of imparting properties such as a viscosity modifier to the thermally conductive silicone composition, the component (H) is a Organopolysiloxanes with viscosities of 10 to 100,000 mm 2 /s can be blended. (H) component acts as a plasticizer. (H) component may be used individually by 1 type, or may use 2 or more types together.
Figure JPOXMLDOC01-appb-C000007
(Wherein, R 5 is a group independently selected from an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms, and d is an integer of 5 to 2,000. is.)
 上記一般式(3)において、Rは独立に炭素数1~6のアルキル基、炭素数6~12のアリール基、及び炭素数7~12のアラルキル基から選ばれる基である。Rの具体例としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基等が挙げられる。中でも、好ましくはメチル基、エチル基、プロピル基等の炭素原子数1~3のアルキル基、及びフェニル基が挙げられるが、特にメチル基、フェニル基が好ましい。 In the general formula (3), R 5 is a group independently selected from an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms and an aralkyl group having 7 to 12 carbon atoms. Specific examples of R 5 include alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group and pentyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and biphenylyl group; aralkyl groups such as benzyl group, phenylethyl group, phenylpropyl group and methylbenzyl group; Among them, alkyl groups having 1 to 3 carbon atoms such as methyl group, ethyl group and propyl group, and phenyl group are preferred, and methyl group and phenyl group are particularly preferred.
 dは要求される粘度の観点から、好ましくは5~2,000の整数で、特に好ましくは10~1,000の整数である。 From the viewpoint of the required viscosity, d is preferably an integer of 5 to 2,000, particularly preferably an integer of 10 to 1,000.
 また、(H)成分の23℃における動粘度は、好ましくは10~100,000mm/sであり、特に100~10,000mm/sであることが好ましい。該動粘度が10mm/s以上であれば、得られる組成物の硬化物がオイルブリードを発生することもない。該動粘度が上記範囲内であれば、得られる熱伝導性シリコーン組成物の柔軟性に優れる。 The kinematic viscosity of component (H) at 23° C. is preferably 10 to 100,000 mm 2 /s, particularly preferably 100 to 10,000 mm 2 /s. If the kinematic viscosity is 10 mm 2 /s or more, the cured product of the obtained composition will not cause oil bleeding. If the kinematic viscosity is within the above range, the resulting thermally conductive silicone composition will be excellent in flexibility.
 (H)成分を本発明の熱伝導性シリコーン組成物に配合する場合、その配合量は特に限定されず、所望の効果が得られる量であればよいが、(A)成分100質量部に対して、好ましくは0.1~100質量部、より好ましくは1~50質量部である。前記配合量がこの範囲にあると、硬化前の熱伝導性シリコーン組成物に良好な流動性、作業性を維持し易く、また(C)成分の熱伝導性充填材を該組成物に充填するのが容易である。 When component (H) is added to the thermally conductive silicone composition of the present invention, the amount of component (H) to be added is not particularly limited as long as the desired effect is obtained. , preferably 0.1 to 100 parts by mass, more preferably 1 to 50 parts by mass. When the amount is within this range, the thermally conductive silicone composition before curing can easily maintain good fluidity and workability, and the thermally conductive filler of component (C) is filled into the composition. is easy.
[その他の成分]
 本発明の熱伝導性シリコーン組成物には、本発明の目的に応じて、更に他の成分を配合しても差し支えない。例えば、酸化鉄等の耐熱性向上剤;シリカ等の粘度調整剤;着色剤;離型剤等の任意成分を配合することができる。
[Other ingredients]
The thermally conductive silicone composition of the present invention may further contain other components depending on the purpose of the present invention. For example, optional components such as a heat resistance improver such as iron oxide; a viscosity modifier such as silica; a colorant; and a release agent can be blended.
[熱伝導性シリコーン組成物の調製]
 本発明の熱伝導性シリコーン組成物は、上述した各成分を常法に準じて均一に混合することにより調製することができる。
[Preparation of Thermally Conductive Silicone Composition]
The thermally conductive silicone composition of the present invention can be prepared by uniformly mixing the components described above according to a conventional method.
