KR102132243B1 - Thermal conductive silicone composition and cured product, and composite sheet - Google Patents

Thermal conductive silicone composition and cured product, and composite sheet Download PDF

Info

Publication number
KR102132243B1
KR102132243B1 KR1020150189657A KR20150189657A KR102132243B1 KR 102132243 B1 KR102132243 B1 KR 102132243B1 KR 1020150189657 A KR1020150189657 A KR 1020150189657A KR 20150189657 A KR20150189657 A KR 20150189657A KR 102132243 B1 KR102132243 B1 KR 102132243B1
Authority
KR
South Korea
Prior art keywords
thermally conductive
conductive silicone
group
silicone composition
alumina
Prior art date
Application number
KR1020150189657A
Other languages
Korean (ko)
Other versions
KR20160084808A (en
Inventor
야스히사 이시하라
아키히로 엔도
Original Assignee
신에쓰 가가꾸 고교 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신에쓰 가가꾸 고교 가부시끼가이샤 filed Critical 신에쓰 가가꾸 고교 가부시끼가이샤
Publication of KR20160084808A publication Critical patent/KR20160084808A/en
Application granted granted Critical
Publication of KR102132243B1 publication Critical patent/KR102132243B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 열전도성 충전재의 총 질량부 중 90% 이상이 α화율이 90% 이상인 α 알루미나이고, 250℃ 환경 하의 공기 중에 6시간 방치하였을 때의 중량 감소율이 1% 미만인 열전도성 실리콘 조성물을 제공한다.
본 발명에 따른 열전도성 충전재의 총 질량부 중 90% 이상이 α화율이 90% 이상인 α 알루미나를 사용한 열전도성 실리콘 조성물은 250℃ 환경 하에서도 중량 감소가 적고 내열성이 우수하다. 이 열전도성 실리콘 조성물 및 경화물 및 복합 시트는 탄화규소계 기판 재료를 사용한 반도체 소자, 및 차량 탑재용 히터의 방열 용도 등, 250℃ 정도의 내열성이 요구되는 개소에 대응할 수 있다.
The present invention provides a thermally conductive silicone composition in which at least 90% of the total mass parts of the thermally conductive filler is α alumina with an α conversion rate of 90% or higher, and a weight reduction rate when left in air in a 250° C. environment for 6 hours is less than 1%. .
The thermally conductive silicone composition using α alumina in which at least 90% of the total mass parts of the thermally conductive filler according to the present invention has α α ratio of 90% or more has less weight loss and excellent heat resistance even under a 250° C. environment. The thermally conductive silicone composition and the cured product and the composite sheet can cope with locations where heat resistance of about 250°C is required, such as a semiconductor device using a silicon carbide-based substrate material, and a heat dissipation application of an on-vehicle heater.

Description

열전도성 실리콘 조성물 및 경화물, 및 복합 시트{THERMAL CONDUCTIVE SILICONE COMPOSITION AND CURED PRODUCT, AND COMPOSITE SHEET}THERMAL CONDUCTIVE SILICONE COMPOSITION AND CURED PRODUCT, AND COMPOSITE SHEET}

본 발명은, 예를 들어 전자 기기 내의 발열 부품과 방열 부품 사이, 특히 250℃ 정도의 고온 환경 하에 노출되는 경우의 방열에 사용되는 열전도성 실리콘 조성물, 열전도성 실리콘 경화물 및 열전도성 실리콘 복합 시트에 관한 것이다.The present invention includes, for example, a heat conductive silicone composition, a heat conductive silicone cured product, and a heat conductive silicone composite sheet used for heat dissipation between a heat generating component and a heat dissipation component in an electronic device, especially when exposed to a high temperature environment of about 250°C. It is about.

컨버터나, 전원 등의 전자 기기에 사용되는 트랜지스터나 다이오드 등의 반도체는 고성능화·고속화·소형화·고집적화에 수반하여 그 자체가 대량의 열을 발생시키게 되고, 그 열에 의한 기기의 온도 상승은 동작 불량, 파괴를 야기한다. 그 때문에, 동작 중인 반도체의 온도 상승을 억제하기 위한 많은 열 방산 방법 및 그에 사용되는 열 방산 부재가 제안되어 있다. 일반적인 열 방산 부재는, 중합체 매트릭스에 열전도성 충전재를 충전한 조성물 혹은 이를 경화시켜 이루어지는 경화물, 또는 경화물과 보강재를 적층한 복합 시트 등, 다양한 형태의 것을 들 수 있다. 열 방산 부재는 발열 부재와 방산 부재 사이에 실장되며, 그의 형상은 실장 상태에 따라 선택된다.Semiconductors, such as transistors and diodes used in electronic devices such as converters and power supplies, generate high amounts of heat by themselves with high performance, high speed, miniaturization, and high integration. Causes destruction. For this reason, many heat dissipation methods and heat dissipation members used therefor have been proposed to suppress the temperature rise of the semiconductor in operation. The general heat dissipation member may be of various types, such as a composition in which a polymer matrix is filled with a thermally conductive filler, a cured product obtained by curing the same, or a composite sheet obtained by laminating a cured material and a reinforcing material. The heat-dissipating member is mounted between the heat-generating member and the dissipating member, and its shape is selected according to the mounting state.

열 방산 부재의 중합체 매트릭스로서는 실리콘, 아크릴 수지, 올레핀 수지 등을 들 수 있지만, 내열성, 내한성, 장기 신뢰성의 관점에서 실리콘이 가장 적합하다.Examples of the polymer matrix of the heat-dissipating member include silicone, acrylic resin, and olefin resin, but silicone is most suitable from the viewpoints of heat resistance, cold resistance, and long-term reliability.

특히 발열량이 많은 반도체 소자나 장기 신뢰성이 요구되는 차량 탑재 분야에서의 열 방산 부재의 중합체 매트릭스는, 그의 내열성, 내한성, 장기 신뢰성의 관점에서 실리콘이 많이 사용되고 있다. 또한 지금까지 반도체 소자의 기판 재료는 실리콘이 일반적이었지만, 최근 들어 탄화규소를 원료로 하는 기판 재료가 보급되고 있다. 탄화규소계 기판 재료는, 내열 온도가 실리콘계 기판 재료보다도 높아, 허용되는 동작 환경 온도도 250℃ 부근까지 높아진다. 또한 차량 탑재 분야에서는 하이브리드 자동차, 전기 자동차 등의 보급이 진행되어, 지금까지 엔진의 발열을 이용하고 있던 난방 등도 엔진의 발열에 의존하는 것이 어려워져, 히터의 저항값을 높여 발열량을 증가시킬 필요성이 있다. 예를 들어 PTC 히터는 구동 시에는 대전류가 필요하며, 발열도 200℃를 초과하도록 되어 있다.In particular, as a polymer matrix of a heat dissipation member in a semiconductor device having a large amount of heat generation or in a vehicle-mounted field requiring long-term reliability, silicon is often used in view of its heat resistance, cold resistance, and long-term reliability. Further, silicon has been generally used as a substrate material for semiconductor devices, but recently, a substrate material using silicon carbide as a raw material has been widely used. The silicon carbide-based substrate material has a higher heat-resistance temperature than the silicon-based substrate material, and the permissible operating environment temperature also increases to around 250°C. In addition, in the field of vehicle mounting, the spread of hybrid vehicles, electric vehicles, etc. is progressing, and it is difficult to rely on the heat of the engine for heating, which has been using the heat of the engine so far, so it is necessary to increase the resistance value of the heater to increase the heat generation amount. have. For example, the PTC heater requires a large current when driving, and the heat generation degree exceeds 200°C.

이러한 흐름 가운데, 당연히 열 방산 부재에 요구되는 내열 온도도 높아지고 있다. 지금까지의 일반적인 실리콘을 중합체 매트릭스로서 사용하는 열 방산 부재인 열전도성 실리콘 조성물 및 그의 경화물, 또는 복합 시트의 사용 온도 범위는 -40℃ 내지 180℃이기 때문에 상기 상황에는 적합하지 않다.Of these flows, of course, the heat-resistant temperature required for the heat-dissipating member is also increasing. The use temperature range of the thermally conductive silicone composition which is a heat dissipation member using conventional silicone as the polymer matrix and the cured product thereof or the composite sheet is -40°C to 180°C, which is not suitable for the above situation.

또한 본 발명에 관련한 종래 기술로서 일본 특허 공개 제2014-145024호 공보를 들 수 있으며, 내열(250℃)성을 강조하고 있지만, 열 안정화제를 첨가해야만 하고, 또한 저산소 가열 환경 하에 한정된다는 문제가 있다.Also, as a related art related to the present invention, Japanese Patent Application Publication No. 2014-145024 can be cited, and although heat resistance (250° C.) is emphasized, a problem that a heat stabilizer must be added and is limited only under a low oxygen heating environment. have.

