JPH04930B2 - - Google Patents

Info

Publication number
JPH04930B2
JPH04930B2 JP57099063A JP9906382A JPH04930B2 JP H04930 B2 JPH04930 B2 JP H04930B2 JP 57099063 A JP57099063 A JP 57099063A JP 9906382 A JP9906382 A JP 9906382A JP H04930 B2 JPH04930 B2 JP H04930B2
Authority
JP
Japan
Prior art keywords
particles
zirconia
powder
secondary agglomerated
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57099063A
Other languages
Japanese (ja)
Other versions
JPS58217430A (en
Inventor
Etsuro Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9906382A priority Critical patent/JPS58217430A/en
Publication of JPS58217430A publication Critical patent/JPS58217430A/en
Publication of JPH04930B2 publication Critical patent/JPH04930B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はジルコニア系微粉末および製造方法に
関する。特に高強度高靭性ジルコニア固溶体セラ
ミツクスならびにジルコニア分散高靭性セラミツ
クス等に適するジルコニア系微粉末の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a zirconia-based fine powder and a manufacturing method. In particular, the present invention relates to a method for producing zirconia-based fine powder suitable for high-strength, high-toughness zirconia solid solution ceramics, zirconia-dispersed high-toughness ceramics, and the like.

正方型ジルコニア固溶体微粒子を含むジルコニ
ア焼結体や正方型ジルコニアを分散して含むジル
コニア分散型焼結体は高強度高靭性材料として着
目され、著しい進歩の途上にある。このような強
強度高靭性のジルコニアセラミツクスの出発原料
として、2次凝集粒子径が500Å以下の超微粒子
のジルコニアまたはジルコニア固溶体からなる微
粉末の製造が行われるようになつた。
Zirconia sintered bodies containing square-shaped zirconia solid solution fine particles and zirconia-dispersed sintered bodies containing square-shaped zirconia dispersed therein are attracting attention as high-strength, high-toughness materials, and are in the process of remarkable progress. As a starting material for such strong and tough zirconia ceramics, a fine powder consisting of ultrafine zirconia particles or a zirconia solid solution with a secondary agglomerated particle size of 500 Å or less has been produced.

この製造方法としては、高純度化並びに粒子微
細化のため、現在殆ど湿式法が行われれ、ジルコ
ニウム塩水溶液にアンモニアを添加して得られる
水酸化沈澱を仮焼し粉砕する従来法の他、最近は
ジルコニウム塩水溶液を加熱加水分解することに
より生成するコロイド析出物を乾燥、仮焼、粉砕
する方法が行われている。
Currently, most of the manufacturing methods are wet methods to achieve high purity and particle refinement. A method is used in which a colloidal precipitate produced by heating and hydrolyzing an aqueous zirconium salt solution is dried, calcined, and pulverized.

しかしながら、このようなコロイド析出物は、
水中では充分孤立分散していても、極めて微細な
ため、乾燥処理過程で粒子間に残る水分の作用で
強固な粒子間結合を生じ、コロイド粒子はゲル化
して微粒子性を失い、これは乾燥後粉砕処理を加
えても、粉末状態においては、微粒子はそれが1
次粒子であれ、2次凝集粒子であれ、生成状態の
ままでは存在しない。微粒子であるほど、必ず更
に凝集して、粗大な高次の凝集粒子もしくは凝集
粒子塊となつている。
However, such colloidal precipitates
Even if they are sufficiently isolated and dispersed in water, because they are extremely fine, the water remaining between the particles during the drying process creates strong interparticle bonds, causing the colloid particles to gel and lose their fine particle nature. Even if pulverization is applied, in the powder state, the fine particles are
Whether they are secondary particles or secondary agglomerated particles, they do not exist in their generated state. The finer the particles, the more agglomerated they become, forming coarse, higher-order aggregated particles or agglomerated particle agglomerates.

またこれらの乾燥粉末は、焼結体用として使用
するためには、一般に800℃前後の熱処理、即ち
仮焼処理が加えられる。これは、成型密度を上げ
るために粉末自体を緻密化させるためであり、ジ
ルコニアでは多くの場合にこの他に添加されるイ
ツトリウムやカルシウムなどの異種金属の酸化物
をジルコニア中に固溶体化させるためである。
Furthermore, in order to use these dry powders as sintered bodies, they are generally subjected to heat treatment at around 800°C, that is, calcining treatment. This is to densify the powder itself in order to increase the molding density, and to make oxides of different metals such as yttrium and calcium, which are often added to zirconia, as a solid solution in the zirconia. be.

しかしながら、この仮焼の段階では、粒子が微
細な程、凝集粒子内や凝集粒子間に容易に焼結が
起こり、一層強固な凝集塊を形成するので、一般
に仮焼後は必ず粉砕処理が行われるが、結果とし
て生成する粉末は粒径分布の広い、粗雑なものと
なつてしまうのである。
However, at this stage of calcination, the finer the particles, the more easily sintering occurs within and between the aggregated particles, forming a stronger agglomerate, so pulverization is generally always performed after calcination. However, the resulting powder is coarse and has a wide particle size distribution.

この仮焼後の凝集塊の凝集は乾燥時の凝集の強
固な程、益々強固なものとなるので、乾燥の前に
水分をアルコールなどで置換するか、凍結乾燥な
どの方法を用い、強固凝集を避ける試みもなされ
ている。しかし、一般には高価となるだけでな
く、工業的な生産規模でのゾルの水処理、例えば
スプレードライヤー等によるゾルの乾燥ができな
い等の欠点がある。
The stronger the agglomeration during drying, the stronger the agglomeration of the agglomerates after calcination. Therefore, before drying, replace water with alcohol or use a method such as freeze-drying to solidify the agglomeration. Attempts have also been made to avoid this. However, in addition to being generally expensive, there are drawbacks such as the inability to perform water treatment of the sol on an industrial production scale, for example, drying the sol using a spray dryer or the like.

また、焼結セラミツクス用としては、一般に、
粒径分布の狭い、よく揃つた、孤立微粒子からな
る微粉末が、成型充填と焼結の均一性のために望
ましくないと言われているが、粗大な凝集塊の混
在は、強度劣化に繋がるため避ける必要があり、
加水分解生成物のような超微粒子からなる微粉末
で、粒径分布の狭い、よく揃つた、孤立微粒子か
らなる微粉末を工業的に製造することは、従来極
めて困難とされてきた。
In addition, for sintered ceramics, generally
It is said that fine powder consisting of well-aligned, isolated particles with a narrow particle size distribution is undesirable for uniformity in mold filling and sintering, but the presence of coarse agglomerates leads to strength deterioration. should be avoided because of
It has hitherto been considered extremely difficult to industrially produce a fine powder consisting of ultrafine particles such as a hydrolysis product, which is a fine powder consisting of well-aligned isolated particles with a narrow particle size distribution.

本発明はこれらの欠点を基本的に除去するもの
で、比較的簡単に500Å以下の超微粒子を工業的
な生産規模で水処理することが可能な均一な2次
凝集粒子粉末として与えることを目的とするジル
コニア系微粉末の製造法である。すなわち、ジル
コニウム塩水溶液を80〜250℃に加熱し、加水分
解して、ジルコニアの2次凝集粒子の分散したゾ
ルを形成し、該ゾルを沈降法または遠心分離法に
より分離し、分離されたジルコニアの粒子を乾燥
して、ジルコニア微結晶からなり、かつ粒子径が
1000Å〜3000Åの2次凝集粒子の粉末を得、これ
を単独で、またはこれに他の金属の化合物を混合
し、400〜1000℃の温度で仮焼することを特徴と
する製造法である。
The present invention basically eliminates these drawbacks, and aims to provide a homogeneous secondary agglomerated particle powder that can relatively easily produce ultrafine particles of 500 Å or less in water treatment on an industrial production scale. This is a method for producing fine zirconia powder. That is, a zirconium salt aqueous solution is heated to 80 to 250°C and hydrolyzed to form a sol in which secondary agglomerated particles of zirconia are dispersed, and the sol is separated by a sedimentation method or a centrifugation method, and the separated zirconia The particles are made of zirconia microcrystals and have a particle size of
This production method is characterized by obtaining a powder of secondary agglomerated particles with a size of 1000 Å to 3000 Å, which is used alone or mixed with other metal compounds, and then calcined at a temperature of 400 to 1000°C.

発明者は詳細な研究によつてジルコニウム塩溶
液の80〜250℃の加熱加水分解によつて生成する
懸濁粒子は結晶子径100Å以下の単斜ジルコニア
微結晶が凝集した2次凝集粒子であり、その大き
さ即ち2次凝集粒子径は30〜3000Åの分布を持つ
ことを発見した。(村瀬嘉夫、加藤悦朗、窯業協
会誌84巻478頁(1976)を参照。またさらに研究
を重ねて、これらの2次凝集粒子は溶液のPHが
1.5〜0の範囲において比較的大きくなり易いこ
と、酸性液中で数日間静置するか、または遠心分
離器にかけると約1000Å以下の粒子は浮遊微粒子
として液中に留まり、約1000Å以上の2次凝集粒
子のみを沈降分離できること、そして約1000Å以
下の浮遊微粒子を取除いたこの結晶性の2次凝集
粒子は100Å以下の微結晶から成るにもかかわら
ず乾燥後強固な凝集塊を作らず極めて優れた性質
の粉末を与えることを見出した。実験の結果によ
れば微粒子を除いたこの2次凝集粒子は900℃以
下の仮焼により、凝集粒子自体はますます強固な
2次粒子となるが、2次粒子間の結合は極めて弱
く、軽い摩砕で容易にほぐれて1次粒子が500A
以下で且その2次凝集粒子の大きさが1000Å〜
3000Å程度の均一な微粉末を与える。驚ろくべき
ことに、凝集に対し不活性なこの2次粒子粉末は
なお焼結性であり、反応活性である。例えば仮焼
前の乾燥粉末に硝酸イツトリウム等を混合仮焼す
れば600℃以下の低温で容易に正方型もしくは立
方型の固溶体粉末を与える。また仮焼後の粉末は
500Å以下の微結晶から成るが、約1000〜3000Å
の凝集粒子として存在し、この凝集粒子と凝集粒
子との間の結合は比較的弱いので容易にほぐれて
粉末化し、しかもその後の水処理によつて強固で
粗大な凝集塊を生じない。従つて工業的なスプレ
ードライヤーその他の水処理が可能であり、成形
体の充填密度が高く均一となる。この際1次微粒
子の活性は残るのみならず、3000Å以下の2次粒
子自体なお著しく焼結活性で、通常1400℃程度以
下の焼成温度でほとんど理論密度の焼結体とな
る。
Through detailed research, the inventor found that the suspended particles produced by heating and hydrolyzing a zirconium salt solution at 80 to 250°C are secondary agglomerated particles consisting of monoclinic zirconia microcrystals with a crystallite diameter of 100 Å or less. It was discovered that the size of the secondary agglomerated particles had a distribution of 30 to 3000 Å. (See Yoshio Murase, Etsuro Kato, Ceramics Association Journal Vol. 84, p. 478 (1976). Further research revealed that these secondary agglomerated particles
1.5 to 0. Particles of about 1000 Å or less remain in the liquid as suspended particles when left standing in an acidic solution for several days or are centrifuged, while particles of about 1000 Å or more Only the secondary agglomerated particles can be separated by sedimentation, and even though these crystalline secondary agglomerated particles, from which suspended particles of about 1000 Å or less are removed, are composed of microcrystals of 100 Å or less, they do not form strong agglomerates after drying. It has been found that it gives a powder of excellent properties. According to experimental results, when these secondary agglomerated particles, excluding fine particles, are calcined at temperatures below 900°C, the agglomerated particles themselves become stronger secondary particles, but the bonds between the secondary particles are extremely weak and light. Easily loosened by grinding, primary particles reach 500A
or less, and the size of the secondary agglomerated particles is 1000Å~
Gives a uniform fine powder of about 3000Å. Surprisingly, this secondary powder, which is inert to agglomeration, is still sinterable and reactive. For example, if yttrium nitrate or the like is mixed and calcined with the dry powder before calcination, a square or cubic solid solution powder can be easily obtained at a low temperature of 600°C or less. In addition, the powder after calcination is
Consists of microcrystals of less than 500 Å, but approximately 1000 to 3000 Å
Since the bonds between the aggregated particles are relatively weak, they are easily loosened and powdered, and furthermore, they do not form strong, coarse aggregates during subsequent water treatment. Therefore, water treatment using an industrial spray dryer or the like is possible, and the molded article has a high and uniform packing density. At this time, not only does the activity of the primary fine particles remain, but the secondary particles themselves with a diameter of 3000 Å or less are still extremely sintering active, and a sintered body having almost the theoretical density is formed at a firing temperature of usually about 1400° C. or less.

約1000Å以下の微粒子を除去した粉末の作業上
ならびに成形特性、焼結特性に及ぼす効果は以上
のように極めて顕著なものがあるが、逆に2次凝
集粒子が3000Å以上の粒子を含むと、焼結体組織
が粗雑になり易い傾向があり、焼結体用として最
も適当な粒径範囲は約1000Å〜3000Åである。し
かし通常の加水分解法では3000Å以上の2次凝集
粒子はほとんど生成しないのでその除去を特に考
える必要はない。
As mentioned above, the effect of powder from which fine particles of about 1000 Å or less have been removed on the workability, molding properties, and sintering properties is extremely remarkable, but on the other hand, if the secondary agglomerated particles contain particles of 3000 Å or more, The structure of the sintered body tends to become coarse, and the most suitable particle size range for the sintered body is approximately 1000 Å to 3000 Å. However, since secondary agglomerated particles with a size of 3000 Å or more are hardly produced in the ordinary hydrolysis method, there is no need to particularly consider their removal.

加水分解の条件として80℃以下の温度では加水
分解を進めるのに時間がかかり過ぎ、また250℃
以上では加水分解は速くなるが1次粒子の成長が
大きくなりすぎて反応活性を失う。最も好のまし
い範囲は90〜120℃である。また仮焼処理は既に
述べたように、生成する超微粒子の凝集緻密化並
びに添加する異種酸化物のジルコニアへの固溶体
化のために、一般的に行われるものであるが、粒
子径が1000Å以下の2次凝集粒子である超微粒子
を含有するゾル乾燥物は、この超微粒子の介在に
より乾燥後強固に塊状化し易く、仮焼処理によつ
て一層強固に塊状化するものである。
The conditions for hydrolysis are that it takes too long to proceed with hydrolysis at temperatures below 80℃, and at temperatures below 250℃.
Above this, the hydrolysis becomes faster, but the growth of the primary particles becomes too large and the reaction activity is lost. The most preferred range is 90-120°C. In addition, as mentioned above, calcination treatment is generally performed to agglomerate and densify the ultrafine particles produced and to form a solid solution of the added foreign oxide into zirconia. A dried sol containing ultrafine particles, which are secondary agglomerated particles, tends to solidify into agglomerates after drying due to the presence of the ultrafine particles, and becomes even more solidly agglomerated by calcination treatment.

本発明方法では、加水分解を80〜250℃の温度
で行うことにより、1次粒子はその径が100Å以
下の微結晶であるが、それが凝集して孤立した
1000〜3000Åの2次凝集粒子を多く含有するゾル
を先ず製造する。次いで、このゾルからから1000
Å以下の2次凝集粒子を予め除去するもので、
1000〜3000Å(0.1〜0.3μm)の微粒子だけでは、
強固な凝集塊になりにくいことを見出したもので
ある。
In the method of the present invention, by performing hydrolysis at a temperature of 80 to 250°C, the primary particles are microcrystals with a diameter of 100 Å or less, but they aggregate and become isolated.
First, a sol containing many secondary agglomerated particles of 1000 to 3000 Å is produced. Then from this sol 1000
This is a method that removes secondary agglomerated particles of Å or less in advance.
Fine particles of 1000 to 3000 Å (0.1 to 0.3 μm) alone cannot
It was discovered that it does not easily form into strong agglomerates.

即ち乾燥微粉末中の凝集塊は、1000Å以下の2
次凝集粒子を介在しないので、比較的疎であり、
ほぐれやすく、仮焼処理によつて強固な凝集塊を
形成し難いのである。この仮焼温度は、400℃以
下では目的とする微粒子の緻密化及び固溶体化へ
の変化が不充分である。また仮焼温度が1000℃を
越えると2次凝集粒子間に焼結が起り粗大凝集塊
が発生して焼結活性が失われる。
In other words, the aggregates in the dry fine powder are 2
Since there are no secondary agglomerated particles, it is relatively sparse.
It easily loosens and is difficult to form strong aggregates during calcination treatment. If the calcination temperature is 400° C. or lower, the desired densification of the fine particles and change to solid solution formation are insufficient. Furthermore, when the calcination temperature exceeds 1000°C, sintering occurs between secondary agglomerated particles, coarse agglomerates are generated, and sintering activity is lost.

本発明は簡単な方法により約1000Å以下の微粒
部分を除き、約1000Å以上のもののみを利用する
点に最大の特徴があるが、約1000Å以下の微粒部
分は棄てることなく再度加水分解液中で処理し成
長させることができるので、ジルコニウムの損失
は生じない。本発明は以上のように製造過程の極
めて簡単な改良で著しい効果があり、特に粉末特
性上の工業生産において大きな利益を与えるもの
である。以下に代表的な実施例を述べる。
The greatest feature of the present invention is that it uses a simple method to remove the fine particles with a diameter of about 1000 Å or less and uses only those with a diameter of about 1000 Å or more. No loss of zirconium occurs as it can be processed and grown. As described above, the present invention has a remarkable effect with extremely simple improvements in the manufacturing process, and provides great benefits particularly in industrial production in terms of powder properties. Typical examples will be described below.

実施例 1 試薬塩化ジルコニル(ZrOCl2・8H2O)約40g
を蒸留水約600ml中に溶解して約0.2mol/の溶
液とし、この溶液を還流冷却器付フラスコ中で80
時間煮沸してジルコニアの2次凝集粒子の分散し
たゾルを得た。この懸濁液を遠心分離器により回
転数12000r.p.m.で約5分間処理し上部の薄く乳
濁した部分を除き、残部を再度0.3規定の塩酸中
に懸濁させ同様遠心分離器で沈降させ、この沈降
部分をアルコールで洗滌し、乾燥させた。得られ
た粉末はX線的には単斜型ジルコニア結晶であ
り、その見掛けの平均結晶子径は43Åであるが電
子顕微鏡によれば第1図に示すように厚さ700〜
1200Å、直径1200〜2600Åの円板状の極めて均一
粒径の凝集粒子であつた。この乾燥粉末は500℃、
600℃、700℃、800℃および1000℃でそれぞれ1
時間仮焼すると、平均結晶子径はそれぞれ約95
Å、120Å、160Å、210Åおよび350Åに成長する
が、電子顕微鏡によればこれらの成長は主として
2次粒子内部で起つており、仮焼物は容易に個々
の2次粒子に分割され、その2次粒子の大きさは
1000Å〜1500Åであつた。得られた粉末を1t/cm2
の成形圧で円板状に成形し1100℃で1時間焼結し
た所1000℃仮焼物を除き何れも理論密度のほぼ96
%に相当する嵩密度の単斜型ジルコニアのみから
成る焼結体を与えた。この際、焼成収縮率は800
℃仮焼物が最も小さく適当であつた。1000℃仮焼
物は焼成収縮率は小さくなるが最終焼結密度は92
%と低下した。
Example 1 Approximately 40 g of reagent zirconyl chloride (ZrOCl 2.8H 2 O)
was dissolved in about 600 ml of distilled water to make a solution of about 0.2 mol/ml, and this solution was heated to 80 ml in a flask with a reflux condenser.
The mixture was boiled for a period of time to obtain a sol in which secondary agglomerated particles of zirconia were dispersed. This suspension was treated with a centrifuge at a rotation speed of 12,000 rpm for about 5 minutes to remove the thinly milky part at the top, and the remaining part was resuspended in 0.3N hydrochloric acid and sedimented with the same centrifuge. This precipitated portion was washed with alcohol and dried. The obtained powder is a monoclinic zirconia crystal according to X-rays, and its apparent average crystallite diameter is 43 Å, but according to an electron microscope, it has a thickness of 700 Å to 700 Å, as shown in Figure 1.
They were disc-shaped aggregated particles with extremely uniform particle diameters of 1,200 Å and diameters of 1,200 to 2,600 Å. This dry powder is heated at 500℃.
1 at 600℃, 700℃, 800℃ and 1000℃ respectively
When calcined for an hour, the average crystallite diameter is approximately 95
Å, 120 Å, 160 Å, 210 Å, and 350 Å, but according to electron microscopy, these growths mainly occur inside the secondary particles, and the calcined material is easily divided into individual secondary particles, and the secondary particles The particle size is
It was 1000 Å to 1500 Å. 1 t/cm 2 of the obtained powder
When molded into a disk shape under a molding pressure of
A sintered body consisting only of monoclinic zirconia with a bulk density corresponding to % was obtained. At this time, the firing shrinkage rate is 800
The temperature calcined product was the smallest and suitable. The 1000℃ calcined product has a smaller firing shrinkage rate, but the final sintered density is 92
%.

実施例 2 実施例1と同様にして加熱加水分解を行い遠心
分離により得られた約1500Å〜2200Åのジルコニ
ア2次凝集粒子からなる粉末にジルコニアに対し
3モル%に相当する量の硝酸イツトリウムを加
え、800℃で1時間仮焼した。得られた粉末はX
線的に正方結晶であり、遊離のY2O3は認められ
なかつた。この粉末は水中で軽く摩砕することに
より容易に分散するが、乾燥によつて強固な凝集
塊を作らない。試験的な簡単な造粒物を用いて
1t/cm2に加圧成形し、1320℃に1時間焼成したと
ころ理論密度のほぼ96%に相当する焼結体を与え
た。X線回析によればこの焼結体は正方型結晶の
みから成り、破断面の走査電顕観察は約0.3μの均
一微粒子組織を示した。同様の実験を遠心分離せ
ずに、微粒子と粗粒子の混在する加水分解生成ジ
ルコニアに対して行つた場合には仮焼でやや強固
な凝集塊が出来焼結体の組織は不均一となり、相
対密度も92%にしか達しなかつた。
Example 2 Yttrium nitrate in an amount equivalent to 3 mol% of zirconia was added to a powder consisting of secondary agglomerated particles of zirconia of approximately 1500 Å to 2200 Å obtained by thermal hydrolysis and centrifugation in the same manner as in Example 1. , and calcined at 800℃ for 1 hour. The obtained powder is
It was a linearly tetragonal crystal, and no free Y 2 O 3 was observed. This powder is easily dispersed by gentle grinding in water, but does not form strong agglomerates upon drying. Using experimental simple granules
When it was press-molded to 1 t/cm 2 and fired at 1320°C for 1 hour, a sintered body having approximately 96% of the theoretical density was obtained. According to X-ray diffraction, this sintered body consisted of only square crystals, and scanning electron microscopy of the fractured surface showed a uniform fine grain structure of about 0.3μ. When a similar experiment was performed on hydrolyzed zirconia containing a mixture of fine and coarse particles without centrifugation, a rather strong agglomerate was formed during calcination, and the structure of the sintered body was non-uniform, resulting in a relative The density also reached only 92%.

実施例 3 実施例1と同様にして加熱加水分解を行い得ら
れた懸濁液を1時間暗所に静置したところ底部に
沈降物を得た。この沈降部分を水洗し、塩基性炭
酸マグネシウム粉末をZrO2に対しMgOが10モル
%に相当するだけ加えてよく混合し、空気中800
℃に仮焼した。仮焼物は正方型および立方型固溶
体結晶であり、容易にほぐれて微粉末となつた。
実施例2と同様に高い焼結性を示し、1350℃で理
論密度の96%に達した。
Example 3 A suspension obtained by heating and hydrolysis in the same manner as in Example 1 was allowed to stand in a dark place for 1 hour, and a precipitate was obtained at the bottom. This sedimented part was washed with water, and basic magnesium carbonate powder was added in an amount equivalent to 10 mol% of MgO to ZrO2 , mixed well, and
It was calcined at ℃. The calcined product had square and cubic solid solution crystals and was easily loosened into fine powder.
As in Example 2, it exhibited high sinterability and reached 96% of the theoretical density at 1350°C.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のジルコニアの2次凝集粒子か
ら成る、乾燥後であつて仮焼前のジルコニア系微
粉末の透過電子顕微鏡写真である。
FIG. 1 is a transmission electron micrograph of a zirconia fine powder made of secondary agglomerated particles of zirconia according to the present invention, after drying and before calcining.

Claims (1)

【特許請求の範囲】[Claims] 1 ジルコニウム塩水溶液を80〜250℃に加熱し、
加水分解して、ジルコニアの2次凝集粒子の分散
したゾルを形成し、該ゾルを沈降法または遠心分
離法により分離し、分離されたジルコニアの粒子
を乾燥して、ジルコニア微結晶からなり、かつ粒
子径が1000Å〜3000Åの2次凝集粒子の粉末を
得、これを単独で、またはこれに他の金属の化合
物を混合し、400〜1000℃の温度で仮焼すること
を特徴とするジルコニウム系微粉末の製造方法。
1. Heat the zirconium salt aqueous solution to 80-250℃,
Hydrolysis is performed to form a sol in which secondary agglomerated particles of zirconia are dispersed, the sol is separated by a sedimentation method or a centrifugation method, and the separated zirconia particles are dried to produce a sol consisting of zirconia microcrystals, and A zirconium-based product characterized by obtaining a powder of secondary agglomerated particles with a particle size of 1000 Å to 3000 Å, and calcining the powder alone or with other metal compounds at a temperature of 400 to 1000°C. Method for producing fine powder.
JP9906382A 1982-06-09 1982-06-09 Fine zirconia powder and manufacture Granted JPS58217430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9906382A JPS58217430A (en) 1982-06-09 1982-06-09 Fine zirconia powder and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9906382A JPS58217430A (en) 1982-06-09 1982-06-09 Fine zirconia powder and manufacture

Publications (2)

Publication Number Publication Date
JPS58217430A JPS58217430A (en) 1983-12-17
JPH04930B2 true JPH04930B2 (en) 1992-01-09

Family

ID=14237296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9906382A Granted JPS58217430A (en) 1982-06-09 1982-06-09 Fine zirconia powder and manufacture

Country Status (1)

Country Link
JP (1) JPS58217430A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201623A (en) * 1985-03-04 1986-09-06 Etsuro Kato Production of spherical flocculated particle of zirconia ultrafine crystal
JPH0688787B2 (en) * 1985-05-21 1994-11-09 住友化学工業株式会社 Method for producing partially stabilized zirconia powder
US4719091A (en) * 1986-07-01 1988-01-12 Corning Glass Works Preparation of mono-sized zirconia powders by forced hydrolysis
DE3777940D1 (en) * 1986-09-27 1992-05-07 Nissan Chemical Ind Ltd METHOD FOR PRODUCING FINE ZIRCONOXY POWDER.
WO2006115043A1 (en) 2005-04-18 2006-11-02 Nissan Chemical Industries, Ltd. Acidic zirconia sol and method for producing same
JP5494746B2 (en) * 2012-07-17 2014-05-21 住友大阪セメント株式会社 Method for producing particle aggregate
JP5821871B2 (en) * 2013-02-19 2015-11-24 住友大阪セメント株式会社 Method for producing metal oxide nanoparticles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021996A (en) * 1973-06-28 1975-03-08
JPS56145118A (en) * 1980-04-11 1981-11-11 Agency Of Ind Science & Technol Preparation of finely divided particles of zirconium oxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021996A (en) * 1973-06-28 1975-03-08
JPS56145118A (en) * 1980-04-11 1981-11-11 Agency Of Ind Science & Technol Preparation of finely divided particles of zirconium oxide

Also Published As

Publication number Publication date
JPS58217430A (en) 1983-12-17

Similar Documents

Publication Publication Date Title
Ciftci et al. Hydrothermal precipitation and characterization of nanocrystalline BaTiO3 particles
US4719091A (en) Preparation of mono-sized zirconia powders by forced hydrolysis
JP2523776B2 (en) Composition for zirconia ceramic material
AU640150B2 (en) Sintered material based on aluminium oxide, a process for its production and its use
US5009876A (en) Method of manufacturing barium titanate BaTiO3
JP2005519020A (en) Method for producing nano-sized stabilized zirconia
JPH0472774B2 (en)
JPH01167228A (en) Method for manufacturing barium titanate powder
JP3368507B2 (en) Zirconia powder and method for producing the same
JPH04930B2 (en)
JPS5879818A (en) Colloidal sol, fine powder of crystalline zirconia and preparation thereof
JPH05117636A (en) Polycrystalline sintered abrasive particle based on alpha-aluminum trioxide, abrasive comprising the abrasive particle, preparation of the abrasive particle and preparation of fire-resistant ceramic product
JPH0472772B2 (en)
JPH0346407B2 (en)
Qiu et al. Nanocrystalline zirconia powder processing through innovative wet-chemical methods
JPH0362648B2 (en)
JPH04231374A (en) Composition for preparation of ceramic
JPH0217484B2 (en)
Li et al. The effects of hydroxide gel drying on the characteristics of co-precipitated zirconia-hafnia powders
JPH02293371A (en) Sintered object of alpha-al203
JP3257095B2 (en) Method for producing zirconia powder
JPH0239451B2 (en)
Kim et al. Nanoparticle packaging
JPH04357115A (en) Zirconium oxide powder and its production
JPH0558633A (en) Production of strontium titanate