[組成物の粘度]
 本発明の熱伝導性シリコーン組成物の粘度は、23℃において2,000Pa・s以下が好ましく、より好ましくは1,500Pa・s以下である。下限値としては特に限定されないが、例えば200Pa・s以上とすることができる。粘度がこの範囲内であれば成形性が損なわれることがない。なお、本発明において、この粘度はフローテスタ粘度計による測定に基づく。
[Viscosity of composition]
The viscosity of the thermally conductive silicone composition of the present invention is preferably 2,000 Pa·s or less, more preferably 1,500 Pa·s or less at 23°C. Although the lower limit is not particularly limited, it can be, for example, 200 Pa·s or more. If the viscosity is within this range, moldability will not be impaired. In the present invention, this viscosity is based on measurement with a flow tester viscometer.
[熱伝導性シリコーン硬化物]
 本発明の熱伝導性シリコーン硬化物は、上述した本発明の熱伝導性シリコーン組成物を常法に準じて硬化したものである。本発明の熱伝導性シリコーン硬化物の形状は特に限定されないが、シート状であることが好ましい。
[Heat conductive silicone cured product]
The thermally conductive silicone cured product of the present invention is obtained by curing the above-mentioned thermally conductive silicone composition of the present invention according to a conventional method. Although the shape of the thermally conductive silicone cured product of the present invention is not particularly limited, it is preferably in the form of a sheet.
[熱伝導性シリコーン硬化物の製造方法]
 熱伝導性シリコーン組成物を成形する硬化条件としては、公知の付加反応硬化型シリコーンゴム組成物と同様でよく、例えば、常温でも十分硬化するが、必要に応じて加熱してもよい。好ましくは100~120℃で8~12分で付加硬化させるのがよい。このような本発明のシリコーン硬化物は熱伝導性に優れる。
[Method for producing cured thermally conductive silicone]
Curing conditions for molding the thermally conductive silicone composition may be the same as those for known addition reaction curing silicone rubber compositions. Addition curing is preferably carried out at 100 to 120° C. for 8 to 12 minutes. Such cured silicone products of the present invention are excellent in thermal conductivity.
[成形体の熱伝導率]
 本発明における成形体(熱伝導性シリコーン硬化物)の熱伝導率は、ホットディスク法により測定した23℃における測定値が6.5W/m・K以上、特に7.0W/m・K以上であることが望ましい。熱伝導率は高ければ高いほど好ましく、上限値としては特に限定されないが、例えば9.0W/m・K以下とすることができる。
[Thermal conductivity of compact]
The thermal conductivity of the molded product (thermally conductive silicone cured product) in the present invention is 6.5 W/m·K or more, particularly 7.0 W/m·K or more at 23° C. measured by the hot disk method. It is desirable to have The higher the thermal conductivity, the better, and although the upper limit is not particularly limited, it can be, for example, 9.0 W/m·K or less.
[成形体の絶縁破壊電圧]
 本発明における成形体の絶縁破壊電圧は、1mm厚の成形体の絶縁破壊電圧をJIS K 6249:2003に準拠して測定したときの測定値が、10kV/mm以上、より好ましくは12kV/mm以上であることが好ましい。上限値としては特に限定されないが、例えば20kV/mm以下とすることができる。絶縁破壊電圧が10kV/mm以上の成形体であれば、使用時に安定的に絶縁を確保することができる。なお、このような絶縁破壊電圧は、フィラーの種類や純度を調整することにより、調整することができる。
[Dielectric breakdown voltage of compact]
The dielectric breakdown voltage of the molded body in the present invention is 10 kV/mm or more, more preferably 12 kV/mm or more, when the dielectric breakdown voltage of a 1 mm-thick molded body is measured in accordance with JIS K 6249:2003. is preferably Although the upper limit value is not particularly limited, it can be, for example, 20 kV/mm or less. A compact having a dielectric breakdown voltage of 10 kV/mm or more can ensure stable insulation during use. Incidentally, such a dielectric breakdown voltage can be adjusted by adjusting the kind and purity of the filler.