일본 특허 공개 제2014-145024호 공보Japanese Patent Publication No. 2014-145024

본 발명은 상기 사정을 감안하여 이루어진 것으로, 실리콘을 중합체 매트릭스로 하는 250℃ 분위기 하에서도 사용 가능한 열전도성 실리콘 조성물 및 경화물, 및 복합 시트를 제공하는 것을 목적으로 한다.The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermally conductive silicone composition and a cured product, and a composite sheet that can be used even in a 250°C atmosphere using silicone as a polymer matrix.

본 발명자들은 예의 검토한 결과, 알루미나 중에서도 특히 α화율이 높은 α 알루미나를 사용함으로써, 공기 중 250℃ 분위기 하에서도 중량 감소가 적은 열전도성 실리콘 조성물을 제공할 수 있음을 알아내었다.As a result of careful examination, the present inventors have found that by using α alumina, which has a high α conversion rate, among alumina, it is possible to provide a thermally conductive silicone composition with low weight loss even under an atmosphere of 250° C. in air.

즉, 종래부터 열 방산 부재, 특히 차량 탑재 분야에서는, 열 방산 부재에는 절연성이 요구되고 있으며, 많은 실리콘을 중합체 매트릭스로 하는 열 방산 부재의 열전도성 충전재로서는 가격, 열전도성, 충전성, 절연성의 관점에서 알루미나가 사용되고 있지만, 상술한 목적을 달성하기 위해서는, 열전도성 충전재로서 α 알루미나를 주로 사용한 실리콘을 중합체 매트릭스로 하는 것이, 250℃ 환경 하에서 사용 가능한 열전도성 실리콘 조성물 및 경화물을 얻는 점에서 유효한 것을 알아내어, 본 발명을 이루기에 이르렀다.That is, in the conventional heat-dissipating member, especially in the vehicle-mounted field, insulation is required for the heat-dissipating member, and as a heat-conducting filler of a heat-dissipating member made of a large amount of silicone as a polymer matrix, the viewpoint of price, heat conductivity, filling property, and insulating property Although alumina is used in order to achieve the above-mentioned purpose, it is effective to obtain a thermally conductive silicone composition and a cured product that can be used under a 250° C. environment as a polymer matrix using silicone mainly composed of α alumina as a thermally conductive filler. Found out, it has come to achieve the present invention.

따라서, 본 발명은 하기의 열전도성 실리콘 조성물 및 경화물, 및 복합 시트를 제공한다.Accordingly, the present invention provides the following thermally conductive silicone composition and cured product, and a composite sheet.

〔1〕열전도성 충전재의 총 질량부 중 90% 이상이 α화율이 90% 이상인 α 알루미나이고, 250℃ 환경 하의 공기 중에 6시간 방치하였을 때의 중량 감소율이 1% 미만인 것을 특징으로 하는 열전도성 실리콘 조성물.[1] Thermally conductive silicone characterized in that at least 90% of the total mass parts of the thermally conductive filler is α alumina with an α conversion rate of 90% or more, and the weight reduction rate when left in air in a 250° C. environment for 6 hours is less than 1%. Composition.

〔2〕열전도율이 0.5W/mK 이상인 것을 특징으로 하는, 〔1〕에 기재된 열전도성 실리콘 조성물.[2] The thermally conductive silicone composition according to [1], wherein the thermal conductivity is 0.5 W/mK or more.

〔3〕오르가노폴리실록산 주재 100질량부에 대하여 열전도성 충전재 250 내지 2,000질량부를 함유하는 것을 특징으로 하는, 〔1〕 또는 〔2〕에 기재된 열전도성 실리콘 조성물.[3] The thermally conductive silicone composition according to [1] or [2], characterized in that it contains 250 to 2,000 parts by mass of the thermally conductive filler relative to 100 parts by mass of the organopolysiloxane base material.

〔4〕열전도성 충전재의 총 질량부 중 90% 이상이 α화율이 90% 이상인 α 알루미나를 함유하는 열전도성 실리콘 조성물을 경화시켜 이루어지는 경화물을 250℃ 환경 하의 공기 중에 6시간 방치하였을 때의 중량 감소율이 1% 미만인 것을 특징으로 하는 열전도성 실리콘 경화물.[4] Weight when 90% or more of the total mass parts of the thermally conductive filler is cured by curing a thermally conductive silicone composition containing α alumina having an α amination rate of 90% or more in air at 250° C. for 6 hours A thermally conductive silicone cured product characterized in that the reduction rate is less than 1%.

〔5〕열전도율이 0.5W/mK 이상인 것을 특징으로 하는, 〔4〕에 기재된 열전도성 실리콘 경화물.[5] The thermally conductive silicone cured product according to [4], characterized in that the thermal conductivity is 0.5 W/mK or more.

〔6〕열전도성 실리콘 조성물이 오르가노폴리실록산 주재 100질량부와, 열전도성 충전재 250 내지 2,000질량부와, 상기 오르가노폴리실록산 주재를 경화시키는 경화제의 경화 유효량을 함유하는 것을 특징으로 하는, 〔4〕 또는 〔5〕에 기재된 열전도성 실리콘 경화물.[6] The thermally conductive silicone composition contains 100 parts by mass of an organopolysiloxane base, 250 to 2,000 parts by mass of a thermally conductive filler, and a curing effective amount of a curing agent for curing the organopolysiloxane base, [4] Or the cured thermally conductive silicone according to [5].

〔7〕보강재의 한쪽측 또는 양측에, 〔4〕 내지 〔6〕 중 어느 하나에 기재된 열전도성 실리콘 경화물을 적층시켜 이루어지는 것을 특징으로 하는 열전도성 실리콘 복합 시트.[7] A thermally conductive silicone composite sheet comprising one or both sides of a reinforcing material laminated with the thermally conductive silicone cured product according to any one of [4] to [6].

〔8〕보강재가 폴리이미드 필름인 것을 특징으로 하는, 〔7〕에 기재된 열전도성 실리콘 복합 시트.[8] The thermally conductive silicone composite sheet according to [7], wherein the reinforcing material is a polyimide film.

〔9〕보강재가 유리 클로스인 것을 특징으로 하는, 〔7〕에 기재된 열전도성 실리콘 복합 시트.[9] The thermally conductive silicone composite sheet according to [7], wherein the reinforcing material is a glass cloth.

〔10〕열전도성 실리콘 경화물의 경도가 듀로미터 A 경도로 80 내지 99인 것을 특징으로 하는, 〔7〕 내지 〔9〕 중 어느 하나에 기재된 열전도성 실리콘 복합 시트.[10] The thermally conductive silicone composite sheet according to any one of [7] to [9], wherein the hardness of the thermally conductive silicone cured product is 80 to 99 in durometer A hardness.

본 발명에 따른 열전도성 충전재의 총 질량부 중 90% 이상이 α화율이 90% 이상인 α 알루미나를 사용한 열전도성 실리콘 조성물은 250℃ 환경 하에서도 중량 감소가 적고 내열성이 우수하다. 이 열전도성 실리콘 조성물 및 경화물, 및 복합 시트는 탄화규소계 기판 재료를 사용한 반도체 소자, 및 차량 탑재용 히터의 방열 용도 등, 250℃ 정도의 내열성이 요구되는 개소에 대응할 수 있다.The thermally conductive silicone composition using α alumina in which at least 90% of the total mass parts of the thermally conductive filler according to the present invention has an α conversion rate of 90% or more has less weight loss and excellent heat resistance even under a 250° C. environment. The thermally conductive silicone composition, cured product, and composite sheet can cope with locations where heat resistance of about 250°C is required, such as a semiconductor element using a silicon carbide-based substrate material and a heat dissipation application of a vehicle-mounted heater.

본 발명에 따른 열전도성 실리콘 조성물은 오르가노폴리실록산 주재와 열전도성 충전재를 주성분으로 하고, 열전도성 실리콘 경화물은 오르가노폴리실록산 주재와 열전도성 충전재에 상기 오르가노폴리실록산 주재를 경화시키는 경화제를 첨가한 열전도성 실리콘 조성물을 경화시켜 이루어지는 것이다.The thermally conductive silicone composition according to the present invention is composed of an organopolysiloxane base and a thermally conductive filler as main components, and the thermally conductive silicone cured product is a thermoelectric material in which an organopolysiloxane base and a thermally conductive filler are added with a curing agent for curing the organopolysiloxane base. It is made by curing the silicone composition.

이하, 더욱 상세히 설명한다.It will be described in more detail below.

[오르가노폴리실록산 주재][Organopolysiloxane Presence]

본 발명에 사용하는 오르가노폴리실록산 주재는, 주쇄 부분이 기본적으로 디오르가노실록산 단위의 반복을 포함하는 것이 일반적인데, 이는 분자 구조의 일부에 분지상의 구조를 포함한 것일 수도 있고, 또한 환상체일 수도 있지만, 직쇄상의 디오르가노폴리실록산이 바람직하다.In the organopolysiloxane base material used in the present invention, it is common for the main chain portion to basically include a repeat of a diorganosiloxane unit, which may include a branched structure in a part of the molecular structure, or may be annular. , Linear diorganopolysiloxanes are preferred.

규소 원자에 결합하는 관능기로서는 비치환 또는 치환된 1가 탄화수소기이며, 예를 들어 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, tert-부틸기, 펜틸기, 네오펜틸기, 헥실기, 헵틸기, 옥틸기, 노닐기, 데실기, 도데실기 등의 알킬기, 시클로펜틸기, 시클로헥실기, 시클로헵틸기 등의 시클로알킬기, 페닐기, 톨릴기, 크실릴기, 나프틸기, 비페닐릴기 등의 아릴기, 벤질기, 페닐에틸기, 페닐프로필기, 메틸벤질기 등의 아르알킬기, 및 이들 기에 탄소 원자가 결합하고 있는 수소 원자의 일부 또는 전부가 불소, 염소, 브롬 등의 할로겐 원자, 시아노기 등으로 치환된 기, 예를 들어 클로로메틸기, 2-브로모에틸기, 3-클로로프로필기, 3,3,3-트리플루오로프로필기, 클로로페닐기, 플루오로페닐기, 시아노에틸기, 3,3,4,4,5,5,6,6,6-노나플루오로헥실기 등을 들 수 있고, 대표적인 것은 탄소 원자수가 1 내지 10, 특히 대표적인 것은 탄소 원자수가 1 내지 6인 것이다. 바람직하게는 메틸기, 에틸기, 프로필기, 클로로메틸기, 2-브로모에틸기, 3,3,3-트리플루오로프로필기, 시아노에틸기 등의, 탄소 원자수 1 내지 3의 비치환 또는 치환된 알킬기, 및 페닐기, 클로로페닐기, 플루오로페닐기 등의 비치환 또는 치환된 페닐기이다. 그 외에는 알케닐기와 같은 불포화 결합을 갖고 있을 수도 있으며, 예를 들어 비닐기, 알릴기, 프로페닐기, 이소프로페닐기, 부테닐기, 헥세닐기, 시클로헥세닐기 등의, 통상 탄소 원자수 2 내지 8 정도의 것을 들 수 있다.As a functional group bonded to a silicon atom, an unsubstituted or substituted monovalent hydrocarbon group, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group , Hexyl group, heptyl group, octyl group, nonyl group, decyl group, alkyl group such as dodecyl group, cyclopentyl group, cyclohexyl group, cycloalkyl group such as cycloheptyl group, phenyl group, tolyl group, xylyl group, naphthyl group, Aryl groups such as biphenylyl groups, benzyl groups, aralkyl groups such as phenylethyl groups, phenylpropyl groups and methylbenzyl groups, and halogen atoms such as fluorine, chlorine and bromine are partially or entirely part of the hydrogen atoms to which these groups have carbon atoms attached , A group substituted with a cyano group, for example, chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5,6,6,6-nonafluorohexyl group, etc. are mentioned, and the representative thing is 1 to 10 carbon atoms, especially the representative thing is 1 to 6 carbon atoms. Preferably, an unsubstituted or substituted alkyl group having 1 to 3 carbon atoms, such as methyl group, ethyl group, propyl group, chloromethyl group, 2-bromoethyl group, 3,3,3-trifluoropropyl group, and cyanoethyl group. , And an unsubstituted or substituted phenyl group such as a phenyl group, chlorophenyl group, and fluorophenyl group. Other than that, it may have an unsaturated bond such as an alkenyl group, for example, a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, a hexenyl group, a cyclohexenyl group, etc., usually having 2 to 2 carbon atoms. Eight things are mentioned.

주쇄의 실록산 반복 단위는 특별히 한정은 없으며, 반복 단위의 수에 따라 얻어지는 폴리실록산의 성상이 변화되므로, 그에 맞추어 열전도성 실리콘 조성물의 조제 방법을 적절히 선택하면 된다. 오일상이면 플라네터리 믹서와 같은 교반 장치가 적합하고, 생고무상이면 2축 롤이나 니더 등의, 보다 전단력이 걸리는 교반 장치가 적합하다.The siloxane repeating unit of the main chain is not particularly limited, and the properties of the polysiloxane obtained are changed according to the number of repeating units, so a method for preparing the thermally conductive silicone composition may be appropriately selected. If the oil phase, a stirring device such as a planetary mixer is suitable, and if it is a raw rubber phase, a stirring device such as a twin-screw roll or a kneader that takes more shear force is suitable.

이 경우, 오르가노폴리실록산 주재로서, 25℃의 동점도가 100 내지 40,000㎟/s, 특히 100 내지 10,000㎟/s인 것을 사용하는 것이 취급의 관점에서 바람직하다. 또한 동점도는 오스트발트(Ostwald) 점도계로 측정할 수 있다.In this case, it is preferable from the viewpoint of handling that the organopolysiloxane is used as a main material having a kinematic viscosity of 25°C to 100 to 40,000 kPa/s, particularly 100 to 10,000 kPa/s. In addition, kinematic viscosity can be measured with an Ostwald viscometer.

[열전도성 충전재][Thermal conductive filler]

본 발명에 있어서는, 열전도성 충전재로서 열전도성 충전재의 총 질량부 중 90질량% 이상, 바람직하게는 95질량% 이상이 α화율이 90% 이상인 α 알루미나를 사용한다.In the present invention, as the thermally conductive filler, α alumina having 90% by mass or more, preferably 95% by mass or more, of the total mass part of the thermally conductive filler is preferably 90% or more.

(알루미나의 결정상)(Crystalline phase of alumina)

알루미나는 α, β, θ, γ 등 소결되는 온도의 차이로 다양한 결정상을 갖는다. 소결되는 온도가 가장 높은 α 알루미나가 250℃ 환경 하에서 실리콘 중합체의 중량 감소를 가장 억제하는 것을 알아내었다. 또한, 일반적인 알루미나는 결정상이 단일로 존재하는 것은 거의 없지만, 가능한 한 α상이 차지하는 비율이 높은 편이 좋으며, α화율이 90% 이상, 바람직하게는 95% 이상인 것을 사용한다.Alumina has a variety of crystal phases due to the difference in temperature, such as α, β, θ, and sintering. It was found that α alumina having the highest sintering temperature most inhibited the weight loss of the silicone polymer under the 250° C. environment. In addition, in general alumina, although there is almost no single crystal phase, it is preferable that the ratio of the α phase occupies as high as possible, and an α ratio of 90% or more, preferably 95% or more, is used.

α화율은, 시료를 X선 회절 장치를 사용하여 얻은 미립 α 알루미나의 회절 스펙트럼으로부터, 2θ=25.6°의 위치에 나타나는 알루미나 α상(012면)의 피크 높이(I25.6)와, 2θ=46°의 위치에 나타나는 γ상, η상, χ상, κ상, θ상 및 δ상의 피크 높이(I46)로부터, 하기 식The α ratio is the peak height (I 25.6 ) of the alumina α phase (012 plane), which appears at the position of 2θ=25.6°, from the diffraction spectrum of the fine α alumina obtained by using the X-ray diffraction apparatus, and 2θ=46° From the peak height (I 46 ) of the γ phase, η phase, χ phase, κ phase, θ phase and δ phase appearing at the position of

α화율(%)=I25.6/(I25.6+I46)×100α rate (%)=I 25.6 /(I 25.6 +I 46 )×100

에 의하여 산출한 값이다.It is calculated by.

(알루미나의 입경)(Particle size of alumina)

알루미나의 중심 입경은 0.1 내지 200㎛가 바람직하고, 보다 바람직하게는 1 내지 100㎛, 더욱 바람직하게는 1 내지 50㎛이다. 중심 입경이 0.1㎛ 미만으로 되면 오르가노폴리실록산 주재에의 충전성이 저하되어 버리고, 중심 입경이 200㎛를 초과하면 조성물로 했을 때의 유동성이나 경화물로 했을 때의 강도가 얻어지기 어렵다. 또한 열전도성 실리콘 조성물을 실장할 때의 두께, 경화시킬 때의 두께를 감안하여 입경을 선택하는 것이 중요하다. 실장할 때, 경화시킬 때의 두께보다도 입경이 큰 알루미나가 포함되어 있으면, 열전도성 실리콘 조성물 및 경화물로부터 알루미나가 돌출되어 버리게 되기 때문이다.The center particle diameter of the alumina is preferably 0.1 to 200 μm, more preferably 1 to 100 μm, and even more preferably 1 to 50 μm. When the center particle diameter is less than 0.1 µm, the filling property to the organopolysiloxane base material decreases. When the center particle diameter exceeds 200 µm, the fluidity of the composition or the strength of the cured product is difficult to obtain. In addition, it is important to select a particle size in consideration of the thickness when mounting the thermally conductive silicone composition and the thickness when curing. This is because alumina protrudes from the thermally conductive silicone composition and the cured product when alumina having a particle size larger than the thickness at the time of curing during mounting is included.

알루미나의 평균 입경은, 닛키소 가부시키가이샤 제조의 입도 분석계인 마이크로트랙 MT3300EX에 의하여 측정한 누적 평균 직경(메디안 직경)의 값이다.The average particle diameter of alumina is a value of a cumulative average diameter (median diameter) measured by a microtrack MT3300EX, a particle size analyzer manufactured by Nikkiso Co., Ltd.

(알루미나의 입상)(Figurine of alumina)

알루미나에는 제법에 따라 구상, 라운드상, 파쇄상 등 다양한 입상이 있다. 일반적으로 파쇄상 알루미나는 α화율이 높으므로 파쇄상 알루미나가 바람직하지만, α화율을 만족시키고 있으면 입상은 불문한다.Alumina has various shapes such as spherical shape, round shape, and crushed shape according to the manufacturing method. In general, the crushed alumina has a high α-ization rate, so a crushed alumina is preferable, but if the α-ization rate is satisfied, no granularity is obtained.

(그 외의 열전도성 충전재)(Other thermally conductive fillers)

그 외의 열전도성 충전재로서는, 비자성의 구리나 알루미늄 등의 금속, 알루미나, 실리카, 마그네시아, 벵갈라, 베릴리아, 티타니아, 지르코니아 등의 금속 산화물, 질화알루미늄, 질화규소, 질화붕소 등의 금속 질화물, 수산화마그네슘 등의 금속 수산화물, 인공 다이아몬드 또는 탄화규소 등, 일반적으로 열전도성 충전재로 되는 물질을 사용할 수 있다. 또한 중심 입경은 0.1 내지 200㎛를 이용할 수 있으며, 1종 또는 2종 이상 복합하여 사용할 수도 있다. 단, 본 발명의 용도로서 250℃ 환경 하에서 사용하는 것이 상정되기 때문에, 적어도 300℃ 부근까지는 용융, 산화, 탈수 등의 반응이 일어나지 않거나, 또한 오르가노폴리실록산 주재의 크래킹을 촉진하지 않는 것을 사용할 필요가 있다.As other thermally conductive fillers, metals such as non-magnetic copper and aluminum, alumina, silica, magnesia, bengala, beryllia, titania, zirconia, and other metal oxides, metal nitrides such as aluminum nitride, silicon nitride, and boron nitride, magnesium hydroxide, and the like Materials such as metal hydroxides, artificial diamonds or silicon carbide, which are generally used as thermally conductive fillers, can be used. In addition, the center particle size may be used from 0.1 to 200㎛, it may be used in combination of one or two or more. However, since the use of the present invention is assumed to be used in an environment of 250° C., it is necessary to use a material that does not cause reactions such as melting, oxidation, and dehydration to at least 300° C. or that does not promote cracking of the organopolysiloxane. have.

(열전도성 충전재의 배합량)(The amount of thermally conductive filler)

열전도성 충전재의 배합량은 오르가노폴리실록산 주재 100질량부에 대하여 250 내지 2,000질량부가 바람직하고, 보다 바람직하게는 250 내지 1,000질량부, 더욱 바람직하게는 250 내지 600질량부이다. 열전도성 충전재의 배합량이 지나치게 적으면 충분한 열전도성을 얻지 못할 우려가 있고, 지나치게 많으면 조성물 자체의 조제가 곤란해질 우려가 있다.The blending amount of the thermally conductive filler is preferably 250 to 2,000 parts by mass, more preferably 250 to 1,000 parts by mass, and even more preferably 250 to 600 parts by mass relative to 100 parts by mass of the organopolysiloxane base material. If the amount of the thermally conductive filler is too small, there is a fear that sufficient thermal conductivity may not be obtained, and if too large, the composition itself may be difficult to prepare.

[열전도성 실리콘 조성물][Thermal conductive silicone composition]

열전도성 실리콘 조성물은 상술한 바와 같이 오르가노폴리실록산 주재와 열전도성 충전재를 주성분으로 하지만 그 외의 성분으로서, 필요에 따라, 열전도성 충전재의 분산성을 향상시키는 등의 목적으로 알콕시기 함유 오르가노폴리실록산을 배합할 수 있다. 이 알콕시기 함유 오르가노폴리실록산으로서는, 특히 하기 식As described above, the thermally conductive silicone composition is composed of an organopolysiloxane base and a thermally conductive filler as main components, but as other components, an alkoxy group-containing organopolysiloxane is used for the purpose of improving the dispersibility of the thermally conductive filler, if necessary. It can be combined. Especially as this alkoxy group containing organopolysiloxane, the following formula

Figure 112015128810088-pat00001
Figure 112015128810088-pat00001

(식 중, R은 비치환 또는 치환된 탄소 원자수 1 내지 30, 특히 1 내지 10의 알킬기, 아릴기, 아르알킬기, 할로겐화알킬기 등의 1가 탄화수소기, R'은 탄소 원자수 1 내지 6, 특히 1 내지 3의 알킬기를 나타낸다. q는 0 내지 2의 정수이고, 바람직하게는 0이다. p는 0 내지 100, 특히 1 내지 50의 정수이다.)(Wherein, R is an unsubstituted or substituted 1 to 30 carbon atoms, especially 1 to 10 alkyl groups, aryl groups, aralkyl groups, monovalent hydrocarbon groups such as halogenated alkyl groups, R'is 1 to 6 carbon atoms, In particular, it represents an alkyl group of 1 to 3. q is an integer from 0 to 2, preferably 0. p is an integer from 0 to 100, especially from 1 to 50.)

으로 표시되는 한쪽 말단 알콕시기 함유 디오르가노폴리실록산이 바람직하다.Diorganopolysiloxane containing one terminal alkoxy group represented by is preferable.

상기 알콕시기 함유 오르가노폴리실록산의 배합량은 오르가노폴리실록산 주재 100질량부에 대하여 1 내지 30질량부가 바람직하고, 특히 3 내지 20질량부인 것이 바람직하다.The blending amount of the alkoxy group-containing organopolysiloxane is preferably 1 to 30 parts by mass, particularly preferably 3 to 20 parts by mass, relative to 100 parts by mass of the organopolysiloxane.

또한, 필요에 따라 유기 안료나 무기 안료 등의 착색제, 산화철이나 산화세륨 등의 내열성 향상제 및 내첨 이형제 등을 배합할 수도 있다.In addition, a colorant such as an organic pigment or an inorganic pigment, a heat resistance improving agent such as iron oxide or cerium oxide, an internal additive release agent, and the like can be blended as necessary.

(열전도성 실리콘 조성물의 유동성)(Flowability of thermally conductive silicone composition)

본 발명에 있어서, 열전도성 실리콘 조성물은 경화시키지 않고 그대로 사용에 제공할 수 있으며, 이 경우, 열전도성 실리콘 조성물의 유동성은 특별히 규정하지 않지만, 방열 그리스나 경화형 방열 그리스라고 불리는 디스펜서나 메탈 마스크를 사용한 스크린 인쇄에서 실장하는 경우의 점도는 25℃에서 10 내지 900㎩·s가 바람직하고, 보다 바람직하게는 10 내지 400㎩·s이다. 점도가 900㎩·s를 초과하는 경우, 유동성이 나빠 디스펜서에서의 토출이 곤란해지거나, 스크린 인쇄에서 스크래치가 발생할 가능성이 있다. 또한 상기 점도는 말콤 점도계에 의한 값이다.In the present invention, the thermally conductive silicone composition can be provided for use without curing, and in this case, the fluidity of the thermally conductive silicone composition is not specifically defined, but a dispenser or metal mask called heat dissipating grease or curable heat dissipating grease is used. The viscosity when mounted in screen printing is preferably 10 to 900 Pa·s at 25° C., more preferably 10 to 400 Pa·s. When the viscosity exceeds 900 Pa·s, there is a possibility that ejection from the dispenser becomes difficult due to poor fluidity or scratches may occur in screen printing. In addition, the said viscosity is a value by a Malcolm viscometer.

(공기 중 250℃ 환경 하에서의 중량 감소율)(Weight reduction rate in the air at 250°C)

본 발명에 따른 열전도성 실리콘 조성물에 있어서, 공기 중 250℃ 환경 하에 6시간 방치했을 경우의 중량 감소율은 1% 미만이고, 바람직하게는 0.8% 이하이다. 중량 감소의 원인은, 오르가노폴리실록산 주재가 열에 의하여 크래킹을 일으켜 저분자화되어 휘발되어 버리기 때문이므로, 중량 감소율이 크면 중합체 분이 감소하여 열전도성 실리콘 조성물이 물러지거나 단단해지거나 한다. 그러한 경우, 열전도성 실리콘 조성물의 열전도성이 상실되어 버린다.In the thermally conductive silicone composition according to the present invention, the weight loss ratio when left in an environment of 250° C. in air for 6 hours is less than 1%, preferably 0.8% or less. The reason for the weight reduction is that the organopolysiloxane base material is cracked by heat and becomes low-molecularized and volatilized. Therefore, if the weight-reduction ratio is large, the polymer content decreases, causing the thermally conductive silicone composition to soften or harden. In such a case, the thermal conductivity of the thermally conductive silicone composition is lost.

또한 알루미나의 결정상에 따라 실리콘의 크래킹의 정도가 변화되는 것을 알아내었다. γ상이나 θ상 등 소결 온도가 낮은 결정상의 알루미나는 실리콘의 크래킹을 촉진하고, 가장 소결 온도가 높은 α상의 알루미나는 실리콘의 크래킹을 촉진하지 않기 때문에 중량 감소율이 억제된다.It was also found that the degree of cracking of silicon varied depending on the crystal phase of alumina. Alumina in a crystalline phase such as γ phase or θ phase having a low sintering temperature promotes cracking of silicon, and alumina in the α phase having the highest sintering temperature does not promote cracking of silicon, so the weight reduction rate is suppressed.

중량 감소율은, 직경 20㎜의 내열성 유리 샬레에 열전도성 실리콘 조성물을 2g 칭량하여 250℃의 오븐에 투입한다. 오븐 내의 분위기는 공기이다. 6시간 경과 후 취출하여 실온으로 복귀시키고 칭량하여, 투입 전과 투입 후의 중량 변화로부터 산출한 값이다.As for the weight reduction rate, 2 g of a thermally conductive silicone composition is weighed into a heat-resistant glass chalet having a diameter of 20 mm and put into an oven at 250°C. The atmosphere in the oven is air. It is taken out after 6 hours, returned to room temperature, weighed, and calculated from weight changes before and after input.

(열전도율)(Thermal conductivity)

열전도성 실리콘 조성물의 열전도율은 0.5W/mK 이상이 바람직하다. 보다 바람직하게는 0.8 내지 8.0W/mK이다. 0.5W/mK 미만이면 충분한 방열 효과가 얻어지지 않는다. 열전도율의 상한은 특별히 규정하지는 않지만, 8.0W/mK를 초과하여 얻고자 하면 실리콘에의 충전 자체가 곤란해진다. 열전도율은 핫 디스크법에 의하여 측정한 값이다.The thermal conductivity of the thermally conductive silicone composition is preferably 0.5 W/mK or more. More preferably, it is 0.8 to 8.0 W/mK. If it is less than 0.5 W/mK, a sufficient heat dissipation effect cannot be obtained. The upper limit of the thermal conductivity is not particularly defined, but if it is desired to obtain in excess of 8.0 W/mK, filling of silicon itself becomes difficult. The thermal conductivity is a value measured by the hot disk method.

[열전도성 실리콘 경화물][Heat conductive silicone cured product]

열전도성 실리콘 경화물은, 상술한 오르가노폴리실록산 주재와 열전도성 충전재를 주성분으로 하는 상기 열전도성 실리콘 조성물에 대하여 경화제를 배합하여 경화시킨 것이다.The thermally conductive silicone cured product is cured by blending a curing agent with respect to the thermally conductive silicone composition containing the aforementioned organopolysiloxane base and thermally conductive filler as main components.

열전도성 실리콘 조성물의 경화 방법은, 백금 촉매를 사용한 부가 경화 반응, 유기 과산화물을 촉매로서 사용한 라디칼 반응, 자외선 조사나 전자선 조사를 사용한 라디칼 반응 등을 들 수 있다. 단, 경화 방법은 이들에 한정되는 것은 아니다.Examples of the curing method for the thermally conductive silicone composition include addition curing reaction using a platinum catalyst, radical reaction using an organic peroxide as a catalyst, and radical reaction using ultraviolet irradiation or electron beam irradiation. However, the curing method is not limited to these.

이 경우, 백금 촉매를 사용한 부가 경화 반응을 이용하여 열전도성 실리콘 조성물을 경화시키고자 하는 경우에는, 오르가노폴리실록산 주재로서, 분자 중에 적어도 2개의 알케닐기를 갖는 오르가노폴리실록산과, 경화제로서 규소 원자에 직접 결합한 수소 원자를 적어도 2개 갖는 오르가노히드로겐폴리실록산 및 백금족 금속계 경화 촉매가 필수 성분으로 된다.In this case, in order to cure the thermally conductive silicone composition using an addition curing reaction using a platinum catalyst, as an organopolysiloxane main agent, an organopolysiloxane having at least two alkenyl groups in the molecule and a silicon atom as a curing agent The organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded and a platinum group metal-based curing catalyst are essential components.

또한 유기 과산화물로 경화시켰을 경우, 오르가노폴리실록산 주재로서는 알케닐기를 함유하는 것일 수도 있지만, 알케닐기를 포함하지 않는 오르가노폴리실록산 주재를 사용하더라도 경화된다.In addition, when cured with an organic peroxide, the organopolysiloxane base may contain an alkenyl group, but is cured even when an organopolysiloxane base containing no alkenyl group is used.

또한 이러한 오르가노폴리실록산 주재를 경화시키는 경화제의 배합량이나 경화 방법, 경화 조건 등은 공지 기술을 채용할 수 있다.In addition, a known technique can be employed for the amount of the curing agent for curing the organopolysiloxane base material, the curing method, and the curing conditions.

(열전도성 실리콘 경화물의 경도)(Hardness of thermally conductive silicone cured product)

열전도성 실리콘 경화물의 경도는 듀로미터 A 경도로 80 내지 99가 바람직하다. 보다 바람직하게는 90 내지 96이다. 80 미만이면 경화물이 실장 시에 변형되기 쉬워지거나, 경화물 표면에 흠집이 나기 쉬워지는 경우가 있다.The hardness of the thermally conductive silicone cured product is preferably 80 to 99 as Durometer A hardness. More preferably, it is 90 to 96. If it is less than 80, the cured product tends to deform at the time of mounting, or the surface of the cured product may be easily damaged.

(열전도성 실리콘 경화물의 중량 감소율 및 열전도율)(Weight reduction rate and thermal conductivity of cured thermally conductive silicone)

열전도성 실리콘 경화물의 중량 감소율 및 열전도율은, 열전도성 실리콘 조성물 자체가 아니라 이를 경화시킨 경화물이 측정 대상으로 될 뿐, 측정 방법은 상술한 열전도성 실리콘 조성물의 경우와 마찬가지이다.The weight loss rate and the thermal conductivity of the thermally conductive silicone cured product are not the thermally conductive silicone composition itself, but the cured product cured therein as a measurement object, and the measurement method is the same as that of the aforementioned thermally conductive silicone composition.

[열전도성 실리콘 복합 시트][Thermal conductive silicone composite sheet]

열전도성 실리콘 복합 시트는 보강재의 한쪽측 또는 양측에 상기 열전도성 실리콘 경화물을 적층한 것이다.The thermally conductive silicone composite sheet is obtained by laminating the thermally conductive silicone cured product on one side or both sides of a reinforcing material.

이 경우, 열전도성 실리콘 복합 시트의 보강재는, 실용성이나 가공성을 생각하면 폴리이미드 필름 또는 유리 클로스가 바람직하다. 단, 보강재는 이들에 한정되는 것은 아니며, 충분한 강도와 내열성을 갖고 있는 것이면 문제없이 사용할 수 있다. 예를 들어 폴리테트라플루오로에틸렌 시트일 수도 있다.In this case, the polyimide film or glass cloth is preferable as the reinforcing material of the thermally conductive silicone composite sheet in view of practicality and processability. However, the reinforcing materials are not limited to these, and any material having sufficient strength and heat resistance can be used without problems. For example, it may be a polytetrafluoroethylene sheet.

(폴리이미드 필름)(Polyimide film)

폴리이미드 필름의 두께는 5 내지 100㎛가 바람직하다. 보다 바람직하게는 7 내지 50㎛, 더욱 바람직하게는 7 내지 25㎛이다. 폴리이미드 필름이 지나치게 얇으면 충분한 강도나 절연성이 얻어지지 않고, 반대로 지나치게 두꺼우면 열전도성에 방해가 된다. 또한 폴리이미드 필름 표면은 플라즈마 처리를 실시하고 있으면 열전도성 실리콘 경화물과의 접착이 향상되어 바람직하다.The thickness of the polyimide film is preferably 5 to 100 μm. More preferably, it is 7-50 micrometers, More preferably, it is 7-25 micrometers. If the polyimide film is too thin, sufficient strength or insulation is not obtained, whereas if it is too thick, the thermal conductivity is impeded. In addition, if the surface of the polyimide film is subjected to plasma treatment, adhesion to a thermally conductive silicone cured product is improved, which is preferable.

(유리 클로스)(Glass cloth)

유리 클로스의 두께는 20 내지 100㎛가 바람직하다. 보다 바람직하게는 30 내지 60㎛이다. 20㎛ 미만이면 충분한 강도가 얻어지지 않고, 100㎛를 초과하면 열전도성에 방해가 될 우려가 있다. 유리 클로스의 직조 방법은 특별히 한정되지 않는다. 유리 클로스는 실란 처리한 것이 바람직하다. 처리하는 실란 커플링제나 처리 방법은 한정되지 않는다.The thickness of the glass cloth is preferably 20 to 100 μm. More preferably, it is 30 to 60 µm. If it is less than 20 µm, sufficient strength is not obtained, and if it exceeds 100 µm, there is a concern that thermal conductivity may be impeded. The method of weaving the glass cloth is not particularly limited. It is preferable that the glass cloth is silane-treated. The silane coupling agent to be treated and the treatment method are not limited.

(열전도성 실리콘 경화물의 두께)(Thickness of thermally conductive silicone cured product)

열전도성 실리콘 경화물의 두께는 50 내지 10,000㎛, 특히 200 내지 800㎛가 바람직하다. 또한 이 두께는 열전도성 실리콘 복합 시트의 경우에 한정되지 않으며, 열전도성 실리콘 조성물이나 그의 경화물을 보강재 없이 그대로 사용하는 경우에도 타당하다.The thickness of the thermally conductive silicone cured product is preferably 50 to 10,000 μm, particularly 200 to 800 μm. In addition, this thickness is not limited to the case of the thermally conductive silicone composite sheet, and is also applicable when the thermally conductive silicone composition or its cured product is used without reinforcing material.

[열전도성 실리콘 복합 시트의 성형 방법][Forming Method of Thermally Conductive Silicone Composite Sheet]

열전도성 실리콘 복합 시트의 성형 방법은 경화제, 예를 들어 분해 온도가 120℃인 유기 과산화물을 촉매로서 포함하는 열전도성 실리콘 조성물을 조제하고, 톨루엔으로 임의로 희석하여 도공액으로 한다. 보강재 상에 임의의 스페이서를 사용하여 도공액을 도공하고, 80℃의 오븐에 10분 간 투입하여 톨루엔을 휘발시키고, 계속해서 150℃의 오븐에 10분 간 투입하여 경화시킨다. 이것으로 기재의 한쪽면에 열전도성 실리콘 경화물을 적층시킬 수 있다. 다른 한쪽 면에도 적층시키고자 하는 경우에는 상기 방법으로 마찬가지로 도공하고 건조 경화시킨다. 단, 열전도성 실리콘 복합 시트의 성형 방법은 이에 한정되는 것은 아니다.The method for forming the thermally conductive silicone composite sheet is prepared by preparing a thermally conductive silicone composition containing a curing agent, for example, an organic peroxide having a decomposition temperature of 120°C as a catalyst, and optionally diluting it with toluene to form a coating solution. On the reinforcing material, a coating solution is coated using an arbitrary spacer, and toluene is volatilized by putting it in an oven at 80°C for 10 minutes, and then cured by putting it in an oven at 150°C for 10 minutes. With this, a thermally conductive silicone cured product can be laminated on one side of the substrate. When it is also desired to laminate on the other side, it is coated in the same manner as described above and dried and cured. However, the method for forming the thermally conductive silicone composite sheet is not limited thereto.

[실시예][Example]

이하, 실시예 및 비교예를 나타내어 본 발명을 구체적으로 설명하지만, 본 발명은 하기의 실시예에 제한되는 것은 아니다.Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

[조성물의 조제][Preparation of composition]

(A) 성분: 하기 식 (1)로 표시되는 디메틸폴리실록산(A) Component: Dimethylpolysiloxane represented by the following formula (1)

Figure 112015128810088-pat00002
Figure 112015128810088-pat00002

(X는 유기 관능기이고, n은 하기 점도를 부여하는 수이다.)(X is an organic functional group, n is a number that gives the following viscosity.)

(A-1) X=메틸기이고, 동점도 10,000㎟/s(25℃)(A-1) X=methyl group, kinematic viscosity 10,000 MPa/s (25°C)

(A-2) X=메틸기이고, 동점도 30,000㎟/s(25℃)(A-2) X = methyl group, kinematic viscosity 30,000 kPa/s (25°C)

(B) 성분: 평균 입경이 하기와 같은 알루미나(B) Ingredient: Alumina having an average particle diameter as follows

(B-1) α화율이 99%이고, 평균 입경 5㎛의 파쇄상 α 알루미나(B-1) α-alumina with an amination rate of 99% and an average particle diameter of 5 μm

(B-2) α화율이 95%이고, 평균 입경 10㎛의 파쇄상 α 알루미나(B-2) crushed α alumina having an α ratio of 95% and an average particle diameter of 10 μm

(B-3) α화율이 92%이고, 평균 입경 20㎛의 구상 α 알루미나(B-3) Spherical α alumina having an α rate of 92% and an average particle diameter of 20 μm

(B-4) 평균 입경이 10㎛인 파쇄상 γ 알루미나(B-4) Fractured γ alumina having an average particle diameter of 10 µm

(B-5) 평균 입경이 10㎛인 파쇄상 θ 알루미나(B-5) Fractured θ alumina with an average particle diameter of 10 μm

(C) 성분: 열전도성 충전재(C) Ingredient: Thermally conductive filler

(C-1) 평균 입경 1.0㎛의 수산화알루미늄(C-1) Aluminum hydroxide with an average particle size of 1.0 µm

(D) 성분: 하기 식 (2)로 표시되는, 평균 중합도가 30인 한쪽 말단이 트리메톡시기로 봉쇄된 디메틸폴리실록산(D) Component: Dimethylpolysiloxane in which one terminal having an average polymerization degree of 30 represented by the following formula (2) is blocked with a trimethoxy group

Figure 112015128810088-pat00003
Figure 112015128810088-pat00003

(E) 성분: C-23N(유기 과산화물계 경화제: 신에쓰 가가꾸 고교 가부시키가이샤 제조)(E) Ingredient: C-23N (Organic peroxide-based curing agent: Shin-Etsu Chemical Co., Ltd.)

[실시예, 비교예][Examples, Comparative Examples]

표 1, 2에 나타낸 성분을 표에 나타내는 소정량으로 사용하여 플라네터리 믹서로 60분 간 혼련하여, 표 1, 2에 나타내는 실시예 1 내지 7, 비교예 1 내지 7의 열전도성 실리콘 조성물을 조제하고, 하기 방법으로 중량 감소율, 열전도율을 측정하였다. 결과를 표 1, 2에 나타낸다.Using the components shown in Tables 1 and 2 in a predetermined amount shown in the table, kneading for 60 minutes with a planetary mixer, and the thermally conductive silicone compositions of Examples 1 to 7 and Comparative Examples 1 to 7 shown in Tables 1 and 2 were prepared. It was prepared, and the weight loss rate and the thermal conductivity were measured by the following method. The results are shown in Tables 1 and 2.

[측정 방법][How to measure]

·중량 감소율· Weight reduction rate

조제한 열전도성 실리콘 조성물을 직경 20㎜의 내열 용기에 2g 칭량하여, 250℃로 설정된 오븐에 투입한다. 오븐 내 분위기는 공기로 한다. 6시간 후 취출하여 실온으로 복귀된 시점에서 칭량한다. 감소 분을 투입 전의 중량으로 나누고 100을 곱한 값으로 한다.The prepared thermally conductive silicone composition was weighed 2 g in a heat-resistant container having a diameter of 20 mm, and then put into an oven set at 250°C. The atmosphere in the oven is air. It is taken out after 6 hours and weighed when it returns to room temperature. The reduction is divided by the weight before input and multiplied by 100.

또한 실시예 7 및 비교예 7에 대해서는, 조제한 열전도성 실리콘 조성물을 150℃로 설정된 오븐에 10분 간 투입하여 경화시킨 후에 중량 감소율의 측정을 행하였다.In addition, for Example 7 and Comparative Example 7, the prepared thermally conductive silicone composition was introduced into an oven set at 150° C. for 10 minutes to cure, and then the weight loss ratio was measured.

·열전도율·Thermal conductivity

핫 디스크법에 의하여, 각 열전도성 실리콘 조성물의 25℃에서의 열전도율을 TPA-501(교토 덴시 고교 가부시키가이샤 제조)로 측정하였다.The thermal conductivity at 25°C of each thermally conductive silicone composition was measured by TPA-501 (manufactured by Kyoto Denshi Kogyo Co., Ltd.) by a hot disk method.

또한 실시예 7 및 비교예 7에 대해서는, 조제한 열전도성 실리콘 조성물을 150℃로 설정된 오븐에 10분 간 투입하여 경화시킨 것에 대하여 열전도율을 측정하였다.In addition, for Example 7 and Comparative Example 7, the thermal conductivity of the prepared thermally conductive silicone composition was cured by putting it in an oven set at 150° C. for 10 minutes to cure.

Figure 112015128810088-pat00004
Figure 112015128810088-pat00004

Figure 112015128810088-pat00005
Figure 112015128810088-pat00005

실시예 1 내지 7에 나타낸 바와 같이, α화율이 90% 이상인 α 알루미나 [(B-1) 내지 (B-3)]을 사용한 열전도성 실리콘 조성물은 250℃ 분위기 중에 6시간 투입하더라도 중량 감소율이 1% 미만으로 억제되어 있다.As shown in Examples 1 to 7, the thermally conductive silicone composition using α alumina [(B-1) to (B-3)] having an amination rate of 90% or more has a weight reduction rate of 1 even though it is added for 6 hours in a 250° C. atmosphere. %.

한편, 비교예 1에 나타낸 바와 같이, γ 알루미나를 사용했을 경우, 중량 감소율이 1% 이상으로 되어 버려 내열성을 부여할 수 없다. 비교예 2에 나타낸 바와 같이, θ 알루미나를 사용했을 경우에도 중량 감소율이 1% 이상으로 되어 버려 내열성을 부여할 수 없다. 비교예 3에 나타낸 바와 같이, 열전도성 충전재의 총 질량부 중 α 알루미나가 차지하는 비율이 90% 미만이면 중량 감소율이 1% 이상으로 되어 충분한 내열성이 얻어지지 않는다. 비교예 4에 나타낸 바와 같이, 열전도성 충전재의 총 질량부 중 α 알루미나가 차지하는 비율이 90% 미만이고, 추가로 병용하는 열전도성 충전재로서 수산화알루미늄을 사용하면 중량 감소율이 더 커진다. 이는, 수산화알루미늄이 탈수 반응을 일으켜 수산화알루미늄 자체의 중량이 감소했기 때문이다. 비교예 5는, 비교예 1에 비하여 충전하는 γ 알루미나의 양을 저감시켰지만, 반대로 중량 감소율이 많아졌다. 이는 상대적으로 실리콘 중합체가 차지하는 비율이 많아졌기 때문이다. 비교예 6에 나타낸 바와 같이, 열전도성 충전재로서 수산화알루미늄을 사용했을 경우, 실리콘의 중량 감소라기보다도 수산화알루미늄의 탈수 반응에 의한 수산화알루미늄 자체의 중량 감소가 일어나, 중량 감소율이 특히 커진다. 비교예 7에 나타낸 바와 같이, 열전도성 실리콘 조성물을 경화시켰을 경우에도, γ 알루미나를 사용했을 경우에는 중량 감소율이 커진다.On the other hand, as shown in Comparative Example 1, when γ alumina is used, the weight reduction ratio becomes 1% or more, and heat resistance cannot be imparted. As shown in Comparative Example 2, even when θ alumina is used, the weight reduction ratio becomes 1% or more, and heat resistance cannot be imparted. As shown in Comparative Example 3, if the proportion of α alumina in the total mass part of the thermally conductive filler is less than 90%, the weight reduction rate is 1% or more, and sufficient heat resistance cannot be obtained. As shown in Comparative Example 4, the proportion of α alumina in the total mass part of the thermally conductive filler is less than 90%, and further, when aluminum hydroxide is used as a thermally conductive filler to be used in combination, the weight reduction rate is greater. This is because aluminum hydroxide causes a dehydration reaction, and the weight of aluminum hydroxide itself is reduced. Comparative Example 5 reduced the amount of γ alumina to be filled compared to Comparative Example 1, but, on the contrary, the weight reduction ratio increased. This is because the proportion of the silicone polymer has increased relatively. As shown in Comparative Example 6, when aluminum hydroxide is used as the thermally conductive filler, the weight of the aluminum hydroxide itself is reduced by the dehydration reaction of aluminum hydroxide rather than the weight of silicon, and the weight reduction rate is particularly large. As shown in Comparative Example 7, even when the thermally conductive silicone composition is cured, the weight reduction rate increases when γ alumina is used.

Claims (10)

25℃의 동점도가 100 내지 40,000㎟/s인 오르가노폴리실록산 주재 100질량부, 열전도성 충전재 250 내지 2,000질량부, 및 하기 식으로 표시되는 한쪽 말단 알콕시기 함유 디오르가노폴리실록산 1 내지 30질량부를 함유하고, 당해 열전도성 충전재의 총 질량부 중 90% 이상이 α화율이 90% 이상인 파쇄상 α 알루미나이고, 25℃에서 점도가 10 내지 900㎩·s이고, 열전도율이 0.5W/mK 이상이고, 250℃ 환경 하의 공기 중에 6시간 방치하였을 때의 중량 감소율이 1% 미만인 것을 특징으로 하는 열전도성 실리콘 조성물.
Figure 112020003032026-pat00006

(식 중, R은 비치환 또는 치환된 탄소 원자수 1 내지 30의 1가 탄화수소기, R'은 탄소 원자수 1 내지 6의 알킬기, q는 0 내지 2의 정수, p는 0 내지 100의 정수이다.)
Contains 100 parts by mass of an organopolysiloxane base having a dynamic viscosity of 100 to 40,000 kPa/s at 25°C, 250 to 2,000 parts by mass of a thermally conductive filler, and 1 to 30 parts by mass of a diorganopolysiloxane containing one terminal alkoxy group represented by the following formula , 90% or more of the total mass parts of the thermally conductive filler is α alumina with a crushing rate of 90% or more, a viscosity of 10 to 900 Pa·s at 25° C., a thermal conductivity of 0.5 W/mK or more, and 250° C. A thermally conductive silicone composition characterized in that the weight loss rate when left in the air for 6 hours in an environment is less than 1%.
Figure 112020003032026-pat00006

(Wherein, R is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 30 carbon atoms, R'is an alkyl group having 1 to 6 carbon atoms, q is an integer from 0 to 2, p is an integer from 0 to 100 to be.)
제1항에 있어서, 오르가노폴리실록산 주재의 규소 원자에 결합하는 관능기가 비치환 또는 할로겐 치환 또는 시아노기 치환의 탄소 원자수 1 내지 10의 알킬기, 시클로알킬기, 아릴기 또는 아르알킬기에서 선택되는 것인 열전도성 실리콘 조성물.The method of claim 1, wherein the functional group bonded to the silicon atom based on the organopolysiloxane is selected from an unsubstituted or halogen substituted or cyano group substituted alkyl group having 1 to 10 carbon atoms, a cycloalkyl group, an aryl group, or an aralkyl group. Thermally conductive silicone composition. 25℃의 동점도가 100 내지 40,000㎟/s인 오르가노폴리실록산 주재 100질량부와, 열전도성 충전재 250 내지 2,000질량부와, 하기 식으로 표시되는 한쪽 말단 알콕시기 함유 디오르가노폴리실록산 1 내지 30질량부와, 상기 오르가노폴리실록산 주재를 경화시키는 유기 과산화물 경화제의 경화 유효량을 함유하고, 당해 열전도성 충전재의 총 질량부 중 90% 이상이 α화율이 90% 이상인 파쇄상 α 알루미나이고, 25℃에서 점도가 10 내지 900㎩·s인, 열전도성 실리콘 조성물을 경화시켜 이루어지는 경화물을 250℃ 환경 하의 공기 중에 6시간 방치하였을 때의 중량 감소율이 1% 미만이고, 열전도율이 0.5W/mK 이상이고, 경도가 듀로미터 A 경도로 80 내지 99인 것을 특징으로 하는 열전도성 실리콘 경화물.
Figure 112020003032026-pat00007

(식 중, R은 비치환 또는 치환된 탄소 원자수 1 내지 30의 1가 탄화수소기, R'은 탄소 원자수 1 내지 6의 알킬기, q는 0 내지 2의 정수, p는 0 내지 100의 정수이다.)
100 parts by mass of an organopolysiloxane base having a kinematic viscosity of 100 to 40,000 Pa/s at 25°C, 250 to 2,000 parts by mass of a thermally conductive filler, and 1 to 30 parts by mass of a diorganopolysiloxane containing one terminal alkoxy group represented by the following formula , Containing a curing effective amount of the organic peroxide curing agent to cure the organopolysiloxane base material, 90% or more of the total mass parts of the thermally conductive filler is crushed α alumina having an α conversion rate of 90% or more, and a viscosity of 10 at 25° C. When the cured product formed by curing the thermally conductive silicone composition, which is from 900 to 900 MPa·s, is left in the air at 250° C. for 6 hours, the weight reduction rate is less than 1%, the thermal conductivity is 0.5 W/mK or more, and the hardness is durometer. A thermally conductive silicone cured product, characterized in that it is 80 to 99 in meters A hardness.
Figure 112020003032026-pat00007

(Wherein, R is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 30 carbon atoms, R'is an alkyl group having 1 to 6 carbon atoms, q is an integer from 0 to 2, p is an integer from 0 to 100 to be.)
제3항에 있어서, 오르가노폴리실록산 주재의 규소 원자에 결합하는 관능기가 비치환 또는 할로겐 치환 또는 시아노기 치환의 탄소 원자수 1 내지 10의 알킬기, 시클로알킬기, 아릴기 또는 아르알킬기에서 선택되는 것인 열전도성 실리콘 경화물.The method according to claim 3, wherein the functional group bound to the silicon atom based on the organopolysiloxane is selected from an unsubstituted or halogen substituted or cyano group substituted alkyl group having 1 to 10 carbon atoms, a cycloalkyl group, an aryl group, or an aralkyl group. Cured thermally conductive silicone. 보강재의 한쪽측 또는 양측에, 제3항 또는 제4항에 기재된 열전도성 실리콘 경화물을 적층시켜 이루어지는 것을 특징으로 하는 열전도성 실리콘 복합 시트.A thermally conductive silicone composite sheet, characterized in that the thermally conductive silicone cured product according to claim 3 or 4 is laminated on one side or both sides of a reinforcing material. 제5항에 있어서, 보강재가 폴리이미드 필름인 것을 특징으로 하는 열전도성 실리콘 복합 시트.The thermally conductive silicone composite sheet according to claim 5, wherein the reinforcing material is a polyimide film. 제5항에 있어서, 보강재가 유리 클로스인 것을 특징으로 하는 열전도성 실리콘 복합 시트.The thermally conductive silicone composite sheet according to claim 5, wherein the reinforcing material is a glass cloth. 삭제delete 삭제delete 삭제delete
KR1020150189657A 2015-01-06 2015-12-30 Thermal conductive silicone composition and cured product, and composite sheet KR102132243B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2015-000836 2015-01-06
JP2015000836A JP6269511B2 (en) 2015-01-06 2015-01-06 Thermally conductive silicone composition, cured product and composite sheet

Publications (2)

Publication Number Publication Date
KR20160084808A KR20160084808A (en) 2016-07-14
KR102132243B1 true KR102132243B1 (en) 2020-07-10

Family

ID=56342334

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150189657A KR102132243B1 (en) 2015-01-06 2015-12-30 Thermal conductive silicone composition and cured product, and composite sheet

Country Status (4)

Country Link
JP (1) JP6269511B2 (en)
KR (1) KR102132243B1 (en)
CN (1) CN105754346B (en)
TW (1) TWI683859B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109564906B (en) * 2016-07-26 2023-08-15 信越化学工业株式会社 Heat conductive sheet
JP6627681B2 (en) * 2016-07-27 2020-01-08 信越化学工業株式会社 Thermal conductive composite sheet for thermocompression bonding and method for producing the same
CN110892798B (en) * 2017-08-10 2021-03-05 电化株式会社 Heat sink and heat dissipation member comprising same
WO2019093052A1 (en) * 2017-11-09 2019-05-16 信越化学工業株式会社 Thermally conductive silicone grease composition
JP6866877B2 (en) * 2018-05-31 2021-04-28 信越化学工業株式会社 Low heat resistance silicone composition
KR102175916B1 (en) 2018-08-29 2020-11-06 (주)웹스 A Light Sheet Having Insulation and Heat Dissipation for Secondary Cell Battery Pack and A Sheet Manufacturing Method
WO2020111180A1 (en) * 2018-11-30 2020-06-04 デンカ株式会社 Layered body
CN109880541A (en) * 2019-01-28 2019-06-14 东莞市博恩复合材料有限公司 Can rapid curing and have high-adhesive-strength Heat Conduction Material
JP2020011509A (en) * 2019-08-14 2020-01-23 信越化学工業株式会社 Method for selecting heat-conductive composite sheet for heat press bonding
JP7357287B2 (en) * 2020-02-26 2023-10-06 パナソニックIpマネジメント株式会社 Thermal conductive silicone compositions and thermally conductive silicone materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192339A (en) 2001-12-27 2003-07-09 Showa Denko Kk Alumina particle, manufacturing method for the same and composition containing the same
JP2003201116A (en) 2001-10-10 2003-07-15 Showa Denko Kk Granular alumina, manufacturing method of granular alumina and composition containing granular alumina
WO2008053536A1 (en) * 2006-10-31 2008-05-08 Denki Kagaku Kogyo Kabushiki Kaisha Alumina powder, process for producing the same, and use thereof
JP2011025676A (en) * 2009-06-29 2011-02-10 Shin-Etsu Chemical Co Ltd Heat-conductive silicone rubber composite sheet

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219034A (en) * 1982-06-14 1983-12-20 Toray Silicone Co Ltd Manufacture of electrical insulating heat dissipation rubber sheet
JP3087403B2 (en) * 1991-08-07 2000-09-11 日本軽金属株式会社 Method for producing spherical alumina
JPH07101723A (en) * 1993-10-04 1995-04-18 Sumitomo Chem Co Ltd Production of alpha alumina powder
JP3444199B2 (en) * 1998-06-17 2003-09-08 信越化学工業株式会社 Thermal conductive silicone rubber composition and method for producing the same
JP3543663B2 (en) * 1999-03-11 2004-07-14 信越化学工業株式会社 Thermal conductive silicone rubber composition and method for producing the same
JP4301468B2 (en) * 1999-07-07 2009-07-22 信越化学工業株式会社 Heat-resistant and heat-conductive silicone rubber composite sheet and method for producing the same
JP2002047009A (en) * 2000-05-23 2002-02-12 Sumitomo Chem Co Ltd alpha ALUMINA POWDER AND HEAT CONDUCTIVE SHEET USING IT
US20030125418A1 (en) * 2001-10-10 2003-07-03 Show A Denko K.K. Particulate alumina, method for producing particulate alumina, and composition containing particulate alumina
DE10297611T5 (en) * 2001-12-27 2005-01-13 Showa Denko K.K. Particulate alumina, process for producing particulate alumina and composition containing particulate alumina
JP4526064B2 (en) * 2003-06-04 2010-08-18 昭和電工株式会社 Corundum for resin filling and resin composition
JP2014009140A (en) * 2012-07-02 2014-01-20 Hitachi Chemical Co Ltd Spherical type alumina filler, and resin composition for high heat conduction insulation material, prepreg, and laminate sheet including the same
JP6006649B2 (en) 2013-01-29 2016-10-12 株式会社タイカ Thermally conductive resin composition with excellent heat resistance and heat dissipation component using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201116A (en) 2001-10-10 2003-07-15 Showa Denko Kk Granular alumina, manufacturing method of granular alumina and composition containing granular alumina
JP2003192339A (en) 2001-12-27 2003-07-09 Showa Denko Kk Alumina particle, manufacturing method for the same and composition containing the same
WO2008053536A1 (en) * 2006-10-31 2008-05-08 Denki Kagaku Kogyo Kabushiki Kaisha Alumina powder, process for producing the same, and use thereof
JP2011025676A (en) * 2009-06-29 2011-02-10 Shin-Etsu Chemical Co Ltd Heat-conductive silicone rubber composite sheet

Also Published As

Publication number Publication date
TWI683859B (en) 2020-02-01
KR20160084808A (en) 2016-07-14
CN105754346A (en) 2016-07-13
CN105754346B (en) 2020-10-23
TW201700616A (en) 2017-01-01
JP6269511B2 (en) 2018-01-31
JP2016125001A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
KR102132243B1 (en) Thermal conductive silicone composition and cured product, and composite sheet
KR102348372B1 (en) Thermally conductive silicone composition and electrical/electronic apparatus
KR102108902B1 (en) Heat conductive silicone composition, heat conductive layer, and semiconductor device
JP5664563B2 (en) Thermally conductive silicone composition and cured product thereof
JP5233325B2 (en) Thermally conductive cured product and method for producing the same
JP6194861B2 (en) Thermally conductive silicone composition and thermally conductive silicone molding
JP5304588B2 (en) Thermally conductive silicone composition and cured product thereof
TW201823362A (en) Thermoconductive silicone composition
JP5472055B2 (en) Thermally conductive silicone grease composition
JP6202475B2 (en) Thermally conductive composite silicone rubber sheet
JP2009203373A (en) Thermoconductive silicone composition
WO2020217634A1 (en) Thermally conductive silicone composition, method for producing same and thermally conductive silicone cured product
JP2018053260A (en) Thermal conductive silicone composition, cured article and composite sheet
JP7303159B2 (en) Silicone composition and cured thermally conductive silicone having high thermal conductivity
KR20210098991A (en) Cured product of thermally conductive silicone composition
JP2009221310A (en) Heat-conductive silicone grease composition
JP4154605B2 (en) Thermally conductive silicone heat dissipation composition and method for manufacturing heat dissipation structure
CN112714784B (en) Heat-conductive silicone composition and cured product thereof
JP7264850B2 (en) Thermally conductive silicone composition, cured product thereof, and heat dissipation sheet
JP5539283B2 (en) Thermally conductive silicone rubber composition
JP7485634B2 (en) Thermally conductive silicone composition and cured product thereof
WO2024004242A1 (en) Thermally conductive composition, thermally conductive grease and thermally conductive sheet
TW202235579A (en) Thermally conductive composition and method for producing the same allowing the thermal conductivity to be higher, the compression resilience to be higher, and the interface peeling caused by stress to be reduced
WO2022255004A1 (en) Thermally conductive silicone composition and cured product of same
JP2021055007A (en) One component curable heat-conductive silicone composition, and method of producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right