JP2023153695A - Thermally conductive silicone composition and cured product - Google Patents

Thermally conductive silicone composition and cured product Download PDF

Info

Publication number
JP2023153695A
JP2023153695A JP2022063110A JP2022063110A JP2023153695A JP 2023153695 A JP2023153695 A JP 2023153695A JP 2022063110 A JP2022063110 A JP 2022063110A JP 2022063110 A JP2022063110 A JP 2022063110A JP 2023153695 A JP2023153695 A JP 2023153695A
Authority
JP
Japan
Prior art keywords
thermally conductive
group
conductive silicone
mass
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022063110A
Other languages
Japanese (ja)
Inventor
俊晴 森村
Toshiharu Morimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2022063110A priority Critical patent/JP2023153695A/en
Publication of JP2023153695A publication Critical patent/JP2023153695A/en
Pending legal-status Critical Current

Links

Abstract

To provide a thermally conductive silicone composition having excellent insulating properties, thermal conductivity, processability, and heat resistance, and to provide a cured product thereof.SOLUTION: A thermally conductive silicone composition comprises: (A) an organopolysiloxane having two or more alkenyl groups per molecule; (B) an organohydrogenpolysiloxane having two or more hydrosilyl groups per molecule; (C) four alumina fillers with different average particle diameters; (D) a platinum group metal based curing catalyst; (E) an addition reaction control agent; (F) cerium oxide; and (G) a surfactant selected from one or more of the following (G-1) and (G-2), (G-1) an alkoxysilane compound represented by the following general formula (1), and (G-2) a dimethylpolysiloxane with one end of the molecular chain sealed with a trialkoxysilyl group, represented by the following general formula (2). R1aR2bSi(OR3)4-a-b (1).SELECTED DRAWING: None

Description

本発明は、熱伝導性シリコーン組成物及びその硬化物に関する。 The present invention relates to a thermally conductive silicone composition and a cured product thereof.

近年の電子機器の高機能化、電子部品の小型・高集積化に伴い、電子機器や電子部品の発熱量は増大し、発熱密度が高くなる傾向にあり、対策として放熱性に優れた機器設計にすることや、熱伝導性に優れた材料を使用する必要がある。また、発熱部品から発生する熱をヒートシンク等の冷却部品に速やかに伝えるため、放熱グリースや放熱シートが使用されているが、放熱材料にも高い熱伝導性が求められている。
放熱材料の熱伝導性を高めるためには、例えば窒化アルミニウムや窒化ホウ素等の熱伝導率の高い熱伝導性充填材を使用することや、熱伝導性充填材を高充填化する方法があるが、熱伝導率の高い充填材はコストが高く、充填材の高充填化は組成物の粘度が高くなる等の問題があった。
In recent years, with the increasing functionality of electronic devices and the miniaturization and high integration of electronic components, the amount of heat generated by electronic devices and electronic components has increased, and the heat generation density has tended to increase.As a countermeasure, equipment design with excellent heat dissipation is required. It is necessary to use materials with excellent thermal conductivity. In addition, heat-radiating grease and heat-radiating sheets are used to quickly transfer heat generated from heat-generating components to cooling components such as heat sinks, but heat-radiating materials are also required to have high thermal conductivity.
In order to increase the thermal conductivity of heat dissipation materials, there are methods such as using a thermally conductive filler with high thermal conductivity such as aluminum nitride or boron nitride, or increasing the amount of thermally conductive filler. However, fillers with high thermal conductivity are expensive, and high fillers have problems such as increasing the viscosity of the composition.

この問題を解決するために、球状アルミナ粉のみを使用する方法もあるが、高熱伝導化するためには、不定形アルミナに比べ、大量に充填する必要があり、組成物の粘度が上昇し、加工性が悪化する。また、高熱伝導化のために粒子径の大きい球状アルミナ粉を使用する方法もあるが、粒子径が大きすぎると材料の撹拌時に反応釜や撹拌羽が削れたり、シート成型時の加工性が悪くなったり、成型したシートが脆くなる問題があった。
また、シリコーン硬化物中のアルミナ粉の充填量が高くなると、高温で長時間使用した時に、硬化物の硬度が顕著に低下する傾向があり、振動が強いモジュール等、用途によっては復元性が不足することで密着不良が発生し、経時で熱抵抗が上昇する問題があった。
To solve this problem, there is a method of using only spherical alumina powder, but in order to achieve high thermal conductivity, it is necessary to fill it in a large amount compared to amorphous alumina powder, which increases the viscosity of the composition. Workability deteriorates. Another method is to use spherical alumina powder with a large particle size to achieve high thermal conductivity, but if the particle size is too large, the reaction vessel and stirring blades may be scraped when stirring the material, and workability during sheet forming may be poor. There was a problem that the molded sheet became brittle.
Additionally, when the amount of alumina powder filled in the silicone cured product increases, the hardness of the cured product tends to decrease significantly when used at high temperatures for long periods of time, resulting in insufficient resilience depending on the application, such as modules with strong vibrations. This causes problems of poor adhesion and increases in thermal resistance over time.

特許文献1には、球状溶融固化アルミナを含む耐熱性熱伝導シリコーン組成物が記載されている。
特許文献2には、環状構造中に2級のアミノ基を1個以上、かつケトン基を1個以上含む有機多環芳香族化合物を含む耐熱性シリコーン樹脂組成物が記載されている。
特許文献3には、粒径の異なる球状アルミナと不定形アルミナを含む熱伝導シリコーン組成物が記載されている。
Patent Document 1 describes a heat-resistant, thermally conductive silicone composition containing spherical fused and solidified alumina.
Patent Document 2 describes a heat-resistant silicone resin composition containing an organic polycyclic aromatic compound containing one or more secondary amino groups and one or more ketone groups in its cyclic structure.
Patent Document 3 describes a thermally conductive silicone composition containing spherical alumina and amorphous alumina having different particle sizes.

特開2018-123200号公報Japanese Patent Application Publication No. 2018-123200 国際公開第2021/161580号International Publication No. 2021/161580 特開2021-176945号公報JP2021-176945A

本発明は、上記事情に鑑みなされたもので、絶縁性、熱伝導性、加工性、耐熱性に優れた熱伝導性シリコーン組成物及びその硬化物を提供することを目的とする。特に、高温で長時間使用しても硬度が低下しない熱伝導性シリコーン組成物及びその硬化物を提供することを目的とする。 The present invention was made in view of the above circumstances, and an object of the present invention is to provide a thermally conductive silicone composition having excellent insulation properties, thermal conductivity, workability, and heat resistance, and a cured product thereof. In particular, it is an object of the present invention to provide a thermally conductive silicone composition whose hardness does not decrease even when used at high temperatures for a long period of time, and a cured product thereof.

上記課題を解決するために、本発明では、熱伝導性シリコーン組成物であって、
(A)1分子中に2個以上のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)1分子中に2個以上のヒドロシリル基を有するオルガノハイドロジェンポリシロキサン:ヒドロシリル基のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍量となる量、
(C)下記(C-1)~(C-4)からなる熱伝導性充填材:4,300~5,800質量部、
(C-1)平均粒径が70μmを超えて135μm以下である球状アルミナフィラー:1,750~3,000質量部、
(C-2)平均粒径が8μmを超えて40μm以下である球状アルミナフィラー:750~2,000質量部、
(C-3)平均粒径が0.4μmを超えて4μm以下である不定形アルミナフィラー:750~1,500質量部、
(C-4)平均粒径が0.7μmを超えて4μm以下である球状アルミナフィラー:125~750質量部、
(D)白金族金属系硬化触媒:前記(A)成分に対して白金族金属元素質量換算で0.1~2,000ppm、
(E)付加反応制御剤:0.01~2.0質量部、
(F)酸化セリウム:7.5~25質量部、及び
(G)下記(G-1)及び(G-2)から選ばれる1種以上の表面処理剤:0.01~300質量部、
(G-1)下記一般式(1)で表されるアルコキシシラン化合物、
Si(OR4-a-b (1)
(式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に炭素原子数1~5のアルキル基、炭素原子数6~12のアリール基、及び炭素原子数7~12のアラルキル基から選ばれる基であり、Rは独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
(G-2)下記一般式(2)で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサン、

Figure 2023153695000001
(式中、Rは独立に炭素原子数1~6のアルキル基であり、cは5~100の整数である。)
を含むものである熱伝導性シリコーン組成物を提供する。 In order to solve the above problems, the present invention provides a thermally conductive silicone composition comprising:
(A) organopolysiloxane having two or more alkenyl groups in one molecule: 100 parts by mass,
(B) Organohydrogenpolysiloxane having two or more hydrosilyl groups in one molecule: The number of moles of hydrosilyl groups is 0.1 to 5.0 times the number of moles of alkenyl groups derived from component (A). amount,
(C) A thermally conductive filler consisting of the following (C-1) to (C-4): 4,300 to 5,800 parts by mass,
(C-1) Spherical alumina filler with an average particle size of more than 70 μm and 135 μm or less: 1,750 to 3,000 parts by mass,
(C-2) Spherical alumina filler with an average particle size of more than 8 μm and less than 40 μm: 750 to 2,000 parts by mass,
(C-3) Amorphous alumina filler with an average particle size of more than 0.4 μm and 4 μm or less: 750 to 1,500 parts by mass,
(C-4) Spherical alumina filler with an average particle size of more than 0.7 μm and 4 μm or less: 125 to 750 parts by mass,
(D) Platinum group metal curing catalyst: 0.1 to 2,000 ppm in terms of platinum group metal element mass based on the component (A),
(E) Addition reaction control agent: 0.01 to 2.0 parts by mass,
(F) Cerium oxide: 7.5 to 25 parts by mass, and (G) one or more surface treatment agents selected from the following (G-1) and (G-2): 0.01 to 300 parts by mass,
(G-1) an alkoxysilane compound represented by the following general formula (1),
R 1 a R 2 b Si(OR 3 ) 4-ab (1)
(In the formula, R 1 is independently an alkyl group having 6 to 15 carbon atoms, and R 2 is independently an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 12 carbon atoms, and A group selected from 7 to 12 aralkyl groups, R 3 is independently an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, and b is an integer of 0 to 2, provided that a+b is an integer from 1 to 3.)
(G-2) Dimethylpolysiloxane represented by the following general formula (2), in which one end of the molecular chain is blocked with a trialkoxysilyl group,
Figure 2023153695000001
(In the formula, R 4 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.)
Provided is a thermally conductive silicone composition comprising:

このような熱伝導性シリコーン組成物であれば、その硬化物が絶縁性、熱伝導性、加工性、耐熱性に優れたものとなり、特に、高温で長時間使用しても硬度が低下しない硬化物を与える熱伝導性シリコーン組成物となる。このような熱伝導性シリコーン組成物は、例えば電子機器内の発熱部品と放熱部品の間に設置される熱伝導性樹脂成形体として好適に用いられる。 If such a thermally conductive silicone composition is used, the cured product will have excellent insulation, thermal conductivity, workability, and heat resistance, and in particular, the cured product will not lose its hardness even when used at high temperatures for a long time. It becomes a thermally conductive silicone composition that provides properties. Such a thermally conductive silicone composition is suitably used, for example, as a thermally conductive resin molded body installed between a heat generating component and a heat radiating component in an electronic device.

また、本発明では、更に、(H)成分として、下記一般式(3)で表される23℃における動粘度が10~100,000mm/sのオルガノポリシロキサンを前記(A)成分の100質量部に対して、0.1~100質量部で含有するものであることが好ましい。

Figure 2023153695000002
(式中、Rは独立に炭素原子数1~6のアルキル基、炭素原子数6~12のアリール基、及び炭素原子数7~12のアラルキル基から選ばれる基であり、dは5~2,000の整数である。) Furthermore, in the present invention, as component (H), an organopolysiloxane having a kinematic viscosity at 23° C. of 10 to 100,000 mm 2 /s represented by the following general formula (3) is added to 100% of the component (A). It is preferably contained in an amount of 0.1 to 100 parts by mass.
Figure 2023153695000002
(In the formula, R 5 is a group independently selected from an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms, and d is a group having 5 to 12 carbon atoms. It is an integer of 2,000.)

このような熱伝導シリコーン組成物であれば、柔軟性に優れ、得られる硬化物のオイルブリードが発生しづらくなる。 Such a thermally conductive silicone composition has excellent flexibility and is less likely to cause oil bleed in the resulting cured product.

また、本発明では、23℃におけるフローテスタ粘度計で測定した前記熱伝導性シリコーン組成物の粘度が4,000Pa・s以下のものであることが好ましい。 Further, in the present invention, it is preferable that the viscosity of the thermally conductive silicone composition measured with a flow tester viscometer at 23° C. is 4,000 Pa·s or less.

このような熱伝導性シリコーン組成物であれば、成形性(加工性)に優れる。 Such a thermally conductive silicone composition has excellent moldability (processability).

また、本発明では、上記に記載の熱伝導性シリコーン組成物の硬化物である熱伝導性シリコーン硬化物を提供する。 The present invention also provides a thermally conductive cured product, which is a cured product of the thermally conductive silicone composition described above.

このような熱伝導性シリコーン硬化物であれば、絶縁性、熱伝導性、加工性、耐熱性に優れたものとなり、例えば電子機器内の発熱部品と放熱部品の間に設置される熱伝導性樹脂成形体として好適に用いられる。 Such thermally conductive cured silicone products have excellent insulation, thermal conductivity, processability, and heat resistance, and are suitable for use in thermal conductivity installed between heat-generating and heat-radiating components in electronic devices, for example. It is suitably used as a resin molded body.

また、本発明では、前記熱伝導性シリコーン硬化物の形状がシート状のものであることが好ましい。 Further, in the present invention, it is preferable that the thermally conductive cured silicone material has a sheet-like shape.

このような熱伝導性シリコーン硬化物であれば、取り扱い性に優れる。 Such a thermally conductive silicone cured product has excellent handling properties.

また、本発明では、前記熱伝導性シリコーン硬化物のアスカーC硬度計で測定した硬さにおいて、150℃×500時間エージング後の硬さが、エージング前の硬さに対して、-5ポイント以上、40ポイント以下のものであることが好ましい。 Further, in the present invention, the hardness of the cured thermally conductive silicone product measured with an Asker C hardness meter after aging at 150°C for 500 hours is -5 points or more compared to the hardness before aging. , preferably 40 points or less.

このような熱伝導性シリコーン組成物の硬化物であれば、高温で長時間使用しても硬度の低下が小さいものとなる。 A cured product of such a thermally conductive silicone composition will have a small decrease in hardness even when used at high temperatures for a long time.

また、本発明では、前記熱伝導性シリコーン硬化物のホットディスク法により測定した23℃における熱伝導率が、7.5W/m・K以上のものであることが好ましい。 Further, in the present invention, it is preferable that the thermal conductivity of the cured thermally conductive silicone product at 23° C. measured by a hot disk method is 7.5 W/m·K or more.

このような熱伝導性シリコーン硬化物であれば、熱伝導性に優れる。 Such a thermally conductive cured silicone product has excellent thermal conductivity.

また、本発明では、前記熱伝導性シリコーン硬化物の1mm厚における絶縁破壊電圧が10kV/mm以上のものであることが好ましい。 Further, in the present invention, it is preferable that the thermally conductive cured silicone material has a dielectric breakdown voltage of 10 kV/mm or more at a thickness of 1 mm.

このような熱伝導性シリコーン硬化物であれば、使用時に安定的に絶縁を確保することができる。 Such a thermally conductive cured silicone material can ensure stable insulation during use.

以上のように、本発明の熱伝導性シリコーン組成物であれば、絶縁性、熱伝導性、加工性に優れた熱伝導性シリコーン組成物及びその硬化物を提供できる。また、高温保存時における硬度低下が抑えられ、7.5W/m・K以上の熱伝導率を有し、シート状に成型された熱伝導性シリコーン硬化物を提供することができる。 As described above, the thermally conductive silicone composition of the present invention can provide a thermally conductive silicone composition with excellent insulation, thermal conductivity, and processability, and a cured product thereof. Further, it is possible to provide a thermally conductive cured silicone product that is suppressed from decreasing in hardness during high-temperature storage, has a thermal conductivity of 7.5 W/m·K or more, and is molded into a sheet shape.

上述のように、絶縁性、熱伝導性、加工性、耐熱性に優れた熱伝導性シリコーン組成物及びその硬化物の開発が求められていた。 As mentioned above, there has been a demand for the development of a thermally conductive silicone composition with excellent insulation, thermal conductivity, processability, and heat resistance, and a cured product thereof.

本発明者らは、上記目的を達成するため鋭意検討を行った結果、平均粒径が8μmを超えて40μm以下の球状アルミナフィラーと、平均粒径が0.4μmを超えて4μm以下の不定形アルミナフィラーと、平均粒径が0.7μmを超えて4μm以下の球状アルミナフィラーと、平均粒径が70μmを超えて135μm以下の球状アルミナフィラーとを特定割合で混合し、酸化セリウムを併用することで上記問題を解決することができることを見出した。即ち、比表面積が小さい平均粒径が70μmを超えて135μm以下の球状アルミナフィラーを多く配合することで、効果的に熱伝導性を向上させることが可能であり、かつ粘度が低く加工性に優れた熱伝導性シリコーン組成物及びその硬化物を提供できることを見出した。
また、40μm以下の平均粒径を有する球状アルミナフィラー及び不定形アルミナフィラーを併用し、特に4μm以下の粒径では不定形アルミナフィラーと球状アルミナフィラーを併用することにより、熱伝導性シリコーン組成物の流動性が向上し、加工性が改善する。更に5μm以上の粒子には球状アルミナフィラーを使用するため、反応釜や撹拌羽の磨耗が抑えられ、絶縁性が向上することを見出した。
つまり、粒径が小さい球状アルミナフィラーと、大粒径球状アルミナフィラーがお互いの欠点を補い合うことで、上記目的を達成し得る熱伝導性シリコーン組成物及び硬化物を与えることを見出した。
また、上記熱伝導性シリコーン組成物に酸化セリウムを添加することにより、高温保存時における硬化物の硬度低下を抑制できることを見出し、本発明をなすに至った。
As a result of intensive studies to achieve the above object, the present inventors have found spherical alumina fillers with an average particle size of more than 8 μm and 40 μm or less, and amorphous alumina fillers with an average particle size of more than 0.4 μm and 4 μm or less. Alumina filler, spherical alumina filler with an average particle size of more than 0.7 μm and 4 μm or less, and spherical alumina filler with an average particle size of more than 70 μm and 135 μm are mixed in a specific ratio, and cerium oxide is used in combination. We have found that the above problem can be solved. That is, by incorporating a large amount of spherical alumina filler with a small specific surface area and an average particle diameter of more than 70 μm and less than 135 μm, it is possible to effectively improve thermal conductivity, and the viscosity is low and excellent in processability. It has been found that it is possible to provide a thermally conductive silicone composition and a cured product thereof.
In addition, by using together a spherical alumina filler and an amorphous alumina filler having an average particle size of 40 μm or less, and in particular a combination of an amorphous alumina filler and a spherical alumina filler with a particle size of 4 μm or less, it is possible to improve thermally conductive silicone compositions. Improves fluidity and processability. Furthermore, it has been found that since spherical alumina filler is used for particles of 5 μm or more, abrasion of the reaction vessel and stirring blades is suppressed and insulation properties are improved.
That is, it has been found that a spherical alumina filler with a small particle size and a spherical alumina filler with a large particle size compensate for each other's defects, thereby providing a thermally conductive silicone composition and a cured product that can achieve the above object.
Furthermore, the present inventors have discovered that by adding cerium oxide to the thermally conductive silicone composition, it is possible to suppress a decrease in hardness of a cured product during high-temperature storage, and have accomplished the present invention.

即ち、本発明は、熱伝導性シリコーン組成物であって、
(A)1分子中に2個以上のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)1分子中に2個以上のヒドロシリル基を有するオルガノハイドロジェンポリシロキサン:ヒドロシリル基のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍量となる量、
(C)下記(C-1)~(C-4)からなる熱伝導性充填材:4,300~5,800質量部、
(C-1)平均粒径が70μmを超えて135μm以下である球状アルミナフィラー:1,750~3,000質量部、
(C-2)平均粒径が8μmを超えて40μm以下である球状アルミナフィラー:750~2,000質量部、
(C-3)平均粒径が0.4μmを超えて4μm以下である不定形アルミナフィラー:750~1,500質量部、
(C-4)平均粒径が0.7μmを超えて4μm以下である球状アルミナフィラー:125~750質量部、
(D)白金族金属系硬化触媒:前記(A)成分に対して白金族金属元素質量換算で0.1~2,000ppm、
(E)付加反応制御剤:0.01~2.0質量部、
(F)酸化セリウム:7.5~25質量部、及び
(G)下記(G-1)及び(G-2)から選ばれる1種以上の表面処理剤:0.01~300質量部、
(G-1)下記一般式(1)で表されるアルコキシシラン化合物、
Si(OR4-a-b (1)
(式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に炭素原子数1~5のアルキル基、炭素原子数6~12のアリール基、及び炭素原子数7~12のアラルキル基から選ばれる基であり、Rは独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
(G-2)下記一般式(2)で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサン、

Figure 2023153695000003
(式中、Rは独立に炭素原子数1~6のアルキル基であり、cは5~100の整数である。)
を含むものである熱伝導性シリコーン組成物である。 That is, the present invention is a thermally conductive silicone composition,
(A) organopolysiloxane having two or more alkenyl groups in one molecule: 100 parts by mass,
(B) Organohydrogenpolysiloxane having two or more hydrosilyl groups in one molecule: The number of moles of hydrosilyl groups is 0.1 to 5.0 times the number of moles of alkenyl groups derived from component (A). amount,
(C) A thermally conductive filler consisting of the following (C-1) to (C-4): 4,300 to 5,800 parts by mass,
(C-1) Spherical alumina filler with an average particle size of more than 70 μm and 135 μm or less: 1,750 to 3,000 parts by mass,
(C-2) Spherical alumina filler with an average particle size of more than 8 μm and less than 40 μm: 750 to 2,000 parts by mass,
(C-3) Amorphous alumina filler with an average particle size of more than 0.4 μm and 4 μm or less: 750 to 1,500 parts by mass,
(C-4) Spherical alumina filler with an average particle size of more than 0.7 μm and 4 μm or less: 125 to 750 parts by mass,
(D) Platinum group metal curing catalyst: 0.1 to 2,000 ppm in terms of platinum group metal element mass based on the component (A),
(E) Addition reaction control agent: 0.01 to 2.0 parts by mass,
(F) Cerium oxide: 7.5 to 25 parts by mass, and (G) one or more surface treatment agents selected from the following (G-1) and (G-2): 0.01 to 300 parts by mass,
(G-1) an alkoxysilane compound represented by the following general formula (1),
R 1 a R 2 b Si(OR 3 ) 4-ab (1)
(In the formula, R 1 is independently an alkyl group having 6 to 15 carbon atoms, and R 2 is independently an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 12 carbon atoms, and A group selected from 7 to 12 aralkyl groups, R 3 is independently an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, and b is an integer of 0 to 2, provided that a+b is an integer from 1 to 3.)
(G-2) Dimethylpolysiloxane represented by the following general formula (2), in which one end of the molecular chain is blocked with a trialkoxysilyl group,
Figure 2023153695000003
(In the formula, R 4 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.)
A thermally conductive silicone composition comprising:

以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be explained in detail, but the present invention is not limited thereto.

[熱伝導性シリコーン組成物]
本発明の熱伝導性シリコーン組成物は、
(A)1分子中に2個以上のアルケニル基を有するオルガノポリシロキサン、
(B)1分子中に2個以上のヒドロシリル基を有するオルガノハイドロジェンポリシロキサン、
(C)下記(C-1)~(C-4)からなる熱伝導性充填材、
(C-1)平均粒径が70μmを超えて135μm以下である球状アルミナフィラー、
(C-2)平均粒径が8μmを超えて40μm以下である球状アルミナフィラー、
(C-3)平均粒径が0.4μmを超えて4μm以下である不定形アルミナフィラー、
(C-4)平均粒径が0.7μmを超えて4μm以下である球状アルミナフィラー、
(D)白金族金属系硬化触媒、
(E)付加反応制御剤、
(F)酸化セリウム、
(G)表面処理剤
を必須成分として含有する。以下、各成分について詳述する。
[Thermally conductive silicone composition]
The thermally conductive silicone composition of the present invention includes:
(A) organopolysiloxane having two or more alkenyl groups in one molecule;
(B) organohydrogenpolysiloxane having two or more hydrosilyl groups in one molecule;
(C) A thermally conductive filler consisting of the following (C-1) to (C-4),
(C-1) Spherical alumina filler with an average particle size of more than 70 μm and less than 135 μm,
(C-2) Spherical alumina filler with an average particle size of more than 8 μm and less than 40 μm,
(C-3) An amorphous alumina filler with an average particle size of more than 0.4 μm and less than 4 μm,
(C-4) Spherical alumina filler with an average particle size of more than 0.7 μm and less than 4 μm,
(D) platinum group metal curing catalyst;
(E) addition reaction control agent,
(F) cerium oxide,
(G) Contains a surface treatment agent as an essential component. Each component will be explained in detail below.

[(A)アルケニル基含有オルガノポリシロキサン]
(A)成分であるアルケニル基含有オルガノポリシロキサンは、ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサン、即ち1分子中に2個以上のアルケニル基を有するオルガノポリシロキサンであり、本発明の熱伝導性シリコーン組成物の主剤となるものである。通常は主鎖部分が基本的にジオルガノシロキサン単位の繰り返しからなるのが一般的であるが、これは分子構造の一部に分枝状の構造を含んだものであってもよく、また環状体であってもよいが、得られる熱伝導性シリコーン硬化物の機械的強度等、物性の点から直鎖状のジオルガノポリシロキサンが好ましい。
[(A) Alkenyl group-containing organopolysiloxane]
The alkenyl group-containing organopolysiloxane which is component (A) is an organopolysiloxane having two or more alkenyl groups bonded to a silicon atom in one molecule, that is, an organopolysiloxane having two or more alkenyl groups in one molecule. This is the main ingredient of the thermally conductive silicone composition of the present invention. Generally, the main chain portion basically consists of repeating diorganosiloxane units, but this may include a branched structure as part of the molecular structure, or it may include a cyclic structure. Although the diorganopolysiloxane may be a straight-chain diorganopolysiloxane, a linear diorganopolysiloxane is preferable from the viewpoint of physical properties such as mechanical strength of the resulting thermally conductive cured silicone product.

上記アルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等の炭素原子数が2~8のものが挙げられ、中でもビニル基、アリル基等の低級アルケニル基が好ましく、特に好ましくはビニル基である。なお、アルケニル基は、1分子中に2個以上存在することを特徴とし、好ましくは2~6個であり、より好ましくは2~3個である。また、得られる熱伝導性シリコーン硬化物の柔軟性がよいものとするためには、分子鎖末端のケイ素原子にのみ結合して存在することが最も好ましい。 Examples of the alkenyl group include those having 2 to 8 carbon atoms, such as vinyl, allyl, propenyl, isopropenyl, butenyl, hexenyl, and cyclohexenyl. A lower alkenyl group such as a group is preferred, and a vinyl group is particularly preferred. Note that the alkenyl group is characterized by the presence of two or more alkenyl groups in one molecule, preferably 2 to 6, and more preferably 2 to 3. Furthermore, in order to obtain a cured thermally conductive silicone product with good flexibility, it is most preferable that the silicone be bonded only to the silicon atom at the end of the molecular chain.

ケイ素原子に結合したアルケニル基以外の官能基としては、炭素原子数が1~10、好ましくは炭素原子数が1~6の1価炭化水素基が挙げられる。例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基等が挙げられる。中でも、メチル基、エチル基、プロピル基、及びフェニル基が好適に用いられる。また、ケイ素原子に結合したアルケニル基以外の官能基は全てが同一であっても異なっていてもよい。 Functional groups other than alkenyl groups bonded to silicon atoms include monovalent hydrocarbon groups having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms. For example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, etc. Alkyl group, cycloalkyl group such as cyclopentyl group, cyclohexyl group, cycloheptyl group, aryl group such as phenyl group, tolyl group, xylyl group, naphthyl group, biphenylyl group, benzyl group, phenylethyl group, phenylpropyl group, methylbenzyl group Examples include aralkyl groups such as groups. Among them, methyl group, ethyl group, propyl group, and phenyl group are preferably used. Further, all functional groups other than the alkenyl group bonded to the silicon atom may be the same or different.

このオルガノポリシロキサンの23℃における動粘度は、通常、10~100,000mm/s、特に好ましくは500~50,000mm/sの範囲である。前記動粘度が10mm/s以上であれば、得られる熱伝導性シリコーン組成物の保存安定性が良くなり、また100,000mm/s以下であれば、得られる熱伝導性シリコーン組成物の伸展性が良くなる。なお、本明細書において、動粘度はJIS Z 8803:2011記載の方法でキャノン-フェンスケ粘度計を用いて23℃で測定した場合の値である。 The kinematic viscosity of this organopolysiloxane at 23° C. is usually in the range of 10 to 100,000 mm 2 /s, particularly preferably in the range of 500 to 50,000 mm 2 /s. If the kinematic viscosity is 10 mm 2 /s or more, the thermally conductive silicone composition obtained will have good storage stability, and if the kinematic viscosity is 100,000 mm 2 /s or less, the thermally conductive silicone composition obtained will have good storage stability. Improves extensibility. In this specification, the kinematic viscosity is a value measured at 23° C. using a Cannon-Fenske viscometer according to the method described in JIS Z 8803:2011.

この(A)成分のオルガノポリシロキサンは、1種単独でも、動粘度が異なる2種以上を組み合わせて用いてもよい。 The organopolysiloxane of component (A) may be used alone or in combination of two or more types having different kinematic viscosities.

[(B)オルガノハイドロジェンポリシロキサン]
(B)成分のオルガノハイドロジェンポリシロキサンは、1分子中に2個以上、好ましくは2~100個のヒドロシリル基(ケイ素原子に直接結合する水素原子)を有するオルガノハイドロジェンポリシロキサンであり、(A)成分の架橋剤として作用する成分である。即ち、(B)成分中のヒドロシリル基と(A)成分中のアルケニル基とが、後述する(D)成分の白金族金属系硬化触媒により促進されるヒドロシリル化反応により付加して、架橋構造を有する3次元網目構造を与える。なお、ヒドロシリル基の数が1分子中に2個未満の場合、硬化しない。
[(B) Organohydrogenpolysiloxane]
The organohydrogenpolysiloxane of component (B) is an organohydrogenpolysiloxane having 2 or more, preferably 2 to 100, hydrosilyl groups (hydrogen atoms directly bonded to silicon atoms) in one molecule, It is a component that acts as a crosslinking agent for component A). That is, the hydrosilyl group in component (B) and the alkenyl group in component (A) are added through a hydrosilylation reaction promoted by the platinum group metal curing catalyst of component (D), which will be described later, to form a crosslinked structure. gives a three-dimensional network structure. Note that if the number of hydrosilyl groups is less than 2 in one molecule, it will not cure.

(B)成分のオルガノハイドロジェンポリシロキサンとしては、下記平均構造式(4)で示されるものが用いられるが、これに限定されるものではない。

Figure 2023153695000004
(式中、Rは独立に水素原子、又は炭素数1~12のアルキル基、炭素数6~12のアリール基、及び炭素数7~12のアラルキル基から選ばれる1価炭化水素基である。ただし、1分子中の2個以上、好ましくは2~10個のRは水素原子である。また、eは1以上の整数、好ましくは10~200の整数である。) As the organohydrogenpolysiloxane of component (B), those represented by the following average structural formula (4) are used, but the organohydrogenpolysiloxane is not limited thereto.
Figure 2023153695000004
(In the formula, R 6 is independently a hydrogen atom or a monovalent hydrocarbon group selected from an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms. (However, 2 or more, preferably 2 to 10 R 6 in one molecule are hydrogen atoms. Also, e is an integer of 1 or more, preferably an integer of 10 to 200.)

式(4)中、Rは独立に水素原子、又は炭素数1~12のアルキル基、炭素数6~12のアリール基、及び炭素数7~12のアラルキル基から選ばれる1価炭化水素基である。ただし、1分子中の2個以上、好ましくは2~10個のRは水素原子である。Rの水素原子以外の1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基が挙げられる。これらの1価炭化水素基の中で、好ましくは炭素原子数が1~10、特に好ましくは炭素原子数が1~6のものであり、中でも、好ましくはメチル基、エチル基、プロピル基等の炭素原子数1~3のアルキル基、及びフェニル基が好適に用いられる。また、eは1以上の整数、好ましくは10~200の整数である。 In formula (4), R 6 is independently a hydrogen atom, or a monovalent hydrocarbon group selected from an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms. It is. However, two or more, preferably 2 to 10 R 6 atoms in one molecule are hydrogen atoms. Examples of monovalent hydrocarbon groups other than hydrogen atoms for R 6 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group. alkyl groups such as octyl, nonyl, decyl, dodecyl, cycloalkyl such as cyclopentyl, cyclohexyl, cycloheptyl, aryl such as phenyl, tolyl, xylyl, naphthyl, biphenylyl, etc. and aralkyl groups such as benzyl group, phenylethyl group, phenylpropyl group, and methylbenzyl group. Among these monovalent hydrocarbon groups, those having preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, are particularly preferable, such as methyl group, ethyl group, propyl group, etc. Alkyl groups having 1 to 3 carbon atoms and phenyl groups are preferably used. Further, e is an integer of 1 or more, preferably an integer of 10 to 200.

(B)成分の添加量は、(B)成分由来のヒドロシリル基が(A)成分由来のアルケニル基1モルに対して0.1~5.0モルとなる量、即ちヒドロシリル基のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍量となる量であることを特徴とする。好ましくは、0.3~2.0モルとなる量、更に好ましくは0.5~1.0モルとなる量である。(B)成分由来のヒドロシリル基の量が(A)成分由来のアルケニル基1モルに対して0.1モル未満であると硬化しない、又は熱伝導性シリコーン硬化物の強度が不十分で成形体としての形状を保持できず取り扱えない場合がある。また5.0モルを超えると熱伝導性シリコーン硬化物の柔軟性がなくなり、熱伝導性シリコーン硬化物が脆くなる。 The amount of component (B) to be added is such that the amount of hydrosilyl groups derived from component (B) is 0.1 to 5.0 moles per mole of alkenyl groups derived from component (A), that is, the number of moles of hydrosilyl groups is It is characterized in that the amount is 0.1 to 5.0 times the number of moles of the alkenyl group derived from the component (A). The amount is preferably 0.3 to 2.0 mol, more preferably 0.5 to 1.0 mol. If the amount of hydrosilyl groups derived from component (B) is less than 0.1 mole per mole of alkenyl groups derived from component (A), the cured product will not cure or the strength of the cured thermally conductive silicone will be insufficient, resulting in a molded product. In some cases, it may not be possible to maintain its shape and be unable to handle it. Moreover, if it exceeds 5.0 mol, the thermally conductive cured silicone product loses its flexibility and becomes brittle.

[(C)熱伝導性充填材]
(C)成分である熱伝導性充填材は、下記(C-1)~(C-4)成分からなるものである。
(C-1)平均粒径が70μmを超えて135μm以下である球状アルミナフィラー、
(C-2)平均粒径が8μmを超えて40μm以下である球状アルミナフィラー、
(C-3)平均粒径が0.4μmを超えて4μm以下である不定形アルミナフィラー、
(C-4)平均粒径が0.7μmを超えて4μm以下である球状アルミナフィラー。
なお、本発明において、上記平均粒径は、日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより、レーザ回折・散乱法にて測定した体積基準の累積平均粒径(メディアン径)の値である。
[(C) Thermal conductive filler]
The thermally conductive filler, which is component (C), consists of the following components (C-1) to (C-4).
(C-1) Spherical alumina filler with an average particle size of more than 70 μm and less than 135 μm,
(C-2) Spherical alumina filler with an average particle size of more than 8 μm and less than 40 μm,
(C-3) An amorphous alumina filler with an average particle size of more than 0.4 μm and less than 4 μm,
(C-4) Spherical alumina filler with an average particle diameter of more than 0.7 μm and 4 μm or less.
In addition, in the present invention, the above average particle size is the volume-based cumulative average particle size (median diameter) measured by laser diffraction/scattering method using Microtrac MT3300EX, a particle size analyzer manufactured by Nikkiso Co., Ltd. It is.

(C-1)成分の球状アルミナフィラーは、熱伝導率を優位に向上させることができる。球状アルミナの平均粒径は70μmを超えて135μm以下であり、70μmを超えて120μm以下であることが好ましく、さらに70μmを超えて100μm以下であることがより好ましい。平均粒径が70μm以下であると、熱伝導性を向上させる効果が低くなり、また、熱伝導性シリコーン組成物の粘度が上昇し、加工性が悪くなる。また、平均粒径が135μmより大きいと、反応釜や撹拌羽根の磨耗が顕著となり、熱伝導性シリコーン組成物の絶縁性が低下する懸念がある。さらに、プレス成形時に球状アルミナフィラーと樹脂の分離が発生し、シート端部がフィラーリッチ部となり脆化してしまう問題があった。この場合、シート成形における材料収率が大きく低下してしまう。(C-1)成分の球状アルミナフィラーとしては1種又は2種以上を複合して用いてもよい。2種以上を複合して用いる場合は、それぞれ上記平均粒径の範囲を満たせばよい。 The spherical alumina filler as component (C-1) can significantly improve thermal conductivity. The average particle diameter of the spherical alumina is more than 70 μm and no more than 135 μm, preferably more than 70 μm and no more than 120 μm, and more preferably more than 70 μm and no more than 100 μm. If the average particle size is 70 μm or less, the effect of improving thermal conductivity will be reduced, and the viscosity of the thermally conductive silicone composition will increase, resulting in poor processability. Moreover, if the average particle size is larger than 135 μm, the reaction vessel and stirring blades will be worn significantly, and there is a concern that the insulation properties of the thermally conductive silicone composition will be reduced. Furthermore, there was a problem that separation of the spherical alumina filler and the resin occurred during press molding, and the end of the sheet became a filler-rich portion and became brittle. In this case, the material yield in sheet molding will drop significantly. The spherical alumina filler (C-1) may be used alone or in combination of two or more. When two or more types are used in combination, it is sufficient that each of them satisfies the above average particle diameter range.

(C-2)成分の球状アルミナフィラーは、熱伝導性シリコーン組成物の熱伝導率を向上させるとともに、後述する(C-3)の不定形アルミナフィラーと反応釜や撹拌羽根の接触を抑制し、磨耗を抑えるバリア効果を提供する。平均粒径は8μmを超えて40μm以下であり、10~40μmであることが好ましい。平均粒径が8μm以下であると、バリア効果が低下し、不定形アルミナフィラーによる反応釜や撹拌羽根の磨耗が顕著となる。 The spherical alumina filler as component (C-2) not only improves the thermal conductivity of the thermally conductive silicone composition, but also suppresses contact between the amorphous alumina filler (C-3) described below and the reaction vessel or stirring blade. , provides a barrier effect that reduces wear. The average particle size is more than 8 μm and less than 40 μm, preferably 10 to 40 μm. If the average particle size is 8 μm or less, the barrier effect will be reduced, and the amorphous alumina filler will cause significant wear on the reaction vessel and stirring blades.

(C-3)成分の不定形アルミナフィラーは、熱伝導性シリコーン組成物の熱伝導率を向上させる役割も担うが、その主な役割は熱伝導性シリコーン組成物の粘度調整、滑らかさ向上、充填性向上である。(C-3)成分の平均粒径は0.4μmを超えて4μm以下であり、0.6~3μmであることが、上記した特性発現のためにより好ましい。 The amorphous alumina filler (C-3) also plays a role in improving the thermal conductivity of the thermally conductive silicone composition, but its main role is to adjust the viscosity of the thermally conductive silicone composition, improve smoothness, This improves filling performance. The average particle size of component (C-3) is more than 0.4 μm and 4 μm or less, and more preferably 0.6 to 3 μm in order to exhibit the above-mentioned characteristics.

(C-4)成分の球状アルミナフィラーは、熱伝導性シリコーン組成物の熱伝導率を向上させる役割も担うが、その主な役割は熱伝導性シリコーン組成物の粘度調整、滑らかさ向上、充填性向上である。(C-4)成分の平均粒径は0.7μmを超えて4μm以下であり、0.7μmを超えて3μm以下であることが、上記した特性発現のためにより好ましい。 The spherical alumina filler (C-4) also plays a role in improving the thermal conductivity of the thermally conductive silicone composition, but its main role is to adjust the viscosity of the thermally conductive silicone composition, improve smoothness, and fill it. It is a sexual improvement. The average particle size of the component (C-4) is more than 0.7 μm and less than 4 μm, and more preferably more than 0.7 μm and less than 3 μm in order to exhibit the above-mentioned characteristics.

(C-1)成分の配合量は、(A)成分100質量部に対して1,750~3,000質量部であり、好ましくは1,875~2,500質量部である。少なすぎると熱伝導率の向上が困難であり、多すぎると反応釜や撹拌羽根の磨耗が顕著となり、熱伝導性シリコーン組成物の絶縁性が低下する。 The blending amount of component (C-1) is 1,750 to 3,000 parts by weight, preferably 1,875 to 2,500 parts by weight, per 100 parts by weight of component (A). If it is too small, it will be difficult to improve thermal conductivity, and if it is too large, wear of the reaction vessel and stirring blades will become significant, and the insulation properties of the thermally conductive silicone composition will decrease.

(C-2)成分の配合量は、(A)成分100質量部に対して750~2,000質量部であり、好ましくは1,000~1,600質量部である。少なすぎると熱伝導率の向上が困難であり、多すぎると熱伝導性シリコーン組成物の流動性が失われ、成形性が損なわれる。 The blending amount of component (C-2) is 750 to 2,000 parts by weight, preferably 1,000 to 1,600 parts by weight, per 100 parts by weight of component (A). If it is too small, it will be difficult to improve the thermal conductivity, and if it is too large, the thermally conductive silicone composition will lose its fluidity, impairing its moldability.

(C-3)成分の配合量は、(A)成分100質量部に対して750~1,500質量部であり、好ましくは900~1,250質量部である。少なすぎると熱伝導率の向上が困難であり、多すぎると熱伝導性シリコーン組成物の流動性が失われ、成形性が損なわれる。 The blending amount of component (C-3) is 750 to 1,500 parts by mass, preferably 900 to 1,250 parts by mass, per 100 parts by mass of component (A). If it is too small, it will be difficult to improve the thermal conductivity, and if it is too large, the thermally conductive silicone composition will lose its fluidity, impairing its moldability.

(C-4)成分の配合量は、(A)成分100質量部に対して125~750質量部であり、好ましくは125~375質量部である。少なすぎると熱伝導率の向上が困難であり、多すぎると熱伝導性シリコーン組成物の流動性が失われ、成形性が損なわれる。 The blending amount of component (C-4) is 125 to 750 parts by weight, preferably 125 to 375 parts by weight, per 100 parts by weight of component (A). If it is too small, it will be difficult to improve the thermal conductivity, and if it is too large, the thermally conductive silicone composition will lose its fluidity, impairing its moldability.

更に、(C)成分の配合量(即ち、上記(C-1)~(C-4)成分の合計配合量)は、(A)成分100質量部に対して4,300~5,800質量部であることが必要であり、好ましくは4,500~5,200質量部である。この配合量が4,300質量部未満の場合には、得られる熱伝導性シリコーン組成物の熱伝導率が悪くなる。5,800質量部を超える場合には、得られる熱伝導性シリコーン組成物の流動性が失われ、成形性が損なわれる。 Furthermore, the blending amount of component (C) (i.e., the total blending amount of components (C-1) to (C-4) above) is 4,300 to 5,800 parts by mass per 100 parts by mass of component (A). parts, preferably 4,500 to 5,200 parts by mass. If this amount is less than 4,300 parts by mass, the resulting thermally conductive silicone composition will have poor thermal conductivity. If it exceeds 5,800 parts by mass, the resulting thermally conductive silicone composition will lose its fluidity and its moldability will be impaired.

上記配合割合で(C)成分を用いることで、上記した本発明の効果がより有利にかつ確実に達成できる。 By using component (C) in the above blending ratio, the effects of the present invention described above can be achieved more advantageously and reliably.

[(D)白金族金属系硬化触媒]
(D)成分の白金族金属系硬化触媒は、(A)成分由来のアルケニル基と、(B)成分由来のヒドロシリル基の付加反応を促進するための触媒であり、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられる。その具体例としては、例えば、白金(白金黒を含む)、ロジウム、パラジウム等の白金族金属単体、HPtCl・nHO、HPtCl・nHO、NaHPtCl・nHO、KaHPtCl・nHO、NaPtCl・nHO、KPtCl・nHO、PtCl・nHO、PtCl、NaHPtCl・nHO(但し、式中、nは0~6の整数であり、好ましくは0又は6である。)等の塩化白金、塩化白金酸及び塩化白金酸塩、アルコール変性塩化白金酸(米国特許第3,220,972号明細書参照)、塩化白金酸とオレフィンとのコンプレックス(米国特許第3,159,601号明細書、同第3,159,662号明細書、同第3,775,452号明細書参照)、白金黒、パラジウム等の白金族金属をアルミナ、シリカ、カーボン等の担体に担持させたもの、ロジウム-オレフィンコンプレックス、クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒)、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサン、特にビニル基含有環状シロキサンとのコンプレックス等が挙げられる。
[(D) Platinum group metal curing catalyst]
The platinum group metal curing catalyst as component (D) is a catalyst for promoting the addition reaction between the alkenyl group derived from component (A) and the hydrosilyl group derived from component (B), and is a catalyst used in the hydrosilylation reaction. Examples of such catalysts include well-known catalysts. Specific examples thereof include simple platinum group metals such as platinum (including platinum black), rhodium, and palladium, H 2 PtCl 4 .nH 2 O, H 2 PtCl 6 .nH 2 O, and NaHPtCl 6 .nH 2 O. , KaHPtCl 6 .nH 2 O, Na 2 PtCl 6 .nH 2 O, K 2 PtCl 4 .nH 2 O, PtCl 4 .nH 2 O, PtCl 2 , Na 2 HPtCl 4 .nH 2 O (wherein, n is an integer from 0 to 6, preferably 0 or 6. ), complex of chloroplatinic acid and olefin (see U.S. Pat. No. 3,159,601, U.S. Pat. No. 3,159,662, U.S. Pat. No. 3,775,452), platinum black , platinum group metals such as palladium supported on carriers such as alumina, silica, carbon, etc., rhodium-olefin complex, chlorotris (triphenylphosphine) rhodium (Wilkinson catalyst), platinum chloride, chloroplatinic acid or chloroplatinic acid Examples include complexes between salts and vinyl group-containing siloxanes, particularly vinyl group-containing cyclic siloxanes.

(D)成分の使用量は、(A)成分に対して白金族金属元素質量換算で0.1~2,000ppmであり、好ましくは50~1,000ppmである。 The amount of component (D) used is 0.1 to 2,000 ppm, preferably 50 to 1,000 ppm, based on the mass of the platinum group metal element relative to component (A).

[(E)反応制御剤]
(E)成分の付加反応制御剤は、通常の付加反応硬化型シリコーン組成物に用いられる公知の付加反応制御剤であれば、特に限定されない。例えば、1-エチニル-1-ヘキサノール、3-ブチン-1-オール、エチニルメチリデンカルビノール等のアセチレン化合物や各種窒素化合物、有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。(E)成分を配合する場合の使用量としては、(A)成分100質量部に対して0.01~2.0質量部、特に0.1~1.2質量部程度が望ましい。(E)成分の配合量が少なすぎると付加反応の進行により熱伝導性シリコーン組成物の取り扱い性に劣る場合があり、多すぎると硬化反応が進まず、成形効率が損なわれる場合がある。
[(E) Reaction control agent]
The addition reaction control agent (E) is not particularly limited as long as it is a known addition reaction control agent used in ordinary addition reaction curable silicone compositions. Examples include acetylene compounds such as 1-ethynyl-1-hexanol, 3-butyn-1-ol, and ethynylmethylidenecarbinol, various nitrogen compounds, organic phosphorus compounds, oxime compounds, and organic chloro compounds. When blending component (E), the amount used is preferably about 0.01 to 2.0 parts by weight, particularly about 0.1 to 1.2 parts by weight, per 100 parts by weight of component (A). If the amount of component (E) is too small, the handling of the thermally conductive silicone composition may be poor due to the progress of the addition reaction, while if it is too large, the curing reaction may not proceed and molding efficiency may be impaired.

[(F)酸化セリウム]
(F)成分の酸化セリウムは、耐熱性の改善、特には、前記熱伝導性シリコーン組成物の硬化物の軟化劣化を抑制することを目的とする。酸化セリウムの添加量は、(A)成分100質量部に対して、7.5~25質量部であり、好ましくは、8.0~14質量部である。添加量がこの範囲外だと、150℃の高温で保存した場合硬度の低下が見られる恐れがある。
[(F) Cerium oxide]
The purpose of the component (F), cerium oxide, is to improve heat resistance, particularly to suppress softening and deterioration of the cured product of the thermally conductive silicone composition. The amount of cerium oxide added is 7.5 to 25 parts by mass, preferably 8.0 to 14 parts by mass, per 100 parts by mass of component (A). If the amount added is outside this range, there is a risk that the hardness will decrease when stored at a high temperature of 150°C.

酸化セリウムを添加することで、前記熱伝導性シリコーン組成物の硬化物は、耐熱性に優れたものとなる。具体的には、前記硬化物のアスカーC硬度計で測定した硬さにおいて、150℃×500時間エージング後の硬さが、エージング前の硬さに対して、-5ポイント以上、+40ポイント以下であることが好ましく、-3ポイント以上+20ポイント以下であることがより好ましい。 By adding cerium oxide, the cured product of the thermally conductive silicone composition has excellent heat resistance. Specifically, the hardness of the cured product measured with an Asker C hardness meter after aging at 150°C for 500 hours is -5 points or more and +40 points or less compared to the hardness before aging. It is preferably at least -3 points and at most +20 points.

[(G)表面処理剤]
(G)成分の表面処理剤は、熱伝導性シリコーン組成物調製時に前記(C)成分を疎水化処理し、前記(A)成分との濡れ性を向上させ、(C)成分を(A)成分からなるマトリックス中に均一に分散させることを目的とする。(G)成分としては、下記に示す(G-1)成分及び(G-2)成分から選ばれる1種以上の表面処理剤である。
[(G) Surface treatment agent]
The surface treatment agent of component (G) hydrophobizes component (C) during preparation of the thermally conductive silicone composition to improve wettability with component (A), and converts component (C) into component (A). The purpose is to uniformly disperse the components in a matrix. Component (G) is one or more surface treating agents selected from the following components (G-1) and (G-2).

(G-1)成分は、下記一般式(1)で表されるアルコキシシラン化合物である。
Si(OR4-a-b (1)
(式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に炭素原子数1~5のアルキル基、炭素原子数6~12のアリール基、及び炭素原子数7~12のアラルキル基から選ばれる基であり、Rは独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
Component (G-1) is an alkoxysilane compound represented by the following general formula (1).
R 1 a R 2 b Si(OR 3 ) 4-ab (1)
(In the formula, R 1 is independently an alkyl group having 6 to 15 carbon atoms, and R 2 is independently an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 12 carbon atoms, and A group selected from 7 to 12 aralkyl groups, R 3 is independently an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, and b is an integer of 0 to 2, provided that a+b is an integer from 1 to 3.)

上記一般式(1)において、Rで表される炭素原子数6~15のアルキル基としては、例えば、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。このRで表されるアルキル基の炭素原子数が6~15の範囲を満たすと(A)成分の濡れ性が十分に向上し、取り扱い性がよく、組成物の低温特性が良好なものとなる。 In the above general formula (1), examples of the alkyl group having 6 to 15 carbon atoms represented by R 1 include hexyl group, octyl group, nonyl group, decyl group, dodecyl group, and tetradecyl group. When the number of carbon atoms in the alkyl group represented by R1 satisfies the range of 6 to 15, the wettability of component (A) is sufficiently improved, the handleability is good, and the composition has good low-temperature properties. Become.

で表される炭素原子数1~5のアルキル基の例としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基が挙げられる。炭素原子数6~12のアリール基の例としては、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等が挙げられる。そして、炭素原子数7~12のアラルキル基から選ばれる基の例としては、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等が挙げられる。中でも、好ましくはメチル基、エチル基、プロピル基等の炭素原子数1~3のアルキル基、及びフェニル基が挙げられる。Rとしては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基等が挙げられる。 Examples of the alkyl group having 1 to 5 carbon atoms represented by R 2 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group. can be mentioned. Examples of the aryl group having 6 to 12 carbon atoms include phenyl group, tolyl group, xylyl group, naphthyl group, biphenylyl group, and the like. Examples of the group selected from aralkyl groups having 7 to 12 carbon atoms include benzyl group, phenylethyl group, phenylpropyl group, and methylbenzyl group. Among these, preferred are alkyl groups having 1 to 3 carbon atoms such as methyl, ethyl, and propyl groups, and phenyl groups. Examples of R 3 include a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and the like.

(G-2)成分は、下記一般式(2)で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンである。

Figure 2023153695000005
(式中、Rは独立に炭素原子数1~6のアルキル基であり、具体的には前記Rで例示されたアルキル基と同じものが例示できる。cは5~100、好ましくは5~70、特に好ましくは10~50の整数である。) Component (G-2) is a dimethylpolysiloxane represented by the following general formula (2) in which one end of the molecular chain is blocked with a trialkoxysilyl group.
Figure 2023153695000005
(In the formula, R 4 is independently an alkyl group having 1 to 6 carbon atoms, and specifically, the same alkyl group as exemplified above for R 3 can be exemplified. c is 5 to 100, preferably 5 to 70, particularly preferably an integer of 10 to 50.)

(G)成分の表面処理剤としては、(G-1)成分と(G-2)成分のいずれか一方でも両者を組み合わせて配合しても差し支えない。 As the surface treatment agent for component (G), either one of component (G-1) or component (G-2) or a combination of both components may be blended.

(G)成分を配合する場合の配合量としては、(A)成分100質量部に対して0.01~300質量部であり、0.1~200質量部であることが好ましい。300質量部を超えて本成分の割合が多くなるとオイル分離を誘発する可能性がある。 The amount of component (G) to be blended is 0.01 to 300 parts by mass, preferably 0.1 to 200 parts by mass, per 100 parts by mass of component (A). If the proportion of this component exceeds 300 parts by mass, oil separation may be induced.

[(H)オルガノポリシロキサン]
本発明の熱伝導性シリコーン組成物には、熱伝導性シリコーン組成物の粘度調整等の特性付与を目的として、(H)成分のオルガノポリシロキサンを配合してもよい。この(H)成分としては、下記一般式(3)で表される23℃における動粘度が10~100,000mm/sのオルガノポリシロキサンを添加することができる。(H)成分は、1種単独で用いても、2種以上を併用してもよい。

Figure 2023153695000006
(式中、Rは独立に炭素原子数1~6のアルキル基、炭素原子数6~12のアリール基、及び炭素原子数7~12のアラルキル基から選ばれる基、dは5~2,000の整数である。) [(H) Organopolysiloxane]
The thermally conductive silicone composition of the present invention may contain an organopolysiloxane as component (H) for the purpose of imparting properties such as adjusting the viscosity of the thermally conductive silicone composition. As this component (H), an organopolysiloxane having a kinematic viscosity at 23° C. of 10 to 100,000 mm 2 /s, which is represented by the following general formula (3), can be added. Component (H) may be used alone or in combination of two or more.
Figure 2023153695000006
(In the formula, R 5 is a group independently selected from an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms, d is 5 to 2, It is an integer of 000.)

上記一般式(3)において、Rは独立に炭素原子数1~6のアルキル基、炭素原子数6~12のアリール基、及び炭素原子数7~12のアラルキル基から選ばれる基である。Rの具体例としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基等が挙げられる。中でも、好ましくはメチル基、エチル基、プロピル基等の炭素原子数1~3のアルキル基、及びフェニル基が挙げられるが、特にメチル基、フェニル基が好ましい。 In the above general formula (3), R 5 is independently a group selected from an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms. Specific examples of R 5 include alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, and pentyl group, and cycloalkyl groups such as cyclopentyl group and cyclohexyl group. , aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group, and biphenylyl group, and aralkyl groups such as benzyl group, phenylethyl group, phenylpropyl group, and methylbenzyl group. Among these, preferred are alkyl groups having 1 to 3 carbon atoms such as methyl group, ethyl group, and propyl group, and phenyl group, with methyl group and phenyl group being particularly preferred.

上記dは要求される粘度の観点から、好ましくは5~2,000の整数で、特に好ましくは10~1,000の整数である。 From the viewpoint of the required viscosity, the above d is preferably an integer of 5 to 2,000, particularly preferably an integer of 10 to 1,000.

また、(H)成分の23℃における動粘度は、好ましくは10~100,000mm/sであり、特に100~10,000mm/sであることが好ましい。動粘度が10mm/s以上であれば、得られる組成物の硬化物がオイルブリードを発生し難くなる。動粘度が100,000mm/s以下であれば、得られる熱伝導性シリコーン組成物の柔軟性が優れたものとなる。 The kinematic viscosity of component (H) at 23° C. is preferably 10 to 100,000 mm 2 /s, particularly preferably 100 to 10,000 mm 2 /s. If the kinematic viscosity is 10 mm 2 /s or more, the resulting cured composition will be less likely to cause oil bleed. If the kinematic viscosity is 100,000 mm 2 /s or less, the resulting thermally conductive silicone composition will have excellent flexibility.

(H)成分を本発明の熱伝導性シリコーン組成物に添加する場合、その添加量は特に限定されず、所望の効果が得られる量であればよいが、(A)成分100質量部に対して、好ましくは0.1~100質量部、より好ましくは1~50質量部である。添加量がこの範囲にあると、硬化前の熱伝導性シリコーン組成物に良好な流動性、作業性を維持し易く、また(C)成分の熱伝導性充填材を組成物に充填するのが容易である。 When adding component (H) to the thermally conductive silicone composition of the present invention, the amount added is not particularly limited and may be any amount that provides the desired effect. The amount is preferably 0.1 to 100 parts by weight, more preferably 1 to 50 parts by weight. When the amount added is within this range, it is easy to maintain good fluidity and workability in the thermally conductive silicone composition before curing, and it is easy to fill the composition with the thermally conductive filler of component (C). It's easy.

[その他の成分]
本発明の熱伝導性シリコーン組成物には、本発明の目的に応じて、更に他の成分を配合しても差し支えない。例えば、酸化鉄等の耐熱性向上剤;シリカ等の粘度調整剤;着色剤;離型剤等の任意成分を配合することができる。
[Other ingredients]
The thermally conductive silicone composition of the present invention may further contain other components depending on the purpose of the present invention. For example, optional components such as a heat resistance improver such as iron oxide; a viscosity modifier such as silica; a coloring agent; and a mold release agent may be blended.

[熱伝導性シリコーン硬化物]
本発明では、上記熱伝導性シリコーン組成物の硬化物である、熱伝導性シリコーン硬化物を提供する。本発明の熱伝導性シリコーン硬化物は絶縁性、熱伝導性、加工性、耐熱性に優れ、例えば電子機器内の発熱部品と放熱部品の間に設置される熱伝導性樹脂成形体として好適に用いられる。また、熱伝導性シリコーン硬化物の形状がシート状であれば、取り扱い性に優れるため好ましい。
[Thermally conductive silicone cured product]
The present invention provides a thermally conductive cured product, which is a cured product of the above-mentioned thermally conductive silicone composition. The thermally conductive silicone cured product of the present invention has excellent insulation, thermal conductivity, workability, and heat resistance, and is suitable for use as a thermally conductive resin molded product installed between heat-generating components and heat-radiating components in electronic devices, for example. used. Further, it is preferable that the thermally conductive silicone cured product is in the form of a sheet because it is easy to handle.

[熱伝導性シリコーン組成物の調製]
本発明の熱伝導性シリコーン組成物は、上述した各成分を常法に準じて均一に混合することにより調製することができる。
[Preparation of thermally conductive silicone composition]
The thermally conductive silicone composition of the present invention can be prepared by uniformly mixing the above-mentioned components according to a conventional method.

[熱伝導性シリコーン組成物の粘度]
本発明の熱伝導性シリコーン組成物の粘度は、23℃において4,000Pa・s以下であることが好ましく、より好ましくは3,000Pa・s以下である。粘度が4,000Pa・s以下であれば、成形性が損なわれる場合がない。なお、本発明において、この粘度はフローテスタ粘度計による測定に基づく。
[Viscosity of thermally conductive silicone composition]
The viscosity of the thermally conductive silicone composition of the present invention is preferably 4,000 Pa·s or less, more preferably 3,000 Pa·s or less at 23°C. If the viscosity is 4,000 Pa·s or less, moldability will not be impaired. In the present invention, this viscosity is based on measurement using a flow tester viscometer.

[熱伝導性シリコーン硬化物の製造方法]
熱伝導性シリコーン組成物を成形する硬化条件としては、公知の付加反応硬化型シリコーンゴム組成物と同様でよく、例えば、常温でも十分硬化するが、必要に応じて加熱してもよい。好ましくは100~120℃で8~12分間で付加硬化させるのがよい。このような本発明の熱伝導性シリコーン硬化物は熱伝導性に優れる。
[Method for manufacturing thermally conductive silicone cured product]
The curing conditions for molding the thermally conductive silicone composition may be the same as those for known addition reaction-curable silicone rubber compositions. For example, it is sufficiently cured at room temperature, but may be heated if necessary. Preferably, addition curing is carried out at 100 to 120°C for 8 to 12 minutes. Such a thermally conductive silicone cured product of the present invention has excellent thermal conductivity.

[熱伝導性シリコーン硬化物の熱伝導率]
本発明における熱伝導性シリコーン硬化物の熱伝導率は、ホットディスク法により測定した23℃における測定値が7.5W/m・K以上、特に8.0W/m・K以上であることが望ましい。
[Thermal conductivity of cured thermally conductive silicone material]
The thermal conductivity of the cured thermally conductive silicone material in the present invention is desirably 7.5 W/m・K or more, particularly 8.0 W/m・K or more as measured at 23° C. by the hot disk method. .

[熱伝導性シリコーン硬化物の絶縁破壊電圧]
本発明における熱伝導性シリコーン硬化物の絶縁破壊電圧は、熱伝導性シリコーン硬化物の1mm厚における絶縁破壊電圧をJIS K 6249:2003に準拠して測定したときの測定値が、10kV/mm以上、より好ましくは12kV/mm以上であることが好ましい。絶縁破壊電圧が10kV/mm以上の硬化物の場合、使用時に安定的に絶縁を確保することができる。なお、このような絶縁破壊電圧は、フィラーの種類や純度を調整することにより、調整することができる。
[Dielectric breakdown voltage of thermally conductive silicone cured product]
The dielectric breakdown voltage of the thermally conductive cured silicone material in the present invention is 10 kV/mm or more when the dielectric breakdown voltage of the thermally conductive cured silicone material with a thickness of 1 mm is measured in accordance with JIS K 6249:2003. , more preferably 12 kV/mm or more. In the case of a cured product having a dielectric breakdown voltage of 10 kV/mm or more, stable insulation can be ensured during use. Note that such dielectric breakdown voltage can be adjusted by adjusting the type and purity of the filler.

[熱伝導性シリコーン硬化物の硬度]
本発明における熱伝導性シリコーン硬化物の硬さは、アスカーC硬度計で測定した23℃における測定値が60以下、好ましくは40以下、より好ましくは30以下であることが好ましく、また5以上であることが好ましい。硬さが60以下の場合、被放熱体の形状に沿うように変形し、被放熱体に応力をかけることなく良好な放熱特性を示す。なお、このような硬さは、(A)成分と(B)成分の比率を変えて、架橋密度を調整することにより、調整することができる。また、150℃×500時間エージング後の硬さが、エージング前の硬さに対して、-5ポイント以上、40ポイント以下のものであることが好ましい。このような熱伝導性シリコーン組成物の硬化物であれば、高温で長時間使用しても硬度の低下が小さいものとなる。
[Hardness of thermally conductive silicone cured product]
The hardness of the thermally conductive silicone cured product in the present invention is preferably 60 or less, preferably 40 or less, more preferably 30 or less, as measured by an Asker C hardness meter at 23°C, and 5 or more. It is preferable that there be. When the hardness is 60 or less, it deforms to follow the shape of the heat dissipation target and exhibits good heat dissipation characteristics without applying stress to the heat dissipation target. Note that such hardness can be adjusted by changing the ratio of component (A) and component (B) and adjusting the crosslinking density. Further, the hardness after aging at 150°C for 500 hours is preferably -5 points or more and 40 points or less compared to the hardness before aging. A cured product of such a thermally conductive silicone composition will have a small decrease in hardness even when used at high temperatures for a long time.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、組成物の粘度は23℃においてフローテスタ粘度計により測定した。測定装置としては島津製作所製のCFT-500EXを使用した。ダイ穴径を直径2mm、ダイ長さを2mm、試験荷重を10kgとして時間とストロークをプロットし、傾きから粘度を算出した。また、平均粒径は日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより測定した体積基準の累積平均粒径(メディアン径)の値である。 EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples below. The viscosity of the composition was measured at 23°C using a flow tester viscometer. As the measuring device, CFT-500EX manufactured by Shimadzu Corporation was used. Time and stroke were plotted with a die hole diameter of 2 mm, a die length of 2 mm, and a test load of 10 kg, and the viscosity was calculated from the slope. In addition, the average particle size is a volume-based cumulative average particle size (median size) measured using a particle size analyzer Microtrac MT3300EX manufactured by Nikkiso Co., Ltd.

下記実施例及び比較例に用いられる(A)~(H)成分を下記に示す。
(A)成分:
下記式(5)で示されるオルガノポリシロキサン。

Figure 2023153695000007
(式中、Xはビニル基であり、fは下記粘度を与える数である。)
(A-1)動粘度:600mm/s
(A-2)動粘度:30,000mm/s Components (A) to (H) used in the following Examples and Comparative Examples are shown below.
(A) Component:
An organopolysiloxane represented by the following formula (5).
Figure 2023153695000007
(In the formula, X is a vinyl group, and f is a number giving the following viscosity.)
(A-1) Kinematic viscosity: 600mm 2 /s
(A-2) Kinematic viscosity: 30,000mm 2 /s

(B-1)成分:
下記式(6-1)で示されるオルガノハイドロジェンポリシロキサン。

Figure 2023153695000008
(B-2)成分:
下記式(6-2)で示されるオルガノハイドロジェンポリシロキサン。
Figure 2023153695000009
(B-1) Component:
An organohydrogenpolysiloxane represented by the following formula (6-1).
Figure 2023153695000008
(B-2) Component:
An organohydrogenpolysiloxane represented by the following formula (6-2).
Figure 2023153695000009

(C)成分:
平均粒径が下記の通りである球状アルミナフィラー、不定形アルミナフィラー。
(C-1)平均粒径が98.8μmの球状アルミナフィラー。
(C-2)平均粒径が23.4μmの球状アルミナフィラー。
(C-3)平均粒径が1.7μmの不定形アルミナフィラー。
(C-4)平均粒径が2.3μmの球状アルミナフィラー。
(C) Component:
Spherical alumina filler and amorphous alumina filler with an average particle size as shown below.
(C-1) Spherical alumina filler with an average particle size of 98.8 μm.
(C-2) Spherical alumina filler with an average particle size of 23.4 μm.
(C-3) Amorphous alumina filler with an average particle size of 1.7 μm.
(C-4) Spherical alumina filler with an average particle size of 2.3 μm.

(D)成分:
5質量%塩化白金酸2-エチルヘキサノール溶液。
(D) Component:
5% by mass chloroplatinic acid 2-ethylhexanol solution.

(E)成分:
エチニルメチリデンカルビノール。
(E) Component:
Ethinyl methylidene carbinol.

(F)成分:
酸化セリウム。
(F) Ingredient:
Cerium oxide.

(G)成分:(G-2)成分
下記式(7)で示される平均重合度が30の片末端がトリメトキシシリル基で封鎖されたジメチルポリシロキサン。

Figure 2023153695000010
Component (G): Component (G-2) Dimethylpolysiloxane represented by the following formula (7) and having an average degree of polymerization of 30, one end of which is blocked with a trimethoxysilyl group.
Figure 2023153695000010

(H)成分
可塑剤として、下記式(8)で示される23℃における動粘度が100mm/sのジメチルポリシロキサン。

Figure 2023153695000011
(H) Component As a plasticizer, dimethylpolysiloxane having a kinematic viscosity at 23° C. of 100 mm 2 /s is represented by the following formula (8).
Figure 2023153695000011

[実施例1~4、比較例1~4]
実施例1~4及び比較例1~4において、上記(A)~(H)成分を下記表1に示す所定の量を用いて下記のように熱伝導性シリコーン組成物を調製し、成形硬化させ、下記方法に従って熱伝導性シリコーン組成物の粘度、その硬化物の熱伝導率、硬度、絶縁破壊電圧測定した。結果を表1に併記する。
[Examples 1 to 4, Comparative Examples 1 to 4]
In Examples 1 to 4 and Comparative Examples 1 to 4, thermally conductive silicone compositions were prepared as described below using the components (A) to (H) in the predetermined amounts shown in Table 1 below, and molded and cured. The viscosity of the thermally conductive silicone composition, the thermal conductivity, hardness, and dielectric breakdown voltage of the cured product were measured according to the following method. The results are also listed in Table 1.

[熱伝導性シリコーン組成物の調製]
(A)、(C)、(F)、(G)、(H)成分を下記表1の実施例1~4及び比較例1~4に示す所定の量で加え、プラネタリーミキサーで60分間混練した。そこに(D)成分を下記表1の実施例1~4及び比較例1~4に示す所定の量で加え、更にセパレータとの離型を促す内添離型剤として、信越化学製のフェニル変性シリコーンオイルであるKF-54を有効量加え、30分間混練した。
そこに更に(B)、(E)成分を下記表1の実施例1~4及び比較例1~4に示す所定の量で加え、30分間混練し、熱伝導性シリコーン組成物を得た。
[Preparation of thermally conductive silicone composition]
Add components (A), (C), (F), (G), and (H) in the predetermined amounts shown in Examples 1 to 4 and Comparative Examples 1 to 4 in Table 1 below, and use a planetary mixer for 60 minutes. Kneaded. Component (D) was added thereto in the predetermined amounts shown in Examples 1 to 4 and Comparative Examples 1 to 4 in Table 1 below, and phenyl An effective amount of KF-54, a modified silicone oil, was added and kneaded for 30 minutes.
Components (B) and (E) were further added thereto in the predetermined amounts shown in Examples 1 to 4 and Comparative Examples 1 to 4 in Table 1 below, and kneaded for 30 minutes to obtain a thermally conductive silicone composition.

[成形方法]
実施例1~4及び比較例1~4で得られた熱伝導性シリコーン組成物を長さ60mm×幅60mmで、厚さ6mmもしくは1mmの金型に流し込み、プレス成形機を用い、120℃、10分間で成形した。
[Molding method]
The thermally conductive silicone compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were poured into a mold with a length of 60 mm x width of 60 mm and a thickness of 6 mm or 1 mm, and heated at 120° C. using a press molding machine. It was molded in 10 minutes.

[評価方法]
熱伝導性シリコーン組成物の粘度:
実施例1~4及び比較例1~4で得られた熱伝導性シリコーン組成物の粘度を、フローテスタ粘度計にて、23℃環境下で測定した。
[Evaluation method]
Viscosity of thermally conductive silicone composition:
The viscosity of the thermally conductive silicone compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 4 was measured in a 23° C. environment using a flow tester viscometer.

熱伝導率:
実施例1~4及び比較例1~4で得られた熱伝導性シリコーン組成物を、プレス成型機を用いて、120℃、10分間の条件で6mm厚のシート状に硬化させ、そのシートを2枚用いて、熱伝導率計(商品名:TPS-2500S、京都電子工業(株)製)により該シートの熱伝導率を測定した。
Thermal conductivity:
The thermally conductive silicone compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were cured into a 6 mm thick sheet using a press molding machine at 120°C for 10 minutes. The thermal conductivity of the two sheets was measured using a thermal conductivity meter (trade name: TPS-2500S, manufactured by Kyoto Electronics Industry Co., Ltd.).

絶縁破壊電圧:
実施例1~4及び比較例1~4で得られた熱伝導性シリコーン組成物を、プレス成型機を用いて、120℃、10分間の条件で1mm厚のシート状に硬化させ、JIS K 6249:2003に準拠して絶縁破壊電圧を測定した。
Breakdown voltage:
The thermally conductive silicone compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were cured into a 1 mm thick sheet using a press molding machine at 120° C. for 10 minutes to meet JIS K 6249. :2003, the dielectric breakdown voltage was measured.

硬さ:
実施例1~4及び比較例1~4で得られた熱伝導性シリコーン組成物を上記と同様に6mm厚のシート状に硬化させ、そのシートを2枚重ねてアスカーC硬度計で測定した。
Hardness:
The thermally conductive silicone compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were cured into a 6 mm thick sheet in the same manner as above, and the sheets were stacked together and measured using an Asker C hardness meter.

150℃、500時間保存後の硬さ:
実施例1~4及び比較例1~4で得られた熱伝導性シリコーン組成物を、プレス成型機を用いて、120℃、10分間の条件で6mm厚のシート状に硬化させた硬化物を、150℃の高温炉に500時間保存したのち、そのシートを2枚重ねてアスカーC硬度計で測定した。
Hardness after storage at 150℃ for 500 hours:
The thermally conductive silicone compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were cured into a 6 mm thick sheet using a press molding machine at 120°C for 10 minutes. After being stored in a high-temperature furnace at 150° C. for 500 hours, the sheets were stacked on top of each other and measured using an Asker C hardness meter.

Figure 2023153695000012
Figure 2023153695000012

実施例1~4では、熱伝導性シリコーン組成物の粘度、成形性、熱伝導性シリコーン硬化物の熱伝導率、絶縁破壊電圧、硬さとも良好な結果であった。また、(F)酸化セリウムを添加したことで、さらに150℃の高温で保存しても、軟化劣化による硬度の低下はみられなかった。 In Examples 1 to 4, the viscosity and moldability of the thermally conductive silicone composition, and the thermal conductivity, dielectric breakdown voltage, and hardness of the thermally conductive silicone cured product had good results. Further, by adding (F) cerium oxide, no decrease in hardness due to softening deterioration was observed even when stored at a high temperature of 150°C.

比較例1のように(C-4)成分(平均粒径が0.7μmを超えて4μm以下である球状アルミナフィラー)を含有しないと、熱伝導性シリコーン組成物の粘度が著しく上昇した。比較例2のように(F)酸化セリウムの添加量が本発明の範囲から外れた場合、150℃×500時間保存後の硬さが低下した。比較例3のように(C)熱伝導性充填材の配合量が多すぎると、熱伝導性充填材の濡れ性が不足し、グリース状の均一な熱伝導性シリコーン組成物を得ることができなかった。比較例4のように(C)熱伝導性充填材の配合量が少なすぎると、熱伝導性シリコーン硬化物の熱伝導率が顕著に低下した。 As in Comparative Example 1, when component (C-4) (spherical alumina filler with an average particle size of more than 0.7 μm and less than 4 μm) was not included, the viscosity of the thermally conductive silicone composition increased significantly. When the amount of cerium oxide (F) added was out of the range of the present invention as in Comparative Example 2, the hardness after storage at 150° C. for 500 hours decreased. If the blending amount of the thermally conductive filler (C) is too large as in Comparative Example 3, the wettability of the thermally conductive filler will be insufficient, making it impossible to obtain a uniform grease-like thermally conductive silicone composition. There wasn't. When the blending amount of the thermally conductive filler (C) was too small as in Comparative Example 4, the thermal conductivity of the cured thermally conductive silicone material decreased significantly.

本明細書は以下の態様を包含する。
[1]:熱伝導性シリコーン組成物であって、
(A)1分子中に2個以上のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)1分子中に2個以上のヒドロシリル基を有するオルガノハイドロジェンポリシロキサン:ヒドロシリル基のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍量となる量、
(C)下記(C-1)~(C-4)からなる熱伝導性充填材:4,300~5,800質量部、
(C-1)平均粒径が70μmを超えて135μm以下である球状アルミナフィラー:1,750~3,000質量部、
(C-2)平均粒径が8μmを超えて40μm以下である球状アルミナフィラー:750~2,000質量部、
(C-3)平均粒径が0.4μmを超えて4μm以下である不定形アルミナフィラー:750~1,500質量部、
(C-4)平均粒径が0.7μmを超えて4μm以下である球状アルミナフィラー:125~750質量部、
(D)白金族金属系硬化触媒:前記(A)成分に対して白金族金属元素質量換算で0.1~2,000ppm、
(E)付加反応制御剤:0.01~2.0質量部、
(F)酸化セリウム:7.5~25質量部、及び
(G)下記(G-1)及び(G-2)から選ばれる1種以上の表面処理剤:0.01~300質量部、
(G-1)下記一般式(1)で表されるアルコキシシラン化合物、
Si(OR4-a-b (1)
(式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に炭素原子数1~5のアルキル基、炭素原子数6~12のアリール基、及び炭素原子数7~12のアラルキル基から選ばれる基であり、Rは独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
(G-2)下記一般式(2)で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサン、

Figure 2023153695000013
(式中、Rは独立に炭素原子数1~6のアルキル基であり、cは5~100の整数である。)
を含むものであることを特徴とする熱伝導性シリコーン組成物。
[2]:更に、(H)成分として、下記一般式(3)で表される23℃における動粘度が10~100,000mm/sのオルガノポリシロキサンを前記(A)成分の100質量部に対して、0.1~100質量部で含有するものであることを特徴とする上記[1]の熱伝導性シリコーン組成物。
Figure 2023153695000014
(式中、Rは独立に炭素原子数1~6のアルキル基、炭素原子数6~12のアリール基、及び炭素原子数7~12のアラルキル基から選ばれる基であり、dは5~2,000の整数である。)
[3]:23℃におけるフローテスタ粘度計で測定した前記熱伝導性シリコーン組成物の粘度が4,000Pa・s以下のものであることを特徴とする上記[1]又は上記[2]の熱伝導性シリコーン組成物。
[4]:上記[1]、上記[2]又は上記[3]の熱伝導性シリコーン組成物の硬化物であることを特徴とする熱伝導性シリコーン硬化物。
[5]:前記熱伝導性シリコーン硬化物の形状がシート状のものであることを特徴とする上記[4]の熱伝導性シリコーン硬化物。
[6]:前記熱伝導性シリコーン硬化物のアスカーC硬度計で測定した硬さにおいて、150℃×500時間エージング後の硬さが、エージング前の硬さに対して、-5ポイント以上、40ポイント以下のものであることを特徴とする上記[4]又は上記[5]の熱伝導性シリコーン硬化物。
[7]:前記熱伝導性シリコーン硬化物のホットディスク法により測定した23℃における熱伝導率が、7.5W/m・K以上のものであることを特徴とする上記[4]、上記[5]又は上記[6]の熱伝導性シリコーン硬化物。
[8]:前記熱伝導性シリコーン硬化物の1mm厚における絶縁破壊電圧が10kV/mm以上のものであることを特徴とする上記[4]、上記[5]、上記[6]又は上記[7]の熱伝導性シリコーン硬化物。 The specification includes the following aspects.
[1]: A thermally conductive silicone composition,
(A) organopolysiloxane having two or more alkenyl groups in one molecule: 100 parts by mass,
(B) Organohydrogenpolysiloxane having two or more hydrosilyl groups in one molecule: The number of moles of hydrosilyl groups is 0.1 to 5.0 times the number of moles of alkenyl groups derived from component (A). amount,
(C) A thermally conductive filler consisting of the following (C-1) to (C-4): 4,300 to 5,800 parts by mass,
(C-1) Spherical alumina filler with an average particle size of more than 70 μm and 135 μm or less: 1,750 to 3,000 parts by mass,
(C-2) Spherical alumina filler with an average particle size of more than 8 μm and less than 40 μm: 750 to 2,000 parts by mass,
(C-3) Amorphous alumina filler with an average particle size of more than 0.4 μm and 4 μm or less: 750 to 1,500 parts by mass,
(C-4) Spherical alumina filler with an average particle size of more than 0.7 μm and 4 μm or less: 125 to 750 parts by mass,
(D) Platinum group metal curing catalyst: 0.1 to 2,000 ppm in terms of platinum group metal element mass based on the component (A),
(E) Addition reaction control agent: 0.01 to 2.0 parts by mass,
(F) Cerium oxide: 7.5 to 25 parts by mass, and (G) one or more surface treatment agents selected from the following (G-1) and (G-2): 0.01 to 300 parts by mass,
(G-1) an alkoxysilane compound represented by the following general formula (1),
R 1 a R 2 b Si(OR 3 ) 4-ab (1)
(In the formula, R 1 is independently an alkyl group having 6 to 15 carbon atoms, and R 2 is independently an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 12 carbon atoms, and A group selected from 7 to 12 aralkyl groups, R 3 is independently an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, and b is an integer of 0 to 2, provided that a+b is an integer from 1 to 3.)
(G-2) Dimethylpolysiloxane represented by the following general formula (2), in which one end of the molecular chain is blocked with a trialkoxysilyl group,
Figure 2023153695000013
(In the formula, R 4 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.)
A thermally conductive silicone composition comprising:
[2]: Further, as component (H), 100 parts by mass of the component (A) is an organopolysiloxane having a kinematic viscosity of 10 to 100,000 mm 2 /s at 23° C. and is represented by the following general formula (3). The thermally conductive silicone composition according to [1] above, characterized in that it contains 0.1 to 100 parts by mass.
Figure 2023153695000014
(In the formula, R 5 is a group independently selected from an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms, and d is a group having 5 to 12 carbon atoms. It is an integer of 2,000.)
[3]: The heat according to [1] or [2] above, wherein the viscosity of the thermally conductive silicone composition measured with a flow tester viscometer at 23°C is 4,000 Pa·s or less. Conductive silicone composition.
[4]: A thermally conductive silicone cured product, which is a cured product of the thermally conductive silicone composition of [1], [2], or [3] above.
[5]: The thermally conductive cured silicone material according to the above item [4], wherein the thermally conductive cured material has a sheet-like shape.
[6]: The hardness of the cured thermally conductive silicone product measured with an Asker C hardness meter, the hardness after aging at 150°C for 500 hours is -5 points or more, 40 points or more compared to the hardness before aging. The thermally conductive cured silicone product according to [4] or [5] above, which is characterized in that it has a hardness of 100% or less.
[7]: The above [4], the above [4], wherein the thermal conductivity of the cured thermally conductive silicone product at 23°C measured by a hot disk method is 7.5 W/m·K or more. 5] or the thermally conductive silicone cured product of [6] above.
[8]: The thermally conductive silicone cured product has a dielectric breakdown voltage of 10 kV/mm or more at a thickness of 1 mm, [4], [5], [6], or [7] above. ] Thermal conductive silicone cured product.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiments. The above-mentioned embodiments are illustrative, and any embodiment that has substantially the same configuration as the technical idea stated in the claims of the present invention and has similar effects is the present invention. covered within the technical scope of

Claims (8)

熱伝導性シリコーン組成物であって、
(A)1分子中に2個以上のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)1分子中に2個以上のヒドロシリル基を有するオルガノハイドロジェンポリシロキサン:ヒドロシリル基のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍量となる量、
(C)下記(C-1)~(C-4)からなる熱伝導性充填材:4,300~5,800質量部、
(C-1)平均粒径が70μmを超えて135μm以下である球状アルミナフィラー:1,750~3,000質量部、
(C-2)平均粒径が8μmを超えて40μm以下である球状アルミナフィラー:750~2,000質量部、
(C-3)平均粒径が0.4μmを超えて4μm以下である不定形アルミナフィラー:750~1,500質量部、
(C-4)平均粒径が0.7μmを超えて4μm以下である球状アルミナフィラー:125~750質量部、
(D)白金族金属系硬化触媒:前記(A)成分に対して白金族金属元素質量換算で0.1~2,000ppm、
(E)付加反応制御剤:0.01~2.0質量部、
(F)酸化セリウム:7.5~25質量部、及び
(G)下記(G-1)及び(G-2)から選ばれる1種以上の表面処理剤:0.01~300質量部、
(G-1)下記一般式(1)で表されるアルコキシシラン化合物、
Si(OR4-a-b (1)
(式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に炭素原子数1~5のアルキル基、炭素原子数6~12のアリール基、及び炭素原子数7~12のアラルキル基から選ばれる基であり、Rは独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
(G-2)下記一般式(2)で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサン、
Figure 2023153695000015
(式中、Rは独立に炭素原子数1~6のアルキル基であり、cは5~100の整数である。)
を含むものであることを特徴とする熱伝導性シリコーン組成物。
A thermally conductive silicone composition comprising:
(A) organopolysiloxane having two or more alkenyl groups in one molecule: 100 parts by mass,
(B) Organohydrogenpolysiloxane having two or more hydrosilyl groups in one molecule: The number of moles of hydrosilyl groups is 0.1 to 5.0 times the number of moles of alkenyl groups derived from component (A). amount,
(C) A thermally conductive filler consisting of the following (C-1) to (C-4): 4,300 to 5,800 parts by mass,
(C-1) Spherical alumina filler with an average particle size of more than 70 μm and 135 μm or less: 1,750 to 3,000 parts by mass,
(C-2) Spherical alumina filler with an average particle size of more than 8 μm and less than 40 μm: 750 to 2,000 parts by mass,
(C-3) Amorphous alumina filler with an average particle size of more than 0.4 μm and 4 μm or less: 750 to 1,500 parts by mass,
(C-4) Spherical alumina filler with an average particle size of more than 0.7 μm and 4 μm or less: 125 to 750 parts by mass,
(D) Platinum group metal curing catalyst: 0.1 to 2,000 ppm in terms of platinum group metal element mass based on the component (A),
(E) Addition reaction control agent: 0.01 to 2.0 parts by mass,
(F) Cerium oxide: 7.5 to 25 parts by mass, and (G) one or more surface treatment agents selected from the following (G-1) and (G-2): 0.01 to 300 parts by mass,
(G-1) an alkoxysilane compound represented by the following general formula (1),
R 1 a R 2 b Si(OR 3 ) 4-ab (1)
(In the formula, R 1 is independently an alkyl group having 6 to 15 carbon atoms, and R 2 is independently an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 12 carbon atoms, and A group selected from 7 to 12 aralkyl groups, R 3 is independently an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, and b is an integer of 0 to 2, provided that a+b is an integer from 1 to 3.)
(G-2) Dimethylpolysiloxane represented by the following general formula (2), in which one end of the molecular chain is blocked with a trialkoxysilyl group,
Figure 2023153695000015
(In the formula, R 4 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.)
A thermally conductive silicone composition comprising:
更に、(H)成分として、下記一般式(3)で表される23℃における動粘度が10~100,000mm/sのオルガノポリシロキサンを前記(A)成分の100質量部に対して、0.1~100質量部で含有するものであることを特徴とする請求項1に記載の熱伝導性シリコーン組成物。
Figure 2023153695000016
(式中、Rは独立に炭素原子数1~6のアルキル基、炭素原子数6~12のアリール基、及び炭素原子数7~12のアラルキル基から選ばれる基であり、dは5~2,000の整数である。)
Furthermore, as component (H), an organopolysiloxane having a kinematic viscosity at 23° C. of 10 to 100,000 mm 2 /s expressed by the following general formula (3) is added to 100 parts by mass of component (A), The thermally conductive silicone composition according to claim 1, which contains 0.1 to 100 parts by mass.
Figure 2023153695000016
(In the formula, R 5 is a group independently selected from an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms, and d is a group having 5 to 12 carbon atoms. It is an integer of 2,000.)
23℃におけるフローテスタ粘度計で測定した前記熱伝導性シリコーン組成物の粘度が4,000Pa・s以下のものであることを特徴とする請求項1又は請求項2に記載の熱伝導性シリコーン組成物。 The thermally conductive silicone composition according to claim 1 or 2, wherein the viscosity of the thermally conductive silicone composition measured with a flow tester viscometer at 23° C. is 4,000 Pa·s or less. thing. 請求項1に記載の熱伝導性シリコーン組成物の硬化物であることを特徴とする熱伝導性シリコーン硬化物。 A thermally conductive silicone cured product, which is a cured product of the thermally conductive silicone composition according to claim 1. 前記熱伝導性シリコーン硬化物の形状がシート状のものであることを特徴とする請求項4に記載の熱伝導性シリコーン硬化物。 5. The thermally conductive cured silicone material according to claim 4, wherein the thermally conductive cured material has a sheet-like shape. 前記熱伝導性シリコーン硬化物のアスカーC硬度計で測定した硬さにおいて、150℃×500時間エージング後の硬さが、エージング前の硬さに対して、-5ポイント以上、40ポイント以下のものであることを特徴とする請求項4又は請求項5に記載の熱伝導性シリコーン硬化物。 The hardness of the thermally conductive silicone cured product measured with an Asker C hardness meter after aging at 150°C for 500 hours is -5 points or more and 40 points or less compared to the hardness before aging. The thermally conductive cured silicone product according to claim 4 or 5, characterized in that: 前記熱伝導性シリコーン硬化物のホットディスク法により測定した23℃における熱伝導率が、7.5W/m・K以上のものであることを特徴とする請求項4又は請求項5に記載の熱伝導性シリコーン硬化物。 The thermal conductivity according to claim 4 or 5, characterized in that the thermal conductivity of the cured thermally conductive silicone product at 23° C. measured by a hot disk method is 7.5 W/m·K or more. Conductive silicone cured product. 前記熱伝導性シリコーン硬化物の1mm厚における絶縁破壊電圧が10kV/mm以上のものであることを特徴とする請求項4又は請求項5に記載の熱伝導性シリコーン硬化物。 6. The cured thermally conductive silicone material according to claim 4, wherein the cured thermally conductive silicone material has a dielectric breakdown voltage of 10 kV/mm or more at a thickness of 1 mm.
JP2022063110A 2022-04-05 2022-04-05 Thermally conductive silicone composition and cured product Pending JP2023153695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022063110A JP2023153695A (en) 2022-04-05 2022-04-05 Thermally conductive silicone composition and cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022063110A JP2023153695A (en) 2022-04-05 2022-04-05 Thermally conductive silicone composition and cured product

Publications (1)

Publication Number Publication Date
JP2023153695A true JP2023153695A (en) 2023-10-18

Family

ID=88349669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022063110A Pending JP2023153695A (en) 2022-04-05 2022-04-05 Thermally conductive silicone composition and cured product

Country Status (1)

Country Link
JP (1) JP2023153695A (en)

Similar Documents

Publication Publication Date Title
JP5233325B2 (en) Thermally conductive cured product and method for producing the same
KR102360378B1 (en) Silicone composition
JP6075261B2 (en) Thermally conductive silicone composition and cured product thereof
JP7033047B2 (en) Thermally conductive silicone composition and its cured product
KR20170127482A (en) Thermally conductive silicone composition
JP5843364B2 (en) Thermally conductive composition
JP2009292928A (en) Heat-conductive silicone composition having accelerated curing speed in low-temperature heating
TW201333116A (en) Thermal conductive silicone composition
WO2020217634A1 (en) Thermally conductive silicone composition, method for producing same and thermally conductive silicone cured product
JP7285231B2 (en) Thermally conductive silicone composition and cured product thereof
WO2019138991A1 (en) Silicone composition
TW201943768A (en) Heat-conductive silicone composition and cured product thereof
KR20210098991A (en) Cured product of thermally conductive silicone composition
WO2018025502A1 (en) Thermally conductive silicone composition
JP7371249B2 (en) High thermal conductivity silicone composition
CN114729193B (en) Thermally conductive silicone composition and thermally conductive silicone sheet
TW202208604A (en) Two-pack curable heat conductive grease composition, heat conductive grease and electronic device
TW202328342A (en) Silicone composition
JP7467017B2 (en) Thermally conductive silicone composition and cured product thereof
JP7165647B2 (en) Thermally conductive silicone resin composition
CN117413021A (en) Thermally conductive silicone composition and cured product thereof
JP2023153695A (en) Thermally conductive silicone composition and cured product
JP6957435B2 (en) Thermally conductive silicone composition and its cured product
WO2022255004A1 (en) Thermally conductive silicone composition and cured product of same
WO2022239519A1 (en) Thermally conductive silicone composition and cured product of same