[成形体の硬度]
 本発明における成形体の硬度は、アスカーC硬度計で測定した23℃における測定値が60以下、好ましくは40以下、より好ましくは30以下であることが好ましく、また5以上であることが好ましい。硬度がこの範囲内であれば、被放熱体の形状に沿うように変形し、被放熱体に応力をかけることなく良好な放熱特性を示すことができる。なお、このような硬度は、(A)成分と(B)成分の比率を変えて、架橋密度を調整することにより、調整することができる。
[Hardness of compact]
The hardness of the molded article in the present invention is preferably 60 or less, preferably 40 or less, more preferably 30 or less, and preferably 5 or more at 23° C. measured with an Asker C hardness tester. If the hardness is within this range, it can deform so as to conform to the shape of the body to be heat dissipated, and can exhibit good heat dissipation characteristics without applying stress to the body to be heat dissipated. Such hardness can be adjusted by changing the ratio of the component (A) and the component (B) to adjust the crosslink density.
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、組成物の粘度は23℃においてフローテスタ粘度計により測定した。測定装置としては島津製作所製のCFT-500EXを使用した。ダイ穴径をφ2mm、ダイ長さを2mm、試験荷重を10kgとして時間とストロークをプロットし、傾きから粘度を算出した。また、平均粒径は日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより、レーザ回折・散乱法にて測定した体積基準の累積平均粒径(メディアン径)の値である。 Examples and comparative examples are shown below to specifically describe the present invention, but the present invention is not limited to the following examples. The viscosity of the composition was measured with a flow tester viscometer at 23°C. CFT-500EX manufactured by Shimadzu Corporation was used as a measuring device. A die hole diameter of φ2 mm, a die length of 2 mm, and a test load of 10 kg were plotted against time and stroke, and the viscosity was calculated from the slope. The average particle diameter is a volume-based cumulative average particle diameter (median diameter) measured by a laser diffraction/scattering method using Microtrac MT3300EX, a particle size analyzer manufactured by Nikkiso Co., Ltd.
 下記実施例及び比較例に用いられる(A)~(H)成分を下記に示す。 The components (A) to (H) used in the following examples and comparative examples are shown below.
 (A)成分:下記式(5)で示されるオルガノポリシロキサン。
Figure JPOXMLDOC01-appb-C000008
(式中、Xはビニル基であり、fは下記粘度を与える数である。)
 (A-1)動粘度:600mm/s
 (A-2)動粘度:30,000mm/s
(A) Component: Organopolysiloxane represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000008
(Wherein, X is a vinyl group, and f is a number that gives the following viscosity.)
(A-1) Kinematic viscosity: 600 mm 2 /s
(A-2) Kinematic viscosity: 30,000 mm 2 /s
 (B-1)成分:下記式(6-1)で示されるオルガノハイドロジェンポリシロキサン。
Figure JPOXMLDOC01-appb-C000009
 (B-2)成分:下記式(6-2)で示されるオルガノハイドロジェンポリシロキサン。
Figure JPOXMLDOC01-appb-C000010
Component (B-1): Organohydrogenpolysiloxane represented by the following formula (6-1).
Figure JPOXMLDOC01-appb-C000009
Component (B-2): Organohydrogenpolysiloxane represented by the following formula (6-2).
Figure JPOXMLDOC01-appb-C000010
 (C)成分:平均粒径が下記の通りである球状アルミナフィラー、不定形アルミナフィラー。
 (C-1)成分:平均粒径が98.8μmの球状アルミナフィラー。
 (C-2)成分:平均粒径が23.4μmの球状アルミナフィラー。
 (C-3)成分:平均粒径が1.7μmの不定形アルミナフィラー。
 (C-4)成分:平均粒径が143μmの球状アルミナフィラー(比較例用)。
 (C-5)成分:平均粒径が3.2μmの球状アルミナフィラー(比較例用)。
Component (C): spherical alumina filler and amorphous alumina filler having the following average particle diameters.
Component (C-1): A spherical alumina filler having an average particle size of 98.8 µm.
(C-2) component: spherical alumina filler with an average particle size of 23.4 μm.
(C-3) Component: Amorphous alumina filler having an average particle size of 1.7 μm.
Component (C-4): Spherical alumina filler with an average particle size of 143 μm (for comparative example).
Component (C-5): Spherical alumina filler with an average particle size of 3.2 μm (for comparative example).
 (D)成分:5質量%塩化白金酸2-エチルヘキサノール溶液。 (D) component: 5 mass% chloroplatinic acid 2-ethylhexanol solution.
