JP3190060B2 - Method for producing fine ceria solid solution tetragonal zirconia powder - Google Patents

Method for producing fine ceria solid solution tetragonal zirconia powder

Info

Publication number
JP3190060B2
JP3190060B2 JP11635591A JP11635591A JP3190060B2 JP 3190060 B2 JP3190060 B2 JP 3190060B2 JP 11635591 A JP11635591 A JP 11635591A JP 11635591 A JP11635591 A JP 11635591A JP 3190060 B2 JP3190060 B2 JP 3190060B2
Authority
JP
Japan
Prior art keywords
powder
temperature
mol
tetragonal zirconia
ceria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11635591A
Other languages
Japanese (ja)
Other versions
JPH04342421A (en
Inventor
次雄 佐藤
昭嗣 奥脇
敏明 吉岡
健児 堂坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP11635591A priority Critical patent/JP3190060B2/en
Publication of JPH04342421A publication Critical patent/JPH04342421A/en
Application granted granted Critical
Publication of JP3190060B2 publication Critical patent/JP3190060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、特に低温での焼結が可
能であり、かつ高強度のセリア固溶のジルコニア焼結体
を製造し得る、セリア固溶ジルコニア微粉末の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ceria-dissolved zirconia fine powder which can be sintered at a low temperature and can produce a high-strength ceria-dissolved zirconia sintered body.

【0002】[0002]

【従来の技術】近年、ジルコニアの高温相である正方晶
を室温まで安定化させた正方晶ジルコニア多結晶体(T
ZP)が提供されており、このものは高強度、高靱性を
有するセラミックスとして注目されている。すなわちこ
のTZPは、正方晶が応力誘起相転移によって単斜相に
変わる際に破壊エネルギーを吸収することにより、高強
度、高靱性を呈するのである。
2. Description of the Related Art In recent years, tetragonal zirconia polycrystals (T) in which tetragonal phase, which is a high-temperature phase of zirconia, is stabilized to room temperature.
ZP) has been provided, and is attracting attention as a ceramic having high strength and high toughness. That is, this TZP exhibits high strength and high toughness by absorbing fracture energy when the tetragonal crystal changes to a monoclinic phase due to stress-induced phase transition.

【0003】[0003]

【発明が解決しようとする課題】ところで、これらの特
性は正方晶の安定化剤によって大きく影響を受けること
が知られており、TZPの安定化剤としてはイットリア
とセリアがよく知られている。イットリア系の安定化剤
によって安定化されてなるTZPは、易焼結粉の開発等
によって高強度のセラミックスが得られているものの、
一般にセリア系のものに比べて熱安定性と靱性の面で劣
っている。一方セリア系の安定化剤によって安定化され
てなるTZPは、熱安定性に優れ高靱性であるものの、
一般にその焼結前の粉末が難焼結性であり十分に緻密化
できず、そのため残留気孔が破壊源となって実用に耐え
られるだけの強度が得られないといった問題がある。
It is known that these properties are greatly affected by tetragonal stabilizers, and yttria and ceria are well known as stabilizers for TZP. TZP stabilized by a yttria-based stabilizer has high strength ceramics obtained through the development of easy-to-sinter powder, etc.
Generally, it is inferior in thermal stability and toughness as compared with ceria-based ones. On the other hand, TZP stabilized by a ceria-based stabilizer has excellent thermal stability and high toughness,
Generally, there is a problem that the powder before sintering is difficult to sinter and cannot be sufficiently densified, so that the residual pores are a source of destruction and the strength sufficient for practical use cannot be obtained.

【0004】このようなセリア系のTZPにおける問題
を解消すべく、セラミックスの原料粉末(焼結前の粉
末)の焼結性を改善するには、まず原料粉末を微粒子化
することが挙げられ、特に単分散微粒子とすることによ
って焼結性が向上することが知られている。また、セラ
ミックスの焼結性は粉末の結晶化度、粒子形状や凝集状
態にも依存していると考えられており、粉末を結晶化し
た球状微粒子とし、弱い凝集状態とすることによって焼
結性を改善することが期待できる。このような期待のも
とに、セラミックスの原料粉末を水熱処理すると低温で
結晶化し、凝集力の弱い粉末が得られるという近年の報
告が注目されたが、水熱処理では粒子が晶壁を示し、焼
結性が阻害されてしまうことから、焼結性を改善するに
は未だ不十分であるとされている。
[0004] In order to solve such a problem in the ceria-based TZP, in order to improve the sinterability of the ceramic raw material powder (the powder before sintering), first, the raw material powder is made into fine particles. In particular, it is known that sinterability is improved by using monodispersed fine particles. It is also believed that the sintering properties of ceramics depend on the crystallinity, particle shape, and agglomeration state of the powder. Can be expected to improve. Under such expectations, attention has been paid to recent reports that hydrothermal treatment of ceramic raw material powders results in crystallization at low temperatures and powders with low cohesive strength can be obtained.In hydrothermal treatment, however, particles show crystal walls, It is said that the sinterability is impaired, so that it is still insufficient to improve the sinterability.

【0005】本発明は前記事情に鑑みてなされたもの
で、その目的とするところは、セリア系の安定化剤によ
って安定化されるTZPの焼結性を改善すべく、その原
料粉末を弱い凝集状態でしかも晶壁を示さない状態とな
るよう製造し得る、セリア固溶正方晶ジルコニア微粉末
の製造方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the sinterability of TZP stabilized by a ceria-based stabilizer by weakly aggregating the raw material powder. An object of the present invention is to provide a method for producing ceria-dissolved tetragonal zirconia fine powder, which can be produced in a state where no crystal wall is exhibited.

【0006】[0006]

【課題を解決するための手段】本発明のセリア固溶正方
晶ジルコニア微粉末の製造方法では、Ce(NO33
CeCl3、Ce2(SO43のうちの少なくとも一種
と、ZrO(NO32、ZrOCl2、ZrOSO4のう
ちの少なくとも一種とを、Ce:Zrのモル比が8:9
2〜16:84となるよう配合して、これを、全体で
0.3〜0.7(モル/l)となるようにメタノールを0
〜30体積%加えた水に溶解させて混合し、次に得られ
た混合溶液に、濃度が10〜15(モル/l)のアンモ
ニア水を3〜10体積%加えて沈殿物を生成させ、次い
で得られた沈殿物を濾過、洗浄、乾燥して非晶質粉末を
得、次いで該非晶質粉末をそれ以上の重量の非水溶液溶
媒とともにオートクレーブ内に入れて200〜350℃
で0.1〜3時間高温高圧処理をし、その後300℃以
上の超臨界状態にし、さらにその状態から前記オートク
レーブを開放して急激に温度及び圧力を低下させ、さら
にその後、大気中にて300℃で熱処理することを前記
課題の解決手段とした。
According to the method for producing fine ceria solid solution tetragonal zirconia powder of the present invention, Ce (NO 3 ) 3 ,
And at least one of CeCl 3, Ce 2 (SO 4 ) 3, and at least one of ZrO (NO 3) 2, ZrOCl 2, ZrOSO 4, Ce: the molar ratio of Zr is 8: 9
2 to 16:84, and methanol was added to the mixture to give a total of 0.3 to 0.7 (mol / l).
Dissolve and mix in water added with 30% by volume, then add 3 to 10% by volume of aqueous ammonia having a concentration of 10 to 15 (mol / l) to the obtained mixed solution to form a precipitate, Next, the obtained precipitate is filtered, washed and dried to obtain an amorphous powder, and then the amorphous powder is put into an autoclave together with a non-aqueous solvent having a higher weight, and then placed at 200 to 350 ° C.
At a high temperature and high pressure for 0.1 to 3 hours, and then brought to a supercritical state of 300 ° C. or higher, and then the autoclave was released from that state to rapidly lower the temperature and pressure. Heat treatment at a temperature of ° C. is a means for solving the above-mentioned problem.

【0007】すなわち本発明は、原料粉末を中和共沈に
よって生成させるとともに、中和共沈時での非晶質粉末
の結晶化に際し、粉末の溶解性が小さく表面張力の小さ
な非水溶液溶媒を結晶化処理溶媒として用いたものであ
る。そして、本発明者らは、中和共沈によって原料粉末
を微粒子化しても、粉末の結晶化と凝集状態を制御しな
くては成形性が悪く焼結体が緻密化しないと考え、水熱
処理と非水溶媒熱処理と超臨界状態から急激に冷却する
ことをその解決方法として本発明を完成させたのであ
る。
That is, the present invention provides a method for producing a raw material powder by neutralization co-precipitation, and a method for crystallization of an amorphous powder during the neutralization co-precipitation, wherein a non-aqueous solvent having a low powder solubility and a small surface tension is used. It was used as a crystallization solvent. The present inventors consider that even if the raw material powder is finely divided by neutralization coprecipitation, the formability is poor and the sintered body is not densified without controlling the crystallization and agglomeration state of the powder. The present invention has been completed as a solution to the above problem, that is, non-aqueous solvent heat treatment and rapid cooling from a supercritical state.

【0008】以下に、本発明のセリア固溶正方晶ジルコ
ニア微粉末の製造方法を詳しく説明する。まず、Ce
(NO33、CeCl3、Ce2(SO43のうちの少な
くとも一種と、ZrO(NO32、ZrOCl2、Zr
OSO4のうちの少なくとも一種とを、Ce:Zrのモ
ル比が8:92〜16:84となるよう配合して、これ
を、全体で0.3〜0.7(モル/l)となるようにメタ
ノールを0〜30体積%加えた水に溶解させて混合す
る。ここで、Ce:Zrのモル比が8:92〜16:8
4となるように混合するのは、Ceの量がこの範囲より
多いとジルコニアの立方晶が安定になってしまうからで
あり、一方この範囲より少ないとジルコニアに単斜相が
生成してしまうからである。また、CeとZrの全体の
添加量、溶液中のメタノールの量を前記範囲にしたの
は、完全な中和共沈による非晶質粉末の生成に適当な量
であるからである。
Hereinafter, the method for producing the ceria-dissolved tetragonal zirconia fine powder of the present invention will be described in detail. First, Ce
At least one of (NO 3 ) 3 , CeCl 3 and Ce 2 (SO 4 ) 3 , and ZrO (NO 3 ) 2 , ZrOCl 2 and Zr
At least one of OSO 4 is blended so that the molar ratio of Ce: Zr is 8:92 to 16:84, and the total is 0.3 to 0.7 (mol / l). Is dissolved in water containing 0 to 30% by volume of methanol and mixed. Here, the molar ratio of Ce: Zr is 8:92 to 16: 8.
The reason for mixing to be 4 is that if the amount of Ce is more than this range, the cubic crystal of zirconia will be stable, while if it is less than this range, a monoclinic phase will be generated in zirconia. It is. The reason why the total amount of Ce and Zr added and the amount of methanol in the solution are within the above-mentioned ranges are because they are amounts suitable for producing amorphous powder by complete neutralization coprecipitation.

【0009】次に、得られた混合溶液に、濃度が10〜
15(モル/l)のアンモニア水を3〜10体積%加
え、沈殿物を生成させる。ここで、アンモニア溶液の濃
度とその添加量を前記範囲にしたのは、前述した場合と
同様に完全な中和共沈による非晶質粉末の生成に適当な
量であるからである。次いで、得られた沈殿物を濾過、
洗浄、乾燥して非晶質粉末を得る。ここで、非晶質粉末
の分離のための濾過、洗浄、乾燥の方法については公知
の方法を採用することができる。
Next, the resulting mixed solution is added with a concentration of 10 to 10.
15 (mol / l) aqueous ammonia is added at 3 to 10% by volume to form a precipitate. Here, the reason why the concentration of the ammonia solution and the amount of addition thereof are in the above-mentioned range is that the amount is appropriate for the production of the amorphous powder by the complete neutralization coprecipitation as in the case described above. Then, the obtained precipitate was filtered,
After washing and drying, an amorphous powder is obtained. Here, a known method can be adopted as a method of filtration, washing, and drying for separating the amorphous powder.

