JPH0472772B2 - - Google Patents

Info

Publication number
JPH0472772B2
JPH0472772B2 JP59216767A JP21676784A JPH0472772B2 JP H0472772 B2 JPH0472772 B2 JP H0472772B2 JP 59216767 A JP59216767 A JP 59216767A JP 21676784 A JP21676784 A JP 21676784A JP H0472772 B2 JPH0472772 B2 JP H0472772B2
Authority
JP
Japan
Prior art keywords
particles
zirconia
agglomerated
aggregated
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59216767A
Other languages
Japanese (ja)
Other versions
JPS6197134A (en
Inventor
Etsuro Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUSAN KAGAKU KOGYO KK
Original Assignee
NITSUSAN KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUSAN KAGAKU KOGYO KK filed Critical NITSUSAN KAGAKU KOGYO KK
Priority to JP59216767A priority Critical patent/JPS6197134A/en
Publication of JPS6197134A publication Critical patent/JPS6197134A/en
Publication of JPH0472772B2 publication Critical patent/JPH0472772B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 本発明は結晶子径が100Å以下の結晶質1次粒
子から成り、特別の微構造を持ち、フアインセラ
ミツクスとして最も重要な0.3〜3μmの範囲の且
つ比較的狭い部分にある、ほぼ球状をしたジルコ
ニア系凝集粒子粉末、およびこれに関連したジル
コニア系凝集粒子および凝集粒子粉末の製造方法
に係るものである。ここにジルコニア系とはジル
コニアを主成分とする固溶体や化合物を含める意
である。
Detailed Description of the Invention The present invention consists of crystalline primary particles with a crystallite diameter of 100 Å or less, has a special microstructure, and has a relatively narrow portion in the range of 0.3 to 3 μm, which is the most important for fine ceramics. The present invention relates to a substantially spherical zirconia-based agglomerated particle powder, and a method for producing the zirconia-based agglomerated particle and agglomerated particle powder related thereto. Here, the term zirconia-based includes solid solutions and compounds containing zirconia as a main component.

最近フアインセラミツクスの高性能化ととも
に、使用原料は超微粒子化の傾向にあり、ジルコ
ニア系セラミツクス、特に強靱性セラミツクスと
して注目されている半安定化ジルコニアセラミツ
クスなども超微粒子原料が次第に重要性を増し、
サブミクロンの微粒子、或は500Å程度以下の超
微粒子が使用され始めている。
Recently, along with the improvement in the performance of fine ceramics, there has been a trend toward ultrafine raw materials, and ultrafine raw materials are becoming increasingly important for zirconia ceramics, especially semi-stabilized zirconia ceramics, which are attracting attention as tough ceramics. ,
Submicron particles or ultrafine particles of about 500 Å or less are beginning to be used.

しかしながら、微粒子、特に500Å程度以下の
超微粒子は少くとも次の2点において、セラミツ
ク製造上重要な障害を伴うものである。その一つ
は粉末製造上の問題であり、他は粉末から成形体
を得る際の問題である。
However, fine particles, especially ultrafine particles of about 500 Å or less, pose important obstacles in the production of ceramics in at least the following two points. One of them is a problem in powder production, and the other is a problem in obtaining a molded body from powder.

すなわち一般に500Å以下の超微粒子は、粉末
調製のための乾燥仮焼の段階で水の作用などによ
り強固な粒子間の結合を生じて不規則塊状とな
り、粉砕しても再び均一粒径の粉末になり難く、
超微粒子の特性の殆んどすべてを失うことであ
る。通常乾燥の前に水分を高価なアルコール等で
置換するか、凍結乾燥によるかして強固不規則な
凝集化を防ぐ必要があり、繁雑で且つ不経済なも
のであつた。
In other words, in general, ultrafine particles of 500 Å or less form irregular lumps due to strong bonds between particles due to the action of water during the dry calcination stage for powder preparation, and even after being crushed, they become powders with a uniform particle size again. difficult to become,
Almost all of the properties of ultrafine particles are lost. Usually, before drying, it is necessary to replace water with expensive alcohol or the like or freeze-dry to prevent strong and irregular agglomeration, which is complicated and uneconomical.

欠点の他の一つは、セラミツク原料粉末は微粒
子になると、たとえ強固不規則な凝集化を防ぐこ
とができたとしてもなお著しく成形困難なことで
ある。すなわち微粒子は均一な密充填が困難とな
り、焼成収縮率は増大し、変形や亀裂が発生し易
くなり、焼成後の寸法精度が悪くなるなどであ
る。この成形における均一密充填性を改善する工
業的手段は噴霧乾燥による造粒技術であるが、前
述したように水使用は微粒子の特性を損うため、
仮焼などで凝集化した後でこれを造粒することと
なり、この場合構成する凝集粒子は超微粒子の特
性を失いかつ不均一なもので、結局成形体内部組
織に不均一性を導入することとなる。
Another drawback is that when ceramic raw powder becomes fine particles, it is extremely difficult to mold it even if strong and irregular agglomeration can be prevented. In other words, it becomes difficult to uniformly and tightly pack the fine particles, the firing shrinkage rate increases, deformation and cracks are more likely to occur, and the dimensional accuracy after firing deteriorates. The industrial means to improve the uniform tight packing properties in this molding is granulation technology by spray drying, but as mentioned above, the use of water impairs the characteristics of the fine particles.
After being agglomerated by calcination etc., it is then granulated, and in this case the agglomerated particles that make up the agglomerated particles lose the characteristics of ultrafine particles and are non-uniform, resulting in non-uniformity being introduced into the internal structure of the compact. becomes.

本発明は活性なジルコニア系超微粒子を、均一
な0.3〜3μmの範囲でほぼ球状の凝集粒子として
液中に生成させるもので、上記の欠点をすべて除
去するものであり、水による噴霧乾燥処理を行つ
ても微粒子性を失わず、また噴霧乾燥を必ずしも
必要としない球状をしたフアインセラミツクス用
のジルコニア系微粒子粉末を与えるものである。
The present invention generates active zirconia-based ultrafine particles in liquid as approximately spherical agglomerated particles with a uniform size in the range of 0.3 to 3 μm, which eliminates all of the above-mentioned drawbacks and eliminates the need for spray drying with water. The present invention provides a spherical zirconia-based fine particle powder for use in fine ceramics that does not lose its fine particle properties even when drying is carried out, and does not necessarily require spray drying.

本発明者は詳細な研究によつて、ジルコニウム
塩水溶液の90〜250℃の加熱加水分解によつて生
成する懸濁粒子は結晶子径100Å以下の単斜ジル
コニア微結晶(ハフニウム等不純物の固溶体を含
む)の双晶的な凝集2次粒子であり、その2次粒
子径は30〜3000Åの範囲にあることを見出した。
しかし如何に条件を変えてもこの凝集粒子は3000
Å以上には殆んど成長しなかつた。従来このよう
な3000Å以上の凝集粒子から成る粉末は従つて全
く得られていなかつたし、その特徴についても全
く問題にされていなかつた。本発明はこのような
3000Å以上の大きさの凝集粒子粉末を容易に製造
し実用化させるものである。
Through detailed research, the present inventors have found that suspended particles produced by thermal hydrolysis of a zirconium salt aqueous solution at 90 to 250°C are monoclinic zirconia microcrystals (solid solutions of impurities such as hafnium) with a crystallite diameter of 100 Å or less. It was found that the secondary particles are twin-like agglomerated secondary particles of (including), and the secondary particle diameter is in the range of 30 to 3000 Å.
However, no matter how you change the conditions, the number of aggregated particles is 3000.
It hardly grew beyond Å. Conventionally, such a powder consisting of agglomerated particles of 3000 Å or more had not been obtained at all, and its characteristics had not been questioned at all. The present invention
The purpose is to easily produce and put into practical use agglomerated particle powder with a size of 3000 Å or more.

すなわち、ジルコニウム塩水溶液を加熱加水分
解して得られる約1000Å以上の結晶質ジルコニア
系凝集粒子にジルコニウム塩を加えた混合懸濁水
溶液のPHを1以下の強酸性とし、凝集粒子を浮遊
状態に保ちながら90〜250℃の温度で加熱加水分
解を行い、懸濁粒子を種結晶としてこれを3000Å
以上に成長させることを特徴とするものである。
That is, a mixed suspended aqueous solution in which a zirconium salt is added to crystalline zirconia-based aggregated particles of approximately 1000 Å or more obtained by heating and hydrolyzing an aqueous zirconium salt solution is made to have a pH of 1 or less, which is strongly acidic, and the aggregated particles are kept in a suspended state. The suspended particles were then used as seed crystals to form 3000Å crystals.
It is characterized by being made to grow more than the above.

本発明者の実験によれば、ジルコニウム塩の加
熱加水分解の温度は90℃以下では成長に時間がか
かり過ぎ、250℃以上では1次粒子が大きくなつ
て反応活性を失うとともに2次凝集粒子相互に接
合が生じ始めるので適当でない。また1000Å以下
の凝集粒子は小さい程その重量当り成長表面積が
大きくなり且つ液中に浮遊して成長し易いが自身
は3000Å以上には成長せず、沈降し易い比較的粗
大な凝集粒子の成長を妨げることが判明した。ま
たPH1以下の強酸性では孤立微粒子が発生し難い
ことも見出された。上記の発明はこれらの実験結
果を応用したものである。
According to experiments conducted by the present inventors, if the thermal hydrolysis temperature of zirconium salt is below 90°C, the growth will take too long, and if it is above 250°C, the primary particles will become large and lose their reaction activity, and the secondary agglomerated particles will interact with each other. This is not appropriate as bonding will begin to occur. In addition, the smaller the aggregated particles of 1000 Å or less, the larger the growth surface area per weight, and they tend to float in the liquid and grow, but they themselves do not grow to 3000 Å or more, and the growth of relatively coarse aggregated particles that are easy to settle. It turned out to be a hindrance. It has also been found that isolated fine particles are less likely to be generated under strongly acidic conditions with a pH of 1 or less. The above invention is an application of these experimental results.

なおさらに実験を繰返し、本発明者は、PHが一
層低くなり、塩酸濃度で1.5N以上となるとジル
コニア系懸濁粒子は相互に凝集して沈降し始める
こと、この凝集はPHが高い場合と異つて孤立した
0.5〜3μm程度のほぼ球状の比較的弱い凝集粒子
となること、および、さらにこの一時的な沈降性
凝集粒子は懸濁状態でもしくはこれにジルコニウ
ム塩を加えた懸濁状態で90℃〜250℃に加熱処理
すれば強固安定な凝集粒子となることなどを見出
した。恐らく凝集状態での再結晶あるいは凝集粒
子表面での成長によると考えられる。
After further repeated experiments, the present inventor found that when the pH becomes lower and the hydrochloric acid concentration exceeds 1.5N, the zirconia-based suspended particles begin to coagulate and settle, and that this aggregation is different from that when the pH is high. isolated
They become relatively weakly aggregated particles with a size of approximately 0.5 to 3 μm and are approximately spherical. Furthermore, these temporary sedimentary aggregate particles are heated at 90°C to 250°C in a suspended state or in a suspended state with a zirconium salt added thereto. It was discovered that if heat treated, strong and stable agglomerated particles could be formed. This is probably due to recrystallization in an aggregated state or growth on the surface of aggregated particles.

本発明の一部は以上の発見に基づくものであ
り、結晶質ジルコニア系微粒子ゾルに懸濁粒子が
相互に凝集して沈降を起すに十分な量の酸を加
え、生成する一時的な沈降性凝集粒子を90〜250
℃の温度で必要時間加熱処理を行い、これを安定
な形状の2次凝集粒子に変えることを特徴とする
方法である。
A part of the present invention is based on the above discovery, and the present invention is based on the temporary sedimentation property produced by adding an amount of acid sufficient to cause suspended particles to coagulate with each other and cause sedimentation to a crystalline zirconia-based fine particle sol. Agglomerated particles 90-250
This method is characterized by carrying out a heat treatment at a temperature of .degree. C. for a necessary period of time to convert the particles into secondary agglomerated particles having a stable shape.

本発明方法により得られる以上の凝集粒子は、
すべて水系の懸濁液の状態として生成し、すべて
100Å以下の結晶質の1次超微粒子から構成され、
且つ3000Å以上の孤立化したほぼ球状をした凝集
粒子として得られる点に著しい特徴がある。これ
は沈降法又は遠心法によれば粒径の分級が容易で
あり、通常の加熱乾燥でその特性を失わず、乾燥
後容易にほぐれて孤立した凝集粒子からなる粉末
を与える。これはまさに水中での微小造粒法とも
いえるもので、このような0.3〜3μmの微小範囲
での造粒は従来全く行れておらず、特に特許請求
の範囲1に記載されたジルコニア系凝集粒子粉末
は従来全く得られていないものである。これらの
凝集を制御された凝集粒子粉末は後述するように
極めて工業的価値の高いものである。
The above aggregated particles obtained by the method of the present invention are
All are produced as aqueous suspensions, and all
Composed of crystalline primary ultrafine particles of 100 Å or less,
It is also remarkable in that it is obtained as isolated, almost spherical agglomerated particles with a diameter of 3000 Å or more. It is easy to classify the particle size by sedimentation or centrifugation, does not lose its properties by ordinary heat drying, and is easily loosened after drying to give a powder consisting of isolated agglomerated particles. This can be truly called a microgranulation method in water, and granulation in such a microscopic range of 0.3 to 3 μm has never been achieved in the past. Particulate powder has never been obtained before. These agglomerated particle powders with controlled aggregation have extremely high industrial value, as will be described later.

さらに本発明方法により得られる凝集粒子の特
徴として、仮焼処理の容易さがある。すなわち沈
降法等によつて所望の大きさに分級された上記の
ような凝集粒子は単独で、または他の金属化合物
を混合し、1000℃以下の適当な温度で熱処理また
は仮焼することにより、その1次粒子の大きさ、
結晶形、化学組成、凝集状態などを変化させるこ
とができる。1000℃以下での仮焼では通常起る凝
集粒子間の接合は内部と較べて相対的に弱いので
容易にほぐれ、凝集粒子の形状や粒径の均一性、
孤立性などは殆んど損れない。
Furthermore, the agglomerated particles obtained by the method of the present invention are characterized by ease of calcining treatment. In other words, the above-mentioned aggregated particles classified into a desired size by a sedimentation method or the like are heat-treated or calcined at an appropriate temperature of 1000°C or less, either alone or in combination with other metal compounds. The size of the primary particle,
Crystal form, chemical composition, agglomeration state, etc. can be changed. During calcination at temperatures below 1000°C, the bonds between aggregated particles that normally occur are relatively weak compared to the inside, so they are easily loosened, and the uniformity of the shape and size of the aggregated particles increases.
There is almost no loss of isolation.

以上によつて、本発明方法は、最終的に、3ミ
クロン以下0.3ミクロンまで(30000Å〜3000Å)
の任意の粒径と分布を持つ、ほぼ球状をした孤立
粒子から成る理想的なセラミツク用粉末を与える
ものであり、しかもこの粉末粒子は0.05ミクロン
(500Å)以下の1次超微粒子から成る凝集2次粒
子であつて極めて活性であり反応性、焼結性に優
れ、さらに目的に応じて仮焼、固相反応などによ
り化学組成、1次粒子の大きさと凝集状態等の内
部微組織を適宜調節可能であるなど、粒子自体も
極めて優れた特性を持つものである。
As a result of the above, the method of the present invention can finally achieve a diameter of 0.3 microns or less (30000 Å to 3000 Å).
This provides an ideal ceramic powder consisting of nearly spherical isolated particles with arbitrary particle size and distribution, and this powder particle is agglomerated 2 consisting of primary ultrafine particles of 0.05 microns (500 Å) or less. It is a secondary particle that is extremely active and has excellent reactivity and sinterability. Furthermore, the internal microstructure such as the chemical composition, size of the primary particle, and agglomeration state can be adjusted appropriately by calcination, solid phase reaction, etc. depending on the purpose. The particles themselves also have extremely excellent properties.

本発明は以上のように比較的簡単な方法により
殆んど完壁な形の理想的なジルコニア系凝集粒子
粉末の工業的製造を可能とし、フアインセラミツ
クスの工業生産を初め研磨剤、化粧品、乳濁剤、
などの分野においても優れた価値を持つものであ
る。
As described above, the present invention enables the industrial production of ideal zirconia-based agglomerated particle powder with an almost perfect shape by a relatively simple method, and is useful for industrial production of fine ceramics, abrasives, cosmetics, etc. emulsifier,
It has excellent value in other fields as well.

実施例 1 試薬塩化ジルコニル(ZrOCl2・8H2O)約10g
を蒸留水約60ml中に溶解して約0.5mol/の溶
液とし、その約60mlを密閉容器中で攪拌しつつ
150℃に8時間加熱加水分解を行つた。得られた
懸濁液はX線的に約40Åの単斜超微結晶が配向的
に凝集した2次粒子であるが、1000Å以下の微細
凝集粒子を含むので遠心分離器により約1000Å以
上の部分を分離し、その一部を種結晶として塩化
ジルコニル約10gと混合し約60mlの懸濁液を作つ
た。溶液中のZrに対する種結晶の割合はZr比で
約1/8であつた。この懸濁液を再び密閉容器中
で攪拌しつつ150℃に8時間加熱水分解したとこ
ろ、X線的な結晶子径は最初とほぼ同様の約40Å
であるが、電子顕微鏡によれば約4000Åの比較的
均一なほぼ球状の凝集粒子であつた。さらにこの
凝集粒子を種結晶として同様の製作を繰返し、4
回目で大部分を約10000Åの凝集粒子にまで成長
させることができた。
Example 1 Approximately 10 g of reagent zirconyl chloride (ZrOCl 2.8H 2 O)
Dissolve in about 60 ml of distilled water to make a solution of about 0.5 mol/ml, and stir about 60 ml of this in a closed container.
Hydrolysis was carried out by heating at 150°C for 8 hours. The obtained suspension is secondary particles in which monoclinic ultrafine crystals with a diameter of about 40 Å are aggregated in an oriented manner according to X-rays, but since it contains fine agglomerated particles with a diameter of less than 1000 Å, the part larger than about 1000 Å is separated by a centrifuge. was separated, and part of it was mixed with about 10 g of zirconyl chloride as a seed crystal to make about 60 ml of suspension. The ratio of seed crystals to Zr in the solution was approximately 1/8 in terms of Zr ratio. When this suspension was heated and water-decomposed at 150°C for 8 hours while stirring in a closed container, the X-ray crystallite diameter was approximately 40 Å, which was almost the same as the initial one.
However, according to an electron microscope, it was a relatively uniform, almost spherical agglomerated particle with a diameter of about 4000 Å. Furthermore, the same production was repeated using these aggregated particles as seed crystals, and 4
In the second round, we were able to grow most of the particles to about 10,000 Å in diameter.

実施例 2 上記実施例1により得られた単斜ジルコニア凝
集粒子懸濁液から、遠心分離器により約5000±
500Å程度に相当する部分を分離し、ジルコニア
に対し6モル%に相当する量の硝酸イツトリウム
を加えてよく混合し、800℃で1時間仮焼した。
仮焼物は軽く凝結したが乳鉢で容易にほぐれた。
粉末はX線的には結晶子径約150Åの正方結晶固
溶体であり、遊離のY2O2は認められなかつた。
この粉末に0.3重量%のセロゾール(ステアリン
酸懸濁液)を潤滑剤として加え、造粒製作をせず
にそのまま2t/cm3の圧力で加圧成形し、1350℃に
1時間焼成したところ理論密度のほぼ98%に相当
する焼結体を与えた。この場合焼成線収縮率は約
15%でこの種の易焼結性粉末としては収縮率が極
めて小さく、成形時の充填性が非常に優れている
ことを示した。
Example 2 From the monoclinic zirconia aggregate particle suspension obtained in Example 1 above, approximately 5000±
A portion corresponding to approximately 500 Å was separated, and yttrium nitrate was added in an amount corresponding to 6 mol % based on zirconia, mixed well, and calcined at 800° C. for 1 hour.
The calcined product was slightly coagulated, but was easily loosened in a mortar.
The powder was found to be a tetragonal solid solution with a crystallite diameter of about 150 Å by X-ray examination, and no free Y 2 O 2 was observed.
0.3% by weight of cellosol (stearic acid suspension) was added to this powder as a lubricant, and it was press-molded as it was at a pressure of 2t/ cm3 without granulation, and baked at 1350℃ for 1 hour. A sintered body with a density of approximately 98% was obtained. In this case, the firing wire shrinkage rate is approximately
At 15%, the shrinkage rate was extremely small for this type of easily sinterable powder, and the filling properties during molding were excellent.

実施例 3 試薬塩化ジルコニル約97g蒸留水約500mlに溶
解し、これに1:1アンモニア水を十分量加えて
水酸化ジルコニウムの沈澱を作つた。これを吸引
過して得られる含水状態のケーキに試薬塩化ジ
ルコニル39gを加え攪拌し流動性スラリーとし、
これを97℃で約40時間保持し、X線的には約30Å
(電子顕微鏡でも約40Å)の単斜ジルコニア超微
結晶を1次粒子とし、これが配向的に凝集した約
1000Åの2次凝集微粒子から成るゾルを得た。こ
のゾルに12Nの塩酸を適下した所、塩酸濃度が約
2N付近になつた所で沈降分離が起つた。この沈
降物は光学顕微鏡によれば約1μm(10000Å)の球
状凝集粒子であるが、凝集は弱く、そのままでは
乾燥粒子にならない。この沈降物に少量の塩化ジ
ルコニル(Zr比で1/10)を加え、密閉容器中
で攪拌しつつ150℃に8時間加熱処理したところ、
X線的な結晶子径は僅かに増加(約35Å)するの
みで、その2次凝集粒子は約1μmで強固安定とな
り、乾燥により凝集粒子間は互に固結しない微粉
末を与えた。
Example 3 Approximately 97 g of zirconyl chloride reagent was dissolved in approximately 500 ml of distilled water, and a sufficient amount of 1:1 aqueous ammonia was added to form a precipitate of zirconium hydroxide. 39 g of the reagent zirconyl chloride is added to the water-containing cake obtained by suctioning it and stirred to form a fluid slurry.
This was kept at 97℃ for about 40 hours, and the X-ray measurement was about 30 Å.
The primary particles are monoclinic zirconia ultrafine crystals (approximately 40 Å even under an electron microscope), which are oriented and agglomerated.
A sol consisting of secondary agglomerated fine particles of 1000 Å was obtained. When 12N hydrochloric acid was added to this sol, the concentration of hydrochloric acid was approx.
Sedimentation separation occurred at a point near 2N. According to an optical microscope, this precipitate is a spherical agglomerated particle of approximately 1 μm (10,000 Å) in size, but the aggregation is weak and will not become dry particles as it is. A small amount of zirconyl chloride (Zr ratio: 1/10) was added to this precipitate, and the mixture was heated to 150°C for 8 hours while stirring in a closed container.
The X-ray crystallite diameter increased only slightly (approximately 35 Å), and the secondary agglomerated particles became strongly stable at approximately 1 μm, and upon drying, a fine powder was obtained in which the aggregated particles did not coagulate with each other.

得られた粉末粒子の反応性、焼結性は実施例2
によつて得られた粉末粒子の結果とほぼ同様のも
のであつた。
The reactivity and sinterability of the obtained powder particles were as shown in Example 2.
The results were almost the same as those obtained for powder particles.

Claims (1)

【特許請求の範囲】 1 結晶子径が100Å以下の単斜結晶1次超微粒
子が配向的に凝集した2次粒子から成り、ほぼ球
状で、大きさが0.3μm〜3μmの範囲の且つ比較的
狭い部分にあることを特徴とするジルコニア系凝
集粒子粉末。 2 ジルコニウム塩水溶液を加熱加水分解して得
られる約1000Å以上の単斜ジルコニア系凝集粒子
にジルコニウム塩を加えた混合懸濁水溶液のPHを
1以下の強酸性とし、凝集粒子を浮遊状態に保ち
ながら90℃〜250℃の温度で加熱加水分解を行い、
懸濁粒子を種結晶としてこれを3000Å以上に成長
させることを特徴とするジルコニア系凝集粒子の
製造方法。 3 結晶質ジルコニア系微粒子ゾルに、懸濁粒子
が相互に凝集して沈降を起すに十分な量の酸を加
え、生成する一時的な沈降性凝集粒子を90〜250
℃の温度で必要時間加熱処理を行い、これを安定
な形状の2次凝集粒子に変えることを特徴とする
ジルコニア系凝集粒子の製造方法。 4 ジルコニウム塩水溶液の加熱加水分解から得
られる2次凝集粒子を種結晶としてさらに加水分
解を続け3000Å以上に成長させたジルコニア系凝
集粒子、または結晶質ジルコニア系微粒子ゾルに
酸を加え一時的な沈降性凝集粒子としこれを安定
な形状の2次粒子に変えたジルコニア系凝集粒子
の何れかを含む白濁液から沈降又は遠心分離によ
つて大きさが3000Å以上の任意の粒径範囲部分を
分離し、これを単独で、またはこれに他の金属化
合物を混合し、1000℃以下の温度で熱処理するこ
とを特徴とするジルコニア系凝集粒子粉末の製造
方法。
[Scope of Claims] 1 Consisting of secondary particles in which monoclinic primary ultrafine particles with a crystallite diameter of 100 Å or less are aggregated in an oriented manner, approximately spherical, with a size in the range of 0.3 μm to 3 μm, and relatively A zirconia-based agglomerated particle powder characterized by narrow areas. 2. A mixed suspension aqueous solution in which a zirconium salt is added to monoclinic zirconia aggregate particles of approximately 1000 Å or more obtained by heating and hydrolyzing an aqueous zirconium salt solution is made to have a pH of 1 or less, making it a strongly acidic solution, while maintaining the aggregate particles in a suspended state. Perform thermal hydrolysis at a temperature of 90℃ to 250℃,
A method for producing zirconia-based aggregated particles, which comprises growing suspended particles to a size of 3000 Å or more using seed crystals. 3 A sufficient amount of acid is added to the crystalline zirconia-based fine particle sol to cause the suspended particles to coagulate with each other and cause sedimentation, and the resulting temporary sedimentary agglomerated particles are reduced to 90 to 250.
1. A method for producing zirconia-based agglomerated particles, which is characterized by carrying out a heat treatment at a temperature of °C for a required period of time to convert them into secondary agglomerated particles having a stable shape. 4 Temporary sedimentation by adding acid to zirconia-based aggregated particles or crystalline zirconia-based fine particle sol that are grown to 3000 Å or more by further hydrolysis using secondary aggregated particles obtained from heated hydrolysis of a zirconium salt aqueous solution as seed crystals. Separate any part of the particle size range of 3000 Å or more by sedimentation or centrifugation from a cloudy liquid containing any of the zirconia-based aggregated particles that have been converted into secondary particles with a stable shape. , a method for producing a zirconia-based agglomerated particle powder, which is characterized in that the zirconia-based agglomerated particle powder is heat-treated at a temperature of 1000°C or less, either alone or in combination with another metal compound.
JP59216767A 1984-10-16 1984-10-16 Powder of zirconia agglomerated particle and preparation thereof Granted JPS6197134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59216767A JPS6197134A (en) 1984-10-16 1984-10-16 Powder of zirconia agglomerated particle and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59216767A JPS6197134A (en) 1984-10-16 1984-10-16 Powder of zirconia agglomerated particle and preparation thereof

Publications (2)

Publication Number Publication Date
JPS6197134A JPS6197134A (en) 1986-05-15
JPH0472772B2 true JPH0472772B2 (en) 1992-11-19

Family

ID=16693583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59216767A Granted JPS6197134A (en) 1984-10-16 1984-10-16 Powder of zirconia agglomerated particle and preparation thereof

Country Status (1)

Country Link
JP (1) JPS6197134A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201623A (en) * 1985-03-04 1986-09-06 Etsuro Kato Production of spherical flocculated particle of zirconia ultrafine crystal
DE3737064A1 (en) * 1987-10-31 1989-05-11 Degussa ZIRCONOXIDE POWDER, METHOD FOR THE PRODUCTION AND USE THEREOF
US5248463A (en) * 1989-09-29 1993-09-28 Nissan Chemical Industries, Ltd. Preparation of zirconia sintered body
DE4106535A1 (en) * 1991-03-01 1992-09-03 Degussa MONOCLIN'S ZIRCONOXIDE, PROCESS FOR ITS PRODUCTION AND USE
US5326518A (en) * 1991-10-08 1994-07-05 Nissan Chemical Industries, Ltd. Preparation of sintered zirconia body
JP4082450B2 (en) * 2002-06-06 2008-04-30 ホソカワミクロン株式会社 Method for producing zirconia sol and method for producing fine zirconia powder
BRPI0513165B1 (en) * 2004-07-09 2015-08-18 Asahi Kasei Chemicals Corp Catalyst for the production of a cycloolefin by partial hydrogenation of a monocyclic aromatic hydrocarbon and its production process
US7241437B2 (en) * 2004-12-30 2007-07-10 3M Innovative Properties Company Zirconia particles
JP5494746B2 (en) * 2012-07-17 2014-05-21 住友大阪セメント株式会社 Method for producing particle aggregate

Also Published As

Publication number Publication date
JPS6197134A (en) 1986-05-15

Similar Documents

Publication Publication Date Title
US4851293A (en) Stabilized metallic oxides
EP0229657B1 (en) High-dispersion sol or gel of monoclinic zirconia supermicrocrystals and a process for its production
US5009876A (en) Method of manufacturing barium titanate BaTiO3
US4820593A (en) Stabilised metallic oxides
US4873064A (en) Powder of coagulated spherical zirconia particles and process for producing them
JPH0472772B2 (en)
EP0490500B1 (en) Stabilised metal oxides
JPH0346407B2 (en)
JPS5879818A (en) Colloidal sol, fine powder of crystalline zirconia and preparation thereof
JP2735157B2 (en) Method for producing ultrafine powder with suppressed aggregation
US4374117A (en) Preparation of ultrafine BaZrO3
JPH04214031A (en) Manufacture of composite zirconium oxide and yttrium
JPH03141115A (en) Production of fine yttrium oxide powder
JP3190060B2 (en) Method for producing fine ceria solid solution tetragonal zirconia powder
JPS58217430A (en) Fine zirconia powder and manufacture
JPS63151672A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JPH0239451B2 (en)
JPH0420851B2 (en)
JPH07118016A (en) Uniform-composition zirconia solid solution monodisperse fine globular powder and its production
KR100481057B1 (en) Method for preparing alumina-zirconia composite
JP2722680B2 (en) Method for producing aluminum titanate sintered body
JP2838802B2 (en) Synthesis method of zircon powder
JPH0472775B2 (en)
JPS61174116A (en) Production of perovskite type oxide
JPS61141620A (en) Crystalline zirconia fine powder, and production thereof