 (E)成分:エチニルメチリデンカルビノール。 (E) component: ethynylmethylidene carbinol.
 (F)成分:下記式(7)で示される平均重合度が30の片末端がトリメトキシシリル基で封鎖されたジメチルポリシロキサン。
Figure JPOXMLDOC01-appb-C000011
Component (F): A dimethylpolysiloxane having an average degree of polymerization of 30 represented by the following formula (7) and having one end blocked with a trimethoxysilyl group.
Figure JPOXMLDOC01-appb-C000011
 (G)成分:酸化セリウム。 (G) component: cerium oxide.
 (H)成分:下記式(8)で示されるジメチルポリシロキサン。
Figure JPOXMLDOC01-appb-C000012
Component (H): Dimethylpolysiloxane represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000012
[実施例1~4、比較例1~4]
 実施例1~4及び比較例1~4において、上記(A)~(H)成分を下記表1に示す所定の量を用いて下記のように熱伝導性シリコーン組成物を調製し、成形硬化させ、下記方法に従って熱伝導性シリコーン組成物の粘度、熱伝導性シリコーン硬化物の熱伝導率、硬さ、絶縁破壊電圧、及び硬化後シートの表面の気泡、シート端部の脆化を測定又は観察した。結果を表1に併記する。
[Examples 1 to 4, Comparative Examples 1 to 4]
In Examples 1 to 4 and Comparative Examples 1 to 4, the above components (A) to (H) were used in the amounts shown in Table 1 below to prepare thermally conductive silicone compositions, which were molded and cured. Then, measure the viscosity of the thermally conductive silicone composition, the thermal conductivity, hardness, dielectric breakdown voltage of the cured thermally conductive silicone composition, and the air bubbles on the surface of the cured sheet and the embrittlement of the sheet edges according to the following methods. Observed. The results are also shown in Table 1.
[熱伝導性シリコーン組成物の調製]
 (A)、(C)、(F)、(G)、(H)成分を下記表1の実施例1~4及び比較例1~4に示す所定の量で加え、プラネタリーミキサーで60分間混練した。そこに(D)成分を下記表1の実施例1~4及び比較例1~4に示す所定の量で加え、更にセパレータとの離型を促す内添離型剤として、信越化学製のフェニル変性シリコーンオイルであるKF-54を有効量加え、30分間混練した。
 そこに更に(B)、(E)成分を下記表1の実施例1~4及び比較例1~4に示す所定の量で加え、30分間混練し、熱伝導性シリコーン組成物を得た。
[Preparation of Thermally Conductive Silicone Composition]
Components (A), (C), (F), (G), and (H) were added in predetermined amounts shown in Examples 1 to 4 and Comparative Examples 1 to 4 in Table 1 below, and mixed with a planetary mixer for 60 minutes. Kneaded. Component (D) was added thereto in a predetermined amount shown in Examples 1 to 4 and Comparative Examples 1 to 4 in Table 1 below, and phenyl An effective amount of modified silicone oil KF-54 was added and kneaded for 30 minutes.
Further, components (B) and (E) were added in predetermined amounts shown in Examples 1 to 4 and Comparative Examples 1 to 4 in Table 1 below, and the mixture was kneaded for 30 minutes to obtain a thermally conductive silicone composition.
[成形方法]
 実施例1~4及び比較例1~4で得られた熱伝導性シリコーン組成物を長さ60mm×幅60mmで、厚さ6mmもしくは1mmの金型に流し込み、プレス成形機を用い、120℃、10分間で成形硬化した。
[Molding method]
The thermally conductive silicone compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were poured into a mold having a length of 60 mm, a width of 60 mm, and a thickness of 6 mm or 1 mm. It was molded and cured in 10 minutes.
[評価方法]
熱伝導性シリコーン組成物の粘度:
 実施例1~4及び比較例1~4で得られた熱伝導性シリコーン組成物の粘度を、フローテスタ粘度計にて、23℃環境下で測定した。
[Evaluation method]
Viscosity of thermally conductive silicone composition:
The viscosities of the thermally conductive silicone compositions obtained in Examples 1-4 and Comparative Examples 1-4 were measured at 23° C. using a flow tester viscometer.