【0010】次いで、得られた非晶質粉末をそれ以上の
重量の非水溶液溶媒に入れ、これをオートクレーブ内に
入れて200〜350℃で0.1〜3時間高温高圧処理
する。ここで、非水溶液溶媒としては、メタノール、エ
タノール、プロパノール、イソプロパノール、ペンタノ
ール、オクタノール、1,4−ブタンジオール、1,3−
ブタンジオール、ペンタン、ヘキサン、ベンゼン、トル
エン、ジエチルアミン、トリエチルアミン等が用いられ
る。また、使用するオートクレーブとしては、テフロン
を内張りしたことによって内壁面と溶液とが反応するの
を防止したものが、より純度の高い微粉末を得るうえで
望ましい。また、非水溶液溶媒の量を非晶質粉末の重量
以上にしたのは、該非水溶液溶媒による処理の効果を十
分に得るためである。
Next, the obtained amorphous powder is placed in a non-aqueous solvent having a higher weight, placed in an autoclave, and subjected to high-temperature and high-pressure treatment at 200 to 350 ° C. for 0.1 to 3 hours. Here, the non-aqueous solvent includes methanol, ethanol, propanol, isopropanol, pentanol, octanol, 1,4-butanediol, and 1,3-butanediol.
Butanediol, pentane, hexane, benzene, toluene, diethylamine, triethylamine and the like are used. As an autoclave to be used, one in which the inner wall surface is prevented from reacting with the solution by lining with Teflon is desirable for obtaining a finer powder having higher purity. Further, the amount of the non-aqueous solvent is set to be equal to or larger than the weight of the amorphous powder in order to sufficiently obtain the effect of the treatment with the non-aqueous solvent.

【0011】また、オートクレーブ内での処理温度と処
理時間を200〜350℃で0.1〜3時間としたの
は、この範囲より低温もしくは短時間では非晶質粉末が
十分に結晶化しないからであり、一方この範囲より高温
あるいは長時間では粒子間の凝集が強くなりさらには晶
壁を示すからである。
The reason why the treatment temperature and the treatment time in the autoclave are set at 200 to 350 ° C. for 0.1 to 3 hours is that the amorphous powder does not sufficiently crystallize at a temperature lower than this range or for a short time. On the other hand, when the temperature is higher than this range or for a long time, the cohesion between the particles becomes stronger, and furthermore, the crystal wall is exhibited.

【0012】その後、300℃以上の超臨界状態にし、
さらにその状態から前記オートクレーブを開放して急激
に温度及び圧力を低下させ、さらにその後、大気中にて
300℃で熱処理してセリア固溶正方晶ジルコニア微粉
末を得る。ここで、300℃以上の超臨界状態にしたの
は、300℃未満ではジルコニアに化学吸着した水やア
ルコールを完全に除去することが困難だからである。そ
して、このような超臨界状態から急激に冷却することに
より、キャピラリー力による凝集を防ぎ、粉末の凝集を
弱めることができるのである。すなわち、通常の乾燥で
は溶媒が気化する際にキャピラリー力による凝集が進行
してしまい、焼結性が悪くなる恐れがあるからである。
このようにして得られた粉末は、正方晶に結晶化した微
粒子となり、かつ弱い凝集状態にあることから優れた焼
結性を有するものとなる。
After that, a supercritical state of 300 ° C. or more is set,
Further, the autoclave is opened from this state to rapidly lower the temperature and pressure, and then heat-treated at 300 ° C. in the atmosphere to obtain ceria-dissolved tetragonal zirconia fine powder. The reason why the supercritical state is set to 300 ° C. or higher is that it is difficult to completely remove water or alcohol chemically adsorbed on zirconia at a temperature lower than 300 ° C. Then, by rapidly cooling from such a supercritical state, agglomeration due to capillary force can be prevented, and agglomeration of the powder can be weakened. That is, in the ordinary drying, when the solvent is vaporized, the aggregation due to the capillary force proceeds, and the sinterability may be deteriorated.
The powder obtained in this way becomes fine particles crystallized in a tetragonal system and has excellent sinterability since it is in a weakly aggregated state.

【0013】[0013]

【作用】本発明のセリア固溶正方晶ジルコニア微粉末の
製造方法によれば、中和共沈によって非晶質の微粒子粉
末を得、かつこれを、該粉末の溶解性が小さく表面張力
の小さな非水溶液溶媒を用いて水熱処理し、さらに超臨
界状態から急激に冷却して結晶化したので、得られる粉
末が微粒状でかつ弱い凝集状態のものとなる。
According to the method for producing fine ceria-dissolved tetragonal zirconia powder of the present invention, an amorphous fine-particle powder is obtained by co-precipitation with neutralization, and this is converted into a powder having a low solubility and a low surface tension. Hydrothermal treatment using a non-aqueous solvent, followed by rapid cooling from the supercritical state and crystallization, results in a finely powdered and weakly agglomerated powder.

【0014】[0014]

【実施例】以下、本発明を実施例によりさらに具体的に
説明する。0.06モルのCe(NO33水溶液と0.4
4モルのZrO(NO32水溶液とを混合して2000
cm3の混合水溶液とし、これに400cm3のメタノー
ルを加えて均一に混合した。次に、これに15モルのア
ンモニア水を100cm3加え、生成した沈殿を濾過、
洗浄、乾燥して非晶質の12Ce−ZrO2粉末を得
た。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. 0.06 mol of Ce (NO 3 ) 3 aqueous solution and 0.4
4 moles of ZrO (NO 3 ) 2 aqueous solution was mixed and 2,000
cm 3 of a mixed aqueous solution, and 400 cm 3 of methanol was added thereto and mixed uniformly. Next, 100 cm 3 of 15 molar ammonia water was added thereto, and the formed precipitate was filtered.
After washing and drying, an amorphous 12 Ce-ZrO 2 powder was obtained.

【0015】次いで、内容積10cm3のステンレス製
耐圧容器に前記非晶質の12Ce−ZrO2粉末2gと
メタノール3gとを入れ、350℃にて2時間オートク
レーブ処理し、さらに超臨界状態でオートクレーブを開
放して急激に冷却した。
Next, 2 g of the amorphous 12 Ce—ZrO 2 powder and 3 g of methanol were placed in a stainless steel pressure vessel having an inner volume of 10 cm 3 , and autoclaved at 350 ° C. for 2 hours. Opened and cooled rapidly.

【0016】その後、前記容器から取り出した処理後の
粉末を大気中にて300℃で1時間仮焼し、12モル%
のセリアを固溶した正方晶のセリア固溶正方晶ジルコニ
ア微粉末を得た。そして、このようにして得られた微粉
末を冷間静水圧加圧(CIP)によって成形し、さらに
常圧大気中で1000〜1500℃で5時間焼結した。
Thereafter, the treated powder taken out of the container is calcined at 300 ° C. for 1 hour in the atmosphere to obtain a 12 mol%
Was obtained, and a tetragonal ceria solid solution tetragonal zirconia fine powder in which ceria was dissolved was obtained. Then, the fine powder thus obtained was molded by cold isostatic pressing (CIP), and sintered at 1,000 to 1,500 ° C. for 5 hours in an atmosphere of normal pressure.

【0017】また比較として、中和共沈によって得られ
た前記非晶質の12Ce−ZrO2粉末を250℃の水
中でオートクレーブ処理した粉末(比較品1)、メタノ
ールの還流中で処理して450℃で熱処理した粉末(比
較品2)、直接450℃で熱処理した粉末(比較品
3)、および市販の粉末(比較品4)を用い、前記実施
例品と同一の条件で成形焼結した。なお、これら比較品
の粉末のいずれも、実施例品と同様に12モル%のセリ
アを固溶した正方晶のセリア固溶正方晶ジルコニア微粉
末であるのはもちろんである。
As a comparison, the amorphous 12 Ce—ZrO 2 powder obtained by neutralization coprecipitation was autoclaved in water at 250 ° C. (Comparative product 1), and treated in a reflux of methanol to give 450 g. Using a powder heat-treated at 50 ° C. (Comparative product 2), a powder directly heat-treated at 450 ° C. (Comparative product 3), and a commercially available powder (Comparative product 4), they were molded and sintered under the same conditions as those of the above-mentioned examples. It is a matter of course that each of the powders of these comparative products is a tetragonal ceria-dissolved tetragonal zirconia fine powder in which 12 mol% of ceria is dissolved as in the example products.

【0018】得られた焼結体について水置換によるアル
キメデス法により密度を測定し、理論密度を6.28g
/cm3として相対密度を計算し、その結果を図1に示
す。また、これら焼結体を室温にてJIS R1601
による3点曲げ強度を測定し、その結果を図2に示す。
図1に示すように本発明の実施例品は、比較品のものに
比べて低温で焼結し、1200℃で相対密度がほぼ10
0%となり、よって低温での焼結が可能であることが判
明した。また、これにより実施例品は、焼結温度が同じ
比較品に比べて3点曲げ強度も高くなることが図2によ
り確認された。
The density of the obtained sintered body was measured by the Archimedes method using water displacement, and the theoretical density was 6.28 g.
/ Cm 3 and the relative density was calculated, and the result is shown in FIG. Further, these sintered bodies were subjected to JIS R1601 at room temperature.
The three-point bending strength was measured, and the results are shown in FIG.
As shown in FIG. 1, the product of the example of the present invention was sintered at a lower temperature than that of the comparative product, and had a relative density of about 10 at 1200 ° C.
0%, which proved that sintering at a low temperature was possible. Further, it was confirmed from FIG. 2 that the example product had higher three-point bending strength than the comparative product having the same sintering temperature.

【0019】[0019]

【発明の効果】以上説明したように本発明のセリア固溶
正方晶ジルコニア微粉末の製造方法は、中和共沈によっ
て非晶質の微粒子粉末を得、かつこれを、該粉末の溶解
性が小さく表面張力の小さな非水溶液溶媒を用いて水熱
処理し、さらに超臨界状態から急激に冷却して結晶化し
たことにより、得られる粉末を弱い凝集状態にしたもの
であるから、得られる粉末が微粒子状でかつ極めて易焼
結性のものとなり、よってこれを用いることにより低温
での焼結が可能となり、かつこのような焼結により十分
に緻密化したセリア固溶正方晶ジルコニア多結晶体を得
ることができる。
As described above, the method for producing ceria-dissolved tetragonal zirconia fine powder of the present invention provides an amorphous fine-particle powder by co-precipitation with neutralization. Hydrothermal treatment using a non-aqueous solvent with a small surface tension, followed by rapid cooling from the supercritical state and crystallization, resulting in a weakly agglomerated powder, resulting in fine particles. And it is extremely easy to sinter, so that sintering at a low temperature is possible by using this, and a sufficiently dense ceria solid solution tetragonal zirconia polycrystal is obtained by such sintering. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】焼結体の焼結温度と相対密度との関係を示すグ
ラフである。
FIG. 1 is a graph showing a relationship between a sintering temperature of a sintered body and a relative density.

【図2】焼結体の焼結温度と3点曲げ強度との関係を示
すグラフである。
FIG. 2 is a graph showing a relationship between a sintering temperature of a sintered body and a three-point bending strength.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−88423(JP,A) 特開 昭63−129017(JP,A) 特開 昭60−137827(JP,A) 特公 昭48−22911(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C01G 25/00 CA(STN)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-88423 (JP, A) JP-A-63-129017 (JP, A) JP-A-60-137727 (JP, A) 22911 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C01G 25/00 CA (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Ce(NO33、CeCl3、Ce2(S
43のうちの少なくとも一種と、ZrO(NO32
ZrOCl2、ZrOSO4のうちの少なくとも一種と
を、Ce:Zrのモル比が8:92〜16:84となる
よう配合して、これを、全体で0.3〜0.7(モル/
l)となるようにメタノールを0〜30体積%加えた水
に溶解させて混合し、次に得られた混合溶液に、濃度が
10〜15(モル/l)のアンモニア水を3〜10体積
%加えて沈殿物を生成させ、次いで得られた沈殿物を濾
過、洗浄、乾燥して非晶質粉末を得、次いで該非晶質粉
末をそれ以上の重量の非水溶液溶媒とともにオートクレ
ーブ内に入れて200〜350℃で0.1〜3時間高温
高圧処理をし、その後300℃以上の超臨界状態にし、
さらにその状態から前記オートクレーブを開放して急激
に温度及び圧力を低下させ、さらにその後、大気中にて
300℃で熱処理することを特徴とするセリア固溶正方
晶ジルコニア微粉末の製造方法。
1. A method according to claim 1, wherein Ce (NO 3 ) 3 , CeCl 3 , Ce 2 (S
O 4 ) 3 , ZrO (NO 3 ) 2 ,
At least one of ZrOCl 2 and ZrOSO 4 is blended so that the molar ratio of Ce: Zr is from 8:92 to 16:84, and the total is from 0.3 to 0.7 (mol / mol).
1) Dissolve and mix in water containing 0 to 30% by volume of methanol so as to obtain l), and then add 3 to 10% by volume of aqueous ammonia having a concentration of 10 to 15 (mol / L) to the obtained mixed solution. % To form a precipitate, and then the precipitate obtained is filtered, washed and dried to obtain an amorphous powder, and then the amorphous powder is put into an autoclave together with a non-aqueous solvent having a higher weight. High-temperature and high-pressure treatment at 200 to 350 ° C for 0.1 to 3 hours, and then to a supercritical state of 300 ° C or more,
The method for producing ceria-dissolved tetragonal zirconia fine powder further comprises releasing the autoclave from that state, rapidly lowering the temperature and pressure, and then performing heat treatment at 300 ° C. in the air.
JP11635591A 1991-05-21 1991-05-21 Method for producing fine ceria solid solution tetragonal zirconia powder Expired - Fee Related JP3190060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11635591A JP3190060B2 (en) 1991-05-21 1991-05-21 Method for producing fine ceria solid solution tetragonal zirconia powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11635591A JP3190060B2 (en) 1991-05-21 1991-05-21 Method for producing fine ceria solid solution tetragonal zirconia powder

Publications (2)

Publication Number Publication Date
JPH04342421A JPH04342421A (en) 1992-11-27
JP3190060B2 true JP3190060B2 (en) 2001-07-16

Family

ID=14684908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11635591A Expired - Fee Related JP3190060B2 (en) 1991-05-21 1991-05-21 Method for producing fine ceria solid solution tetragonal zirconia powder

Country Status (1)

Country Link
JP (1) JP3190060B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2714370B1 (en) * 1993-12-24 1996-03-08 Rhone Poulenc Chimie Precursor of a composition and composition based on a mixed oxide of cerium and zirconium, method of preparation and use.
KR20040100136A (en) * 2003-05-21 2004-12-02 한화석유화학 주식회사 Method for doping metal oxides
CN109207717B (en) * 2018-09-04 2020-06-30 包头稀土研究院 Method for preparing high-purity mixed rare earth chloride by neutralizing, impurity removing and circulating rare earth sulfate water extract
CN110342931A (en) * 2019-07-11 2019-10-18 河北铭万精细化工有限公司 A kind of preparation method of ceramic nano zirconium oxide powder
JP7111929B2 (en) * 2020-04-28 2022-08-02 ユミコア日本触媒株式会社 Ce--Zr composite oxide, method for producing the same, and catalyst for purifying exhaust gas using the same
CN113135593B (en) * 2021-05-25 2022-01-28 西南科技大学 Method for preparing high-purity nano zirconium dioxide by hydrothermal-assisted sol-gel method

Also Published As

Publication number Publication date
JPH04342421A (en) 1992-11-27

Similar Documents

Publication Publication Date Title
JPS63139050A (en) Zirconia base ceramics
US4880757A (en) Chemical preparation of zirconium-aluminum-magnesium oxide composites
Moon et al. Phase development of barium titanate from chemically modified-amorphous titanium (hydrous) oxide precursor
JPH03170332A (en) Zirconium dioxide powder, its manufacture and use as well as sintered product
JP3190060B2 (en) Method for producing fine ceria solid solution tetragonal zirconia powder
JP2968608B2 (en) Method for producing fine ceria solid solution tetragonal zirconia powder
JPS63151672A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JPS63103864A (en) Sintered formed body comprising partially stabilized zirconium oxide and manufacture
JPH0230663A (en) Sintered material of zirconia and production thereof
JPS63151673A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JP3257095B2 (en) Method for producing zirconia powder
JP2607517B2 (en) Method for producing zirconia ceramics
JP2616772B2 (en) Method for producing proton conductive ceramics
JPS61270217A (en) Production of crystalline zirconium oxide fine powder
JPH0427166B2 (en)
JPS63151676A (en) Manufacture of zirconium titanate base ceramics
JPH06211570A (en) High sinterable powdery composition mainly containing zirconium compound and its production thereof
JPH0577630B2 (en)
JPH0474715A (en) Production of compound oxide powder
JPS62235256A (en) Manufacture of zirconium oxide base composite sintered body
JPS6090870A (en) Manufacture of high strength zirconia ceramic
JPH021112B2 (en)
JPS60239356A (en) Highly sinterable powder composition containing zirconium asmajor component, manufacture and manufacture of zirconia sintered body
JPS5820783A (en) Manufacture of silicon nitride sintered body
JPH0262497B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080518

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees