JPS61132513A - Alpha-alumina powder and its production - Google Patents

Alpha-alumina powder and its production

Info

Publication number
JPS61132513A
JPS61132513A JP59249787A JP24978784A JPS61132513A JP S61132513 A JPS61132513 A JP S61132513A JP 59249787 A JP59249787 A JP 59249787A JP 24978784 A JP24978784 A JP 24978784A JP S61132513 A JPS61132513 A JP S61132513A
Authority
JP
Japan
Prior art keywords
particle size
alumina powder
alumina
aluminum hydroxide
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59249787A
Other languages
Japanese (ja)
Other versions
JPH0217484B2 (en
Inventor
Kenichi Sakabe
酒部 健一
Masami Yamaguchi
山口 昌美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59249787A priority Critical patent/JPS61132513A/en
Publication of JPS61132513A publication Critical patent/JPS61132513A/en
Publication of JPH0217484B2 publication Critical patent/JPH0217484B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/14Aluminium oxide or hydroxide from alkali metal aluminates
    • C01F7/141Aluminium oxide or hydroxide from alkali metal aluminates from aqueous aluminate solutions by neutralisation with an acidic agent
    • C01F7/142Aluminium oxide or hydroxide from alkali metal aluminates from aqueous aluminate solutions by neutralisation with an acidic agent with carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:Amorphous aluminum hydroxide is heated at a specific temperature, then crushed to make an alpha-alumina powder with moldability, sintering properties and high performance of sintered products. CONSTITUTION:A solution of sodium aluminate is brought into contact with carbon dioxide gas then rinsed and dried to give amorphous aluminum hydroxide. Then, the aluminum hydroxide is heated over 1,100 deg.C into alpha-alumina, which is crushed to give an alpha-alumina powder which has a specific surface area of 3-15m<2>/g, average particle size of 0.6-1.4mu and a particle size distribution where, when particle sizes are fractionated every 0.2mu, the maximal distribution fraction ranges within 0.1-0.6 time the average particle size and the distribution is more than 1.5 times than the other fractions, respectively.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、αアルミナ粉末およびその製造法に関するも
のでめシ、特に焼結体用原料として好適な特異な単一ピ
ークをの粒度分布を有する高純度αアルミナ粉末および
その梨造法忙関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an α-alumina powder and a method for producing the same. The present invention relates to high-purity α-alumina powder and its manufacturing method.

高純度αアルミナ焼結体は、電子材料、螢光体用担体、
ナトリウムランプ用透光管など、広す分野で使われてい
る。
High-purity α-alumina sintered bodies are used as electronic materials, carriers for fluorescent materials,
It is used in a wide variety of fields, including transparent tubes for sodium lamps.

(従来の技術) これら焼結体の原料に用いられる高純度αアルミナ粉末
は、成形しt時の成形体密度が高いこと、焼結性がよい
こと、および焼結体としての性能、例えば、平滑性、透
光性、強度などが優れていることが要求されてhる。
(Prior Art) The high-purity α-alumina powder used as a raw material for these sintered bodies has a high compact density at the time of compaction, good sinterability, and good performance as a sintered body, such as: It is required to have excellent smoothness, translucency, strength, etc.

しかし、これらの要求を同時に満足させることは非常に
困難である。一般にαアルミナ粉末は、微粒径はど焼結
性がよいとされているが、その反面、微粒径になると成
形体密度が小さくな〕、その結果、焼結時め収縮が大き
くなり、寸法精度に悪影響が生じる欠点がでてくる。ま
次、逆に粒径大の粉末は、成形体密度は大きくなる利点
を有するが、焼結性が低下し、焼結体性能本不良である
However, it is very difficult to satisfy these demands simultaneously. Generally speaking, it is said that α-alumina powder has good sinterability when the particle size is fine, but on the other hand, when the particle size becomes fine, the density of the compact decreases, and as a result, shrinkage during sintering becomes large. A drawback arises that adversely affects dimensional accuracy. On the other hand, powders with large particle sizes have the advantage of increasing the density of the compact, but the sinterability decreases and the performance of the sintered compact is poor.

これまで知られている高純度αアルミナ粉末は、化学的
な純度の点では満足すべきものであつ几が、その成形性
、焼結性、焼結体性能のbずれかの面で不満があつto
例えば、金属アルミニウムの水中火花放電で得られる高
純度アルミナは、粒形、粒径が不ぞろいで、均一、高密
度の焼結体を得るのが困難であつ几。ま友、有機アルミ
ニウムを原料として得られる高純度アルミナは微粒であ
るが、焼結体とし九時、黒ずむ傾向があり、透光性の改
良が要望されている。
The high-purity α-alumina powders known so far are satisfactory in terms of chemical purity, but are unsatisfactory in terms of formability, sinterability, and sintered compact performance. to
For example, high-purity alumina obtained by underwater spark discharge of metal aluminum has irregular grain shapes and sizes, making it difficult to obtain a uniform, high-density sintered body. Although high-purity alumina obtained from organic aluminum as a raw material has fine particles, it tends to darken when it is sintered, and there is a need for improved translucency.

成形性、焼結性、焼結体性能は、粉体の化学的、物理的
性状に関係しているはずであるが、その関係は現段階で
は充分明確になっていない。。
Formability, sinterability, and sintered body performance are supposed to be related to the chemical and physical properties of the powder, but the relationship is not sufficiently clear at this stage. .

(発明が解決しようとする問題点) 前記のよう(、従来の高純度αアルミナ粉末は、成形性
、焼結性、焼結体性能のいずれかの面で不満があシ、こ
れらを同時に満足することは困難とされてい友。
(Problems to be Solved by the Invention) As mentioned above, conventional high-purity α-alumina powders are unsatisfactory in terms of formability, sinterability, and sintered body performance. It is difficult to be a friend.

(問題点を解決する次めの技術手段) 本発明者らは、成形性、焼結性、焼結体性能の優れた高
純度アルミナ粉末を追求し九結果、値線で、しかも、特
異なシャープな粒度分布を有するアルミナ粉末全見出し
、本発明を完成するに至つ九。
(Next technical means to solve the problem) The present inventors have pursued a high-purity alumina powder with excellent formability, sinterability, and sintered body performance, and as a result, have achieved a value line and a unique The discovery of alumina powder with a sharp particle size distribution led to the completion of the present invention.

すなわち、本発明は、比表面積が5〜15rrt/f、
平均粒径が0.6〜1.4μ、かつ0.2μ毎に区切つ
t$2度分布にシいて最大の割合を占める区分が平均粒
径の0.1〜0.6倍の範囲にあり、その割合が他のb
ずれの区分に対しても1.5倍以上であることt−特徴
とするαアルミナ粉末であシ、ま九、該・αアルミナ粉
末を製造するに当り、非晶質水酸化アルミニウム111
00C以上に加熱してαアルミナに変換させ比後、粉砕
処理することを特徴とするαアルミナ粉末の製法である
That is, the present invention has a specific surface area of 5 to 15 rrt/f,
The average particle size is 0.6 to 1.4μ, and the division that accounts for the largest proportion is in the range of 0.1 to 0.6 times the average particle size according to the t$2 degree distribution divided into 0.2μ increments. Yes, the proportion is higher than that of other b
In producing the α-alumina powder, the amorphous aluminum hydroxide 111
This is a method for producing α-alumina powder, which is characterized by heating it to 00C or higher to convert it into α-alumina, and then pulverizing it.

本発明において、粒子の平均粒径および粒度分布は、遠
心沈降方式による粒度分布測定装置(例えば、堀場與作
所(株)、CAPA−500など)を用い、次の方法で
測定した値である。すなわち、アルミナ粉末を分散媒イ
ソブチルアルコール中に超音波振動処理(5時間)によ
り分散させ、得られ炭分散液を、回転数300Orpm
、測定区分0.2μm毎の条件で粒度分布測定装置によ
り測定する。
In the present invention, the average particle size and particle size distribution of particles are values measured by the following method using a particle size distribution measuring device using a centrifugal sedimentation method (for example, Horiba Yosakusho Co., Ltd., CAPA-500, etc.). . That is, alumina powder was dispersed in a dispersion medium of isobutyl alcohol by ultrasonic vibration treatment (5 hours), and the resulting charcoal dispersion was heated at a rotational speed of 300 rpm.
The particle size distribution is measured using a particle size distribution analyzer under the condition that the measurement division is every 0.2 μm.

本発明において、比表面積はガス吸着をの比表面積測定
機、例えば、島津製作所(株)製、マイクロメリテイツ
クス比表面積自動測定装置2200型により測定する。
In the present invention, the specific surface area is measured by a gas adsorption specific surface area measuring device, for example, Micromeritics Specific Surface Area Automatic Measuring Device Model 2200 manufactured by Shimadzu Corporation.

既知のアルミナ粉末では、粒度分布のピークが平均粒径
とほぼ一致し、しかも、そのピークを中心に次第に高さ
を減する、いわば山梨の粒度分布を示すのに対して、本
発明のアルミナ粉末は、粒度分布のピークは平均粒径よ
)小さく、平均粒径ノr1.1〜0.b倍の範囲ICI
)、しかも、そのピークの割合がとびぬけて高く、他の
区分の1.5倍以上を示す、いわば単一ピーク盟のシャ
ープな粒度分布を有する。
In the known alumina powder, the peak of the particle size distribution almost coincides with the average particle size, and the height gradually decreases around that peak, which is a so-called Yamanashi particle size distribution, whereas the alumina powder of the present invention shows a so-called Yamanashi particle size distribution. The peak of the particle size distribution is smaller than the average particle size, and the average particle size is r1.1 to 0. b times range ICI
), and moreover, it has an extremely high ratio of peaks, more than 1.5 times that of other categories, and has a sharp particle size distribution with a so-called single peak.

なかでも、0.2μ毎に区切つ几粒度分布において、0
.2〜0.4μの区分のピークが最大である粒度分布の
アルミナ粉末は、%く良好な性能を有する。
Among them, in the particle size distribution divided into 0.2 μ increments, 0
.. The alumina powder with a particle size distribution in which the peak in the 2-0.4 μ range is the maximum has % better performance.

後記実施例1、比較例1、比較例2および実施例2で得
られるアルミナ粉末の粒度分布を第1〜4図に示した。
The particle size distributions of the alumina powders obtained in Example 1, Comparative Example 1, Comparative Example 2, and Example 2 described later are shown in FIGS. 1 to 4.

第1〜4図において、縦軸は粒径区分を表わし、例えば
、0.2の数字は0〜0.2μの区分を、0.4の数字
は0.2〜0.4す区分を意味する。横軸はその区分の
占める割合を示す。
In Figures 1 to 4, the vertical axis represents the particle size classification; for example, the number 0.2 means the 0 to 0.2μ division, and the number 0.4 means the 0.2 to 0.4μ division. do. The horizontal axis shows the proportion of that category.

本発明のアルミナ粉末は、アルミン酸ナトリウム溶液と
炭酸ガスの接触により得られる非晶質水酸化アルミニウ
ムi、1100C以上に加熱してαアルミナに変換させ
友後、粉砕処理を行なうことにより容易に得られる。こ
こで、粉砕処理とは、ボールミル、振動ボールミル、ジ
ェットミルなど普通知られて込る粉砕装置で処理するこ
とを意味する。アルミナは微粉砕しくくいことが知られ
ているので、この処理により、アルミナ粉体の粉砕よシ
も解凝集が主としてシこ)、単分散型の分布を示すよう
になると推測される。なお、このような効果は、結晶質
水酸化アルミニウムを経由した場合は与られず、正規分
布型の分布のままである。
The alumina powder of the present invention can be easily obtained by converting amorphous aluminum hydroxide, which is obtained by contacting a sodium aluminate solution with carbon dioxide gas, into α-alumina by heating it to 1100C or more, and then pulverizing it. It will be done. Here, the pulverization treatment means treatment with commonly known pulverization equipment such as a ball mill, a vibrating ball mill, and a jet mill. Since alumina is known to be difficult to pulverize, it is presumed that by this treatment, the alumina powder will mainly be deagglomerated rather than pulverized, resulting in a monodisperse distribution. Incidentally, such an effect is not obtained when the crystalline aluminum hydroxide is used, and the distribution remains a normal distribution type.

本発明において、比表面積が大きいと、表面粗さが大き
くなる傾向があるので15ば/を以下がよく、比表面積
が小さすぎると、低温焼結性が低下するので3ゴ/?以
上がよい。
In the present invention, if the specific surface area is large, the surface roughness tends to increase, so it is preferable to set the specific surface area to 15% or less, and if the specific surface area is too small, the low temperature sinterability will deteriorate, so 3% /? The above is good.

(発明の効果) 本発明のアルミナ粉末は、成形性が良好である。(Effect of the invention) The alumina powder of the present invention has good moldability.

アルミナ粉末t−2トン/−の圧力で乾式成形し九場合
、山型の分布の従来品、例えば、アンモニウム明パンの
熱分解によ〕得られる高純度アルミナでは、成形体密度
1.9〜2゜017cmであるが、本発明のアルミナ粉
末では、2.0〜2.4r/dt−示し、焼結時の収縮
が小さい。さらに、本発明のアルミナ粉末は、焼結性に
優れている。特に1400〜1500Cでの低温焼結性
に優れ、iた、tsooC近辺での焼結時に粒成長しに
くく、これは焼結体の平滑性、強度に有利である。そし
て、高温、水素雰囲気中で焼結することにより、透光性
の優れ几焼結体となる。
When alumina powder is dry-molded at a pressure of t-2 tons/-, a conventional product with a chevron-shaped distribution, for example, high-purity alumina obtained by thermal decomposition of ammonium light bread, has a compact density of 1.9~ However, the alumina powder of the present invention exhibits 2.0 to 2.4 r/dt-, and shrinkage during sintering is small. Furthermore, the alumina powder of the present invention has excellent sinterability. In particular, it has excellent low-temperature sinterability at 1,400 to 1,500 C, and grain growth is less likely to occur during sintering at temperatures near tsooC, which is advantageous for the smoothness and strength of the sintered body. Then, by sintering at high temperature in a hydrogen atmosphere, a solid sintered body with excellent translucency is obtained.

(実施例) 本発明の実施例シよび応用例と比較例および比較応用例
を挙げて説明する。
(Example) Examples of the present invention, applied examples, comparative examples, and comparative applied examples will be given and explained.

実施例1 バイヤー法で製造し土水酸化アルミニウムを苛性ソーダ
で溶解し几アルミ/酸ナトリウム溶液(A40m : 
30 ? / L 、 Na、O/ A40B = 1
.3 )1000r’110Gに保持し、500 rp
mで攪拌しながら炭酸ガス金毎分200Mtで75分間
反応させ、水酸化アルミニウム45ff含むスラリーt
、得t0次に、この析出物t−濾過し、洗浄しt後、噴
霧乾燥法により乾燥し九。粉末X線回折により、この水
酸化アルミニウムを同定し次結果、非晶質であった。欠
く、これ’i11?OCで2時間焼成しt後、振動ボー
ルミルで5分間処理し、αアルミナ粉末を得几。
Example 1 Produced by the Bayer method, aluminum hydroxide was dissolved in caustic soda to form a solid aluminum/sodium acid solution (A40m:
30? / L, Na, O/A40B = 1
.. 3) Hold at 1000r'110G, 500 rp
A slurry containing 45 ff of aluminum hydroxide was reacted for 75 minutes at 200 Mt of carbon dioxide per minute while stirring at m.
This precipitate was then filtered, washed, and dried by spray drying. This aluminum hydroxide was identified by powder X-ray diffraction and was found to be amorphous. Missing, is this 'i11? After firing in OC for 2 hours, it was processed in a vibrating ball mill for 5 minutes to obtain α-alumina powder.

このアルミナ粉末の比表面積は10.5ゴ/1、平均粒
径’Fio、87μmであシ、粒度分布は第1図に示し
九ように、0.2〜0.4μmの区分の割合は25.7
チであり、他の一区分の3倍以上の値金示す単一ピーク
製の分布であった。
The specific surface area of this alumina powder is 10.5 μm/1, the average particle size is 87 μm, and the particle size distribution is as shown in Figure 1, with a ratio of 0.2 to 0.4 μm being 25 μm. .7
It was a distribution with a single peak showing a price more than three times that of other categories.

比較例1 実施例1と同様な方法で調表し几アルミン酸ナトリウム
溶液(A40s : 60 t / l−%NatO/
 鳩0s= 1.3 ) 1000 fをsoCに保持
し、他の条件は実施例1と同一で加水分解を行ない、水
酸化アルミニウム70ft1″得几。このうち45?を
分取し、実施例1と同一条件下で洗浄、乾燥し几。得ら
れ九本酸化アルミニウムを粉末X線回折により同定し几
結果、鋭いピークを有する結晶性水酸化アルミニウム(
バイヤライト)であつ文。次K、これを1230Cで2
時間焼成し九後、振動ボールミルで5分間処理し、αア
ルミナ粉末を得た。
Comparative Example 1 A sodium aluminate solution (A40s: 60 t/l-%NatO/
0s = 1.3) 1000 f was held in soC and hydrolysis was carried out under the same conditions as in Example 1 to obtain 70ft1'' of aluminum hydroxide. Of this, 45? was fractionated and used in Example 1. Washed and dried under the same conditions as above.The nine aluminum oxides obtained were identified by powder X-ray diffraction, and the results showed that they were crystalline aluminum hydroxide (
Bayerite) atatsubun. Next K, this at 1230C 2
After 9 hours of firing, it was processed in a vibrating ball mill for 5 minutes to obtain α-alumina powder.

このαアルミナ粉末は、比表面積10,21re/l、
平均粒径0.77μmで、粒度分布は第2図に示し友よ
うに、0゜2〜0.4μmの区分の割合は17チであシ
、分布はなだらかな山型で6つt0比較例2 振動ボールミル処理を省略し之他は、実施例1と同様く
実験し九。
This α-alumina powder has a specific surface area of 10.21re/l,
The average particle size is 0.77 μm, the particle size distribution is shown in Figure 2, the ratio of the 0°2 to 0.4 μm division is 17 chips, and the distribution is a gentle mountain shape with 6 t0 comparative examples. 2 The experiment was conducted in the same manner as in Example 1, except that the vibrating ball mill treatment was omitted.

得られ九αアルミナ粉末は、比表面積9.4m2/g、
平均粒径1.3μmで、粒度分布は第3図に示し几よう
に、0.2〜0.4μm区分の割合は2%、山型の分布
であつ友。
The obtained nine-α alumina powder has a specific surface area of 9.4 m2/g,
The average particle diameter was 1.3 μm, and the particle size distribution was a mountain-shaped distribution with a ratio of 2% in the 0.2 to 0.4 μm category as shown in Figure 3.

実施例2 実施例1と同様な方法で調製し次アルミン酸ナトリウム
溶液(A40.: 75 S’ / L 、  Nan
o /Aム03= 1.3 ) 1000 fを100
に保持し、500rpmで攪拌しながら、炭酸ガスを毎
分400−で900分間反応せ、水酸化アルミニウム9
21を得友。これを洗浄、凍結乾燥し北。得られ土水酸
化アルミニウムを粉末X線回折により同定した結果、非
晶質であつ几。これ1f!:1230c、5.5時間焼
成しt後、ボールミルで3時間処理し、αアルミナ粉末
を得友。αアルミナ粉末の比表面積は5.5Trt/f
、平均粒径1.064m、粒度分布Fi第4図のとおり
で、0.2〜0.4μm区分く最大割合(20チ)を示
す単一ピーク減の分布で6つ次。
Example 2 A sodium subaluminate solution (A40.: 75 S'/L, Nan
o /Am03=1.3) 1000 f to 100
While stirring at 500 rpm, carbon dioxide was reacted at 400 rpm for 900 minutes, and aluminum hydroxide 9
21 is my friend. This is washed and freeze-dried. The resulting aluminum hydroxide was identified by powder X-ray diffraction and was found to be amorphous and hot. This is 1f! :1230C, calcined for 5.5 hours, and then treated in a ball mill for 3 hours to obtain α-alumina powder. The specific surface area of α-alumina powder is 5.5Trt/f
, average particle diameter 1.064 m, particle size distribution Fi as shown in Figure 4, 6-order distribution with a single peak showing the maximum proportion (20 inches) divided into 0.2 to 0.4 μm.

応用例1シよび比lIR応用例1〜2 実施例1および比較例1〜2で得られtαアル〜ミナを
直径15關、厚さ2〜3關の円板に1.9トン/dの圧
力で成形し几。
Application Example 1 and Comparisons IR Application Examples 1 and 2 The tα alumina obtained in Example 1 and Comparative Examples 1 and 2 was applied to a disk with a diameter of 15 mm and a thickness of 2 to 3 mm at a rate of 1.9 tons/d. Molded with pressure.

得られ几成形体の密ft−表1(示しt。Density ft of the obtained compacted body - Table 1 (shown t).

表  1 応用例2および比較応用例5 実施例1および比較例1で得られたαアルミナに、酸化
マグネシウム0.1重量St−焼結助剤として加えてか
ら、その1?をとり、直径15龍の円板と成形圧1.9
トン/dで成形し友。これを水素雰゛囲気中、5aQc
/時間の昇温速度で加熱し、所定温度く2時間保つ友後
、その密度を測定した。
Table 1 Application Example 2 and Comparative Application Example 5 After adding 0.1 weight St of magnesium oxide as a sintering aid to the α-alumina obtained in Example 1 and Comparative Example 1, 1? Take a disk with a diameter of 15 and a molding pressure of 1.9.
A friend molded in tons/d. This was heated to 5aQc in a hydrogen atmosphere.
The sample was heated at a temperature increase rate of 1/2 hour and kept at a predetermined temperature for 2 hours, and then its density was measured.

結果を表2に示し友。本発明のαアルミナが低温焼結性
に優れていることが認められた。
The results are shown in Table 2. It was confirmed that the α-alumina of the present invention has excellent low-temperature sinterability.

表  2Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1で得られたαアルミナの粒度分布を
示す図表、第2図は、比較例1で得られtαアルミナの
粒度分布を示す図表、第S図は、比較例2で得られ几α
アルミナの粒度分布を示す図表、第4図は、実施例2で
得られ九αアルミナの粒度分布を示す図表である。 # 母(0 巣 田(0 哄 燥((、) 墨 田(0
Figure 1 is a chart showing the particle size distribution of α alumina obtained in Example 1, Figure 2 is a chart showing the particle size distribution of tα alumina obtained in Comparative Example 1, and Figure S is a chart showing the particle size distribution of α alumina obtained in Comparative Example 2. Obtained α
FIG. 4 is a graph showing the particle size distribution of alumina obtained in Example 2. # Mother (0 Sumida (0) Sumida (0)

Claims (3)

【特許請求の範囲】[Claims] (1)比表面積が3〜15m^2/g、平均粒径が0.
6〜1.4μ、かつ0.2μ毎に区切った粒度分布にお
いて最大の割合を占める区分が平均粒径の0.1〜0.
6倍の範囲にあり、その割合が他のいずれの区分に対し
ても1.5倍以上であることを特徴とするαアルミナ粉
末。
(1) Specific surface area is 3-15m^2/g, average particle size is 0.
In the particle size distribution divided into 6-1.4μ and 0.2μ increments, the division that accounts for the largest proportion is the average particle size of 0.1-0.
α-alumina powder, which is in the range of 6 times, and whose ratio is 1.5 times or more compared to any other classification.
(2)比表面積が3〜15m^3/g、平均粒径が0.
6〜1.4μ、かつ0.2μ毎に区切った粒度分布にお
いて最大の割合を占める区分が平均粒径の0.1〜0.
6倍の範囲にあり、その割合が他のいずれの区分に対し
ても1.5倍以上であるαアルミナ粉末を製造するに当
り、非晶質水酸化アルミニウムを1100℃以上に加熱
してαアルミナに変換させた後、粉砕処理することを特
徴とするαアルミナ粉末の製法。
(2) Specific surface area is 3-15m^3/g, average particle size is 0.
In the particle size distribution divided into 6-1.4μ and 0.2μ increments, the division that accounts for the largest proportion is the average particle size of 0.1-0.
In order to produce α-alumina powder, which has a ratio of 6 times higher than that of any other category, amorphous aluminum hydroxide is heated to 1100°C or higher to produce α-alumina powder. A method for producing α-alumina powder, which is characterized by converting it into alumina and then pulverizing it.
(3)非晶質水酸化アルミニウムがアルミン酸ナトリウ
ム溶液と炭酸ガスの接触により得られる非晶質水酸化ア
ルミニウムを洗浄、乾燥したものである特許請求の範囲
第2項記載のαアルミナの製法。
(3) The method for producing α-alumina according to claim 2, wherein the amorphous aluminum hydroxide is obtained by washing and drying amorphous aluminum hydroxide obtained by contacting a sodium aluminate solution with carbon dioxide gas.
JP59249787A 1984-11-28 1984-11-28 Alpha-alumina powder and its production Granted JPS61132513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59249787A JPS61132513A (en) 1984-11-28 1984-11-28 Alpha-alumina powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59249787A JPS61132513A (en) 1984-11-28 1984-11-28 Alpha-alumina powder and its production

Publications (2)

Publication Number Publication Date
JPS61132513A true JPS61132513A (en) 1986-06-20
JPH0217484B2 JPH0217484B2 (en) 1990-04-20

Family

ID=17198214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59249787A Granted JPS61132513A (en) 1984-11-28 1984-11-28 Alpha-alumina powder and its production

Country Status (1)

Country Link
JP (1) JPS61132513A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130050A (en) * 1990-09-18 1992-05-01 Nippon Light Metal Co Ltd Refractory material and its production
WO1992019536A1 (en) * 1991-04-26 1992-11-12 Vista Chemical Company Process for preparing sub-micron alumina particles
CN1076318C (en) * 1997-09-19 2001-12-19 中国科学院山西煤炭化学研究所 Method for preparing active aluminum oxide by sodium aluminate carbonating process
JP2006111508A (en) * 2004-10-18 2006-04-27 Fujimi Inc Method for manufacturing aluminum oxide powder
JP2006124420A (en) * 2004-10-26 2006-05-18 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
KR20120003457A (en) * 2009-03-20 2012-01-10 베이코스키 Alumina, luminophores and mixed compounds, and associated production methods
JP2013028042A (en) * 2011-07-28 2013-02-07 Kanematsu Nnk Corp Wood material having fire retardant, and method for manufacturing the same
CN112830508A (en) * 2021-01-29 2021-05-25 郑州大学 Method for preparing aluminum hydroxide by using aluminum ash denitrification and fluorine fixation clinker

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130050A (en) * 1990-09-18 1992-05-01 Nippon Light Metal Co Ltd Refractory material and its production
WO1992019536A1 (en) * 1991-04-26 1992-11-12 Vista Chemical Company Process for preparing sub-micron alumina particles
CN1076318C (en) * 1997-09-19 2001-12-19 中国科学院山西煤炭化学研究所 Method for preparing active aluminum oxide by sodium aluminate carbonating process
JP2006111508A (en) * 2004-10-18 2006-04-27 Fujimi Inc Method for manufacturing aluminum oxide powder
JP2006124420A (en) * 2004-10-26 2006-05-18 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
KR20120003457A (en) * 2009-03-20 2012-01-10 베이코스키 Alumina, luminophores and mixed compounds, and associated production methods
JP2012520818A (en) * 2009-03-20 2012-09-10 バイコウスキー Alumina, illuminant, mixed compound thereof, and production method thereof
US8883116B2 (en) 2009-03-20 2014-11-11 Baikowski Alumina, luminophores and mixed compounds, and associated preparation processes
US9416309B2 (en) 2009-03-20 2016-08-16 Baikowski Alumina, luminophores and mixed compounds, and associated preparation processes
JP2013028042A (en) * 2011-07-28 2013-02-07 Kanematsu Nnk Corp Wood material having fire retardant, and method for manufacturing the same
CN112830508A (en) * 2021-01-29 2021-05-25 郑州大学 Method for preparing aluminum hydroxide by using aluminum ash denitrification and fluorine fixation clinker

Also Published As

Publication number Publication date
JPH0217484B2 (en) 1990-04-20

Similar Documents

Publication Publication Date Title
EP0384603B1 (en) Process for the production of magnesium oxide
JP2639121B2 (en) Method for producing fine α-alumina powder
JP4122746B2 (en) Method for producing fine α-alumina powder
KR102158893B1 (en) Method for producing potassium titanate
JPH05194026A (en) Method for producing sintered material consisting of alpha-aluminum oxide particularly for use in polishing material
JPS6117469A (en) Manufacture of minute cordierite
KR20070013213A (en) FINE alpha;-ALUMINA PARTICLE
JPS61132513A (en) Alpha-alumina powder and its production
JP3368507B2 (en) Zirconia powder and method for producing the same
JPH02239113A (en) Production of boehmite
JP2007055888A (en) FINE alpha-ALUMINA PARTICLE
US4585743A (en) High density magnesia clinker and process for its production
US5587010A (en) Process for producing fine flaky alumina particles and alumina-based plastic material
CA2073471C (en) Process for producing fine flaky alumina particles and alumina-based plastic material
US3642505A (en) Manufacture of mullite refractory grain and product
CN114538913B (en) Pure-phase nano MgAl with high sintering activity 2 O 4 Powder and preparation method and application thereof
JPH10101329A (en) Alpha-alumina and its production
JPS6278103A (en) Production of aluminum nitride powder
US4774068A (en) Method for production of mullite of high purity
JPH0686291B2 (en) Spinel powder and method for producing the same
JPS61201619A (en) Easily sintering alumina powder and its production
JPH04930B2 (en)
JPS596812B2 (en) Pseudo-boehmite type alumina hydrate and its manufacturing method
JPH07101723A (en) Production of alpha alumina powder
JPH0239451B2 (en)