成形性:
 実施例1~4及び比較例1~4で得られた熱伝導性シリコーン組成物を、プレス成型機を用いて、120℃、10分間の条件で1mm厚のシート状に成形硬化させ厚さ1mmの金型を用いてシートを成形し、シート表面の気泡有無、シート端部の脆化有無を目視、指触にて確認した。
Formability:
The thermally conductive silicone compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were molded and cured into sheets of 1 mm thickness using a press molding machine at 120° C. for 10 minutes to form sheets with a thickness of 1 mm. A sheet was molded using the mold of No. 2, and the presence or absence of bubbles on the surface of the sheet and the presence or absence of embrittlement at the edge of the sheet were visually and finger-touched.
熱伝導率:
 実施例1~4及び比較例1~4で得られた熱伝導性シリコーン組成物を、プレス成型機を用いて、120℃、10分間の条件で6mm厚のシート状に成形硬化させ、そのシートを2枚用いて、熱伝導率計(商品名:TPS-2500S、京都電子工業(株)製)により前記シートの熱伝導率を測定した。
Thermal conductivity:
The thermally conductive silicone compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were molded and cured into sheets of 6 mm thickness at 120° C. for 10 minutes using a press molding machine. The thermal conductivity of the sheet was measured with a thermal conductivity meter (trade name: TPS-2500S, manufactured by Kyoto Electronics Industry Co., Ltd.).
絶縁破壊電圧:
 実施例1~4及び比較例1~4で得られた熱伝導性シリコーン組成物を、プレス成型機を用いて、120℃、10分間の条件で1mm厚のシート状に成形硬化させ、JIS K 6249に準拠して絶縁破壊電圧を測定した。
Dielectric breakdown voltage:
The thermally conductive silicone compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were molded and cured into sheets of 1 mm thickness at 120° C. for 10 minutes using a press molding machine. The dielectric breakdown voltage was measured according to 6249.
硬さ:
 実施例1~4及び比較例1~4で得られた熱伝導性シリコーン組成物を上記と同様に6mm厚のシート状に成形硬化させ、そのシートを2枚重ねてアスカーC硬度計で測定した。
Hardness:
The thermally conductive silicone compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were molded and cured into sheets of 6 mm thickness in the same manner as described above, and the sheets were stacked in two and measured with an Asker C hardness tester. .
150℃、500時間エージング後の硬さ:
 実施例1~4及び比較例1~4で得られた熱伝導性シリコーン組成物を、プレス成型機を用いて、120℃、10分間の条件で6mm厚のシート状に成形硬化させた熱伝導性シリコーン硬化物を、150℃の高温炉に500時間エージング(保存)したのち、そのシートを2枚重ねてアスカーC硬度計で測定した。
Hardness after aging at 150°C for 500 hours:
The thermally conductive silicone compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were molded and cured into a 6 mm thick sheet using a press molding machine at 120° C. for 10 minutes. After aging (storing) the cured silicone material in a high-temperature furnace at 150° C. for 500 hours, two sheets were stacked and measured with an Asker C hardness tester.
Figure JPOXMLDOC01-appb-T000013
 表中、アルケニル基を有するオルガノポリシロキサン中の全アルケニル基量に対するオルガノハイドロジェンポリシロキサン中の全ケイ素原子に直接結合した水素原子量を、H/Viとする。
Figure JPOXMLDOC01-appb-T000013
In the table, H/Vi is the amount of hydrogen atoms directly bonded to all silicon atoms in the organohydrogenpolysiloxane relative to the total amount of alkenyl groups in the organopolysiloxane having alkenyl groups.
 実施例1~4では、熱伝導性シリコーン組成物の粘度、成形性、熱伝導性シリコーン硬化物の熱伝導率、絶縁破壊電圧、硬さとも良好な結果であった。また、酸化セリウムを添加した場合(実施例2~4)、さらに150℃の高温で保存しても、軟化劣化による硬度の低下はみられなかった。 In Examples 1 to 4, the viscosity and moldability of the thermally conductive silicone composition, the thermal conductivity of the cured thermally conductive silicone, the dielectric breakdown voltage, and the hardness were all good results. Further, when cerium oxide was added (Examples 2 to 4), even when stored at a high temperature of 150°C, no decrease in hardness due to softening deterioration was observed.
 比較例1のように熱伝導性充填材((C)成分)の配合量が少なすぎると、熱伝導性シリコーン硬化物の熱伝導率が低下した。一方で、比較例2のように熱伝導性充填材((C)成分)の配合量が多すぎると、熱伝導性充填材の濡れ性が不足し、グリース状の均一な熱伝導性シリコーン組成物を得ることができなかった。 When the amount of the thermally conductive filler (component (C)) was too small as in Comparative Example 1, the thermal conductivity of the cured thermally conductive silicone was lowered. On the other hand, when the amount of the thermally conductive filler (component (C)) is too large as in Comparative Example 2, the wettability of the thermally conductive filler is insufficient, resulting in a grease-like uniform thermally conductive silicone composition. couldn't get stuff.
 比較例3のように(C-1)成分と(C-3)成分の配合量が少なすぎ、(C-2)成分の配合量が多すぎる場合、熱伝導性シリコーン組成物の粘度が顕著に上昇し、シート成形時に表面の気泡が発生して成形性が低下した。また、絶縁性の低下が確認された。比較例4のように、(C-1)成分を入れずに、(C-4)として平均粒径が135μmを超えたものを入れた場合、シート成形時に端部の脆化が発生した。さらに、絶縁性の低下も確認された。 When the blending amounts of components (C-1) and (C-3) are too small and the blending amount of component (C-2) is too large as in Comparative Example 3, the viscosity of the thermally conductive silicone composition significantly increases. , and air bubbles were generated on the surface during sheet molding, resulting in deterioration of moldability. Also, a decrease in insulation was confirmed. As in Comparative Example 4, when component (C-1) was not added and component (C-4) with an average particle size exceeding 135 μm was added, embrittlement occurred at the edges during sheet molding. Furthermore, a decrease in insulation was also confirmed.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiments. The above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. is included in the technical scope of

Claims (10)

  1.  熱伝導性シリコーン組成物であって、
    (A)1分子中に2個以上のアルケニル基を有するオルガノポリシロキサン:100質量部、
    (B)ケイ素原子に直接結合した水素原子を2個以上有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍量となる量、
    (C)下記(C-1)~(C-3)からなる熱伝導性充填材:4,000~5,800質量部、
    (C-1)平均粒径が70μmを超えて135μm以下である球状アルミナフィラー:1,400~3,000質量部、
    (C-2)平均粒径が8μmを超えて40μm以下である球状アルミナフィラー:500~2,300質量部、
    (C-3)平均粒径が0.4μmを超えて4μm以下である不定形アルミナフィラー:1,000~1,800質量部、
    (D)白金族金属系硬化触媒:前記(A)成分に対して白金族金属元素質量換算で0.1~2,000ppm、及び
    (E)付加反応制御剤:0.01~2.0質量部
    を含むものであることを特徴とする熱伝導性シリコーン組成物。
    A thermally conductive silicone composition,
    (A) Organopolysiloxane having two or more alkenyl groups in one molecule: 100 parts by mass,
    (B) Organohydrogenpolysiloxane having two or more hydrogen atoms directly bonded to silicon atoms: the number of moles of hydrogen atoms directly bonded to silicon atoms is 0.1 of the number of moles of alkenyl groups derived from component (A) ~ 5.0 times the amount,
    (C) a thermally conductive filler consisting of (C-1) to (C-3) below: 4,000 to 5,800 parts by mass;
    (C-1) spherical alumina filler having an average particle size of more than 70 μm and 135 μm or less: 1,400 to 3,000 parts by mass;
    (C-2) a spherical alumina filler having an average particle size of more than 8 μm and 40 μm or less: 500 to 2,300 parts by mass;
    (C-3) Amorphous alumina filler having an average particle size of more than 0.4 μm and 4 μm or less: 1,000 to 1,800 parts by mass,
    (D) platinum group metal-based curing catalyst: 0.1 to 2,000 ppm in terms of platinum group metal element mass with respect to component (A), and (E) addition reaction controller: 0.01 to 2.0 mass A thermally conductive silicone composition comprising:
  2.  更に、(F)成分として、
    (F-1)下記一般式(1)で表されるアルコキシシラン化合物、及び
      R Si(OR4-a-b     (1)
    (式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に炭素原子数1~5のアルキル基、炭素原子数6~12のアリール基、及び炭素原子数7~12のアラルキル基から選ばれる基であり、Rは独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
    (F-2)下記一般式(2)で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサン、
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは独立に炭素原子数1~6のアルキル基であり、cは5~100の整数である。)
    からなる群から選ばれる1種以上を前記(A)成分の100質量部に対して、0.01~300質量部で含有するものであることを特徴とする請求項1に記載の熱伝導性シリコーン組成物。
    Furthermore, as the (F) component,
    (F-1) an alkoxysilane compound represented by the following general formula (1), and R 1 a R 2 b Si(OR 3 ) 4-ab (1)
    (wherein R 1 is independently an alkyl group having 6 to 15 carbon atoms, R 2 is independently an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a group selected from 7 to 12 aralkyl groups, R 3 is independently an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, with the proviso that a+b is an integer from 1 to 3.)
    (F-2) a dimethylpolysiloxane having one molecular chain end blocked with a trialkoxysilyl group represented by the following general formula (2);
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, R 4 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.)
    The thermal conductivity according to claim 1, which contains 0.01 to 300 parts by mass of one or more selected from the group consisting of 100 parts by mass of the component (A) Silicone composition.
  3.  更に、(G)成分として、酸化セリウムを前記(A)成分の100質量部に対して、8.0~25.0質量部で含有するものであることを特徴とする請求項1または請求項2に記載の熱伝導性シリコーン組成物。 Further, as the component (G), 8.0 to 25.0 parts by mass of cerium oxide is contained with respect to 100 parts by mass of the component (A). 2. The thermally conductive silicone composition according to 2.
  4.  前記熱伝導性シリコーン組成物の硬化物のアスカーC硬度計で測定した硬さにおいて、150℃×500時間エージング後の硬さが、エージング前の硬さに対して、-5ポイント以上、40ポイント以下のものであることを特徴とする請求項3に記載の熱伝導性シリコーン組成物。 The hardness of the cured product of the thermally conductive silicone composition measured with an Asker C hardness tester after aging at 150°C for 500 hours is -5 points or more to 40 points compared to the hardness before aging. 4. The thermally conductive silicone composition according to claim 3, characterized by:
  5.  更に、(H)成分として、下記一般式(3)で表される23℃における動粘度が10~100,000mm/sのオルガノポリシロキサン
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは独立に炭素数1~6のアルキル基、炭素数6~12のアリール基、及び炭素数7~12のアラルキル基から選ばれる基、dは5~2,000の整数である。)
    を前記(A)成分の100質量部に対して、0.1~100質量部で含有するものであることを特徴とする請求項1から請求項4のいずれか1項に記載の熱伝導性シリコーン組成物。
    Furthermore, as the component (H), an organopolysiloxane having a kinematic viscosity at 23° C. of 10 to 100,000 mm 2 /s represented by the following general formula (3)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein, R 5 is a group independently selected from an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms, and d is an integer of 5 to 2,000. is.)
    The thermal conductivity according to any one of claims 1 to 4, characterized in that it contains 0.1 to 100 parts by mass with respect to 100 parts by mass of the component (A) Silicone composition.
  6.  23℃におけるフローテスタ粘度計で測定した前記熱伝導性シリコーン組成物の粘度が2,000Pa・s以下のものであることを特徴とする請求項1から請求項5のいずれか1項に記載の熱伝導性シリコーン組成物。 6. The thermally conductive silicone composition according to any one of claims 1 to 5, wherein the thermally conductive silicone composition has a viscosity of 2,000 Pa·s or less as measured with a flow tester viscometer at 23°C. A thermally conductive silicone composition.
  7.  前記熱伝導性シリコーン組成物の硬化物のホットディスク法により測定した23℃における熱伝導率が、6.5W/m・K以上のものであることを特徴とする請求項1から請求項6のいずれか1項に記載の熱伝導性シリコーン組成物。 A cured product of the thermally conductive silicone composition has a thermal conductivity of 6.5 W/m·K or more at 23° C. as measured by a hot disk method. A thermally conductive silicone composition according to any one of claims 1 to 3.
  8.  前記熱伝導性シリコーン組成物の硬化物の1mm厚における絶縁破壊電圧が10kV/mm以上のものであることを特徴とする請求項1から請求項7のいずれか1項に記載の熱伝導性シリコーン組成物。 8. The thermally conductive silicone according to any one of claims 1 to 7, wherein a cured product of the thermally conductive silicone composition has a dielectric breakdown voltage of 10 kV/mm or more at a thickness of 1 mm. Composition.
  9.  請求項1から請求項8のいずれか1項に記載の熱伝導性シリコーン組成物の硬化物であることを特徴とする熱伝導性シリコーン硬化物。 A cured thermally conductive silicone product, which is a cured product of the thermally conductive silicone composition according to any one of claims 1 to 8.
  10.  前記熱伝導性シリコーン硬化物の形状がシート状のものであることを特徴とする請求項9に記載の熱伝導性シリコーン硬化物。 The cured thermally conductive silicone material according to claim 9, wherein the cured thermally conductive silicone material has a sheet-like shape.
PCT/JP2022/018791 2021-06-01 2022-04-26 Thermally conductive silicone composition and cured product of same WO2022255004A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-092587 2021-06-01
JP2021092587A JP2022184636A (en) 2021-06-01 2021-06-01 Thermally conductive silicone composition and cured product thereof

Publications (1)

Publication Number Publication Date
WO2022255004A1 true WO2022255004A1 (en) 2022-12-08

Family

ID=84324284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018791 WO2022255004A1 (en) 2021-06-01 2022-04-26 Thermally conductive silicone composition and cured product of same

Country Status (3)

Country Link
JP (1) JP2022184636A (en)
TW (1) TW202311488A (en)
WO (1) WO2022255004A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160955A (en) * 1997-08-14 1999-03-05 Shin Etsu Chem Co Ltd Silicone rubber fixing roll coated with fluororesin or fluorolatex
WO2020217634A1 (en) * 2019-04-24 2020-10-29 信越化学工業株式会社 Thermally conductive silicone composition, method for producing same and thermally conductive silicone cured product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160955A (en) * 1997-08-14 1999-03-05 Shin Etsu Chem Co Ltd Silicone rubber fixing roll coated with fluororesin or fluorolatex
WO2020217634A1 (en) * 2019-04-24 2020-10-29 信越化学工業株式会社 Thermally conductive silicone composition, method for producing same and thermally conductive silicone cured product

Also Published As

Publication number Publication date
JP2022184636A (en) 2022-12-13
TW202311488A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
JP5664563B2 (en) Thermally conductive silicone composition and cured product thereof
JP5304588B2 (en) Thermally conductive silicone composition and cured product thereof
JP5418298B2 (en) Thermally conductive silicone composition and cured product thereof
JP5233325B2 (en) Thermally conductive cured product and method for producing the same
JP6075261B2 (en) Thermally conductive silicone composition and cured product thereof
TWI822954B (en) Thermal conductive silicone composition and manufacturing method thereof, and thermally conductive silicone hardened material
JP7285231B2 (en) Thermally conductive silicone composition and cured product thereof
JP7033047B2 (en) Thermally conductive silicone composition and its cured product
JP6202475B2 (en) Thermally conductive composite silicone rubber sheet
WO2019198424A1 (en) Heat-conductive silicone composition and cured product thereof
JP5131648B2 (en) Thermally conductive silicone composition and thermally conductive silicone molding using the same
JP7136065B2 (en) THERMALLY CONDUCTIVE SILICONE COMPOSITION AND THERMALLY CONDUCTIVE SILICONE SHEET
TWI813738B (en) Thermally conductive silicon oxide composition and its hardened product
JP7165647B2 (en) Thermally conductive silicone resin composition
JP7264850B2 (en) Thermally conductive silicone composition, cured product thereof, and heat dissipation sheet
WO2022255004A1 (en) Thermally conductive silicone composition and cured product of same
WO2022239519A1 (en) Thermally conductive silicone composition and cured product of same
JP2023153695A (en) Thermally conductive silicone composition and cured product
JP2024051534A (en) Thermally conductive silicone composition, thermally conductive silicone cured product, and electrical parts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE